1
|
Sarkis R, Honiger J, Chafai N, Baudrimont M, Sarkis K, Delelo R, Becquemont L, Benoist S, Balladur P, Capeau J, Nordlinger B. Semiautomatic Macroencapsulation of Fresh or Cryopreserved Porcine Hepatocytes Maintain Their Ability for Treatment of Acute Liver Failure. Cell Transplant 2017. [DOI: 10.3727/000000001783986314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- R. Sarkis
- Research Unit 402, INSERM, Paris, France
- Departments of Surgery, Hôpital Saint-Antoine, Paris, France
| | - J. Honiger
- Research Unit 402, INSERM, Paris, France
| | - N. Chafai
- Research Unit 402, INSERM, Paris, France
| | - M. Baudrimont
- Departments of Pathology, Hôpital Saint-Antoine, Paris, France
| | - K. Sarkis
- Research Unit 402, INSERM, Paris, France
| | - R. Delelo
- Research Unit 402, INSERM, Paris, France
| | - L. Becquemont
- Departments of Pharmacology, Hôpital Saint-Antoine, Paris, France
| | - S. Benoist
- Research Unit 402, INSERM, Paris, France
- Department of Surgery, Hôpital Ambroise Paré Boulogne-Billancourt, France
| | - P. Balladur
- Research Unit 402, INSERM, Paris, France
- Departments of Surgery, Hôpital Saint-Antoine, Paris, France
| | - J. Capeau
- Research Unit 402, INSERM, Paris, France
| | - B. Nordlinger
- Research Unit 402, INSERM, Paris, France
- Department of Surgery, Hôpital Ambroise Paré Boulogne-Billancourt, France
| |
Collapse
|
2
|
Kita S, Yasuchika K, Ishii T, Katayama H, Yoshitoshi EY, Ogiso S, Kawai T, Yasuda K, Fukumitsu K, Mizumoto M, Uemoto S. The Protective Effect of Transplanting Liver Cells Into the Mesentery on the Rescue of Acute Liver Failure After Massive Hepatectomy. Cell Transplant 2016; 25:1547-59. [PMID: 26883767 DOI: 10.3727/096368916x690999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Postoperative liver failure is one of the most critical complications following extensive hepatectomy. Although transplantation of allogeneic hepatocytes is an attractive therapy for posthepatectomy liver failure, transplanting cells via the portal veins typically causes portal vein embolization. The embolization by transplanted cells would be lethal in patients who have undergone massive hepatectomy. Thus, transplant surgeons need to select extrahepatic sites as transplant sites to prevent portal vein embolization. We aimed to investigate the mechanism of how liver cells transplanted into the mesentery protect recipient rats from acute liver failure after massive hepatectomy. We induced posthepatectomy liver failure by 90% hepatectomy in rats. Liver cells harvested from rat livers were transplanted into the mesenteries of hepatectomized rats. Twenty percent of the harvested cells, which consisted of hepatocytes and nonparenchymal cells, were transplanted into each recipient. The survival rate improved significantly in the liver cell transplantation group compared to the control group 7 days after hepatectomy (69 vs. 7%). Histological findings of the transplantation site, in vivo imaging system study findings, quantitative polymerase chain reaction assays of the transplanted cells, and serum albumin measurements of transplanted Nagase analbuminemic rats showed rapid deterioration of viable transplanted cells. Although viable transplanted cells deteriorated in the transplanted site, histological findings and an adenosine-5'-triphosphate (ATP) assay showed that the transplanted cells had a protective effect on the remaining livers. These results indicated that the paracrine effects of transplanted liver cells had therapeutic effects. The same protective effects were observed in the hepatocyte transplantation group, but not in the liver nonparenchymal cell transplantation group. Therefore, this effect on the remnant liver was mainly due to the hepatocytes among the transplanted liver cells. We demonstrated that transplanted liver cells protect the remnant liver from severe damage after massive hepatectomy.
Collapse
Affiliation(s)
- Sadahiko Kita
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Meier RPH, Navarro-Alvarez N, Morel P, Schuurman HJ, Strom S, Bühler LH. Current status of hepatocyte xenotransplantation. Int J Surg 2015; 23:273-279. [PMID: 26361861 DOI: 10.1016/j.ijsu.2015.08.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
The treatment of acute liver failure, a condition with high mortality, comprises optimal clinical care, and in severe cases liver transplantation. However, there are limitations in availability of organ donors. Hepatocyte transplantation is a promising alternative that could fill the medical need, in particular as the bridge to liver transplantation. Encapsulated porcine hepatocytes represent an unlimited source that could function as a bioreactor requiring minimal immunosuppression. Besides patients with acute liver failure, patients with alcoholic hepatitis who are unresponsive to a short course of corticosteroids are a target for hepatocyte transplantation. In this review we present an overview of the innate immune barriers in hepatocyte xenotransplantation, including the role of complement and natural antibodies; the role of phagocytic cells and ligands like CD47 in the regulation of phagocytic cells; and the role of Natural Killer cells. We present also some illustrations of physiological species incompatibilities in hepatocyte xenotransplantation, such as incompatibilities in the coagulation system. An overview of the methodology for cell microencapsulation is presented, followed by proof-of-concept studies in rodent and nonhuman primate models of fulminant liver failure: these studies document the efficacy of microencapsulated porcine hepatocytes which warrants progress towards clinical application. Lastly, we present an outline of a provisional clinical trial, that upon completion of preclinical work could start within the upcoming 2-3 years.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland.
| | - Nalu Navarro-Alvarez
- Center for Transplantation Sciences (CTS), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Philippe Morel
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Henk-Jan Schuurman
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Stephen Strom
- Cell Transplantation and Regenerative Medicine, Department of Laboratory Medicine, Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Leo H Bühler
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
4
|
Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, Cen J, Chen X, Liu C, Hu Y, Lai D, Hu Z, Chen L, Zhang Y, Cheng X, Ma X, Pan G, Wang X, Hui L. Direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Cell Stem Cell 2014; 14:370-84. [PMID: 24582927 DOI: 10.1016/j.stem.2014.01.003] [Citation(s) in RCA: 407] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/07/2013] [Accepted: 01/02/2014] [Indexed: 12/25/2022]
Abstract
The generation of large numbers of functional human hepatocytes for cell-based approaches to liver disease is an important and unmet goal. Direct reprogramming of fibroblasts to hepatic lineages could offer a solution to this problem but so far has only been achieved with mouse cells. Here, we generated human induced hepatocytes (hiHeps) from fibroblasts by lentiviral expression of FOXA3, HNF1A, and HNF4A. hiHeps express hepatic gene programs, can be expanded in vitro, and display functions characteristic of mature hepatocytes, including cytochrome P450 enzyme activity and biliary drug clearance. Upon transplantation into mice with concanavalin-A-induced acute liver failure and fatal metabolic liver disease due to fumarylacetoacetate dehydrolase (Fah) deficiency, hiHeps restore the liver function and prolong survival. Collectively, our results demonstrate successful lineage conversion of nonhepatic human cells into mature hepatocytes with potential for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Pengyu Huang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yimeng Gao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiying He
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Dan Yao
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhitao Wu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin Cen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaotao Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changcheng Liu
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Yiping Hu
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Zhenlei Hu
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Li Chen
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ying Zhang
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Cheng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaojun Ma
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guoyu Pan
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Wang
- Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot 010021, China; Department of Laboratory Medicine and Pathology, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Hepatoscience Incorporation, 4062 Fabian Way, Palo Alto, CA 94303, USA
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
5
|
Palakkan AA, Hay DC, Anil Kumar PR, Kumary TV, Ross JA. Liver tissue engineering and cell sources: issues and challenges. Liver Int 2013; 33:666-76. [PMID: 23490085 DOI: 10.1111/liv.12134] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/27/2013] [Indexed: 02/13/2023]
Abstract
Liver diseases are of major concern as they now account for millions of deaths annually. As a result of the increased incidence of liver disease, many patients die on the transplant waiting list, before a donor organ becomes available. To meet the huge demand for donor liver, alternative approaches using liver tissue engineering principles are being actively pursued. Even though adult hepatocytes, the primary cells of the liver are most preferred for tissue engineering of liver, their limited availability, isolation from diseased organs, lack of in vitro propagation and deterioration of function acts as a major drawback to their use. Various approaches have been taken to prevent the functional deterioration of hepatocytes including the provision of an adequate extracellular matrix and co-culture with non-parenchymal cells of liver. Great progress has also been made to differentiate human stem cells to hepatocytes and to use them for liver tissue engineering applications. This review provides an overview of recent challenges, issues and cell sources with regard to liver tissue engineering.
Collapse
Affiliation(s)
- Anwar A Palakkan
- Tissue Injury and Repair Group, University of Edinburgh - MRC Centre for Regenerative Medicine, Edinburgh, UK
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Soto-Gutierrez A, Navarro-Alvarez N, Yagi H, Nahmias Y, Yarmush ML, Kobayashi N. Engineering of an hepatic organoid to develop liver assist devices. Cell Transplant 2010; 19:815-822. [PMID: 20573303 PMCID: PMC2957556 DOI: 10.3727/096368910x508933] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell-based technologies to support/restore liver function represent one of the most promising opportunities in the treatment of acute liver failure. However, the understanding of the constituent cell types that interact to achieve liver-specific structure and function has not been achieved in the development of liver assist devices (LADs). Here we show that hepatocytes migrated toward and adhered and formed sinusoids-like structures in conjunction with liver nonparenchymal cells, and that this liver organoid formed sophisticated tissue after 7 days in an implanted LAD in rodents. Hepatocytes only or in combination with human nonparenchymal liver cell lines (endothelial, cholangiocytes, and stellate cells) were cultured in Matrigel. Ultrastructural analysis showed that the hepatocyte-decorated endothelial vascular structures resemble in vivo sinusoids containing plate-like structures, bile canaliculi, and lumen. The sinusoid-like structures retained albumin secretion and drug metabolism capabilities. In addition, LADs containing cocultures of human liver nonparenchymal cells were transplanted in animals for a week; the liver tissue formed sophisticated structures resembling the liver. These results demonstrate the importance of nonparenchymal cells in the cellular composition of LADs. The novelty of the culture's sinusoid-like organization and function strongly support the integration of liver nonparenchymal units into hepatocyte coculture-based LADs as a potential destination therapy for liver failure.
Collapse
Affiliation(s)
- Alejandro Soto-Gutierrez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Mei J, Sgroi A, Mai G, Baertschiger R, Gonelle-Gispert C, Serre-Beinier V, Morel P, Bühler LH. Improved survival of fulminant liver failure by transplantation of microencapsulated cryopreserved porcine hepatocytes in mice. Cell Transplant 2009; 18:101-10. [PMID: 19476213 DOI: 10.3727/096368909788237168] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to establish hepatocyte isolation in pigs, and to evaluate function of isolated hepatocytes after encapsulation, cryopreservation, and transplantation (Tx) in a mouse model of fulminant liver failure (FLF). After isolation, porcine hepatocytes were microencapsulated with alginate-poly-L-Lysine-alginate membranes and cryopreserved. In vitro, albumin production of free and encapsulated hepatocytes were measured by enzyme linked-immunoadsorbent assay. In vivo, encapsulated hepatocytes were transplanted into different groups of mice with FLF and the following experimental groups were performed: group 1, Tx of empty capsules; group 2, Tx of free primary porcine hepatocytes; group 3, Tx of fresh encapsulated porcine hepatocytes; group 4, Tx of cryopreserved encapsulated porcine hepatocytes. In vitro, fresh or cryopreserved encapsulated porcine hepatocytes showed a continuous decreasing metabolic function over 1 week (albumin and urea synthesis, drug catabolism). In vivo, groups 1 and 2 showed similar survival (18% and 25%, respectively, p > 0.05). In groups 3 and 4, Tx of fresh or cryopreserved encapsulated porcine hepatocytes significantly increased survival rate to 75% and 68%, respectively (p < 0.05). Primary porcine hepatocytes maintained metabolic functions after encapsulation and cryopreservation. In mice with FLF, Tx of encapsulated xenogeneic hepatocytes significantly improved survival. These results indicate that porcine hepatocytes can successfully be isolated, encapsulated, stored using cryopreservation, and transplanted into xenogeneic recipients with liver failure and sustain liver metabolic functions.
Collapse
Affiliation(s)
- Jie Mei
- Surgical Research Unit, Department of Surgery, University Hospital Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Xu YQ, Liu ZC. Therapeutic potential of adult bone marrow stem cells in liver disease and delivery approaches. ACTA ACUST UNITED AC 2008; 4:101-12. [PMID: 18481229 DOI: 10.1007/s12015-008-9019-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) and mesenchymal stem cell (MSCs) are two main subtypes of bone marrow stem cells. Extensive studies have been carried out to investigate the therapeutic potential of BMSCs in liver disease. A number of animal and human studies demonstrated that either HSCs or MSCs could be applied to therapeutic purposes in certain liver diseases. The diseased liver may recruit migratory stem cells, particularly from the bone marrow, to generate hepatocyte-like cells either by transdifferentiation or cell fusion. Transplantation of BMSCs has therapeutic effects of restoration of liver mass and function, alleviation of fibrosis and correction of inherited liver diseases. There are still controversial results over the potential effects of BMSCs on liver diseases, and some of the discrepancies are thought to be lied in the differences of experimental protocols, differences in individual research laboratory, and the uncertainties of the techniques employed. Several potential approaches for BMSCs delivery in liver diseases have been proposed in animal studies and human trials. BMSCs can be delivered via intraportal vein, systemic infusion, intraperitoneal, intrahepatic, intrasplenic. The optimal stem cells delivery should be easy to perform, less invasive and traumatic, minimum side effects, and with high cells survival rate. In this review, we focus on the up-to-date evidence of therapeutic effects of BMSCs on liver disease, the characteristics of various delivery approaches, and the considerations for future studies.
Collapse
Affiliation(s)
- You Qing Xu
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | | |
Collapse
|
10
|
Inderbitzin D, Beldi G, Sidler D, Studer P, Keogh A, Bisch-Knaden S, Weimann R, Kappeler A, Gloor B, Candinas D. Granulocyte colony-stimulating factor supports liver regeneration in a small-for-size liver remnant mouse model. J Gastrointest Surg 2007; 11:280-5. [PMID: 17458598 DOI: 10.1007/s11605-007-0096-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Experimental partial hepatectomy of more than 80% of the liver weight bears an increased mortality in rodents, due to impaired hepatic regeneration in small-for-size liver remnants. Granulocyte colony-stimulating factor (G-CSF) promotes progenitor cell expansion and mobilization and also has immunomodulatory properties. The aim of this study was to determine the effect of systemically administered G-CSF on liver regeneration and animal survival in a small-for-size liver remnant mouse model. Mice were preconditioned daily for 5 days with subcutaneous injections of 5 microg G-CSF or aqua ad injectabile. Subsequently, 83% partial hepatectomy was performed by resecting the median, the left, the caudate, and the right inferior hepatic lobes in all animals. Daily sham or G-CSF injection was continued. Survival was significantly better in G-CSF-treated animals (P < 0.0001). At 36 and 48 h after microsurgical hepatic resection, markers of hepatic proliferation (Ki67, BrdU) were elevated in G-CSF-treated mice compared to sham injected control animals (P < 0.0001) and dry liver weight was increased (P < 0.05). G-CSF conditioning might prove to be useful in patients with small-for-size liver remnants after extended hepatic resections due to primary or secondary liver tumors or in the setting of split liver transplantation.
Collapse
Affiliation(s)
- Daniel Inderbitzin
- Department of Visceral and Transplantation Surgery, University Hospital Bern, 3010, Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Soto-Gutierrez A, Navarro-Alvarez N, Rivas-Carrillo JD, Tanaka K, Chen Y, Misawa H, Okitsu T, Noguchi H, Tanaka N, Kobayashi N. Construction and transplantation of an engineered hepatic tissue using a polyaminourethane-coated nonwoven polytetrafluoroethylene fabric. Transplantation 2007; 83:129-137. [PMID: 17264808 DOI: 10.1097/01.tp.0000250561.14108.03] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute liver failure (ALF) is a serious condition that has a high mortality rate. Construction of an efficient culture and transplantation engineering system of hepatic tissue is an important approach to treat patients suffering from ALF to provide short-term hepatic support until the damaged liver spontaneously recovers or a donor liver becomes available for transplantation. Here, we evaluate the construction and transplantation of an engineered hepatic tissue (EHT) using primary isolated hepatocytes cultured onto polyaminourethane (PAU)-coated, nonwoven polytetrafluoroethylene (PTFE) fabric. METHODS The isolated hepatocytes cultured onto PAU-coated PTFE fabric were able to adhere and spread over the individual fibers of the net and formed hepatic clusters after 3 days, such clusters revealed Gap junctions and well-developed bile canaliculi. RESULTS When PAU-coated PTFE was utilized, ammonia-, and diazepam- metabolizing capacities and albumin production ability were significantly increased compared with collagen control. To test the function of this hepatic tissue in vivo, we transplanted a nonwoven PAU-coated PTFE fabric inoculated with one million hepatocytes on the surface of the spleen of Balb/c mice suffering from ALF induced by 90% hepatectomy, and found that this EHT prolonged the survival of liver failure-induced mice without adverse effects. Ultrastructure analyses showed good attachment of the cells on the surface of PTFE fabric and strong albumin expression seven days after the newly formed hepatic tissue was transplanted. CONCLUSION We have here demonstrated the efficient construction and transplantation of hepatic tissue using primary hepatocytes and PAU-coated PTFE fabric.
Collapse
Affiliation(s)
- Alejandro Soto-Gutierrez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Soto-Gutiérrez A, Kobayashi N, Rivas-Carrillo JD, Navarro-Alvarez N, Zhao D, Okitsu T, Noguchi H, Basma H, Tabata Y, Chen Y, Tanaka K, Narushima M, Miki A, Ueda T, Jun HS, Yoon JW, Lebkowski J, Tanaka N, Fox IJ. Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nat Biotechnol 2006; 24:1412-1419. [PMID: 17086173 DOI: 10.1038/nbt1257] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 10/06/2006] [Indexed: 01/10/2023]
Abstract
Severe acute liver failure, even when transient, must be treated by transplantation and lifelong immune suppression. Treatment could be improved by bioartificial liver (BAL) support, but this approach is hindered by a shortage of human hepatocytes. To generate an alternative source of cells for BAL support, we differentiated mouse embryonic stem (ES) cells into hepatocytes by coculture with a combination of human liver nonparenchymal cell lines and fibroblast growth factor-2, human activin-A and hepatocyte growth factor. Functional hepatocytes were isolated using albumin promoter-based cell sorting. ES cell-derived hepatocytes expressed liver-specific genes, secreted albumin and metabolized ammonia, lidocaine and diazepam. Treatment of 90% hepatectomized mice with a subcutaneously implanted BAL seeded with ES cell-derived hepatocytes or primary hepatocytes improved liver function and prolonged survival, whereas treatment with a BAL seeded with control cells did not. After functioning in the BAL, ES cell-derived hepatocytes developed characteristics nearly identical to those of primary hepatocytes.
Collapse
Affiliation(s)
- Alejandro Soto-Gutiérrez
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Török E, Vogel C, Lütgehetmann M, Ma PX, Dandri M, Petersen J, Burda MR, Siebert K, Düllmann J, Rogiers X, Pollok JM. Morphological and functional analysis of rat hepatocyte spheroids generated on poly(L-lactic acid) polymer in a pulsatile flow bioreactor. ACTA ACUST UNITED AC 2006; 12:1881-90. [PMID: 16889518 DOI: 10.1089/ten.2006.12.1881] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Liver neo-tissue suitable for transplantation has not been established. Primary rat hepatocytes were cultured on three-dimensional biodegradable polymer matrices in a pulsatile flow bioreactor with the intention of inducing tissue formation and improving cell survival. Functional and structural analysis of the hepatocytes forming liver neo-tissue was performed. Biodegradable poly(L-lactic acid) (PLLA) polymer discs were seeded with 4 x 10(6) primary rat hepatocytes each, were exposed to a pulsatile medium flow of 24 mL/min for 1, 2, 4, or 6 days and were investigated for monoethylglycinexylidine (MEGX) formation, ammonia detoxification, Cytokeratin 18 (CK18) expression, and preserved glycogen storage. Fine structural details were obtained using scanning and transmission electron microscopy. Spheroids of viable hepatocytes were formed. MEGX-specific production was maintained and ammonia removal capacity remained high during the entire flow-culture period of 6 days. CK18 distribution was normal. Periodic-acid- Schiff reaction demonstrated homogenous glycogen storage. The hepatocytes reassembled to form intercellular junctions and bile canaliculi. Functional and morphological analysis of rat hepatocytes forming spheroids in a pulsatile flow bioreactor indicated preserved and intact hepatocyte morphology and specific function. Pulsatile flow culture on PLLA scaffolds is a promising new method of hepatic tissue engineering leading to liver neo-tissue formation.
Collapse
Affiliation(s)
- Eva Török
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu ZC, Chang TMS. Transdifferentiation of bioencapsulated bone marrow cells into hepatocyte-like cells in the 90% hepatectomized rat model. Liver Transpl 2006; 12:566-72. [PMID: 16496278 DOI: 10.1002/lt.20635] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Under specific conditions, bone marrow cells can transdifferentiate into a variety of cell types including hepatocytes. In this study, bioencapsulated bone marrow cells were transplanted intraperitoneally into 90% hepatectomized rats. We then followed the transdifferentiation of the bone marrow cells and the effect of this on liver regeneration in this liver failure model. Bone marrow cells isolated from Wistar rats were bioencapsulated using alginate-polylysine-alginate method. These bioencapsulated bone marrow cells were transplanted intraperitoneally into 90% hepatectomized Wistar rats. Blood chemistry, HGF, liver weight, and survival of the recipient rats were evaluated. Histology and immunocytochemistry were used to analyze the bioencapsulated cells before and 14 days after transplantation. Unlike free bone marrow cells, transplantation of bioencapsulated bone marrow cells improved the survival of 90% hepatectomized rats and improved the blood chemistry with an efficacy similar to that of bioencapsulated hepatocytes or free hepatocytes transplantation. Some bioencapsulated bone marrow cells expressed hepatocytes markers of cytokeratins 8, cytokeratins 18, albumin, and AFP after 2 weeks of transplantation. These results suggest that syngeneic bioencapsulated bone marrow cells can transdifferentiate into hepatocyte-like cells in the peritoneal cavity of 90% hepatectomized rats and increased the survival rates of these rats. In conclusion, these findings suggest the potential for a new alternative to hepatocyte transplantation for cellular therapy of acute liver failure.
Collapse
Affiliation(s)
- Zun Chang Liu
- Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
15
|
Liu ZC, Chang TMS. Transplantation of bioencapsulated bone marrow stem cells improves hepatic regeneration and survival of 90% hepatectomized rats: a preliminary report. ACTA ACUST UNITED AC 2005; 33:405-10. [PMID: 16317959 DOI: 10.1080/10731190500289834] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We transplanted bioencapsulated bone marrow stem cells intraperitoneally into 90% hepatectomized rats and found that this increases both the rates of hepatic regeneration and survival of the animals. Bone marrow cells isolated from Wistar rats were bioencapsulated using alginate-polylysine-alginate method. These bioencapsulated bone marrow cells were transplanted intraperitoneally into 90% hepatectomized syngeneic wistar rats. Control groups included 90% hepatectomized group receiving intraperitoneal injection of either empty microcapsules or free bone marrow cells. Unlike the control groups, transplantation of bioencapsulated bone marrow cells improved the survival of 90% hepatectomized rats, with an efficacy similar to that of bioencapsulated hepatocytes or free hepatocytes. These results suggest that syngeneic bioencapsulated bone marrow stem cells can increase the survival rates of 90% hepatectomized rats. We also discuss the potential for a new alternative to hepatocyte transplantation for cellular therapy of acute liver failure. In particular, bone marrow stem cells can be obtained from the same patient with no immunorejection, whereas in hepatocyte transplant, immunosuppressant will be needed to prevent immunorejection of the donor hepatocytes.
Collapse
Affiliation(s)
- Zun Chang Liu
- Artificial Cells and Organs Research Center, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
16
|
Barshes NR, Gay AN, Williams B, Patel AJ, Awad SS. Support for the Acutely Failing Liver: A Comprehensive Review of Historic and Contemporary Strategies. J Am Coll Surg 2005; 201:458-76. [PMID: 16125082 DOI: 10.1016/j.jamcollsurg.2005.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/23/2005] [Accepted: 04/11/2005] [Indexed: 12/16/2022]
Affiliation(s)
- Neal R Barshes
- Michael E DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Takashi Hamazaki
- Department of Pathology, University of Florida, College of Medicine, P.O. Box 100275, Gainesville, Florida 32610 0275, USA
| | | |
Collapse
|
18
|
Bertani H, Gelmini R, Del Buono MG, De Maria N, Girardis M, Solfrini V, Villa E. Literature overview on artificial liver support in fulminant hepatic failure: a methodological approach. Int J Artif Organs 2002; 25:903-10. [PMID: 12456029 DOI: 10.1177/039139880202501002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Artificial liver support is a therapeutic option for subjects with fulminant hepatic failure. Results of these studies suggest a possible favourable effect on this condition. The aim of the present review is to evaluate not the results of the different artificial systems available but the methodology used to achieve these results. A computer and manual search of the literature was performed; 832 pertinent references were retrieved. Seventy-seven were full papers reporting the application of artificial liver support in animals or humans (15 RCTs (3 in humans, 12 in animals), 53 uncontrolled phase I trials, 9 case reports). The results of this review indicate that, although the rationale of artificial liver support as shown by animal studies is acceptable, the widespread use in clinical practice is not justified and a controlled design for the studies on artificial liver support systems is mandatory.
Collapse
Affiliation(s)
- H Bertani
- Gastroenterology Unit, Department of Medicine, University of Modena and Reggio Emilia, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Rull R, Garcia Valdecasas JC, Grande L, Fuster J, Lacy AM, González FX, Rimola A, Navasa M, Iglesias C, Visa J. Intrahepatic biliary lesions after orthotopic liver transplantation. Transpl Int 2002. [PMID: 11499901 DOI: 10.1111/j.1432-2277.2001.tb00031.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intrahepatic biliary lesions (IBL) are rare (2-9%) after orthotopic liver transplantation (OLT). The aim was to evaluate the incidence, etiology and outcome. In nine years, a total 532 OLTs were performed in 481 patients. Twenty-four patients developed IBL. Eight were due to HAT, seven to ABOI, three to CDR and six to PI. The time until diagnosis of HAT is longest in patients (14+/-6) with IBL. ABOI is another cause of IBL. CDR is a rare cause of IBL, however when it takes place, patients must undergo Rtx. Finally, PI is a relevant cause of IBL. In order to suppress the incidence of IBL we should consider 1) the systematic use of Doppler-Ultrasound; 2) emergency reoperation of patients with HAT, 3) avoid ABOI in OLT; 4) Rtx in cases of CDR, and 5) OLT should still be performed as an emergency procedure.
Collapse
Affiliation(s)
- R Rull
- Liver Transplant Unit, Hospital Clinic, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fissell WH, Kimball J, MacKay SM, Funke A, Humes HD. The role of a bioengineered artificial kidney in renal failure. Ann N Y Acad Sci 2001; 944:284-95. [PMID: 11797678 DOI: 10.1111/j.1749-6632.2001.tb03841.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Renal failure continues to carry substantial burden of morbidity and mortality in both acute and chronic forms, despite advances in transplantation and dialysis. There is evidence to suggest that the kidney has metabolic, endocrine, and immune effects transcending its filtration functions, even beyond secretion of renin and erythropoietin. Our laboratory has developed experience in the tissue culture of renal parenchymal cells, and has now been able to demonstrate the metabolic activity of these cells in an extracorporeal circuit recapitulating glomerulotubular anatomy. We have observed active transport of sodium, glucose, and glutathione. We describe the design and initial preclinical testing of the bioartificial kidney, as well as future directions of our research.
Collapse
Affiliation(s)
- W H Fissell
- Department of Internal Medicine, VA Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
21
|
Chen XP, Xue YL, Li XJ, Zhang ZY, Li YL, Huang ZQ. Experimental research on TECA-I bioartificial liver support system to treat canines with acute liver failure. World J Gastroenterol 2001; 7:706-9. [PMID: 11819859 PMCID: PMC4695579 DOI: 10.3748/wjg.v7.i5.706] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the efficacy and safety of the TECA-I bioartificial liver support system (BALSS) in treating canines with acute liver failure (ALF).
METHODS: Ten canines with ALF induced by 80% liver resection received BALSS treatment (BALSS group). Blood was perfused through a hollow fiber tube containing 1 × 1010 porcine hepatocytes. Four canines with ALF were treated with BALSS without porcine hepatocytes (control group), and five canines with ALF received drug treatment (drug group). Each treatment lasted 6 h.
RESULTS: BALSS treatment yielded beneficial effects for partial liver resection-induced ALF canines with survival and decreased plasma ammonia, ALT, AST and BIL. There was an obvious decrease in PT level and increase in PA level, and there were no changes in the count of lymphocytes, immunoglobulins (IgA, IgG and IgM) and complement (C3 and C4) levels after BALSS treatment. In contrast, for the canines with ALF in non-hepatocyte BALSS group (control group) and drug group, there were no significant changes in ammonia, ALT, AST, BIL, PT and PA levels. ALF canines in BALSS group, control group and drug group lived respectively an average time of 108.0 h ± 12.0 h, 24.0 h ± 6.0 h and 20.4 h ± 6.4 h, and three canines with ALF survived in BALSS group.
CONCLUSION: TECA-I BALSS is efficacious and safe for ALF canines induced by parcial liver resection.
Collapse
Affiliation(s)
- X P Chen
- Institute of Basic Medical Sciences,PLA General Hospital, Beijing 100853, China
| | | | | | | | | | | |
Collapse
|
22
|
Benoist S, Sarkis R, Chafaï N, Barbu V, Honiger J, Lakehal F, Becquemont L, Baudrimont M, Capeau J, Housset C, Nordlinger B. Survival and differentiation of porcine hepatocytes encapsulated by semiautomatic device and allotransplanted in large number without immunosuppression. J Hepatol 2001; 35:208-16. [PMID: 11580143 DOI: 10.1016/s0168-8278(01)00085-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS The aim of this study was to evaluate the survival and functions of porcine hepatocytes transplanted in large quantities in the peritoneal cavity of allogeneic animals following semiautomatic encapsulation. METHODS Isolated porcine hepatocytes and a polymer solution composed of AN69 were coextruded through a double lumen spinneret. Minitubes containing hepatocytes were transplanted in the peritoneal cavity of 12 pigs (4 x 10(9) cells/animal) in the absence of immunosuppressive therapy. Seven, 15, and 21 days after transplantation, minitubes was collected and processed for analyses. The morphology was examined under light and electron microscopy. Albumin synthesis was assessed by semi-quantitative reverse transcription-polymerase chain reaction. Cytochrome P450 3A (CYP3A) gene expression was analyzed by Western blot and by testosterone 6-beta-hydroxylation assay. RESULTS The device allowed to encapsulate 55 x 10(6) hepatocytes/min. Hepatocytes exhibited normal structural and ultrastructural features up to day 21. Albumin gene expression decreased progressively between days 0 and 21. The amount of CYP3A protein and 6-beta-hydroxylase activity were approximately 2-fold lower at days 7 and 15 than in freshly encapsulated hepatocytes, and further decreased thereafter. CONCLUSIONS The preservation of hepatocyte functions during 1-2 weeks is encouraging for potential short-term use of such bioartificial liver in future clinical application.
Collapse
Affiliation(s)
- S Benoist
- Research Unit 402, INSERM, Hospital Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hamazaki T, Iiboshi Y, Oka M, Papst PJ, Meacham AM, Zon LI, Terada N. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett 2001; 497:15-9. [PMID: 11376655 DOI: 10.1016/s0014-5793(01)02423-1] [Citation(s) in RCA: 342] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigated the potential of mouse embryonic stem (ES) cells to differentiate into hepatocytes in vitro. Differentiating ES cells expressed endodermal-specific genes, such as alpha-fetoprotein, transthyretin, alpha 1-anti-trypsin and albumin, when cultured without additional growth factors and late differential markers of hepatic development, such as tyrosine aminotransferase (TAT) and glucose-6-phosphatase (G6P), when cultured in the presence of growth factors critical for late embryonic liver development. Further, induction of TAT and G6P expression was induced regardless of expression of the functional SEK1 gene, which is thought to provide a survival signal for hepatocytes during an early stage of liver morphogenesis. The data indicate that the in vitro ES differentiation system has a potential to generate mature hepatocytes. The system has also been found useful in analyzing the role of growth factors and intracellular signaling molecules in hepatic development.
Collapse
Affiliation(s)
- T Hamazaki
- Department of Pathology, University of Florida College of Medicine, P.O. Box 100275, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Benoist S, Sarkis R, Barbu V, Honiger J, Baudrimont M, Lakehal F, Becquemont L, Delelo R, Housset C, Balladur P, Capeau J, Nordlinger B. Survival and functions of encapsulated porcine hepatocytes after allotransplantation or xenotransplantation without immunosuppression. Surgery 2001; 129:606-16. [PMID: 11331453 DOI: 10.1067/msy.2001.112961] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND This study evaluated the survival and functions of encapsulated porcine hepatocytes after intraperitoneal allotransplantation and xenotransplantation without immunosuppression. METHODS Isolated porcine hepatocytes were encapsulated in AN 69 polymer capsules (45.10(6)/capsule) and transplanted intraperitoneally in 12 rats and 12 pigs. Fifteen, 30, and 60 days after transplantation, capsules were removed and the viability and morphology of explanted hepatocytes were examined under light and electronic microscopy. The potential to produce albumin was assessed by evaluating the level of albumin messenger RNA, using semiquantitative reverse transcription-polymerase chain reaction. 6beta-Hydroxylase activity was measured by high-performance liquid chromatography. In addition, cytochrome P450 3A proteins were detected by Western blot only in allogeneic hepatocytes. RESULTS Similar results were observed after allotransplantation and xenotransplantation. Histologic studies showed that hepatocytes were well-preserved and arranged in cords for up to 30 days. The expression of porcine albumin gene was maintained up to 15 days. 6beta-Hydroxylase activity was 2.5-fold lower at day 15 than in freshly encapsulated hepatocytes, which were not transplanted. In allogeneic hepatocytes, the expression of CYP 3A protein was detected up to 60 days after transplantation. CONCLUSIONS Encapsulated porcine hepatocytes remain viable and functional for at least 15 days after allotransplantation and xenotransplantation without immunosuppression. The demonstration of maintained hepatic functions in transplanted porcine hepatocytes up to 15 days is a first step toward application in the treatment of acute liver failure.
Collapse
Affiliation(s)
- S Benoist
- Research Unit 402 of INSERM, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sechser A, Osorio J, Freise C, Osorio RW. Artificial liver support devices for fulminant liver failure. Clin Liver Dis 2001; 5:415-30. [PMID: 11385970 DOI: 10.1016/s1089-3261(05)70172-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Artificial liver-support devices attempt to bridge patients with fulminant hepatic failure until either a suitable liver allograft is obtained for transplantation or the patient's own liver regenerates sufficiently to resume normal function. It is thought that toxins contribute to the clinical picture of fulminant hepatic failure. The earliest reports of successful toxin removal were blood- and plasma-exchange transfusions. Given these successful case reports, mechanical liver-support devices were designed to filter toxins. These mechanical devices used hemodialysis, charcoal hemoperfusion, hemoperfusion through cation-exchange resins, hemodiabsorption, and combinations of all of these techniques as in the MARS liver-support device. Despite promising case reports and small series, no controlled studies of mechanical devices have ever showed a long-term survival benefit. Thus, the removal of presumed toxins seems to be insufficient to support patients with fulminant hepatic failure, and the biologic function of the liver must also be replaced. Attempts at replacing the biologic function have included extracorporeal liver perfusion, cross-circulation, and hepatocyte transplantation. Current technologies have combined mechanical and biologic support systems in hybrid liver-support devices. The mechanical component of these hybrid devices serves both to remove toxins and to create a barrier between the patient's serum and the biologic component of the liver-support device. The biologic component of these hybrid liver support devices may consist of liver slices, granulated liver, or hepatocytes from low-grade tumor cells or porcine hepatocytes. These biologic components are housed within bioreactors. Currently the most clinically studied bioreactors are those that use capillary hollow-fiber systems. Both the bioartificial liver by Demetrious and the extracorporeal liver-assist device by Sussman and Kelly are in clinical trials. Although the trials seemed to have yielded good survival data when the devices are used as a bridge to transplantation, the type and degree of liver support provided by these devices remains uncertain. Thus, despite decades of great progress in the field of artificial liver support, no one technique alone yet provides sufficient liver support. A hybrid system seems to be the best option at present. Still to be determined is the best tissue to use, how much liver tissue should be used, and the optimal design of the bioreactor.
Collapse
Affiliation(s)
- A Sechser
- Department of Transplantation, California Pacific Medical Center, San Francisco, USA
| | | | | | | |
Collapse
|
26
|
Carrillo G, Gendzekhadze K, Ruíz ME, Ruíz M, Ramírez CD, Martinez A, Acevedo CH, Zerpa M, Rivas-Vetencourt PA. Multiaggregate hepatocyte (HP) spheroids in the hepato-cellular transplant: structural, functional and metabolic characterization. Transplant Proc 2001; 33:660-1. [PMID: 11267004 DOI: 10.1016/s0041-1345(00)02189-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- G Carrillo
- Unidad de Investigaciones Quirúrgicas, Escuela de Medicina J.M. Vargas, Universidad Central de Venezuela, Piso 4, Venezuela
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Transplantation of the Liver and Intestine. Surgery 2001. [DOI: 10.1007/978-3-642-57282-1_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
|
29
|
Canaple L, Nurdin N, Angelova N, Saugy D, Hunkeler D, Desvergne B. Maintenance of primary murine hepatocyte functions in multicomponent polymer capsules--in vitro cryopreservation studies. J Hepatol 2001; 34:11-8. [PMID: 11211886 DOI: 10.1016/s0168-8278(00)00086-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND/AIMS The potential of a new encapsulation system has been evaluated as an artificial housing for liver cells. METHODS Murine hepatocytes were encapsulated in specially designed multicomponent capsules formed by polyelectrolyte complexation of sodium alginate, cellulose sulphate and poly(methylene-co-guanidine) hydrochloride, the permeability of which has previously been characterised. RESULTS We demonstrate here the absence of cytotoxicity and the excellent biocompatibility of these capsules towards primary culture of murine hepatocytes. Experimental results demonstrated that the encapsulated hepatocytes retained their specific functions--transaminase activity, urea synthesis and protein secretion--over the first 4 days of culture in minimum medium. The cryopreservation of encapsulated hepatocytes, for periods of up to 4 months, did not alter their functional capacities, as no major differences were observed between unfrozen and frozen encapsulated cells for the functions tested. CONCLUSIONS Because of the absence of cytotoxicity, and the ease of handling and cryopreservation, while maintaining liver specific functions, the described system appears to be valuable for murine liver cell encapsulation. It is also a promising tool for fundamental research into drug metabolism, intercellular regulation, metabolic pathways, and the establishment of banks for the supply and storage of murine hepatocytes.
Collapse
Affiliation(s)
- L Canaple
- Institute of Animal Biology, University of Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Immunoisolation therapy overcomes important disadvantages of implanting free cells. By mechanically blocking immune attacks, synthetic membranes around grafted cells should obviate the need for immunosuppression. The membrane used for encapsulation must be biocompatible and immunocompatible to the recipient and also to the encapsulated graft. The ability of the host to accept the implanted graft depends not only on the material used for encapsulation, but also on the defense reaction of the recipient, which is very individual. Such a reaction usually starts as absorption of cell-adhesive proteins, immunoglobulins, complement components, growth factors and some other proteins on the surface of the device. The absorption of proteins is difficult to avoid, but the amount and specificity of absorbed proteins can be controlled to some extent by selection and modification of the device material. If the adsorption of proteins to the surface of the implanted material is reduced, the overgrowth of the device with fibroblast-like and macrophage-like cells is also reduced. Cell adhesion at the surface of the implanted device is, in addition to the selected polymeric material, greatly influenced by the device content. Xenografts trigger a more vigorous inflammatory reaction than allografts, most probably due to the release of antigenic products from encapsulated deteriorated and dying cells which diffuse through the membrane and activate adhering immune cells. There is an evident effect of autoimmune status on the fate of the encapsulated graft. While encapsulated xenogeneic islets readily reverse streptozotocin-induced diabetes in mice, the same xenografts are short-functioning in NOD autoimmune diabetes-prone mice. Autoantibodies, to which most devices are impermeable, are not involved. Among the cytotoxic factors which are responsible for the limited survival of the encapsulated graft the most important are cytokines and perhaps some other low-molecular-weight factors released by activated macrophages at the surface of the encapsulating membrane.
Collapse
Affiliation(s)
- B Ríhová
- Institute of Microbiology, AS CR, Vídenská 1083, 142 20 4, Prague, Czech Republic.
| |
Collapse
|
31
|
Honiger J, Sarkis R, Baudrimont M, Delelo R, Chafai N, Benoist S, Sarkis K, Balladur P, Capeau J, Nordlinger B. Semiautomatic macroencapsulation of large numbers of porcine hepatocytes by coextrusion with a solution of AN69 polymer. Biomaterials 2000; 21:1269-74. [PMID: 10811308 DOI: 10.1016/s0142-9612(00)00012-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have previously demonstrated that allogenic and xenogenic hepatocytes macroencapsulated manually in AN-69 polymer and transplanted intra-peritoneally in rats remained viable for several weeks. However, this manual technique is inadequate to encapsulate several billions of hepatocytes which would be required to correct hepatic failure in big animals or humans. In the present study, we developed an original semiautomatic device in which isolated pig hepatocytes and the polymer solution containing 6% poly(acrylonitrile-sodium methallylsulfonate), 91% dimethylsulfoxide and 3% 0.9% NaCl solution were coextruded through a double-lumen spinneret. The extruded minitube (inner diameter: 1.8 mm, wall thickness: 0.07-0.1 mm) containing the encapsulated hepatocytes fell and coiled up in a 0.9% NaCl solution at 4 degrees C and was cut down in 4 m units containing about 120 million hepatocytes. This process allowed to encapsulate 50 million hepatocytes by minute with a preserved immediate cell viability (92 +/- 5%). To test prolonged cell viability after coextrusion, the minitubes were implanted intraperitoneally in rats. Three and seven days after implantation, they were explanted and analyzed. Cells were viable and well-preserved. Therefore, the semiautomatic device appears able to efficiently macroencapsulate in a limited time several billions of porcine hepatocytes which remain viable after transplantation in xenogenic conditions.
Collapse
Affiliation(s)
- J Honiger
- Research Unit 402 of INSERM, Faculte de Medecine Saint Antoine, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Oldhafer KJ, Lang H, Schlitt HJ, Hauss J, Raab R, Klempnauer J, Pichlmayr R. Long-term experience after ex situ liver surgery. Surgery 2000; 127:520-7. [PMID: 10819060 DOI: 10.1067/msy.2000.105500] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ex situ liver surgery allows liver resection and vascular reconstruction in patients who have liver tumors located at critical sites. Only a small series of studies about ex situ liver surgery is available in the literature. No long-term results have been published. METHODS Twenty-four patients were considered for ex situ liver surgery because conventional liver surgery was considered impossible or too hazardous. The patient's ages were 51.3 +/- 7.5 years. Indications were various primary and secondary liver malignancies and benign liver tumors in 2 patients. RESULTS In 22 of 24 patients, the ex situ liver resection and subsequent autotransplantation were performed. The anhepatic periods in these patients lasted for 5.6 +/- 1.1 hours. In the remaining 2 patients, autotransplantation was not possible and allogenic liver transplantation was performed 17 and 19 hours after hepatectomy. In 4 patients, liver failure occurred after autotransplantation and required transplantation. The confluens between hepatic veins and the inferior vena cava was reconstructed in 5 patients. Fifteen patients survived the postoperative period and were discharged after 36.5 +/- 16 days. The median survival time of 6 patients who had metastases of colonic carcinoma was 21 months. The 2 patients with benign liver disease are alive 9 and 5 years after ex situ surgery. CONCLUSIONS Extended liver resections with difficult reconstructions of the hepatic venous confluens are feasible by ex situ liver surgery and subsequent autotransplantation. However, the early postoperative mortality rate is high, especially in patients with cholestatic livers. Early tumor recurrence remained the problem in these patients with extended local tumor spread. Ex situ liver surgery should only be performed in selected patients.
Collapse
Affiliation(s)
- K J Oldhafer
- Klinik für Abdominal- und Transplantationschirurgie, Medizinische Hochschule Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Wiles CE. Critical care apheresis: hepatic failure. THERAPEUTIC APHERESIS : OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR APHERESIS AND THE JAPANESE SOCIETY FOR APHERESIS 1999; 3:31-3. [PMID: 10079803 DOI: 10.1046/j.1526-0968.1999.00139.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hepatic failure is a common feature of critical care. Most hepatic dysfunction in the ICU responds to medical management and metabolic support. The role of extracorporeal organ support in hepatic failure is not as well defined as it is in renal failure and pulmonary failure. Nevertheless, artificial organ support has been successful in the treatment of advanced liver failure. Hybrid bioartificial liver substitutes show great promise, especially as a bridge to liver transplant.
Collapse
Affiliation(s)
- C E Wiles
- University of Maryland, Baltimore, USA
| |
Collapse
|
34
|
Affiliation(s)
- H Auchincloss
- Transplantation Unit, Surgical Services, Massachusetts General Hospital, Boston 02114, USA
| |
Collapse
|