1
|
Tian Q, Chen S, Liu S, Li Y, Wu S, Wang Y. Physical activity, cardiovascular disease, and mortality across obesity levels. EPMA J 2025; 16:51-65. [PMID: 39991104 PMCID: PMC11842671 DOI: 10.1007/s13167-025-00397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/07/2025] [Indexed: 02/25/2025]
Abstract
Aims High physical activity (PA) is associated with decreased risk of cardiovascular disease (CVD) and mortality. However, whether PA can be sufficient to reduce the risk of CVD and mortality contributing to adiposity remains unclear. From the standpoint of predictive, preventive, and personalized medicine (PPPM/3PM), joint assessment of PA and adiposity provides novel insights for individual risk assessment, targeted prevention, and personalized intervention of CVD. Methods This prospective cohort study included 92,931 participants in the Kailuan study in Tangshan, followed between the years 2006 and 2020. Adiposity was assessed by body mass index (BMI) and waist circumference (WC). The CVD incidence and all-cause mortality associated with 3 PA levels (low, medium, and high PA) were analyzed by applying Cox regression models to different adiposity subgroups. Results After a median follow-up period of 14.02 years, 9997 incident CVD cases and 12,586 deaths occurred. Surprisingly, low PA and lean body mass were at a lower risk for CVD than other phenotypes. Participants with high PA still had a 35% higher CVD risk from obesity (hazard ratio (HR) BMI: 1.35, 95% confidence interval (CI): 1.18-1.54) and a 10% higher CVD risk from central obesity (HRcentral obesity: 1.10, 95% CI: 1.00-1.21) than those with lean. However, only in obese individuals, high PA has a protective effect on CVD (HR: 0.78, 95% CI: 0.64-0.95). Overall obesity and high PA were not associated with increased risk of all-cause mortality, whereas high PA could not attenuate mortality risk associated with central obesity. Conclusion High PA did not attenuate the risk of CVD associated with adiposity compared with lean body mass among the Chinese population, whereas the combination of high PA and healthy WC might improve healthy aging and longevity. In addition, this study revealed the importance of maintaining muscle health in obese individuals via PA or other ways. It provides a novel strategy for mitigating the risk of CVD by exercising intervention or maintaining body mass, thereby enhancing effective prevention and targeted intervention. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-025-00397-5.
Collapse
Affiliation(s)
- Qiuyue Tian
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014 China
- School of Public Health, Capital Medical University, Beijing, 100069 China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, North China University of Science and Technology, 57 Xinhua East Road, Tangshan, China
| | - Shaopeng Liu
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210 Hebei China
| | - Yun Li
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210 Hebei China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, North China University of Science and Technology, 57 Xinhua East Road, Tangshan, China
| | - Youxin Wang
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210 Hebei China
- Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
2
|
Fitts RH, Wang X, Kwok WM, Camara AKS. Cardiomyocyte Adaptation to Exercise: K+ Channels, Contractility and Ischemic Injury. Int J Sports Med 2024; 45:791-803. [PMID: 38648799 DOI: 10.1055/a-2296-7604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality, and exercise-training (TRN) is known to reduce risk factors and protect the heart from ischemia and reperfusion injury. Though the cardioprotective effects of exercise are well-documented, underlying mechanisms are not well understood. This review highlights recent findings and focuses on cardiac factors with emphasis on K+ channel control of the action potential duration (APD), β-adrenergic and adenosine regulation of cardiomyocyte function, and mitochondrial Ca2+ regulation. TRN-induced prolongation and shortening of the APD at low and high activation rates, respectively, is discussed in the context of a reduced response of the sarcolemma delayed rectifier potassium channel (IK) and increased content and activation of the sarcolemma KATP channel. A proposed mechanism underlying the latter is presented, including the phosphatidylinositol-3kinase/protein kinase B pathway. TRN induced increases in cardiomyocyte contractility and the response to adrenergic agonists are discussed. The TRN-induced protection from reperfusion injury is highlighted by the increased content and activation of the sarcolemma KATP channel and the increased phosphorylated glycogen synthase kinase-3β, which aid in preventing mitochondrial Ca2+ overload and mitochondria-triggered apoptosis. Finally, a brief section is presented on the increased incidences of atrial fibrillation associated with age and in life-long exercisers.
Collapse
Affiliation(s)
- Robert H Fitts
- Biological Sciences, Marquette University, Milwaukee, United States
| | - Xinrui Wang
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
| | - Wai-Meng Kwok
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
- Anesthesiology, Medical College of Wisconsin, Milwaukee, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, United States
| | - Amadou K S Camara
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
- Anesthesiology, Medical College of Wisconsin, Milwaukee, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, United States
- Physiology, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
3
|
Harris MP, Zeng S, Zhu Z, Lira VA, Yu L, Hodgson-Zingman DM, Zingman LV. Myokine Musclin Is Critical for Exercise-Induced Cardiac Conditioning. Int J Mol Sci 2023; 24:6525. [PMID: 37047496 PMCID: PMC10095193 DOI: 10.3390/ijms24076525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
This study investigates the role and mechanisms by which the myokine musclin promotes exercise-induced cardiac conditioning. Exercise is one of the most powerful triggers of cardiac conditioning with proven benefits for healthy and diseased hearts. There is an emerging understanding that muscles produce and secrete myokines, which mediate local and systemic "crosstalk" to promote exercise tolerance and overall health, including cardiac conditioning. The myokine musclin, highly conserved across animal species, has been shown to be upregulated in response to physical activity. However, musclin effects on exercise-induced cardiac conditioning are not established. Following completion of a treadmill exercise protocol, wild type (WT) mice and mice with disruption of the musclin-encoding gene, Ostn, had their hearts extracted and exposed to an ex vivo ischemia-reperfusion protocol or biochemical studies. Disruption of musclin signaling abolished the ability of exercise to mitigate cardiac ischemic injury. This impaired cardioprotection was associated with reduced mitochondrial content and function linked to blunted cyclic guanosine monophosphate (cGMP) signaling. Genetic deletion of musclin reduced the nuclear abundance of protein kinase G (PKGI) and cyclic adenosine monophosphate (cAMP) response element binding (CREB), resulting in suppression of the master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), and its downstream targets in response to physical activity. Synthetic musclin peptide pharmacokinetic parameters were defined and used to calculate the infusion rate necessary to maintain its plasma level comparable to that observed after exercise. This infusion was found to reproduce the cardioprotective benefits of exercise in sedentary WT and Ostn-KO mice. Musclin is essential for exercise-induced cardiac protection. Boosting musclin signaling might serve as a novel therapeutic strategy for cardioprotection.
Collapse
Affiliation(s)
- Matthew P. Harris
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Center, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Shemin Zeng
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Center, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Center, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Vitor A. Lira
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Center, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Liping Yu
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Center, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
- NMR Core Facility and Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Denice M. Hodgson-Zingman
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Center, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Leonid V. Zingman
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Center, Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
4
|
Ho JH, Baskaran R, Wang MF, Mohammedsaleh ZM, Yang HS, Balasubramanian B, Lin WT. Dipeptide IF and Exercise Training Attenuate Hypertension in SHR Rats by Inhibiting Fibrosis and Hypertrophy and Activating AMPKα1, SIRT1, and PGC1α. Int J Mol Sci 2022; 23:ijms23158167. [PMID: 35897743 PMCID: PMC9330102 DOI: 10.3390/ijms23158167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Bioactive peptides are physiologically active peptides produced from proteins by gastrointestinal digestion, fermentation, or hydrolysis by proteolytic enzymes. Bioactive peptides are resorbed in their whole form and have a preventive effect against various disease conditions, including hypertension, dyslipidemia, inflammation, and oxidative stress. In recent years, there has been a growing body of evidence showing that physiologically active peptides may have a function in sports nutrition. The present study aimed to evaluate the synergistic effect of dipeptide (IF) from alcalase potato protein hydrolysates and exercise training in hypertensive (SHR) rats. Animals were divided into five groups. Bioactive peptide IF and swimming exercise training normalized the blood pressure and decreased the heart weight. Cardiac, hepatic, and renal functional markers also normalized in SHR rats. The combined administration of IF peptide and exercise offer better protection in SHR rats by downregulating proteins associated with myocardial fibrosis, hypertrophy, and inflammation. Remarkably, peptide treatment alongside exercise activates the PI3K/AKT cell survival pathway in the myocardial tissue of SHR animals. Further, the mitochondrial biogenesis pathway (AMPKα1, SIRT1, and PGC1α) was synergistically activated by the combinatorial treatment of IF and exercise. Exercise training along with IF administration could be a possible approach to alleviating hypertension.
Collapse
Affiliation(s)
- Jou-Hsuan Ho
- Department of Food Science, Tunghai University, Taichung 407224, Taiwan; (J.-H.H.); (H.-S.Y.)
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan;
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan;
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Hong-Siang Yang
- Department of Food Science, Tunghai University, Taichung 407224, Taiwan; (J.-H.H.); (H.-S.Y.)
| | | | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung 407224, Taiwan
- Correspondence: ; Tel.: +886-4-2359-0121 (ext. 37709)
| |
Collapse
|
5
|
Papadakis Z, Garcia-Retortillo S, Koutakis P. Effects of Acute Partial Sleep Deprivation and High-Intensity Interval Exercise on Postprandial Network Interactions. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:869787. [PMID: 36926086 PMCID: PMC10013041 DOI: 10.3389/fnetp.2022.869787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Introduction: High-intensity interval exercise (HIIE) is deemed effective for cardiovascular and autonomic nervous system (ANS) health-related benefits, while ANS disturbance increases the risk for cardiovascular disease (CVD). Postprandial lipemia and acute-partial sleep deprivation (APSD) are considered as CVD risk factors due to their respective changes in ANS. Exercising in the morning hours after APSD and have a high-fat breakfast afterwards may alter the interactions of the cardiovascular, autonomic regulation, and postprandial lipemic systems threatening individuals' health. This study examined postprandial network interactions between autonomic regulation through heart rate variability (HRV) and lipemia via low-density lipoprotein (LDL) cholesterol in response to APSD and HIIE. Methods: Fifteen apparently healthy and habitually good sleepers (age 31 ± 5.2 SD yrs) completed an acute bout of an isocaloric HIIE (in form of 3:2 work-to-rest ratio at 90 and 40% of VO2 reserve) after both a reference sleep (RSX) and 3-3.5 h of acute-partial sleep deprivation (SSX) conditions. HRV time and frequency domains and LDL were evaluated in six and seven time points surrounding sleep and exercise, respectively. To identify postprandial network interactions, we constructed one correlation analysis and one physiological network for each experimental condition. To quantify the interactions within the physiological networks, we also computed the number of links (i.e., number of significant correlations). Results: We observed an irruption of negative links (i.e., negative correlations) between HRV and LDL in the SSX physiological network compared to RSX. Discussion: We recognize that a correlation analysis does not constitute a true network analysis due to the absence of analysis of a time series of the original examined physiological variables. Nonetheless, the presence of negative links in SSX reflected the impact of sleep deprivation on the autonomic regulation and lipemia and, thus, revealed the inability of HIIE to remain cardioprotective under APSD. These findings underlie the need to further investigate the effects of APSD and HIIE on the interactions among physiological systems.
Collapse
Affiliation(s)
- Zacharias Papadakis
- Human Performance Laboratory, Department of Sport and Exercise Sciences, Barry University, Miami Shores, FL, United States
| | - Sergi Garcia-Retortillo
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
| | - Panagiotis Koutakis
- Clinical Muscle Biology Laboratory, Department of Biology, Baylor University, Waco, TX, United States
| |
Collapse
|
6
|
Limyati Y, Sanjaya A, Lucretia T, Gunadi JW, Biben V, Jasaputra DK, Lesmana R. Potential Role of Exercise in Regulating YAP and TAZ During Cardiomyocytes Aging. Curr Cardiol Rev 2022; 18:24-33. [PMID: 35379136 PMCID: PMC9896415 DOI: 10.2174/1573403x18666220404152924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
Adaptation of cardiac muscle to regular exercise results in morphological and structural changes known as physiological cardiac hypertrophy, to which the Hippo signaling pathway might have contributed. Two major terminal effectors in the Hippo signaling pathway are Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ). The latest studies have reported the role of YAP and TAZ in different life stages, such as in fetal, neonatal, and adult hearts. Their regulation might involve several mechanisms and effectors. One of the possible coregulators is exercise. Exercise plays a role in cardiomyocyte hypertrophic changes during different stages of life, including in aged hearts. YAP/TAZ signaling pathway has a role in physiological cardiac hypertrophy induced by exercise and is associated with cardiac remodelling. Thus, it can be believed that exercise has roles in activating the signaling pathway of YAP and TAZ in aged cardiomyocytes. However, the studies regarding the roles of YAP and TAZ during cardiomyocyte aging are limited. The primary purpose of this review is to explore the response of cardiovascular aging to exercise via signaling pathway of YAP and TAZ.
Collapse
Affiliation(s)
- Yenni Limyati
- Address correspondence to this author at the Postgraduate Doctoral Program Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161; Department of Physical Medicine and Rehabilitation, Unggul Karsa Medika Hospital, Bandung, West Java, 40218; Department of Clinical Skills, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, 40164, Indonesia; Tel/Fax: +62222012186, +62222017621;
| | | | | | | | | | | | | |
Collapse
|
7
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
8
|
Ávila RA, Rossi EM, de Carvalho GM, Krause M, Leopoldo AS, Carneiro MTWD, Dos Santos L. Moderate-intensity aerobic training reduces cardiac damage attributable to experimental iron overload in rats. Exp Physiol 2021; 106:1772-1784. [PMID: 34148259 DOI: 10.1113/ep089429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? The current literature indicates that oxidative stress plays a major role in iron overload. Although exercise is a well-established approach to treat/prevent cardiovascular diseases, its effects on iron overload are not known. What is the main finding and its importance? Moderate-intensity aerobic training had benefits in a rodent model of iron-overload cardiomyopathy by improving the antioxidant capacity of the heart. After further confirmation by translational and clinical studies, we should consider using this non-pharmacological, highly accessible and easily executable adjuvant approach allied to other therapies to improve the quality of life of iron-overloaded patients. ABSTRACT Iron is an essential micronutrient for several life processes, but its excess can damage organs owing to oxidative stress, with cardiomyopathy being the leading cause of death in iron-overloaded patients. Although exercise has long been considered as a cardioprotective tool, its effects on iron overload are not known. This study was designed to investigate the effects of moderate-intensity aerobic training in rats previously submitted to chronic iron overload. Wistar rats received i.p. injections of iron dextran (100 mg/kg, 5 days/week for 4 weeks); thereafter, the rats were kept sedentary or exercised (60 min/day, progressive aerobic training, 60-70% of maximal speed, 5 days/week on a treadmill) for 8 weeks. At the end of the experimental period, haemodynamics were recorded and blood samples, livers and hearts harvested. Myocardial mechanics of papillary muscles were assessed in vitro, and cardiac remodelling was evaluated by histology and immunoblotting. Iron overload led to liver iron deposition, liver fibrosis and increased serum alanine aminotransferase and aspartate aminotransferase. Moreover, cardiac iron accumulation was accompanied by impaired myocardial mechanics, increased cardiac collagen type I and lipid peroxidation (TBARS), and release of creatine phosphokinase-MB to the serum. Although exercise did not influence iron levels, tissue injury markers were significantly reduced. Likewise, myocardial contractility and inotropic responsiveness were improved in exercised rats, in association with an increase in the endogenous antioxidant enzyme catalase. In conclusion, moderate-intensity aerobic exercise was associated with attenuated oxidative stress and cardiac damage in a rodent model of iron overload, thereby suggesting its potential role as a non-pharmacological adjuvant therapy for iron-overload cardiomyopathy.
Collapse
Affiliation(s)
- Renata Andrade Ávila
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil.,Faculdades Integradas São Pedro (FAESA), Vitória, ES, Brazil
| | - Emilly Martinelli Rossi
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil
| | | | - Maiara Krause
- Department of Chemistry, Federal University of Espirito Santo, Vitória, ES, Brazil
| | | | | | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, ES, Brazil
| |
Collapse
|
9
|
Szabó MR, Pipicz M, Csont T, Csonka C. Modulatory Effect of Myokines on Reactive Oxygen Species in Ischemia/Reperfusion. Int J Mol Sci 2020; 21:ijms21249382. [PMID: 33317180 PMCID: PMC7763329 DOI: 10.3390/ijms21249382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence showing the importance of physical activity against acute ischemic events in various organs. Ischemia/reperfusion injury (I/R) is characterized by tissue damage as a result of restriction and subsequent restoration of blood supply to an organ. Oxidative stress due to increased reactive oxygen species formation and/or insufficient antioxidant defense is considered to play an important role in I/R. Physical activity not only decreases the general risk factors for ischemia but also confers direct anti-ischemic protection via myokine production. Myokines are skeletal muscle-derived cytokines, representing multifunctional communication channels between the contracting skeletal muscle and other organs through an endocrine manner. In this review, we discuss the most prominent members of the myokines (i.e., brain-derived neurotrophic factor (BDNF), cathepsin B, decorin, fibroblast growth factors-2 and -21, follistatin, follistatin-like, insulin-like growth factor-1; interleukin-6, interleukin-7, interleukin-15, irisin, leukemia inhibitory factor, meteorin-like, myonectin, musclin, myostatin, and osteoglycin) with a particular interest in their potential influence on reactive oxygen and nitrogen species formation or antioxidant capacity. A better understanding of the mechanism of action of myokines and particularly their participation in the regulation of oxidative stress may widen their possible therapeutic use and, thereby, may support the fight against I/R.
Collapse
Affiliation(s)
- Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Csaba Csonka
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
- Department of Sports Medicine, University of Szeged, Tisza Lajos krt 107, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-30-5432-693
| |
Collapse
|
10
|
Cui JW, Hong Y, Kuo YM, Yu SH, Wu XB, Cui ZY, Lee SD. Voluntary exercise training attenuated the middle-aged maturity-induced cardiac apoptosis. Life Sci 2020; 259:118187. [PMID: 32781061 DOI: 10.1016/j.lfs.2020.118187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/18/2022]
Abstract
AIMS Voluntary exercise training has cardioprotective effects in humans, but the underlying mechanism is unknown. This research was done to estimate the effect of voluntary exercise training to attenuate middle-aged maturity-induced cardiac apoptosis. MATERIALS AND METHODS The study was designed to divide 64 male mice randomly into four groups, consisting of a 9-month sedentary pre-middle-aged group (9M), 15-month sedentary middle-aged group (15M), and two exercise groups using a voluntary wheel running respectively (9M+EX, 15M+EX). After 3 months, the condition of cardiac apoptosis in different groups was measured by HE dying, TUNEL and DAPI staining, and Western Blot analysis. KEY FINDINGS TUNEL-positive cells were increased in 15M group compared with 9M group, while decreased in 9M+EX and 15M+EX groups compared with their control groups respectively. Protein levels of AIF, Endo G, TNF-α, TNFR1, TRAF2, TRADD, Fas, FasL, FADD, activated caspase 8, 3, 9, Bax/Bcl2, Bak/BclxL, and tBid were decreased in 9M+EX and 15M+EX groups compared with their control groups respectively. The protein levels of pBad/Bad, 14-3-3, IGF1, IGFR1, pPI3K/PI3K, and pAKT/AKT were more activated in the 9M+EX and 15M+EX groups than those in their control groups respectively. Significant differences were found between 9M group and 15M group for the protein levels of TRAF2, FADD, Bax/Bcl2, tBid and pAKT/AKT. SIGNIFICANCE Voluntary exercise training as an important lifestyle modification may prevent cardiac widely dispersed apoptosis and enhance cardiac survival at middle-aged maturity.
Collapse
Affiliation(s)
- Jia-Wen Cui
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Hong
- The First Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shao-Hong Yu
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Xu-Bo Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Departmental of Rehabilitation, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Yang Cui
- School of Rehabilitation Medicine, Weifang Medical University, Shandong, China
| | - Shin-Da Lee
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Shandong, China; Departmental of Rehabilitation, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Rehabilitation Medicine, Weifang Medical University, Shandong, China; Department of Physical Therapy, Asia University, Taichung, Taiwan; Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
11
|
Mendonça AA, Gonçalves RV, Souza-Silva TG, Maldonado IR, Talvani A, Natali AJ, Novaes RD. Concomitant exercise training attenuates the cardioprotective effects of pharmacological therapy in a murine model of acute infectious myocarditis. Life Sci 2019; 230:141-149. [DOI: 10.1016/j.lfs.2019.05.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
|
12
|
Zhang Z, Wang B, Fei A. BDNF contributes to the skeletal muscle anti-atrophic effect of exercise training through AMPK-PGC1α signaling in heart failure mice. Arch Med Sci 2019; 15:214-222. [PMID: 30697273 PMCID: PMC6348347 DOI: 10.5114/aoms.2018.81037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Exercise training is a coadjuvant therapy in preventive cardiology, and it delays cardiac dysfunction and exercise intolerance in heart failure (HF). However, the mechanisms underlying muscle function improvement and cardioprotection are poorly understood. In this study, we tested whether exercise training would counteract skeletal muscle atrophy via activation of the BDNF pathway in myocardial infarction (MI)-induced HF mice. MATERIAL AND METHODS A cohort of male Sham-operated and MI mice were assigned into 8-week moderate exercise training, and untrained counterparters were used as control. Exercise capacity, plasma norepinephrine (NE) level, heart rate (HR), fractional shortening (FS) and ejection fraction (EF) were measured. The protein expression of BDNF, p-TrkB, p-AMPK and PGC1α were analyzed by Western blot. RESULTS Compared with the Sham-operated mice, MI mice displayed reduced total distance run and elevated plasma NE level (both p < 0.05). Exercise training significantly improved distance run and plasma NE levels in HF mice (both p < 0.05). Significantly increased HR, decreased FS and EF were observed in the MI group as compared to the Sham-operated group, and exercise training prevent the hemodynamic status and systolic dysfunction in MI mice (all p < 0.05). The expression of BDNF, p-TrkB, p-AMPK and PGC1α were significantly decreased in the skeletal muscle from MI compared to Sham-operated mice, which were significantly increased by exercise training (all p < 0.05). In addition, BDNF siRNA markedly decreased the protein level of p-AMPK and PGC1α in C2C12 myoblasts. CONCLUSIONS Taken together, our data provide evidence for exercise training may counteract HF-induced muscle atrophy through induced activation of BDNF pathway.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Emergency, Xin Hua Hospital affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Beili Wang
- Department of Oncology, Xin Hua Hospital affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aihua Fei
- Department of Emergency, Xin Hua Hospital affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Feng R, Wang L, Li Z, Yang R, Liang Y, Sun Y, Yu Q, Ghartey-Kwansah G, Sun Y, Wu Y, Zhang W, Zhou X, Xu M, Bryant J, Yan G, Isaacs W, Ma J, Xu X. A systematic comparison of exercise training protocols on animal models of cardiovascular capacity. Life Sci 2018; 217:128-140. [PMID: 30517851 DOI: 10.1016/j.lfs.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is a major global cause of mortality, which has prompted numerous studies seeking to reduce the risk of heart failure and sudden cardiac death. While regular physical activity is known to improve CVD associated morbidity and mortality, the optimal duration, frequency, and intensity of exercise remains unclear. To address this uncertainty, various animal models have been used to study the cardioprotective effects of exercise and related molecular mechanism such as the mice training models significantly decrease size of myocardial infarct by affecting Kir6.1, VSMC sarc-KATP channels, and pulmonary eNOS. Although these findings cement the importance of animal models in studying exercise induced cardioprotection, the vast assortment of exercise protocols makes comparison across studies difficult. To address this issue, we review and break down the existent exercise models into categories based on exercise modality, intensity, frequency, and duration. The timing of sample collection is also compared and sorted into four distinct phases: pre-exercise (Phase I), mid-exercise (Phase II), exercise recovery (Phase III), and post-exercise (Phase IV). Finally, because the life-span of animals so are limited, small changes in animal exercise duration can corresponded to untenable amounts of human exercise. To address this limitation, we introduce the Life-Span Relative Exercise Time (RETlife span) as a method of accurately defining short-term, medium-term and long-term exercise relative to the animal's life expectancy. Systematic organization of existent protocols and this new system of defining exercise duration will allow for a more solid framework from which researchers can extrapolate animal model data to clinical application.
Collapse
Affiliation(s)
- Rui Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhonguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Rong Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Yu Liang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Yuting Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Qiuxia Yu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Yanping Sun
- College of Pharmacy, Xi'an Medical University, Xi'an 710062, China
| | - Yajun Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Wei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China; Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Mengmeng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27708, USA
| | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD 21287, USA
| | - Guifang Yan
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - William Isaacs
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jianjie Ma
- Ohio State University School of Medicine, Columbus, OH 43210, USA
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/CGDB, Shaanxi Normal University College of Life Sciences, Xi'an 710119, China.
| |
Collapse
|
14
|
Naderi-boldaji V, Joukar S, Noorafshan A, Raji-amirhasani A, Naderi-boldaji S, Bejeshk MA. The effect of blood flow restriction along with low-intensity exercise on cardiac structure and function in aging rat: Role of angiogenesis. Life Sci 2018; 209:202-209. [DOI: 10.1016/j.lfs.2018.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/28/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
|
15
|
He L, Wu YH, Zhao Q, Wang B, Liu QL, Zhang L. Chrysanthemum DgWRKY2 Gene Enhances Tolerance to Salt Stress in Transgenic Chrysanthemum. Int J Mol Sci 2018; 19:E2062. [PMID: 30012947 PMCID: PMC6073511 DOI: 10.3390/ijms19072062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
WRKY transcription factors (TFs) play a vital part in coping with different stresses. In this study, DgWRKY2 was isolated from Dendranthema grandiflorum. The gene encodes a 325 amino acid protein, belonging to the group II WRKY family, and contains one typical WRKY domain (WRKYGQK) and a zinc finger motif (C-X4-5-C-X22-23-H-X1-H). Overexpression of DgWRKY2 in chrysanthemum enhanced tolerance to high-salt stress compared to the wild type (WT). In addition, the activities of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT)), proline content, soluble sugar content, soluble protein content, and chlorophyll content of transgenic chrysanthemum, as well as the survival rate of the transgenic lines, were on average higher than that of the WT. On the contrary, hydrogen peroxide (H₂O₂), superoxide anion (O₂-), and malondialdehyde (MDA) accumulation decreased compared to WT. Expression of the stress-related genes DgCAT, DgAPX, DgZnSOD, DgP5CS, DgDREB1A, and DgDREB2A was increased in the DgWRKY2 transgenic chrysanthemum compared with their expression in the WT. In conclusion, our results indicate that DgWRKY2 confers salt tolerance to transgenic chrysanthemum by enhancing antioxidant and osmotic adjustment. Therefore, this study suggests that DgWRKY2 could be used as a reserve gene for salt-tolerant plant breeding.
Collapse
Affiliation(s)
- Ling He
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Yin-Huan Wu
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Qian Zhao
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Bei Wang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Qing-Lin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, Sichuan, China.
| |
Collapse
|
16
|
Lifestyle of women before pregnancy and the risk of offspring obesity during childhood through early adulthood. Int J Obes (Lond) 2018; 42:1275-1284. [PMID: 29568108 DOI: 10.1038/s41366-018-0052-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND In women, adhering to an overall healthy lifestyle is associated with a dramatically reduced risk of cardio-metabolic disorders. Whether such a healthy lifestyle exerts an intergenerational effects on child health deserves examination. METHODS We included 5701 children (9-14 years old at baseline) of the Growing Up Today Study 2, and their mothers, who are participants in the Nurses' Health Study II. Pre-pregnancy healthy lifestyle was defined as a normal body mass index, no smoking, physical activity ≥150 min/week, and diet in the top 40% of the Alternative Healthy Eating Index-2010. Obesity during childhood and adolescence was defined using the International Obesity Task Force age- and sex-specific cutoffs. Multivariable log-binominal regression models with generalized estimating equations were used to evaluate the association of pre-pregnancy healthy lifestyle and offspring obesity. RESULTS We identified 520 (9.1%) offspring who became obese during follow-up. A healthy body weight of mothers and no smoking before pregnancy was significantly associated with a lower risk of obesity among offspring: the relative risks [RRs; 95% confidence intervals (CIs)] were 0.37 (0.31-0.43) and 0.64 (0.49-0.84), respectively. Eating a healthy diet and regular moderate-to-vigorous physical activities were inversely related to offspring obesity risk, but these relations were not statistically significant. Compared to children of mothers who did not meet any low-risk lifestyle factors, offspring of women who adhered to all four healthy lifestyle factors had 75% lower risk of obesity (RR: 0.25, 95% CI: 0.14-0.43). CONCLUSION Adherence to an overall healthy lifestyle before pregnancy is strongly associated with a low risk of offspring obesity in childhood, adolescence, and early adulthood. These findings highlight the importance of an overall healthy lifestyle before pregnancy as a potential strategy to prevent obesity in future generations.
Collapse
|
17
|
Parry TL, Starnes JW, O'Neal SK, Bain JR, Muehlbauer MJ, Honcoop A, Ilaiwy A, Christopher P, Patterson C, Willis MS. Untargeted metabolomics analysis of ischemia-reperfusion-injured hearts ex vivo from sedentary and exercise-trained rats. Metabolomics 2018; 14:8. [PMID: 30104954 PMCID: PMC6086497 DOI: 10.1007/s11306-017-1303-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The effects of exercise on the heart and its resistance to disease are well-documented. Recent studies have identified that exercise-induced resistance to arrhythmia is due to the preservation of mitochondrial membrane potential. OBJECTIVES To identify novel metabolic changes that occur parallel to these mitochondrial alterations, we performed non-targeted metabolomics analysis on hearts from sedentary and exercise-trained rats challenged with isolated heart ischemia-reperfusion injury (I/R). METHODS Eight-week old Sprague-Dawley rats were treadmill trained 5 days/week for 6 weeks (exercise duration and intensity progressively increased to 1 h at 30 m/min up a 10.5% incline, 75-80% VO2max). The recovery of pre-ischemic function for sedentary rat hearts was 28.8 ± 5.4% (N = 12) compared to exercise trained hearts, which recovered 51.9% ± 5.7 (N = 14) (p < 0.001). RESULTS Non-targeted GC-MS metabolomics analysis of (1) sedentary rat hearts; (2) exercise-trained rat hearts; (3) sedentary rat hearts challenged with global ischemia-reperfusion (I/R) injury; and (4) exercise-trained rat hearts challenged with global I/R (10/group) revealed 15 statistically significant metabolites between groups by ANOVA using Metaboanalyst (p < 0.001). Enrichment analysis of these metabolites for pathway-associated metabolic sets indicated a > 10-fold enrichment for ammonia recycling and protein biosynthesis. Subsequent comparison of the sedentary hearts post-I/R and exercise-trained hearts post-I/R further identified significant differences in three metabolites (oleic acid, pantothenic acid, and campesterol) related to pantothenate and CoA biosynthesis (p ≤ 1.24E-05, FDR ≤ 5.07E-4). CONCLUSIONS These studies shed light on novel mechanisms in which exercise-induced cardioprotection occurs in I/R that complement both the mitochondrial stabilization and antioxidant mechanisms recently described. These findings also link protein synthesis and protein degradation (protein quality control mechanisms) with exercise-linked cardioprotection and mitochondrial susceptibility for the first time in cardiac I/R.
Collapse
Affiliation(s)
- Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Pathology & Laboratory Medicine, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, 27599, USA
| | - Joseph W Starnes
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Sara K O'Neal
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Aubree Honcoop
- Toxicology Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Amro Ilaiwy
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Peter Christopher
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY, USA
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
- Department of Pathology & Laboratory Medicine, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Liu X, Platt C, Rosenzweig A. The Role of MicroRNAs in the Cardiac Response to Exercise. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029850. [PMID: 28389519 DOI: 10.1101/cshperspect.a029850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Noncoding microRNAs (miRNAs) have emerged as central regulators of cardiac biology, modulating cardiac development and the response to pathological stress in disease. Although less well developed, emerging evidence suggests miRNAs are likely also important in the heart's response to the physiological stress of exercise. Given the well-recognized cardiovascular benefits of exercise, elucidating the contribution of miRNAs to this response has the potential not only to reveal novel aspects of cardiovascular biology but also to identify new targets for therapeutic intervention that may complement those discovered through studies of diseased hearts. Here, we first provide an overview of the cardiovascular effects of exercise as well as some of the major protein signaling mechanisms contributing to these effects. We then review the evidence that both cardiac and circulating miRNAs are dynamically regulated by exercise and regulate these mechanisms and phenotypes.
Collapse
Affiliation(s)
- Xiaojun Liu
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Colin Platt
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Anthony Rosenzweig
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
19
|
Arginine and aerobic training prevent endothelial and metabolic alterations in rats at high risk for the development of the metabolic syndrome. Br J Nutr 2017; 118:1-10. [DOI: 10.1017/s0007114517001702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractEndothelial function is a key mechanism in the development of CVD. Arginine and exercise are important non-pharmacological strategies for mitigating the impact of metabolic changes in the metabolic syndrome, but the effect of their combined administration is unknown. Thus, the aim of this study was to investigate the isolated and combined effects of aerobic training and arginine supplementation on metabolic variables and vascular reactivity in rats at high risk for developing the metabolic syndrome. Wistar rats were divided into two groups: control and fructose (F – water with 10 % fructose). After 2 weeks, the F group was divided into four groups: F, fructose+arginine (FA, 880 mg/kg per d of l-arginine), fructose+training (FT) and fructose+arginine+training (FTA); treatments lasted for 8 weeks, and no difference was observed in body mass gain. Arginine did not improve the body protein content, and both the FA and FT groups show a reversal of the increase in adipose tissue. Insulin increase was prevented by training and arginine, without additive effect, and the increase in serum TAG was prevented only by training. The F group showed impaired endothelium-dependent vasodilation and hyperreactivity to phenylephrine, but arginine and training were capable of preventing these effects, even separately. Higher nitric oxide level was observed in the FA and FT groups, and no potentiating effect was detected. Thus, only training was able to prevent the increase in TAG and improve the protein mass, and training and arginine exert similar effects on fat content, insulin and endothelial function, but these effects are not additive.
Collapse
|
20
|
Abstract
Solid organ transplantation is the criterion standard treatment for many with end-organ failure and can offer a new independence from the burden of disease. However solid organ transplant recipients (SOTRs) remain at high risk of cardiovascular (CV) disease, and poor quality of life and physical functioning. Increasing physical activity and exercise can improve the health of the general population; however, the effects on those with a transplant remain unclear. Intensive exercise and sporting activity has the potential to be beneficial, although there remain concerns particularly around the effects on immune function and the CV system. This review summarizes what is known about the effects of exercise on determinants of health in SOTRs and then collates the available literature investigating the consequences of intensive exercise and sport on the health of SOTR. There is a paucity of high-quality research, with most evidence being case studies or anecdotal; this is understandable given the relatively few numbers of SOTRs who are performing sport and exercise at a high level. However, if suitable evidence-based guidelines are to be formed and SOTRs are to be given reassurances that their activity levels are not detrimental to their transplanted organ and overall health, then more high-quality studies are required.
Collapse
|
21
|
Novaes RD, Gonçalves RV, Penitente AR, Cupertino MC, Maldonado IR, Talvani A, Natali AJ. Parasite control and skeletal myositis in Trypanosoma cruzi-infected and exercised rats. Acta Trop 2017; 170:8-15. [PMID: 28223068 DOI: 10.1016/j.actatropica.2017.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/17/2017] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
Abstract
Non-pharmacological strategies have been rarely described in the treatment of infectious diseases. Although exercise training has been recently incorporated in the clinical management of Chagas disease, the rationale basis that supports this indication is poorly understood. Thus, we investigated the effect of an aerobic exercise on the parasitism, inflammation and oxidative tissue damage in a murine model of Trypanosoma cruzi-induced skeletal myositis. Wistar rats were randomized into four groups: trained not infected (TNI) and infected (TI), sedentary not infected (SNI) and infected (SI). A running training program was administered 5days/week for 9 weeks. Then, infected animals were inoculated with T. cruzi and followed up for another 9 weeks. Exercise training induced beneficial adaptations by increasing time to fatigue and lactate threshold in TNI and TI animals. SI animals presented higher parasitemia, skeletal muscle parasitism, cell necrosis, leukocyte infiltration, cytokines levels, reactive oxygen species and nitric oxide production, thiobarbituric acid reactive substances, carbonyl proteins, myosin heavy chain I depletion, and increased catalase (CAT) and superoxide dismutase (SOD) activities. Beyond attenuation in all these variables, TI animals showed reduced TNF-α, CCL-2/MCP-1 and CX3CL1, and increased IL-10 muscle levels. Furthermore, these animals presented higher CAT and SOD activities and reduced lipid and protein oxidation. Taken together, our findings indicated that exercise training induced a protective phenotype in T. cruzi-infected mice, enhancing host defenses against the parasite and attenuating the pathological remodeling associated with skeletal myositis, aspects potentially associated to an improved immunological and redox balance in infected animals.
Collapse
|
22
|
Barr LA, Lambert JP, Shimizu Y, Barouch LA, Naqvi N, Calvert JW. Exercise training provides cardioprotection by activating and coupling endothelial nitric oxide synthase via a β 3-adrenergic receptor-AMP-activated protein kinase signaling pathway. Med Gas Res 2017; 7:1-8. [PMID: 28480026 PMCID: PMC5402342 DOI: 10.4103/2045-9912.202904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Exercise training confers sustainable protection against ischemia/reperfusion injury. However, the mechanism by which this process occurs is not fully understood. Previously, it was shown that β3-adrenergic receptors (β3-ARs) play a critical role in regulating the activation of endothelial nitric oxide synthase (eNOS) in response to exercise and play a critical role in exercise-mediated cardioprotection. Intriguingly, a deficiency in β3-ARs led to increased myocardial injury following exercise training. The purpose of the current study was to determine mechanisms by which β3-ARs are linked to eNOS activation and to determine the mechanism responsible for the exacerbated ischemia/reperfusion injury displayed by β3-AR deficient (β3-AR KO) mice after exercise training. Wild-type (n = 37) and β3-AR KO (n = 40) mice were subjected to voluntary wheel running for 4 weeks. Western blot analysis revealed that neither protein kinase B nor protein kinase A linked β3-ARs to eNOS following exercise training. However, analysis revealed a role for AMP-activated protein kinase (AMPK). Specifically, exercise training increased the phosphorylation of AMPK in the hearts of wild-type mice, but failed to do so in the hearts of β3-AR KO mice. Additional studies revealed that exercise training rendered eNOS less coupled and increased NOS-dependent superoxide levels in β3-AR KO mice. Finally, supplementing β3-AR KO mice with the eNOS coupler, tetrahydrobiopterin, during the final week of exercise training reduced myocardial infarction. These findings provide important information that exercise training protects the heart in the setting of myocardial ischemia/reperfusion injury by activating and coupling eNOS via the stimulation of a β3-AR-AMPK signaling pathway.
Collapse
Affiliation(s)
- Larry A Barr
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan P Lambert
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuuki Shimizu
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Lili A Barouch
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nawazish Naqvi
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - John W Calvert
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
23
|
Koolhaas CM, Dhana K, Schoufour JD, Ikram MA, Kavousi M, Franco OH. Impact of physical activity on the association of overweight and obesity with cardiovascular disease: The Rotterdam Study. Eur J Prev Cardiol 2017; 24:934-941. [PMID: 28436726 PMCID: PMC5510687 DOI: 10.1177/2047487317693952] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Being overweight or obese is associated with an increased risk of cardiovascular disease (CVD). Physical activity might reduce the risk associated with overweight and obesity. We examined the association between overweight and obesity and CVD risk as a function of physical activity levels in a middle-aged and elderly population. Design The study was a prospective cohort study. Methods The study included 5344 participants aged 55 years or older from the population-based Rotterdam Study. Participants were classified as having high or low physical activity based on the median of the population. Normal weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2) and obese participants (≥30 kg/m2) were categorized as having high or low physical activity to form six categories. We assessed the association of the six categories with CVD risk using Cox proportional hazard models adjusted for confounders. High physical activity and normal weight was used as the reference group. Results During 15 years of follow-up (median 10.3 years, interquartile range 8.2–11.7 years), 866 (16.2%) participants experienced a CVD event. Overweight and obese participants with low physical activity had a higher CVD risk than normal weight participants with high physical activity. The HRs and 95% confidence intervals (CIs) were 1.33 (1.07–1.66) and 1.35 (1.04–1.75), respectively. Overweight and obese participants with high physical activity did not show a higher CVD risk (HRs (95%CIs) 1.03 (0.82–1.29) and 1.12 (0.83–1.52), respectively). Conclusions Our findings suggest that the beneficial impact of physical activity on CVD might outweigh the negative impact of body mass index among middle-aged and elderly people. This emphasizes the importance of physical activity for everyone across all body mass index strata, while highlighting the risk associated with inactivity even among normal weight people.
Collapse
Affiliation(s)
| | - Klodian Dhana
- Department of Epidemiology, Erasmus Medical Center, The Netherlands
| | | | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus Medical Center, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, The Netherlands
| |
Collapse
|
24
|
Shen L, Wang H, Bei Y, Cretoiu D, Cretoiu SM, Xiao J. Formation of New Cardiomyocytes in Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:91-102. [DOI: 10.1007/978-981-10-4307-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Borges JP, França GDO, Cruz MD, Lanza R, Nascimento ARD, Lessa MA. Aerobic exercise training induces superior cardioprotection following myocardial ischemia reperfusion injury than a single aerobic exercise session in rats. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700si0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Borges JP, da Silva Verdoorn K. Cardiac Ischemia/Reperfusion Injury: The Beneficial Effects of Exercise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:155-179. [PMID: 29022263 DOI: 10.1007/978-981-10-4307-9_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cardiac ischemia reperfusion injury (IRI) occurs when the myocardium is revascularized after an episode of limited or absent blood supply. Many changes, including free radical production, calcium overload, protease activation, altered membrane lipids and leukocyte activation, contribute to IRI-induced myocardium damage. Aerobic exercise is the only countermeasure against IRI that can be sustained on a regular basis in clinical practice. Interestingly, both short-term (3-5 days) and long-term (several weeks) exercise increase myocardial tolerance, reduce infarct size area and arrhythmias induced by IRI. Exercise protects the heart against IRI in a biphasic manner. The early phase of cardioprotection occurs between 30 min and 3 h following an acute exercise bout, whilst the late phase is achieved within 24 h after the exercise bout and persists for several days. As for the exercise intensity, although controversial data exists, it is feasible that the amount of cardioprotection is proportional to exercise intensity and only achieved above a critical threshold. It is known that aerobic exercise produces a cardioprotective phenotype, however the mechanisms responsible for this phenomenon remain unclear. Apparently, aerobic exercise-induced preconditioning is dependent on several factors that work together to protect the heart. Altered nitric oxide (NO) signaling, increased levels of heat shock proteins (HSPs), enhanced function of ATP-sensitive potassium channels, increased activation of opioids system, and enhanced antioxidant capacity may contribute to exercise-induced cardioprotection. Much has been discovered from animal models involving exercise-induced cardioprotection against cardiac IRI, however translating these findings to clinical practice still represents the major challenge in this field.
Collapse
Affiliation(s)
- Juliana Pereira Borges
- Institute of Physical Education and Sports, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
27
|
Reis Junior D, Antonio EL, de Franco MF, de Oliveira HA, Tucci PJF, Serra AJ. Association of Exercise Training with Tobacco Smoking Prevents Fibrosis but has Adverse Impact on Myocardial Mechanics. Nicotine Tob Res 2016; 18:2268-2272. [PMID: 27613920 DOI: 10.1093/ntr/ntw180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022]
Abstract
INTRODUCTION There was no data for cardiac repercussion of exercise training associated with tobacco smoking. This issue is interesting because some smoking people can be enrolled in an exercise-training program. Thus, we evaluated swimming training effects on the function and structural myocardial in rats exposed to tobacco smoking. METHODS Male Wistar rats were assigned to one of four groups: C, untrained rats without exposure to tobacco smoking; E, exercised rats without exposure to tobacco smoking; CS, untrained rats exposed to tobacco smoking; ECS, exercised rats exposed to tobacco smoking. Rats swam five times a week twice daily (60min per session) for 8 weeks. Before each bout exercise, rats breathed smoke from 20 cigarettes for 60min. Twenty-four hours after the last day of the protocol, papillary muscles were isolated for in vitro analysis of myocardial mechanics. The myocardial mass and nuclear cardiomyocyte volume were used as hypertrophy markers, and collagen content was determined by picrosirius red staining. RESULTS There was a well-pronounced myocardial hypertrophic effect for two interventions. The exercise blunted myocardial collagen increases induced by tobacco smoking. However, exercise and tobacco-smoking association was deleterious to myocardial performance. Thereby, in vitro experiments with papillary muscles contracting in isometric showed impairment myocardial inotropism in exercised rats exposed to tobacco smoking. CONCLUSIONS This work presents novel findings on the role of exercise training on cardiac remodeling induced by tobacco smoking. Although exercise has mitigated tissue fibrosis, their association with tobacco smoking exacerbated hypertrophy and in vitro myocardial dysfunction. IMPLICATIONS This is first study to show that the association of an aerobic exercise training with tobacco smoking intensifies the phenotype of pathological cardiac hypertrophy. Therefore, the combination of interventions resulted in exacerbated myocardial hypertrophy and contractility dysfunction. These findings have significant clinical implication because some smoking people can be enrolled in an exercise-training program.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrey Jorge Serra
- Cardiology Division, Federal University of São Paulo, São Paulo, Brazil;
- Biophotonics Program, Nove de Julho University, São Paulo, Brazil
| |
Collapse
|
28
|
Novaes RD, Gonçalves RV, Penitente AR, Bozi LHM, Neves CA, Maldonado IRSC, Natali AJ, Talvani A. Modulation of inflammatory and oxidative status by exercise attenuates cardiac morphofunctional remodeling in experimental Chagas cardiomyopathy. Life Sci 2016; 152:210-9. [PMID: 27040670 DOI: 10.1016/j.lfs.2016.03.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/20/2016] [Accepted: 03/28/2016] [Indexed: 12/23/2022]
Abstract
AIMS The rational basis that explains the benefits of exercise therapy on Chagas cardiomyopathy (ChC) is poorly understood. This study investigated the impact of an exercise program on exercise performance, heart parasitism, immunoinflammatory response, fibrogenesis, oxidative damage, and cardiomyocytes contractility in experimental ChC. MAIN METHODS Wistar rats were subjected to a 9-week treadmill running training and challenged with Trypanosoma cruzi. Control animals remained sedentary. Physical and metabolic performance, cardiac morphology, cytokines, chemokines, nitric oxide, oxidative tissue damage, cardiomyocyte morphology and contractility were analyzed. KEY FINDINGS Exercise training was efficient to improve physical performance and anaerobic threshold in trained animals. By increasing cardiac and serum levels of cytokines (TNF-α, IFN-γ, and IL-6), chemokines (MCP-1 and CX3CL1), the myocardial activity catalase and superoxide dismutase, and reducing lipid and protein oxidation in cardiac tissue, exercise training seem to be a beneficial strategy to mitigate the progression and severity of Chagas-associated cardiomyopathy. SIGNIFICANCE The protective adaptations to the host triggered by exercise training contributed to reduce cardiac parasitism, inflammation, fibrosis and cardiomyocytes atrophy. Although exercise training does not affect nitric oxide levels in cardiac tissue from infected animals, this strategy enhanced the efficiency of endogenous antioxidant mechanisms, restricting oxidative tissue damage with positive repercussions to cardiomyocytes biomechanics in rats.
Collapse
Affiliation(s)
- Rômulo D Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, 37130-000 MG, Brazil; Department of Biological Sciences and NUPEB, Federal University of Ouro Preto, 35400-000 MG, Brazil.
| | - Reggiani V Gonçalves
- Department of Animal Biology, Federal University of Viçosa, 36570-000 MG, Brazil
| | - Arlete R Penitente
- Department of Biological Sciences and NUPEB, Federal University of Ouro Preto, 35400-000 MG, Brazil
| | - Luiz Henrique M Bozi
- School of Physical Education and Sport, University of São Paulo, 05508-030 SP, Brazil
| | - Clóvis A Neves
- Department of General Biology, Federal University of Viçosa, 36570-000 MG, Brazil
| | | | - Antônio J Natali
- Department of Physical Education, Federal University of Viçosa, 36570-000 MG, Brazil
| | - André Talvani
- Department of Biological Sciences and NUPEB, Federal University of Ouro Preto, 35400-000 MG, Brazil
| |
Collapse
|
29
|
Exercise Training Attenuates Upregulation of p47(phox) and p67(phox) in Hearts of Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5868913. [PMID: 26989452 PMCID: PMC4771908 DOI: 10.1155/2016/5868913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/24/2015] [Accepted: 12/21/2015] [Indexed: 01/22/2023]
Abstract
Exercise training (ExT) is currently being used as a nonpharmacological strategy to improve cardiac function in diabetic patients. However, the molecular mechanism(s) underlying its beneficial effects remains poorly understood. Oxidative stress is known to play a key role in the pathogenesis of diabetic cardiomyopathy and one of the enzyme systems that produce reactive oxygen species is NADH/NADPH oxidase. The goal of this study was to investigate the effect of streptozotocin- (STZ-) induced diabetes on expression of p47(phox) and p67(phox), key regulatory subunits of NADPH oxidase, in cardiac tissues and determine whether ExT can attenuate these changes. Four weeks after STZ treatment, expression of p47(phox) and p67(phox) increased 2.3-fold and 1.6-fold, respectively, in left ventricles of diabetic rats and these increases were attenuated with three weeks of ExT, initiated 1 week after onset of diabetes. In atrial tissues, there was increased expression of p47(phox) (74%), which was decreased by ExT in diabetic rats. Furthermore, increased collagen III levels in diabetic hearts (52%) were significantly reduced by ExT. Taken together, ExT attenuates the increased expression of p47(phox) and p67(phox) in the hearts of diabetic rats which could be an underlying mechanism for improving intracardiac matrix and thus cardiac function and prevent cardiac remodeling in diabetic cardiomyopathy.
Collapse
|
30
|
Walters TJ, Garg K, Corona BT. Activity attenuates skeletal muscle fiber damage after ischemia and reperfusion. Muscle Nerve 2015; 52:640-8. [PMID: 25641705 DOI: 10.1002/mus.24581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 01/21/2023]
Abstract
INTRODUCTION In this investigation we aimed to determine whether: (1) physical activity protects rat skeletal muscle from ischemia/reperfusion (I/R) injury; and (2) continued activity after I/R improves the rate of healing. METHODS Rats were divided into sedentary or active (voluntary wheel running) groups. Active rats ran for 4 weeks before I/R or 4 weeks before plus 4 weeks after I/R. RESULTS Activity before I/R resulted in 73.2% less muscle damage (Evans blue dye inclusion). Sedentary and active rats had a similar decline in neural-evoked (∼ 99%) and directly stimulated (∼ 70%) in vivo muscle torque, and a similar reduction in junctophilin 1. Active rats produced 19% and 15% greater neural-evoked torque compared with sedentary rats at 14 and 28 days postinjury, respectively, although the rate of recovery appeared similar. CONCLUSIONS Activity protects against long-term muscle damage, but not short-term neural injury or excitation-contraction uncoupling. Continued activity neither accelerates nor hinders the rate of functional recovery.
Collapse
Affiliation(s)
- Thomas J Walters
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, 3698 Chambers Pass, Fort Sam Houston, Texas, 78234-6315, USA
| | - Koyal Garg
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, 3698 Chambers Pass, Fort Sam Houston, Texas, 78234-6315, USA
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Research Program, United States Army Institute of Surgical Research, 3698 Chambers Pass, Fort Sam Houston, Texas, 78234-6315, USA
| |
Collapse
|
31
|
Murfitt L, Whiteley G, Iqbal MM, Kitmitto A. Targeting caveolin-3 for the treatment of diabetic cardiomyopathy. Pharmacol Ther 2015; 151:50-71. [PMID: 25779609 DOI: 10.1016/j.pharmthera.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
Diabetes is a global health problem with more than 550 million people predicted to be diabetic by 2030. A major complication of diabetes is cardiovascular disease, which accounts for over two-thirds of mortality and morbidity in diabetic patients. This increased risk has led to the definition of a diabetic cardiomyopathy phenotype characterised by early left ventricular dysfunction with normal ejection fraction. Here we review the aetiology of diabetic cardiomyopathy and explore the involvement of the protein caveolin-3 (Cav3). Cav3 forms part of a complex mechanism regulating insulin signalling and glucose uptake, processes that are impaired in diabetes. Further, Cav3 is key for stabilisation and trafficking of cardiac ion channels to the plasma membrane and so contributes to the cardiac action potential shape and duration. In addition, Cav3 has direct and indirect interactions with proteins involved in excitation-contraction coupling and so has the potential to influence cardiac contractility. Significantly, both impaired contractility and rhythm disturbances are hallmarks of diabetic cardiomyopathy. We review here how changes to Cav3 expression levels and altered relationships with interacting partners may be contributory factors to several of the pathological features identified in diabetic cardiomyopathy. Finally, the review concludes by considering ways in which levels of Cav3 may be manipulated in order to develop novel therapeutic approaches for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lucy Murfitt
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Gareth Whiteley
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Mohammad M Iqbal
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Ashraf Kitmitto
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK.
| |
Collapse
|
32
|
Borges JP, Lessa MA. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review. Arq Bras Cardiol 2015; 105:71-81. [PMID: 25830711 PMCID: PMC4523290 DOI: 10.5935/abc.20150024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 12/11/2014] [Accepted: 12/26/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. OBJECTIVE To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. METHODS A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. RESULTS The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. CONCLUSION On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions.
Collapse
Affiliation(s)
- Juliana Pereira Borges
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ − Brazil
| | - Marcos Adriano Lessa
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ − Brazil
| |
Collapse
|
33
|
Body Composition, Lipid Profile, Adipokine Concentration, and Antioxidant Capacity Changes during Interventions to Treat Overweight with Exercise Programme and Whole-Body Cryostimulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:803197. [PMID: 26171117 PMCID: PMC4485500 DOI: 10.1155/2015/803197] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/22/2015] [Accepted: 05/10/2015] [Indexed: 10/31/2022]
Abstract
The aim of this study was to determine the effect of six-month-long physical exercise programme with a two-time exposure to whole-body cryostimulation (WBC) in 20 sessions on antioxidant enzyme activities, lipid profile, and body composition changes in obese people (30 adult subjects; BMI = 30.39 ± 4.31 kg/m(2)). Blood samples were taken before the programme, one month following the exercise programme, before and after the first WBC treatment, six months following the exercise programme, after the second WBC treatment, and finally one month after the intervention. Six months of moderate aerobic activity combined with WBC did not change body mass or fat and lean body mass percentages, or circulating adiponectin, leptin, and resistin concentrations. In response to intervention a significant decrease in the level of low-density lipoprotein and triglycerides was observed, with a slight increase in high-density lipoprotein concentration. The nature of changes in the activity of respective antioxidant enzymes was not identical. After one month of increased physical activity, a significant decrease in superoxide dismutase, catalase, and glutathione reductase activities was observed (13%, 8%, and 70%, resp.). The SOD activity increased significantly after successive whole-body cryostimulation sessions. As regards catalase, a significant progressive decrease in its activity was observed.
Collapse
|
34
|
Borges JP, Verdoorn KS, Daliry A, Powers SK, Ortenzi VH, Fortunato RS, Tibiriçá E, Lessa MA. Delta opioid receptors: the link between exercise and cardioprotection. PLoS One 2014; 9:e113541. [PMID: 25415192 PMCID: PMC4240613 DOI: 10.1371/journal.pone.0113541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/27/2014] [Indexed: 12/26/2022] Open
Abstract
This study investigated the role of opioid receptor (OR) subtypes as a mechanism by which endurance exercise promotes cardioprotection against myocardial ischemia-reperfusion (IR) injury. Wistar rats were randomly divided into one of seven experimental groups: 1) control; 2) exercise-trained; 3) exercise-trained plus a non-selective OR antagonist; 4) control sham; 5) exercise-trained plus a kappa OR antagonist; 6) exercise-trained plus a delta OR antagonist; and 7) exercise-trained plus a mu OR antagonist. The exercised animals underwent 4 consecutive days of treadmill training (60 min/day at ∼70% of maximal oxygen consumption). All groups except the sham group were exposed to an in vivo myocardial IR insult, and the myocardial infarct size (IS) was determined histologically. Myocardial capillary density, OR subtype expression, heat shock protein 72 (HSP72) expression, and antioxidant enzyme activity were measured in the hearts of both the exercised and control groups. Exercise training significantly reduced the myocardial IS by approximately 34%. Pharmacological blockade of the kappa or mu OR subtypes did not blunt exercise-induced cardioprotection against IR-mediated infarction, whereas treatment of animals with a non-selective OR antagonist or a delta OR antagonist abolished exercise-induced cardioprotection. Exercise training enhanced the activities of myocardial superoxide dismutase (SOD) and catalase but did not increase the left ventricular capillary density or the mRNA levels of HSP72, SOD, and catalase. In addition, exercise significantly reduced the protein expression of kappa and delta ORs in the heart by 44% and 37%, respectively. Together, these results indicate that ORs contribute to the cardioprotection conferred by endurance exercise, with the delta OR subtype playing a key role in this response.
Collapse
Affiliation(s)
- Juliana P. Borges
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Scott K. Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States of America
| | - Victor H. Ortenzi
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo S. Fortunato
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo Tibiriçá
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Marcos Adriano Lessa
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
35
|
Quindry JC, Hamilton KL. Exercise and cardiac preconditioning against ischemia reperfusion injury. Curr Cardiol Rev 2014; 9:220-9. [PMID: 23909636 PMCID: PMC3780347 DOI: 10.2174/1573403x113099990033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 06/02/2013] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease (CVD), including ischemia reperfusion (IR) injury, remains a major cause of morbidity and mortality in industrialized nations. Ongoing research is aimed at uncovering therapeutic interventions against IR injury. Regular exercise participation is recognized as an important lifestyle intervention in the prevention and treatment of CVD and IR injury. More recent understanding reveals that moderate intensity aerobic exercise is also an important experimental model for understanding the cellular mechanisms of cardioprotection against IR injury. An important discovery in this regard was the observation that one-to-several days of exercise will attenuate IR injury. This phenomenon has been observed in young and old hearts of both sexes. Due to the short time course of exercise induced protection, IR injury prevention must be mediated by acute biochemical alterations within the myocardium. Research over the last decade reveals that redundant mechanisms account for exercise induced cardioprotection against IR. While much is now known about exercise preconditioning against IR injury, many questions remain. Perhaps most pressing, is what mechanisms mediate cardioprotection in aged hearts and what sex-dependent differences exist. Given that that exercise preconditioning is a polygenic effect, it is likely that multiple mediators of exercise induced cardioprotection have yet to be uncovered. Also unknown, is whether post translational modifications due to exercise are responsible for IR injury prevention. This review will provide an overview the major mechanisms of IR injury and exercise preconditioning. The discussion highlights many promising avenues for further research and describes how exercise preconditioning may continue to be an important scientific paradigm in the translation of cardioprotection research to the clinic.
Collapse
Affiliation(s)
- John C Quindry
- Cardioprotection Laboratory, Department of Kinesiology, Auburn University, AL 36849, USA
| | | |
Collapse
|
36
|
Tarone G, Brancaccio M. Keep your heart in shape: molecular chaperone networks for treating heart disease. Cardiovasc Res 2014; 102:346-61. [PMID: 24585203 DOI: 10.1093/cvr/cvu049] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite major advances in the treatment of cardiac diseases, there is still a great need for drugs capable of counteracting the deterioration of cardiac muscle function in congestive heart failure. The role of misfolded protein accumulation as a causal event in the physiopathology of common cardiac diseases is an important emerging concept. Indeed, diverse stress conditions, including mechanical stretching and oxidative stress, can induce misfolded protein accumulation, causing cardiomyocyte death. Cells react to these stress conditions by activating molecular chaperones, a class of proteins that represents an endogenous salvage machinery, essential for rescuing physiological cell functions and sustaining cell survival. Chaperones, also known as heat shock proteins (Hsps), prevent accumulation of damaged proteins by promoting either their refolding or degradation via the proteasome or the autophagosome systems. In addition, molecular chaperones play a key role in intracellular signalling by controlling conformational changes required for activation/deactivation of signalling proteins, and their assembly in specific signalosome complexes. The key role of molecular chaperones in heart function is highlighted by the fact that a number of genetic mutations in chaperone proteins result in different forms of cardiomyopathies. Moreover, a considerable amount of experimental evidence indicates that increasing expression of chaperone proteins leads to an important cardio-protective role in ischaemia/reperfusion injury, heart failure, and arrhythmia, implicating these molecules as potential innovative therapeutic agents.
Collapse
Affiliation(s)
- Guido Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy, Via Nizza 52, Torino 10126, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy, Via Nizza 52, Torino 10126, Italy
| |
Collapse
|
37
|
Calvert JW, Lefer DJ. Role of β-adrenergic receptors and nitric oxide signaling in exercise-mediated cardioprotection. Physiology (Bethesda) 2013; 28:216-24. [PMID: 23817796 DOI: 10.1152/physiol.00011.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Exercise promotes cardioprotection in both humans and animals not only by reducing risk factors associated with cardiovascular disease but by reducing myocardial infarction and improving survival following ischemia. This article will define the role that nitric oxide and β-adrenergic receptors play in mediating the cardioprotective effects of exercise in the setting of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- John W Calvert
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | |
Collapse
|
38
|
Nicholson CK, Lambert JP, Chow CW, Lefer DJ, Calvert JW. Chronic exercise downregulates myocardial myoglobin and attenuates nitrite reductase capacity during ischemia-reperfusion. J Mol Cell Cardiol 2013; 64:1-10. [PMID: 23962643 PMCID: PMC3800246 DOI: 10.1016/j.yjmcc.2013.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/22/2013] [Accepted: 08/07/2013] [Indexed: 01/31/2023]
Abstract
The infarct sparing effects of exercise are evident following both long-term and short-term training regimens. Here we compared the infarct-lowering effects of nitrite therapy, voluntary exercise, and the combination of both following myocardial ischemia-reperfusion (MI/R) injury. We also compared the degree to which each strategy increased cardiac nitrite levels, as well as the effects of each strategy on the nitrite reductase activity of the heart. Mice subjected to voluntary wheel running (VE) for 4weeks displayed an 18% reduction in infarct size when compared to sedentary mice, whereas mice administered nitrite therapy (25mg/L in drinking water) showed a 53% decrease. However, the combination of VE and nitrite exhibited no further protection than VE alone. Although the VE and nitrite therapy mice showed similar nitrite levels in the heart, cardiac nitrite reductase activity was significantly reduced in the VE mice. Additionally, the cardiac protein expression of myoglobin, a known nitrite reductase, was also reduced after VE. Further studies revealed that cardiac NFAT activity was lower after VE due to a decrease in calcineurin activity and an increase in GSK3β activity. These data suggest that VE downregulates cardiac myoglobin levels by inhibiting calcineurin/NFAT signaling. Additionally, these results suggest that the modest infarct sparing effects of VE are the result of a decrease in the hearts ability to reduce nitrite to nitric oxide during MI/R.
Collapse
Affiliation(s)
- Chad K. Nicholson
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308
| | - Jonathan P. Lambert
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308
| | - Chi-Wing Chow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David J. Lefer
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308
| | - John W. Calvert
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308
| |
Collapse
|
39
|
Lee SD, Shyu WC, Cheng IS, Kuo CH, Chan YS, Lin YM, Tasi CY, Tsai CH, Ho TJ, Huang CY. Effects of exercise training on cardiac apoptosis in obese rats. Nutr Metab Cardiovasc Dis 2013; 23:566-573. [PMID: 22402061 DOI: 10.1016/j.numecd.2011.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/10/2011] [Accepted: 11/02/2011] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND AIM The purpose of this study was to evaluate the effects of exercise training on cardiac apoptotic pathways in obesity. METHODS AND RESULTS Sixteen lean Zucker rats (LZR) and sixteen obese Zucker rats (OZR) of 5-6 months of age as well as the other sixteen obese rats were subjected to treadmill running exercise for 1 h everyday for 3 months (OZR-EX). After exercise training or sedentary status of the rats, the excised hearts from the three groups were measured by heart weight index, H&E staining, TUNEL assays and Western blotting. Cardiac TUNEL-positive apoptotic cells, the protein levels of TNF alpha, Fas ligand, Fas receptors, Fas-associated death domain (FADD), Bad, Bax, activated caspase 8, activated caspase 9, and activated caspase 3 were higher in OZR than those in LZR. The protein levels of TNF alpha, Fas ligand, Fas receptors, FADD, activated caspase 8, and activated caspase 3 (Fas pathway) and the protein levels of Bad, Bax, Bax-to-Bcl2 ratio, activated caspase 9, and activated caspase 3 (mitochondria pathway) were lower in OZR-EX than those in OZR. CONCLUSION Cardiac Fas-dependent and mitochondria-dependent apoptotic pathways become more activated in obesity. Exercise training can prevent obesity-activated cardiac Fas-dependent and mitochondria-dependent apoptotic pathways. Our findings demonstrate a new therapeutic effect of exercise training to prevent delirious cardiac Fas-mediated and mitochondria-mediated apoptosis in obesity.
Collapse
Affiliation(s)
- S-D Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kwak HB. Effects of aging and exercise training on apoptosis in the heart. J Exerc Rehabil 2013; 9:212-9. [PMID: 24278863 PMCID: PMC3836520 DOI: 10.12965/jer.130002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/04/2013] [Accepted: 04/02/2013] [Indexed: 12/30/2022] Open
Abstract
Aging is characterized by a progressive decline in cardiac function. A critical contributor to the age-related impairment in cardiac function is the loss of cardiac myocytes through “apoptosis”, or programmed cell death. Structural remodeling in the heart with advancing age includes (a) loss of cardiomyocytes, (b) reactive hypertrophy of the remaining cardiomyocytes, and (c) increased connective tissue and altered geometry. The loss of cardiomyocytes with aging occurs through apoptosis. Particularly, mitochondrial-mediated apoptotic pathway is the best characterized and believed critical in regulating apoptosis with aging, suggesting that mitochondria are very important sites of programmed cell death. It has been also reported that mitochondrial dysfunction, oxidative stress, and impaired stress response contribute to age-induced mechanical remodeling as well as apoptosis. In contrast, exercise training not only improves cardiac function, but also reduces the risk of heart disease. We recently found that aging increased mitochondrial-mediated apoptotic signaling and apoptosis in the left ventricle, while chronic exercise training was effective in diminishing mitochondrial-mediated apoptotic signaling pathways in the aging heart, as indicated by lower DNA fragmentation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive staining, and caspase-3 cleavage, when compared with left ventricles from the age-matched sedentary group. In this review, we will provide a comprehensive update regarding the effects of aging and exercise training on apoptosis in the heart.
Collapse
Affiliation(s)
- Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Korea
| |
Collapse
|
41
|
Campos JC, Queliconi BB, Dourado PMM, Cunha TF, Zambelli VO, Bechara LRG, Kowaltowski AJ, Brum PC, Mochly-Rosen D, Ferreira JCB. Exercise training restores cardiac protein quality control in heart failure. PLoS One 2012; 7:e52764. [PMID: 23300764 PMCID: PMC3531365 DOI: 10.1371/journal.pone.0052764] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 11/22/2012] [Indexed: 12/16/2022] Open
Abstract
Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H₂O₂ release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H₂O₂ resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca²⁺-induced permeability transition and reduced H₂O₂ release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a non-pharmacological tool for heart failure therapy.
Collapse
Affiliation(s)
- Juliane C. Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno B. Queliconi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, Brazil
| | | | - Telma F. Cunha
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Luiz R. G. Bechara
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Alicia J. Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, Brazil
| | - Patricia C. Brum
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julio C. B. Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
Weak stresses (including weak oxidative stress, cytostatic agents, heat shock, hypoxia, calorie restriction) may extend lifespan. Known as hormesis, this is the most controversial notion in gerontology. For one, it is believed that aging is caused by accumulation of molecular damage. If so, hormetic stresses (by causing damage) must shorten lifespan. To solve the paradox, it was suggested that, by activating repair, hormetic stresses eventually decrease damage. Similarly, Baron Munchausen escaped from a swamp by pulling himself up by his own hair. Instead, I discuss that aging is not caused by accumulation of molecular damage. Although molecular damage accumulates, organisms do not live long enough to age from this accumulation. Instead, aging is driven by overactivated signal-transduction pathways including the TOR (Target of Rapamycin) pathway. A diverse group of hormetic conditions can be divided into two groups. "Hormesis A" inhibits the TOR pathway. "Hormesis B" increases aging-tolerance, defined as the ability to survive catastrophic complications of aging. Hormesis A includes calorie restriction, resveratrol, rapamycin, p53-inducing agents and, in part, physical exercise, heat shock and hypoxia. Hormesis B includes ischemic preconditioning and, in part, physical exercise, heat shock, hypoxia and medical interventions.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
43
|
Huang CY, Yang AL, Lin YM, Wu FN, Lin JA, Chan YS, Tsai FJ, Tsai CH, Kuo CH, Lee SD. Anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts. J Appl Physiol (1985) 2012; 112:883-91. [DOI: 10.1152/japplphysiol.00605.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: activated cardiac apoptosis was found in hearts from hypertensive animals, but little information regarding the effects of exercise training on cardiac apoptosis in hypertension is available. The purpose of this study was to evaluate the anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts. Methods: 28 spontaneously hypertensive rats were divided into sedentary group (SHR) or underwent running exercise on treadmill for 1 h/day, 5 sessions/wk, for 12 wk (SHR-EX). Fourteen age-matched Wistar Kyoto rats served as a sedentary normotensive group (WKY). After exercise training or sedentary status, the excised hearts were measured by hemotoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling (TUNEL) assay, and Western blotting. Results: fewer TUNEL-positive apoptotic cells were in SHR-EX groups than those in SHR. Protein levels of Fas ligand, Fas death receptor, tumor necrosis factor (TNF)-α, TNF receptor 1, Fas-associated death domain (FADD), activated caspase-8, and activated caspase-3 (Fas-dependent apoptotic pathways), as well as Bid, t-Bid, Bad, p-Bad, Bak, cytochrome c, activated caspase 9, and activated caspase-3 (mitochondria-dependent apoptotic pathways) were decreased in the SHR-EX group compared with the SHR group. Protein levels of IGF-1, IGF-1R, p-PI3K, p-Akt, p-Bad, and Bcl2 (cardiac pro-survival pathway) become more activated in SHR-EX groups than SHR and WKY. Conclusions: exercise training prevented hypertension-enhanced cardiac Fas-dependent and mitochondria-dependent apoptotic pathways and enhanced cardiac pro-survival pathway in rat models. Our findings demonstrate new therapeutic effects of exercise training on hypertensive hearts for preventing apoptosis and enhancing survival.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung
- Department of Health and Nutrition Biotechnology, Asia University, Taichung
| | - Ai-Lun Yang
- Department of Sports Sciences, Taipei Physical Education College, Taipei
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua
| | - Fan-Ni Wu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung
| | - James A. Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung
| | - Yi-Sheng Chan
- Department of Orthopaedic Surgery, Division of Sports Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung
| | - Chang-Hai Tsai
- Department of Healthcare Administration, Asia University, Taichung
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, Taipei Physical Education College, Taipei, Taiwan; and
| | - Shin-Da Lee
- Department of Healthcare Administration, Asia University, Taichung
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
44
|
Frasier CR, Moore RL, Brown DA. Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. J Appl Physiol (1985) 2011; 111:905-15. [DOI: 10.1152/japplphysiol.00004.2011] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of exercise to protect the heart against ischemia-reperfusion (I/R) injury is well known in both human epidemiological studies and experimental animal models. In this review article, we describe what is currently known about the ability of exercise to precondition the heart against infarction. Just 1 day of exercise can protect the heart against ischemia/reperfusion damage, and this protection is upheld with months of exercise, making exercise one of the few sustainable preconditioning stimuli. Exercise preconditioning depends on the model and intensity of exercise, and appears to involve heightened oxidant buffering capacity, upregulated subunits of sarcolemmal ATP-sensitive potassium channels, and adaptations to cardiac mitochondria. We review the putative mechanisms involved in exercise preconditioning and point out many areas where future research is necessary to advance our understanding of how this stimulus confers resistance against I/R damage.
Collapse
Affiliation(s)
- Chad R. Frasier
- Department of Physiology, Brody School of Medicine, East Carolina University; and
| | - Russell L. Moore
- Department of Integrative Physiology and Office of the Provost, University of Colorado at Boulder, Boulder, Colorado
| | - David A. Brown
- Department of Physiology, Brody School of Medicine, East Carolina University; and
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina; and
| |
Collapse
|
45
|
Mota-Pereira J, Silverio J, Carvalho S, Ribeiro JC, Fonte D, Ramos J. Moderate exercise improves depression parameters in treatment-resistant patients with major depressive disorder. J Psychiatr Res 2011; 45:1005-11. [PMID: 21377690 DOI: 10.1016/j.jpsychires.2011.02.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/31/2011] [Accepted: 02/10/2011] [Indexed: 01/22/2023]
Abstract
BACKGROUND Treatment-resistant major depressive disorder (MDD) is a complex condition, with very low remission rates. Physical exercise has been used, with some encouraging results, as an alternative therapy in other depressive disorders. This study assessed the impact on depression and functioning parameters of a moderate intensity exercise program, as an adjuvant to pharmacotherapy, in treatment-resistant MDD patients. METHODS 150 individuals with treatment-resistant MDD, defined as taking combined therapy in doses considered adequate for 9-15 months, without showing clinical remission, were initially screened. 33 were randomized to one of two groups: usual pharmacotherapy (N = 11) and usual pharmacotherapy plus aerobic exercise (N = 22). The exercise program consisted of home-based 30-45 min/day walks, 5 days/week, for 12 weeks, being 1 walk per week supervised. RESULTS The exercise group showed improvement of all depression and functioning parameters, as indicated by lower HAMD17, BDI and CGI-S and higher GAF (p < 0.05) at last observation compared both to baseline values and to control group. At the end of the study none of the participants in the control group showed response or remission, whilst in the exercise group 21% of participants showed response and 26% remission, although these differences were not statistically significant. CONCLUSION A 12 week, home-based exercise program of 30-45 min/day walks, 5 days/week, improved depression and functioning parameters in treatment-resistant MDD patients, and contributed to remission of 26% of these patients. Moderate intensity exercise may be a helpful and effective adjuvant therapy for treatment-resistant MDD.
Collapse
Affiliation(s)
- Jorge Mota-Pereira
- Porto Psychiatric Department, Hospital Magalhaes Lemos, Porto, Portugal; School of Psychology, University of Minho, Portugal.
| | | | | | | | | | | |
Collapse
|
46
|
Myocardial tolerance to ischemia-reperfusion injury, training intensity and cessation. Eur J Appl Physiol 2010; 111:859-68. [PMID: 21063725 DOI: 10.1007/s00421-010-1707-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
Training has been shown to induce cardioprotection. The mechanisms involved remain still poorly understood. Aims of the study were to examine the relevance of training intensity on myocardial protection against ischemia/reperfusion (I/R) injury, and to which extent the beneficial effects persist after training cessation in rats. Sprague-Dawley rats trained at either low (60% [Formula: see text]) or high (80% [Formula: see text]) intensity for 10 weeks. An additional group of highly trained rats was detrained for 4 weeks. Untrained rats served as controls. At the end of treatment, rats of all groups were split into two subgroups. In the former, rats underwent left anterior descending artery (LAD) ligature for 30 min, followed by 90-min reperfusion, with subsequent measurement of the infarct size. In the latter, biopsies were taken to measure heat-shock proteins (HSP) 70/72, vascular endothelial growth factor (VEGF) protein levels, and superoxide dismutase (SOD) activity. Training reduced infarct size proportionally to training intensity. With detraining, infarct size increased compared to highly trained rats, maintaining some cardioprotection with respect to controls. Cardioprotection was proportional to training intensity and related to HSP70/72 upregulation and Mn-SOD activity. The relationship with Mn-SOD was lost with detraining. VEGF protein expression was not affected by either training or detraining. Stress proteins and antioxidant defenses might be involved in the beneficial effects of long-term training as a function of training intensity, while HSP70 may be one of the factors accounting for the partial persistence of myocardial protection against I/R injury in detrained rats.
Collapse
|
47
|
He ZH, Hu Y, Li YC, Bao DP, Ruiz JR, Lucia A. Polymorphisms in the calcineurin genes are associated with the training responsiveness of cardiac phenotypes in Chinese young adults. Eur J Appl Physiol 2010; 110:761-7. [DOI: 10.1007/s00421-010-1558-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2010] [Indexed: 12/25/2022]
|
48
|
Quindry JC, French J, Hamilton KL, Lee Y, Selsby J, Powers S. Exercise does not increase cyclooxygenase-2 myocardial levels in young or senescent hearts. J Physiol Sci 2010; 60:181-6. [PMID: 20054720 PMCID: PMC2854316 DOI: 10.1007/s12576-009-0082-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 12/15/2009] [Indexed: 12/20/2022]
Abstract
Increased myocardial cyclooxygenase-2 (COX-2) activity is essential for late phase ischemic preconditioning (IPC). Currently unknown is whether cardioprotection elicited by exercise also involves elevated myocardial COX-2 activity. This investigation tested whether aerobic exercise elevates myocardial COX-2 protein content or enzyme activity in young and senescent male Fisher 344 rats assigned to sedentary or cardioprotective endurance exercise treatments (3 consecutive days of treadmill exercise, 60 min/day @ approximately 70% VO(2)max). Assay of cardiac COX-2 protein content, catalytic activity, and inducible nitric oxide synthase (iNOS) protein content reveal that exercise did not alter COX-2 activity (PGE(2), p = 0.866; PGF1alpha, p = 0.796) or protein levels (p = 0.397) within young or senescent hearts. In contrast, myocardial iNOS, an up-stream mediator of COX-2 expression, was over-expressed by an average of 37% in aged hearts (p = 0.005), though iNOS was not influenced by exercise. Findings reveal exercise does not elevate cardiac COX-2 activity and suggests that mechanisms responsible for cardioprotection differ between IPC and aerobic exercise.
Collapse
Affiliation(s)
- John C Quindry
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Youssef H, Groussard C, Pincemail J, Moussa E, Jacob C, Lemoine S, Zind M, Defraigne JO, Cillard J, Delamarche P, Gratas-Delamarche A. Exercise-induced oxidative stress in overweight adolescent girls: roles of basal insulin resistance and inflammation and oxygen overconsumption. Int J Obes (Lond) 2010; 33:447-55. [PMID: 19363498 DOI: 10.1038/ijo.2009.49] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HYPOTHESIS Basal insulin resistance (IR) and inflammation exacerbate post-exercise oxidative stress (OS) in overweight adolescent girls. DESIGN Cross-sectional study, effect of incremental ergocycle exercise until exhaustion on OS markers. PARTICIPANTS Normal-weight (control) (n=17, body mass index (BMI): 20-24.2 kg/m(2)) and overweight adolescent girls (n=29, BMI: 24.1-36.6 kg/m(2)). MEASUREMENTS Dietary measurement, physical activity assessment (validated questionnaires), fat distribution parameters (by dual-energy X-ray absorptiometry and anthropometry) and maximal oxygen consumption (VO2peak). Blood assays include the following: (1) at fasting state: blood cell count, lipid profile, and IR parameters (leptin/adiponectin ratio (L/A), homeostasis model assessment of IR, insulin/glucose ratio; (2) before exercise: inflammation and OS markers (interleukin-6 (IL-6), C-reactive protein (CRP), myeloperoxidase (MPO), reduced glutathione/oxidized glutathione ratio (GSH/GSSG), 15 F(2)alpha-isoprostanes (F(2)-Isop), lipid hydroperoxides (ROOH), oxidized low-density lipoprotein (ox-LDL)) and antioxidant status (superoxide dismutase (SOD), glutathione peroxidase (GPX), vitamin C, alpha-tocopherol and beta-carotene); and (3) after exercise: inflammation and OS markers. RESULTS At rest, overweight girls had a deteriorated lipid profile and significantly higher values of IR parameters and inflammation markers, compared with the control girls. These alterations were associated with a moderate rest OS state (lower GSH/GSSG ratio, alpha-tocopherol/total cholesterol (TC) ratio and GPX activity). In absolute values, overweight girls exhibited higher peak power output and oxygen consumption (VO2peak), compared with the control girls. Exercise exacerbated OS only in the overweight group (significant increase in F(2)-Isop, ROOH and MPO). As hypothesized, basal IR and inflammation state were correlated with the post-exercise OS. However, the adjustment of F(2)-Isop, ROOH and MPO variation per exercise VO(2) variation canceled the intergroup differences. CONCLUSION In overweight adolescent girls, the main factors of OS, after incremental exhaustive exercise, are not the basal IR and inflammation states, but oxygen overconsumption.
Collapse
Affiliation(s)
- H Youssef
- Laboratory Mouvement Sport Santé (EA1274), University of Rennes 2, ENS Cachan, UFR-APS, Rennes Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|