1
|
Ma X, Lao Y, Bai Y, Guan X, Jiang J, Cui M, Dong Z. Study progress of etiologic mechanisms of chronic prostatitis/chronic pelvic pain syndrome. Int Immunopharmacol 2025; 148:114128. [PMID: 39864227 DOI: 10.1016/j.intimp.2025.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 01/28/2025]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) represents a prevalent condition within the male genitourinary system. CP/CPPS occurs in men of varying ages, with an increasing recurrence rate associated with advancing age. The pathogenesis of CP/CPPS remains unclear, and clinical treatment typically focuses on symptom management with limited efficacy, resulting in significant economic and psychological burdens for patients. Research has increasingly identified several factors potentially associated with the development of CP/CPPS, including lifestyle, psychosocial influences, neuroendocrine elements, and other variables. This paper reviews recent studies on the risk factors and etiological mechanisms of CP/CPPS to enhance understanding of its mechanisms, providing a reference framework for future basic research and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xiyue Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yongfeng Lao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yanan Bai
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xin Guan
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jingyi Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Minglu Cui
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhilong Dong
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Zhang Y, Feng R, Chen S, Wang Z, Huang C, Zhang L, Chen J, Liang C. The causative effect of CXCR7 on experimental autoimmune prostatitis injury and fibrosis. Int Immunopharmacol 2025; 144:113685. [PMID: 39608177 DOI: 10.1016/j.intimp.2024.113685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Chronic prostatitis and Pelvic Pain syndrome (CP/CPPS) is an autoimmune inflammatory disease characterized by pelvic or perineal pain and infiltration of inflammatory cells in the prostate. C-X-C chemokine receptor type 7 (CXCR7) is an atypical chemokine receptor that has been shown to play a key role in inflammatory processes in prostate cancer. However, the role of CXCR7 in autoimmune prostate and immune regulation in CP/CPPS along with the mechanism of action for CXCR7 remains unclear. In this study, a mouse model of experimental autoimmune prostatitis (EAP) was constructed by subcutaneous injection of antigen, and CXCR7 agonist was administered to investigate the effects of CXCR7 on the proportion of immune cells and fibrosis in CP/CPPS. Western blotting, immunohistochemical staining and immunofluorescence, flow cytometry, and masson's trichrome staining were used to study the regulatory mechanisms of CXCR7 in immune regulation. CXCR7 agonists can significantly reduce pain and prostatic inflammation, and in vivo flow cytometry studies showed that the antagonists restored the imbalance of the Th17/Treg cell ratio. To elucidate the potential mechanisms by which CXCR7 influences the pathogenesis of CP/CPPS, we conducted simultaneous RNA-seq and non-targeted metabolome sequencing. Our findings suggest that CXCR7 agonists alleviate fibrosis in autoimmune prostatitis by inhibiting the TGFβ/SMAD pathway. This study provides the foundation to target the immunological function of CXCR7 as a novel therapy for CP/CPPS.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Rui Feng
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sixu Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Zhengbin Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Cong Huang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Institute of Urology, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Lin Z, Li M, Zhang M, Gong Y, Gan X, Liang W, Tan Y, Zhang C, Gao Q, Yang X. Comparative study of trace metal concentration in the diagnosis of category III prostatitis. BMC Urol 2024; 24:259. [PMID: 39604918 PMCID: PMC11600811 DOI: 10.1186/s12894-024-01656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Chronic prostatitis (CP) is one of the general diseases in urological practice, with category III prostatitis being particularly prevalent. The trace metal abnormalities might be a primary cause of prostatitis, however, their specific roles in category III prostatitis remain largely unexplored. METHOD In total, 42 expressed prostatic secretion (EPS) samples from IIIa prostatitis patients, 42 from IIIb prostatitis patients, and 45 from controls were collected, along with 42 serum samples from IIIa prostatitis patients, 45 from IIIb prostatitis patients, and 50 from controls for analysis in this study. To investigate the diagnostic potential of trace metals in category III prostatitis, we analyzed the concentration of zinc (Zn), copper (Cu), calcium (Ca) and magnesium (Mg) in EPS and serum of patients with category III prostatitis and healthy controls using a flame atomic absorption spectrometer (FAAS). RESULTS The Results showed that the concentrations of Zn, Ca and Mg in both serum and EPS samples of all subjects with category III prostatitis were significantly different compared to controls (all P < 0.05), while Cu levels were significantly altered in all EPS samples (P < 0.000). In the category of IIIa prostatitis group, the levels of Zn, Ca, Mg in EPS, as well as Ca in serum were significantly reduced (all P < 0.000), whereas the serum Zn level was markedly elevated (P < 0.000). In the category IIIb prostatitis group, the EPS levels of Zn, Ca, Mg were decreased significantly (all P < 0.05), and the levels of serum Ca, Mg were markedly decreased (all P < 0.000), however, the EPS Cu level increased significantly (P < 0.05). Moreover, receiver operating characteristic (ROC) analysis showed that the levels of Mg and Zn/Mg in EPS had better diagnostic value for category IIIa prostatitis (Area Under the ROC Curve(AUC) = 0.796, 0.791, respectively, all P < 0.0001); while Cu and Cu/Ca levels exhibited better diagnostic value for category IIIb prostatitis (AUC = 0.880, 0.901, respectively, all P < 0.0001). CONCLUSION Summarily, there are significant abnormalities in the concentrations of Cu, Mg, Ca, and Zn in EPS and serum samples of patients with category III prostatitis. The levels of Mg, Cu, Zn/Mg, Cu/Ca in EPS may serve as potential diagnostic markers for category III prostatitis.
Collapse
Affiliation(s)
- Zhidi Lin
- Department of Urology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Disease of Baise, Baise, Guangxi, China
| | - Muyan Li
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Mingjin Zhang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yimin Gong
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Gan
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin, Guangxi, China
| | - Weiyuan Liang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin, Guangxi, China
| | - Yanjun Tan
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Chong Zhang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin, Guangxi, China
| | - Qian Gao
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin, Guangxi, China
| | - Xiaoli Yang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi, China.
- Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin, Guangxi, China.
| |
Collapse
|
4
|
Ding C, Gong Q, Wan S. Mediation effect of plasma metabolites on the relationship between immune cells and the risk of prostatitis: A study by bidirectional 2-sample and Bayesian-weighted Mendelian randomization. Medicine (Baltimore) 2024; 103:e40024. [PMID: 39465812 PMCID: PMC11479442 DOI: 10.1097/md.0000000000040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
According to the findings of multiple observational studies, immune disorder was a risk factor for prostatitis. However, it remained unknown whether there was a direct causal relationship between immune cells and prostatitis or whether this relationship was mediated by plasma metabolites. Based on the pooled data of a genome-wide association study (GWAS), a genetic variant was used to predict the effects of 731 immunophenotypes on the risk of prostatitis and determine whether the effects were mediated by 1400 metabolites. The bidirectional 2-sample Mendelian randomization (MR) method was adopted to uncover the causal relationship between immunophenotypes and prostatitis. Subsequently, a 2-step MR method was employed to evaluate whether the metabolites mediated this causal relationship and quantify the mediating effects and the corresponding ratios. In addition, the Bayesian-weighted Mendelian randomization (BWMR) method was employed to verify the results. Among the 731 immunophenotypes analyzed, 16 had causal relationships with the risk of prostatitis, including 11 with positive correlations (P < .05, beta > 0) and 5 with negative correlations (P < .05, beta < 0). The MR analysis screened out 9 metabolites related to the risk of prostatitis. The X - 24344 levels mediated the causal relationship between CD3 on CD39+ activated Treg and prostatitis (mediation effect: 0.01; ratio: 9.82%). Both histidine betaine (hercynine) levels and the proline-to-glutamate ratio mediated the causal relationship between CD14-CD16+ monocyte absolute count and prostatitis, with the mediation effects of -0.016 (14.20%) and -0.008 (7.24%), respectively. The glutamine degradant levels mediated the causal relationship between HLA DR+ CD4+ %T cells and prostatitis, with a mediation effect of -0.012, accounting for 8.07% of the total. The present study indicated that the immune cell subsets predicted based on gene expression profiles were potentially beneficial or harmful risk factors of prostatitis, and plasma metabolites may serve as the mediating factors of the relationship. The study thus shed light on deciphering the immunologic mechanism of prostatitis.
Collapse
Affiliation(s)
- Chao Ding
- Department of Urology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui Province, China
- Department of Urology, The Affiliated Hospital of Anhui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Quanhua Gong
- Department of Urology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui Province, China
- Department of Urology, The Affiliated Hospital of Anhui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Shui Wan
- Department of Urology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui Province, China
- Department of Urology, The Affiliated Hospital of Anhui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| |
Collapse
|
5
|
Yue SY, Li WY, Xu S, Bai XX, Xu WL, Wang X, Ding HK, Chen J, Du HX, Xu LF, Niu D, Liang CZ. Causality investigation among gut microbiota, immune cells, and prostate diseases: a Mendelian randomization study. Front Microbiol 2024; 15:1445304. [PMID: 39323879 PMCID: PMC11422081 DOI: 10.3389/fmicb.2024.1445304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Background The gut microbiota has been demonstrated to have a significant role in the pathogenesis and progression of a variety of diseases, including prostate cancer, prostatitis, and benign prostatic hyperplasia. Potential links between prostate diseases, immune cells and the gut microbiota have not been adequately investigated. Methods MR studies were conducted to estimate the effects of instrumental variables obtained from genome-wide association studies (GWASs) of 196 gut microbial taxa and 731 immune cells on the risk of prostate diseases. The primary method for analysing causal relationships was inverse variance-weighted (IVW) analysis, and the MR results were validated through various sensitivity analyses. Results MR analysis revealed that 28 gut microbiome taxa and 75 immune cell types were significantly associated with prostate diseases. Furthermore, reverse MR analysis did not support a causal relationship between prostate diseases and the intestinal microbiota or immune cells. Finally, the results of the mediation analysis indicated that Secreting Treg % CD4 Treg, Activated & resting Treg % CD4 Treg, and Mo MDSC AC inhibited the role of the class Mollicutes in reducing the risk of PCa. In prostatitis, CD8+ T cells on EM CD8br hinder the increased risk associated with the genus Eubacterium nodatum group. Interestingly, in BPH, CD28- CD25++CD8br AC and CD16-CD56 on HLA DR+ NK promoted the role of the genus Dorea in reducing the risk of BPH. Conclusion This study highlights the complex relationships among the gut microbiota, immune cells and prostate diseases. The involvement of the gut microbiota in regulating immune cells to impact prostate diseases could provide novel methods and concepts for its therapy and management.
Collapse
Affiliation(s)
- Shao-Yu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Wei-Yi Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shun Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiao-Xin Bai
- Department of Infectious Disease, The Second People’s Hospital of Fuyang City, Fuyang, China
| | - Wen-Long Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xu Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - He-Kang Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ling-Fan Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Di Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Yue SY, Niu D, Ma WM, Guan Y, Liu QS, Wang XB, Xiao YZ, Meng J, Ding K, Zhang L, Du HX, Liang CZ. The CXCL10/CXCR3 axis regulates Th1 cell differentiation and migration in experimental autoimmune prostatitis through the PI3K/AKT pathway. Andrology 2024; 12:1408-1418. [PMID: 38095276 DOI: 10.1111/andr.13571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 08/15/2024]
Abstract
OBJECTIVE To investigate the mechanism of the CXCL10/CXCR3 axis regulating Th1 cell differentiation and migration through the PI3K/AKT pathway in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). METHODS Experimental autoimmune prostatitis (EAP) model, a well-described and validated animal model of CP/CPPS, was used in our study. After treatment with CXCL10, the severity of EAP and Th1 cell proportion were respectively measured by HE stains, immunohistochemistry, and flow cytometry. Then, the protein expression of the PI3K/AKT pathway in CXCL10/CXCR3-regulated Th1 cell differentiation and migration was evaluated by western blotting. Additionally, by the CXCR3 antagonist AMG487 and the PI3K inhibitor LY294002 applications, the effects of CXCL10/CXCR3 through PI3K/AKT pathway on the Th1 cell differentiation and migration were further assessed. RESULTS The EAP model was successfully built. CXCL10 increased the proportion of Th1 cells in EAP mice, accompanied by upregulation of the PI3K/AKT pathway. Additionally, the PI3K/AKT pathway was found to be involved in CXCL10/CXCR3 axis-mediated Th1 cell differentiation and migration. CONCLUSIONS Our investigations indicate that the CXCL10/CXCR3 axis regulates Th1 cell differentiation and migration in EAP through the PI3K/AKT pathway, which provides a new perspective on the immunological mechanisms of CP/CPPS.
Collapse
Affiliation(s)
- Shao-Yu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Di Niu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Wen-Ming Ma
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Qiu-Shi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Bin Wang
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Yun-Zheng Xiao
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Jialin Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Ke Ding
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chao-Zhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Liu X, Chen J, Yue S, Zhang C, Song J, Liang H, Liang C, Chen X. NLRP3-mediated IL-1β in regulating the imbalance between Th17 and Treg in experimental autoimmune prostatitis. Sci Rep 2024; 14:18829. [PMID: 39138267 PMCID: PMC11322183 DOI: 10.1038/s41598-024-69512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a urinary disorder that affects youthful to middle-aged men most frequently. It has been revealed that Th17/Treg imbalance is a crucial factor in the pathophysiological mechanisms behind this disease. However, this imbalance's mechanisms are unknown. In the experimental autoimmune prostatitis (EAP) mouse model, the NLRP3 inflammasome was turned on, IL-1β levels went up. Moreover, there exists a discernible positive association between the upsurge in IL-1β and the perturbation of Th17/Treg equilibrium. Additionally, we have revealed that IL-1β plays a vital role in promoting the differentiation of Naïve CD4+ T cells into the Th17 cells and enhances the conversion of Treg cells into Th17 cells. Further studies revealed that IL-1β promotes STAT3 phosphorylation, which is what causes Treg cells to become Th17 cells. All data strongly suggest that the NLRP3 inflammatory influence Th17 cell development and the conversion of Treg cells into Th17 cells through IL-1β, disrupting the Th17/Treg balance and exacerbating EAP inflammation. In this article, we provide new theories for the pathogenesis of CP/CPPS and propose new prevention and therapy methods.
Collapse
Affiliation(s)
- Xianhong Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Shaoyu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jian Song
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hu Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Department of Urology, Dongcheng Branch of the First Affiliated Hospital of Anhui Medical University (Feidong People's Hospital), Hefei, Anhui, People's Republic of China.
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218th Jixi Road, Hefei, Anhui, People's Republic of China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, People's Republic of China.
- Department of Urology, Dongcheng Branch of the First Affiliated Hospital of Anhui Medical University (Feidong People's Hospital), Hefei, Anhui, People's Republic of China.
| |
Collapse
|
8
|
Du HX, Yue SY, Niu D, Liu XH, Li WY, Wang X, Chen J, Hu DK, Zhang LG, Guan Y, Ji DX, Chen XG, Zhang L, Liang CZ. Alcohol intake exacerbates experimental autoimmune prostatitis through gut microbiota driving cholesterol biosynthesis-mediated Th17 differentiation. Int Immunopharmacol 2024; 139:112669. [PMID: 39029231 DOI: 10.1016/j.intimp.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is very common worldwide, and alcohol consumption is a notable contributing factor. Researches have shown that gut microbiota can be influenced by alcohol consumption and is an important mediator in regulating Th17 cell immunity. However, it is still unclear the exact mechanism by which alcohol exacerbates the CP/CPPS and the role of gut microbiota in this process. METHOD We first constructed the most-commonly used animal model for CP/CPPS, the experimental autoimmune prostatitis (EAP) model, through immunoassay. Based on this, mice were divided into EAP group and alcohol-consuming EAP group. By 16S rRNA sequencing and non-targeted metabolomics analysis, differential gut microbiota and their metabolites between the two groups were identified. Subsequently, metabolomics detection targeting cholesterols was carried out to identify the exact difference in cholesterol. Furthermore, multiple methods such as flow cytometry and immunohistochemistry were used to detect the differentiation status of Th17 cells and severity of prostatitis treated with 27-hydroxycholesterol (the differential cholesterol) and its upstream regulatory factor-sterol regulatory element-binding protein 2 (SREBP2). Lastly, fecal transplantation was conducted to preliminary study on whether alcohol intake exacerbates EAP in immune receptor mice. RESULTS Alcohol intake increased the proportion of Th17 cells and levels of related inflammatory factors. It also led to an altered gut bacterial richness and increased gut permeability. Further metabolomic analysis showed that there were significant differences in a variety of metabolites between EAP and alcohol-fed EAP mice. Metabolic pathway enrichment analysis showed that the pathways related to cholesterol synthesis and metabolism were significantly enriched, which was subsequently confirmed by detecting the expression of metabolic enzymes. By targeting cholesterol synthesis, 27-hydroxycholesterol was significantly increased in alcohol-fed EAP mice. Subsequent mechanistic research showed that supplementation with 27-hydroxycholesterol could aggravate EAP and promote Th17 cell differentiation both in vivo and in vitro, which is regulated by SREBP2. In addition, we observed that fecal transplantation from mice with alcohol intake aggravated EAP in immunized recipient mice fed a normal diet. CONCLUSION Our study is the first to show that alcohol intake promotes Th17 cell differentiation and exacerbates EAP through microbiota-derived cholesterol biosynthesis.
Collapse
Affiliation(s)
- He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Shao-Yu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Di Niu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Xian-Hong Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Wei-Yi Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Xu Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Jia Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - De-Kai Hu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Li-Gang Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Duo-Xu Ji
- Clinical Medical College, Anhui Medical University, Hefei, Anhui, PR China
| | - Xian-Guo Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China.
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China.
| | - Chao-Zhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
9
|
Xu H, Yong L, Gao X, Chen Y, Wang Y, Wang F, Hou X. CaMK4: Structure, physiological functions, and therapeutic potential. Biochem Pharmacol 2024; 224:116204. [PMID: 38615920 DOI: 10.1016/j.bcp.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMK4) is a versatile serine/threonine kinase involved in various cellular functions. It regulates T-cell differentiation, podocyte function, tumor cell proliferation/apoptosis, β cell mass, and insulin sensitivity. However, the underlying molecular mechanisms are complex and remain incompletely understood. The aims of this review are to highlight the latest advances in the regulatory mechanisms of CaMK4 underlying T-cell imbalance and parenchymal cell mass in multiple diseases. The structural motifs and activation of CaMK4, as well as the potential role of CaMK4 as a novel therapeutic target are also discussed.
Collapse
Affiliation(s)
- Hao Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Liang Yong
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, PR China
| | - Xianxian Gao
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yandong Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Fuyan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China; Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, PR China
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
10
|
Jia Z, Lv D, Chen T, Shi Z, Li X, Ma J, Gao Z, Zhong C. Network pharmacology and in vivo experiment-based strategy for investigating the mechanism of chronic prostatitis/chronic pelvic pain syndrome in QianLieJinDan tablets. Heliyon 2024; 10:e29975. [PMID: 38726171 PMCID: PMC11078777 DOI: 10.1016/j.heliyon.2024.e29975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Background Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common urinary system disease that is prone to recurrence. It typically leads to varying degrees of pelvic pain and discomfort, as well as symptoms related to the urinary system in affected patients. QianLieJinDan tablets (QLJD), a traditional Chinese medicine, have shown promising therapeutic effects on CP/CPPS in clinical practice, but the underlying mechanisms of QLJD in treating CP/CPPS have not been determined. Objective To reveal the phytochemical characterization and multitarget mechanism of QLJD on CP/CPPS. Methods The concentrations of the components of QLJD were determined using UHPLC-Q Exactive Orbitrap-MS. Utilizing network pharmacology approaches, the potential components, targets, and pathways involved in the treatment of CP/CPPS caused by QLJD were screened. Molecular docking calculations were employed to assess the affinity between the components of the QLJD and potential targets, revealing the optimal molecular conformation and binding site. Finally, the therapeutic efficacy and potential underlying mechanisms of QLJD were investigated through pharmacological experiments. Results In this study, a total of 35 components targeting 29 CP-related genes were identified, among which quercetin, baicalin, icariin, luteolin, and gallic acid were the major constituents. Enrichment analysis revealed that the potential targets were involved mainly in the regulation of cytokines, cell proliferation and apoptosis, and the oxidative stress response and were primarily associated with the cytokine‒cytokine receptor interaction pathway, the IL-17 signaling pathway, the Th17 cell differentiation pathway, and the JAK-STAT signaling pathway. In vivo experiments demonstrated that QLJD effectively attenuated the infiltration of CD3+ T cells and the expression of ROS in a CP/CPPS model rat prostate tissue. Furthermore, through the inhibition of IL-6 and STAT3 expression, QLJD reduced the differentiation of Th17 cells, thereby ameliorating pathological injury and prostatic index in prostate tissue. Conclusion The potential of QLJD as an anti-CP/CPPS agent lies in its ability to interfere with the expression of IL-6 and STAT3, inhibit Th17 cell differentiation, reduce inflammatory cell infiltration in rat prostate tissue, and alleviate oxidative stress damage through its multi-component, multi-target, and multi-pathway effects.
Collapse
Affiliation(s)
- Zhichao Jia
- Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Dongfang Lv
- Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Tengfei Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Zhuozhuo Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Xiaolin Li
- Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Junguo Ma
- Shandong Zhongda Pharmaceutical Company Ltd., Shandong Jinan 250000, China
| | - Zhaowang Gao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Chongfu Zhong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| |
Collapse
|
11
|
Zhang C, Xu S, Hu R, Liu X, Yue S, Li X, Dai B, Liang C, Zhan C. Unraveling CCL20's role by regulating Th17 cell chemotaxis in experimental autoimmune prostatitis. J Cell Mol Med 2024; 28:e18445. [PMID: 38801403 PMCID: PMC11129727 DOI: 10.1111/jcmm.18445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS), a prevalent urological ailment, exerts a profound influence upon the well-being of the males. Autoimmunity driven by Th17 cells has been postulated as a potential factor in CP/CPPS pathogenesis. Nonetheless, elucidating the precise mechanisms governing Th17 cell recruitment to the prostate, triggering inflammation, remained an urgent inquiry. This study illuminated that CCL20 played a pivotal role in attracting Th17 cells to the prostate, thereby contributing to prostatitis development. Furthermore, it identified prostate stromal cells and immune cells as likely sources of CCL20. Additionally, this research unveiled that IL-17A, released by Th17 cells, could stimulate macrophages to produce CCL20 through the NF-κB/MAPK/PI3K pathway. The interplay between IL-17A and CCL20 establishes a positive feedback loop, which might serve as a critical mechanism underpinning the development of chronic prostatitis, thus adding complexity to its treatment challenges.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Shun Xu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Rui‐Jie Hu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Xian‐Hong Liu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Shao‐Yu Yue
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Xiao‐Ling Li
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Bang‐Shun Dai
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Chao‐Zhao Liang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Chang‐Sheng Zhan
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| |
Collapse
|
12
|
Sun D, Xing D, Wang D, Liu Y, Cai B, Deng W, Hu Q, Ma W, Jin B. The Protective Effects of Bushen Daozhuo Granule on Chronic Non-bacterial Prostatitis. Front Pharmacol 2024; 14:1281002. [PMID: 38239203 PMCID: PMC10794918 DOI: 10.3389/fphar.2023.1281002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Background: Chronic non-bacterial prostatitis (CNP), one of the most common chronic diseases in urology, leads to pain in the prostate and dysuria, critically affecting the physical or mental health of patients. However, there are no standard treatment approaches for the treatment of CNP in the clinic. Although the clinical application of Bushen Daozhuo granule (BSDZG) offers hope to CNP patients in China, the mechanisms of BSDZG in treating CNP are still not entirely clear. Hence, we aimed to investigate the novel therapeutic mechanisms of BSDZG on CNP. Methods: In this study, we first assayed the prostate index of rats and then determined the anti-inflammatory and anti-apoptotic effects of BSDZG on CNP in vivo and in vitro by employing ELISA kits and TUNEL staining. Next, we investigated whether the anti-inflammatory and anti-apoptotic mechanisms of BSDZG on prostate protein-induced rats and lipopolysaccharide (LPS) induced RWPE-1 cells were related to the AKT, p38 MAPK, and NF-κB pathways with the help of Western blot. Finally, the influence of BSDZG on the interaction between the p38 MAPK and NF-κB pathway in LPS-induced RWPE-1 cells was explored by adopting dehydrocorydaline (DHC, p38 MAPK activator) with the help of ELISA kits and Western blot. Results: In vivo, BSDZG effectively reduced the prostate index. In vivo and in vitro, BSDZG dramatically declined the level of two pro-inflammatory cytokines, TNF-α and IL-1β, as well as the apoptosis rate. Moreover, in vivo and in vitro, BSDZG memorably upregulated the expression level of p-AKT, and substantially downregulated the expression level of p-p38 MAPK and NF-κB2. The activation of p38 MAPK significantly reversed the moderation effects of BSDZG on the level of TNF-α and IL-1β, as well as the expression level of p-p38 MAPK and NF-κB2 in vitro. Conclusion: To sum up, the in vivo and in vitro therapeutic mechanisms of BSDZG on CNP were reflected as the anti-inflammation and anti-apoptosis that was formed by inhibiting the level of pro-inflammatory cytokines, TNF-α and IL-1β, to regulate the AKT, p38 MAPK, and NF-κB pathways, and the anti-inflammatory effect of BSDZG was realized by suppressing the p38 MAPK pathway to inhibit the downstream NF-κB pathway.
Collapse
Affiliation(s)
- Dalin Sun
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dong Xing
- School of Medicine, Southeast University, Nanjing, China
| | - Dandan Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Yuanyuan Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Bin Cai
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Weimin Deng
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qinglin Hu
- Department of Urology, Chuzhou Integrated Hospital of Chinese and Western Medicine, Affiliated to Anhui University of Traditional Chinese Medicine, Chuzhou, China
| | - Wenjun Ma
- Department of Urology, Chuzhou Integrated Hospital of Chinese and Western Medicine, Affiliated to Anhui University of Traditional Chinese Medicine, Chuzhou, China
| | - Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Wang H, Li X, Xia B, Zhang Q, He J, Yang L. Amelioration of chronic prostatitis by fractions of Mongolian medicine Hosta plantaginea flowers via inhibition of NF-κB, MAPKs, JAK-STAT, and PI3K-Akt signaling pathways in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116245. [PMID: 36746294 DOI: 10.1016/j.jep.2023.116245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hosta plantaginea (Lam.) Aschers flower is an important Mongolian medicine beneficial in the treatment of chronic prostatitis (CP) in the absence of scientific evidence. AIM OF THE STUDY The aim of this study was to reveal the therapeutical effects and potential mechanisms of H. plantaginea flowers extract (HP) and its different polarity fractions (HPA∼D) on autoimmune CP (ACP) model rats. MATERIALS AND METHODS Sprague-Dawley male rats were randomly assigned to 13 groups (n = 6/group). Except the sham group, all rats were injected with a mixture of prostate antigen and complete Freund's adjuvant on days 0, 7, and 21 to establish ACP model rats. Afterwards, ACP model rats were orally gavaged with HP or HPA∼D (1 and 4 g/kg of raw herbal material) or positive drug (Prostat, 200 mg/kg) daily from day 21 to day 50 for 30 days, while the sham and model groups were treated simultaneously with isopyknic of 0.3% sodium carboxymethyl cellulose. Histopathological analysis, biochemical parameters, and protein expression of prostate tissues were investigated. RESULTS In comparison with the model group, all fraction groups experienced improved CP effects, including restored body weight, reduced prostate gland edema and prostate index, decreased prostatic leukocytes, increased prostatic lecithin bodies, and alleviated histopathological damage to prostate tissue. Furthermore, all fraction groups markedly inhibited the phosphorylated protein of nuclear factor kappa-B p65 (NF-κB p65), NF-κB inhibitor alpha (IκBα), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (Erk), just another kinase 1 (JAK1), signal transducer and activator of transcription 3 (STAT3), phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt) than the model group. CONCLUSION All fractions of HP exerted significant anti-CP effects by inhibiting NF-κB, MAPKs, JAK-STAT and PI3K-Akt pathways in ACP model rats. These findings provide scientific evidence that H. plantaginea flowers can be used as a pivotal Mongolian medicine in clinical applications for the treatment of CP.
Collapse
Affiliation(s)
- Huilei Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China; Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Xiaomei Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China; Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Bowei Xia
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Qingcui Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China; Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Li Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
14
|
Du HX, Yue SY, Niu D, Liu C, Zhang LG, Chen J, Chen Y, Guan Y, Hua XL, Li C, Chen XG, Zhang L, Liang CZ. Gut Microflora Modulates Th17/Treg Cell Differentiation in Experimental Autoimmune Prostatitis via the Short-Chain Fatty Acid Propionate. Front Immunol 2022; 13:915218. [PMID: 35860242 PMCID: PMC9289123 DOI: 10.3389/fimmu.2022.915218] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a very common urological disorder and has been gradually regarded as an immune-mediated disease. Multiple studies have indicated that the gut microflora plays a pivotal part in immune homeostasis and autoimmune disorder development. However, whether the gut microflora affects the CP/CPPS, and the underlying mechanism behind them remain unclear. Here, we built an experimental autoimmune prostatitis (EAP) mouse model by subcutaneous immunity and identified that its Th17/Treg frequency was imbalanced. Using fecal 16s rRNA sequencing and untargeted/targeted metabolomics, we discovered that the diversity and relative abundance of gut microflora and their metabolites were obviously different between the control and the EAP group. Propionic acid, a kind of short-chain fatty acid (SCFA), was decreased in EAP mice compared to that in controls, and supplementation with propionic acid reduced susceptibility to EAP and corrected the imbalance of Th17/Treg cell differentiation in vivo and in vitro. Furthermore, SCFA receptor G-protein-coupled receptor 43 and intracellular histone deacetylase 6 regulated by propionic acid in Th17 and Treg cells were also evaluated. Lastly, we observed that fecal transplantation from EAP mice induced the decrease of Treg cell frequency in recipient mice. Our data showed that gut dysbiosis contributed to a Th17/Treg differentiation imbalance in EAP via the decrease of metabolite propionic acid and provided valuable immunological groundwork for further intervention in immunologic derangement of CP/CPPS by targeting propionic acid.
Collapse
Affiliation(s)
- He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Shao-Yu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Di Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chang Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Li-Gang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yang Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yu Guan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xiao-Liang Hua
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chun Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Chao-Zhao Liang, ; Li Zhang, ; Xian-Guo Chen, ; Chun Li,
| | - Xian-Guo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Chao-Zhao Liang, ; Li Zhang, ; Xian-Guo Chen, ; Chun Li,
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Chao-Zhao Liang, ; Li Zhang, ; Xian-Guo Chen, ; Chun Li,
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Chao-Zhao Liang, ; Li Zhang, ; Xian-Guo Chen, ; Chun Li,
| |
Collapse
|
15
|
Zhang C, Chen J, Wang H, Chen J, Zheng MJ, Chen XG, Zhang L, Liang CZ, Zhan CS. IL-17 exacerbates experimental autoimmune prostatitis via CXCL1/CXCL2-mediated neutrophil infiltration. Andrologia 2022; 54:e14455. [PMID: 35560069 DOI: 10.1111/and.14455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 01/02/2023] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a poorly understood disease. Accumulating evidence suggests that autoimmune dysfunction is involved in the development of CP/CPPS. Interleukin-17 (IL-17) is associated with the occurrence and development of several chronic autoimmune inflammatory diseases. However, the molecular mechanisms underlying the role of IL-17 in CP/CPPS are not clear. We confirmed that IL-17 was increased in the prostate tissues of experimental autoimmune prostatitis (EAP) mice. Corresponding to the increase of IL-17, neutrophil infiltration and the levels of CXCL1 and CXCL2 (CXC chemokine ligands 1 and 2) were also increased in the prostate of EAP. Treatment of EAP mice with an IL-17-neutralizing monoclonal antibody (mAb) decreased the number of infiltrated neutrophils and CXCL1 and CXCL2 levels. Depletion of neutrophils using anti-Ly6G antibodies ameliorated the inflammatory changes and hyperalgesia caused by EAP. Fucoidan, a could potent inhibitor of neutrophil migration, also ameliorate the manifestations of EAP. Our findings suggested that IL-17 promoted the production of CXCL1 and CXCL2, which triggered neutrophil chemotaxis to prostate tissues. Fucoidan might be a potential drug for the treatment of EAP via the effective inhibition of neutrophil infiltration.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Hui Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Mei-Juan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xian-Guo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chang-Sheng Zhan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Zhang M, Jin C, Kong X, Meng J, Fan S, Ding Y, Fang Q, Dong T, Zhang H, Ni J, Liu Y, Wang H, Chen X, Hao Z, Peng B, Zhang L, Wang Z, Liang C. Identification of novel susceptibility factors related to CP/CPPS-like symptoms: Evidence from a multicenter case-control study. Prostate 2022; 82:772-782. [PMID: 35188987 DOI: 10.1002/pros.24319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND We aimed to systematically identify novel susceptible factors related to the occurrence and development of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS)-like symptoms that were not limited to lifestyles or dietary habits in Chinese population. METHODS We recruited participants from three centers (Shanghai [northeast], Hefei [east], and Lanzhou [northwest]) from August 2020 to June 2021. Demographics, lifestyles, dietary habits, past medical history, and national institutes of health-chronic prostatitis symptom index (NIH-CPSI) were collected from the individuals via optimized questionnaires. Logistic regression analysis and multivariate adjustment models were used to calculate the odds ratio (OR) and 95% confidence interval (95% CI) to assess the association between these variables and CP/CPPS-like symptoms. RESULTS A total of 1851 participants were enrolled in this study (764 cases and 1087 controls). Age distributions differed between groups (median, range: 32, 18-74 vs. 29, 18-70, p < 0.001). After adjustment, physicochemical occupational hazards were identified significantly related to CP/CPPS-like symptom occurrence and development (ORoccurrence : 1.389, 95% CI: 1.031-1.870, p < 0.001; ORdevelopment : 2.222, 95% CI: 1.464-3.372, p < 0.001); besides, greater than or equal to four ejaculations per week significantly increased the likelihood of CP/CPPS-like symptoms compared with one ejaculation per week (ORoccurrence : 3.051, 95% CI: 1.598-5.827, p = 0.001). For these patients, who were easily felt gastrointestinal discomfort caused by spicy food intake, they had a higher incidence to affect with CP/CPPS-like symptoms (ORoccurrence : 2.258, 95% CI: 1.858-2.745, p < 0.001). In addition, history of drug allergy and genitourinary infections were identified as independent susceptible factors for the occurrence of CP/CPPS-like symptoms (ORoccurrence : 1.689, 95% CI: 1.007-2.834, p = 0.047; ORoccurrence : 3.442, 95% CI: 2.202-5.382, p < 0.001, respectively), while the history of rheumatic immune diseases was found tightly associated with the development of CP/CPPS-like symptoms (ORdevelopment : 2.002, 95% CI: 1.008-4.058, p = 0.048). CONCLUSION Infection/inflammatory/immune-related disorders, novel dietary habits, and lifestyles associated with the susceptibility of CP/CPPS-like symptoms' occurrence and development are identified. Altering these irregular conditions serves as potential strategies for the treatment of patients with CP/CPPS-like symptoms.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
- Shenzhen Luohu Hospital Group, Institute of Urology of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen, PR China
| | - Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Xiangbin Kong
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Yang Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Qiaozhou Fang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Ting Dong
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Houliang Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, PR China
| | - Jinliang Ni
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, PR China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, PR China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Zhiping Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
17
|
Jiang Q, Huang X, Yu W, Huang R, Zhao X, Chen C. mTOR Signaling in the Regulation of CD4+ T Cell Subsets in Periodontal Diseases. Front Immunol 2022; 13:827461. [PMID: 35222410 PMCID: PMC8866697 DOI: 10.3389/fimmu.2022.827461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontal disease results from the inflammatory infiltration by the microbial community which is marked through tooth mobility and alveolar bone resorption. The inflammation in periodontal disease is mediated by CD4+ T cells through cytokine secretion and osteoclastogenetic activity. Historically, the inflammatory model in periodontal disease is described through disruption of the balance between two subsets of T helper cells which are T-helper type 1 (Th1) and T-helper type 2 (Th2). However, more and more studies have found that apart from subsets of helper T cells, regulatory T-cells and Th17 cells are also involved in the pathogenesis of periodontal diseases. Growing evidence proves that helper T cells differentiation, activation, and subset determination are under the strong impact of mTOR signaling. mTOR signaling could promote Th1 and Th17 cell differentiation and inhibit Treg commitment through different mTOR complexes, therefore we anticipate a regulation effect of mTOR signaling on periodontal diseases by regulating CD4+ T cell subsets. This review aims to integrate the topical researches about the role of different types of Th cells in the pathogenesis of periodontal diseases, as well as the regulation of mTOR signaling in the specification and selection of Th cell commitment.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenjing Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ranran Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xuefeng Zhao
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Wang P, Zhang Z, Yin B, Li J, Xialin C, Lian W, Su Y, Jia C. Identifying changes in immune cells and constructing prognostic models using immune-related genes in post-burn immunosuppression. PeerJ 2022; 10:e12680. [PMID: 35070500 PMCID: PMC8761370 DOI: 10.7717/peerj.12680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Burn patients are prone to infection as well as immunosuppression, which is a significant cause of death. Currently, there is a lack of prognostic biomarkers for immunosuppression in burn patients. This study was conducted to identify immune-related genes that are prognosis biomarkers in post-burn immunosuppression and potential targets for immunotherapy. METHODS We downloaded the gene expression profiles and clinical data of 213 burn patients and 79 healthy samples from the Gene Expression Omnibus (GEO) database. Immune infiltration analysis was used to identify the proportion of circulating immune cells. Functional enrichment analyses were carried out to identify immune-related genes that were used to build miRNA-mRNA networks to screen key genes. Next, we carried out correlation analysis between immune cells and key genes that were then used to construct logistic regression models in GSE77791 and were validated in GSE19743. Finally, we determined the expression of key genes in burn patients using quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS A total of 745 differently expressed genes were screened out: 299 were up-regulated and 446 were down-regulated. The number of Th-cells (CD4+) decreased while neutrophils increased in burn patients. The enrichment analysis showed that down-regulated genes were enriched in the T-cell activation pathway, while up-regulated genes were enriched in neutrophil activation response in burn patients. We screened out key genes (NFATC2, RORA, and CAMK4) that could be regulated by miRNA. The expression of key genes was related to the proportion of Th-cells (CD4+) and survival, and was an excellent predictor of prognosis in burns with an area under the curve (AUC) value of 0.945. Finally, we determined that NFATC2, RORA, and CAMK4 were down-regulated in burn patients. CONCLUSION We found that NFATC2, RORA, and CAMK4 were likely prognostic biomarkers in post-burn immunosuppression and potential immunotherapeutic targets to convert Th-cell dysfunction.
Collapse
Affiliation(s)
- Peng Wang
- Department of Burns and Plastic & Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zexin Zhang
- Department of Burns and Plastic & Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Yin
- Department of Burns and Plastic & Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiayuan Li
- Department of Anesthesia Operation, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Cheng Xialin
- Department of Burns and Plastic & Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenqin Lian
- Department of Burns and Plastic & Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yingjun Su
- Department of Burns and Plastic Surgery, Plastic Surgery Hospital, Xi’an International Medical Center, Xi’an, Shaanxi, China
| | - Chiyu Jia
- Department of Burns and Plastic & Wound Repair Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
19
|
Hua X, Ge S, Zhang M, Mo F, Zhang L, Zhang J, Yang C, Tai S, Chen X, Zhang L, Liang C. Pathogenic Roles of CXCL10 in Experimental Autoimmune Prostatitis by Modulating Macrophage Chemotaxis and Cytokine Secretion. Front Immunol 2021; 12:706027. [PMID: 34659199 PMCID: PMC8511489 DOI: 10.3389/fimmu.2021.706027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) is an inflammatory immune disease characterized by intraprostatic leukocyte infiltration and pelvic or perineal pain. Macrophages play vital roles in the pathogenesis of CP/CPPS. However, the mechanisms controlling the activation and chemotaxis of macrophages in CP/CPPS remain unclear. This study aimed to investigate the roles of the CXCL10/CXCR3 pathway in the activation and chemotaxis of macrophages in CP/CPPS patients. The serums of CP/CPPS patients and healthy volunteers were collected and measured. Results showed that CXCL10 expression was significantly elevated and correlated with the severity of CP/CPPS patients. The experimental autoimmune prostatitis (EAP) model was generated, and adeno-associated virus and CXCR3 inhibitors were used to treat EAP mice. Immunofluorescence, flow cytometry, and Western blotting were used to analyze the functional phenotype and regulation mechanism of macrophages. Results showed that CXCL10 deficiency ameliorates EAP severity by inhibiting infiltration of macrophages to prostate. Moreover, CXCL10 could induce macrophage migrations and secretions of proinflammatory mediators via CXCR3, which consequently activated the downstream Erk1/2 and p38 MAPK signaling pathways. We also showed that prostatic stromal cell is a potential source of CXCL10. Our results indicated CXCL10 as an important mediator involved in inflammatory infiltration and pain symptoms of prostatitis by promoting the migration of macrophages and secretion of inflammatory mediators via CXCR3-mediated ERK and p38 MAPK activation.
Collapse
Affiliation(s)
- Xiaoliang Hua
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Shengdong Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Fan Mo
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Ligang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Jiong Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Cheng Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Sheng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,The Institute of Urology, Anhui Medical University, Hefei, China.,Anhui Institute of Translational Medicine, Hefei, China
| |
Collapse
|
20
|
Chen J, Meng J, Jin C, Mo F, Ding Y, Gao X, Zhang L, Zhang M, Liang C. 4-Methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy for chronic prostatitis. Prostate 2021; 81:1078-1090. [PMID: 34320251 DOI: 10.1002/pros.24205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/05/2021] [Accepted: 07/12/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Hyaluronan (HA), an extracellular matrix component, accumulates in most chronic inflammatory tissues. Here, we studied the impact of HA on the pathogenesis of chronic prostatitis. MATERIALS AND METHODS First, we sorted demographic characteristics and peripheral blood serum samples from patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) to assess the relationship between the levels of HA in peripheral blood serum and the severity of inflammation in patients. Second, we induced an experimental autoimmune prostatitis (EAP) mouse model and treated the mice with 4-methylumbelliferone (4-MU) (200 mg/kg/day). After the mice were sacrificed, RNA from Th1 cells of the mouse spleens was extracted for RNA sequencing. We used weighted gene co-expression network analysis (WGCNA) to identify co-expressed gene modules and hub-gene related to the pathogenesis of EAP. The expression of critical genes associated with the identified pathway was confirmed by using western blot analysis. RESULTS HA was significantly more highly expressed in CP/CPPS patients than in healthy volunteers and positively correlated with the severity of pain, urination symptoms, and quality of life. Besides, the protein expression of HA was significantly higher in prostate tissues derived from EAP models than in those derived from controls. 4-MU, an oral inhibitor of HA synthesis, relieved immunocyte infiltration to the prostate and significantly reduced the proportion of Th1 cells. Based on the WGCNA, we identified 18 co-expression modules and identified that the Grey60 and brown modules were positively associated with the EAP and negatively associated with the Control and 4-MU-treated groups. Pathway enrichment analyses and western blot assays proved that HA potentially activated the cell cycle pathway, increasing the proportion of Th1 cells promoting chronic prostatitis pathogenesis, while these processes were reversed by 4-MU treatment. CONCLUSIONS Our results suggest that HA is elevated in patients with CP/CPPS compared with healthy controls and that targeting HA through 4-MU suppresses the activity of the cell cycle-related pathway, potentially by decreasing the proportion of Th1 cells and relieving chronic prostatitis. Our findings might inspire the clinical treatment of chronic prostatitis.
Collapse
Affiliation(s)
- Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Fan Mo
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Yang Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xiaomei Gao
- The Graduate School of Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
21
|
Chen L, Zhang M, Liang C. Chronic Prostatitis and Pelvic Pain Syndrome: Another Autoimmune Disease? Arch Immunol Ther Exp (Warsz) 2021; 69:24. [PMID: 34523016 DOI: 10.1007/s00005-021-00628-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), characterized by chronic pain in the perineum or lower abdomen regions, is a frequent disorder in men. Previous studies demonstrated that the immune mediators, including interleukin (IL)-1β, IL-6, interferon-γ, tumor necrosis factor-α, and immunoglobulins, are elevated in the expressed prostate secretions and seminal fluid of CP/CPPS men. The memory T, T helper 1 (Th1), Th17, and Th22 cells increase in the peripheral blood of CP/CPPS men. Additionally, prostate antigens specific-autoreactive T cells are identified in CP/CPPS patients. After generally reviewing and comparing the inflammatory responses in autoimmune diseases and CP/CPPS, we presumed that CP/CPPS is more likely to be defined as an autoimmune disease. Thus, a better understanding of autoimmune diseases would contribute to a deeper understanding of the CP/CPPS and provide new inspirations for the treatment of this disease.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, People's Republic of China
- The Institute of Urology, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, People's Republic of China.
- The Institute of Urology, Anhui Medical University, Hefei, 230022, People's Republic of China.
- Shenzhen Luohu Hospital Group, Institute of Urology of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, People's Republic of China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, People's Republic of China.
- The Institute of Urology, Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
22
|
Yabuki Y, Matsuo K, Yu M, Xu J, Sakimura K, Shioda N, Fukunaga K. Cav3.1 t-type calcium channel is critical for cell proliferation and survival in newly generated cells of the adult hippocampus. Acta Physiol (Oxf) 2021; 232:e13613. [PMID: 33393208 DOI: 10.1111/apha.13613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/27/2022]
Abstract
AIMS Adult hippocampal neurogenesis plays an important role in neuronal plasticity and maintenance in mammals. Low-threshold voltage-gated T-type calcium channels produce calcium spikes that increase fast action potentials in newborn cells in the hippocampal dentate gyrus (DG); however, their role in adult hippocampal neurogenesis remains unclear. Here, we demonstrate impaired adult hippocampal neurogenesis in Cav3.1T-type calcium channel knockout mice. METHODS AND RESULTS Cav3.1T-type calcium channel was predominantly localized in neuronal progenitor cells of the mouse hippocampal DG. By counting the number of 5-bromo-2'-deoxyuridine-labeled cells, decreased proliferation and survival of newly generated cells were observed in the adult hippocampal DG in Cav3.1 knockout mice as compared to wild-type (WT) mice. Moreover, the degree of maturation of doublecortin-positive cells in Cav3.1 knockout mice was lower than that in WT mice, suggesting that Cav3.1 deletion may impair neuronal differentiation. Consistent with impaired hippocampal neurogenesis, Cav3.1 knockout mice showed decreased social interaction. Reduced phosphorylation levels of calcium/calmodulin-dependent protein kinase II and protein kinase B were closely associated with impaired hippocampal neurogenesis in Cav3.1 knockout mice. Moreover, the mRNA and protein expression levels of brain-derived neurotrophic factor, important for neurogenesis, were significantly decreased in Cav3.1 knockout mice. Finally, gene ontology analysis revealed alterations in genes related to the promotion of cell death/apoptosis and suppression of cell proliferation/neuronal differentiation pathways, including Bdnf. CONCLUSION These results suggest that the Cav3.1T-type calcium channel may be a key molecule required for cell proliferation, survival and neuronal differentiation in newly generated cells of the adult mouse hippocampus.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Genomic Neurology Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Kazuya Matsuo
- Department of Pharmacology Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan
| | - Mengze Yu
- Department of Pharmacology Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan
| | - Jing Xu
- Department of Pharmacology Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology Brain Research InstituteNiigata University Niigata Japan
| | - Norifumi Shioda
- Department of Genomic Neurology Institute of Molecular Embryology and Genetics Kumamoto University Kumamoto Japan
| | - Kohji Fukunaga
- Department of Pharmacology Graduate School of Pharmaceutical Sciences Tohoku University Sendai Japan
| |
Collapse
|