1
|
GPD1 Specifically Marks Dormant Glioma Stem Cells with a Distinct Metabolic Profile. Cell Stem Cell 2019; 25:241-257.e8. [DOI: 10.1016/j.stem.2019.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022]
|
2
|
Borges AR, Lopez-Larrubia P, Marques JB, Cerdan SG. MR imaging features of high-grade gliomas in murine models: how they compare with human disease, reflect tumor biology, and play a role in preclinical trials. AJNR Am J Neuroradiol 2011; 33:24-36. [PMID: 22194368 DOI: 10.3174/ajnr.a2959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Murine models are the most commonly used and best investigated among the animal models of HGG. They constitute an important weapon in the development and testing of new anticancer drugs and have long been used in preclinical trials. Neuroimaging methods, particularly MR imaging, offer important advantages for the evaluation of treatment response: shorter and more reliable treatment end points and insight on tumor biology and physiology through the use of functional imaging DWI, PWI, BOLD, and MR spectroscopy. This functional information has been progressively consolidated as a surrogate marker of tumor biology and genetics and may play a pivotal role in the assessment of specifically targeted drugs, both in clinical and preclinical trials. The purpose of this Research Perspectives was to compile, summarize, and critically assess the available information on the neuroimaging features of different murine models of HGGs, and explain how these correlate with human disease and reflect tumor biology.
Collapse
Affiliation(s)
- A R Borges
- Radiology Department, Instituto Português de Oncologia de Lisboa, Portugal.
| | | | | | | |
Collapse
|
3
|
Huszthy PC, Goplen D, Thorsen F, Immervoll H, Wang J, Gutermann A, Miletic H, Bjerkvig R. Oncolytic herpes simplex virus type-1 therapy in a highly infiltrative animal model of human glioblastoma. Clin Cancer Res 2008; 14:1571-80. [PMID: 18316582 DOI: 10.1158/1078-0432.ccr-07-2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have examined the spread and antitumor efficacy of an oncolytic herpes simplex virus-1-based vector (G207) in glioblastoma biopsy spheroids in vitro and in vivo after local delivery to corresponding intracranial xenografts. Spheroids from three patients were infected with increasing doses of G207 and transgene expression was quantified. Other infected spheroids were followed for 10 days to assess cytotoxic effects. For the in vivo study, spheroids were grafted intracerebrally into Rowett nude rats. The resulting highly infiltrative xenografts were injected with 3.4 x 10(6) plaque-forming units (penetration study) or 6.8 x 10(6) plaque-forming units (therapeutic study) of G207 using microprocessor-controlled stereotaxic delivery. Vector spread was tracked by histochemical staining. In the therapeutic study, tumor volumes were monitored weekly by magnetic resonance imaging, and survival data were collected. In vitro, lacZ expression was seen at the spheroid surfaces 24 h postinfection, whereas the spheroid cores were transgene positive after 96 h. Cytotoxic susceptibility varied between the patients, showing a 36% to 95% lysis 10 days postinfection. Local delivery of G207 into intracranial xenografts resulted in extensive vector spread throughout the lesions. In the therapeutic study, G207 application reduced tumor volumes compared with controls, but did not significantly improve survival of the animals. Histologic analysis revealed infection of host structures such as the ventricular and choroid plexus ependyma. In conclusion, G207 replicates in patient-derived glioblastoma multiforme xenografts and tumor volumes are reduced after intratumoral delivery; however, the survival data suggest that the therapeutic effect could be improved by repeated vector application or through combination with other treatment modalities.
Collapse
Affiliation(s)
- Peter C Huszthy
- Department of Biomedicine, The Gade Institute, University of Bergen, Bergen, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Liu Y, Yeh N, Zhu XH, Leversha M, Cordon-Cardo C, Ghossein R, Singh B, Holland E, Koff A. Somatic cell type specific gene transfer reveals a tumor-promoting function for p21(Waf1/Cip1). EMBO J 2007; 26:4683-93. [PMID: 17948060 PMCID: PMC2048756 DOI: 10.1038/sj.emboj.7601886] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 09/19/2007] [Indexed: 02/08/2023] Open
Abstract
How proteins participate in tumorigenesis can be obscured by their multifunctional nature. For example, depending on the cellular context, the cdk inhibitors can affect cell proliferation, cell motility, apoptosis, receptor tyrosine kinase signaling, and transcription. Thus, to determine how a protein contributes to tumorigenesis, we need to evaluate which functions are required in the developing tumor. Here we demonstrate that the RCAS/TvA system, originally developed to introduce oncogenes into somatic cells of mice, can be adapted to allow us to define the contribution that different functional domains make to tumor development. Studying the development of growth-factor-induced oligodendroglioma, we identified a critical role for the Cy elements in p21, and we showed that cyclin D1T286A, which accumulates in the nucleus of p21-deficient cells and binds to cdk4, could bypass the requirement for p21 during tumor development. These genetic results suggest that p21 acts through the cyclin D1–cdk4 complex to support tumor growth, and establish the utility of using a somatic cell modeling system for defining the contribution proteins make to tumor development.
Collapse
Affiliation(s)
- Yuhui Liu
- Department of Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bencokova Z, Pauron L, Devic C, Joubert A, Gastaldo J, Massart C, Balosso J, Foray N. Molecular and cellular response of the most extensively used rodent glioma models to radiation and/or cisplatin. J Neurooncol 2007; 86:13-21. [PMID: 17611717 DOI: 10.1007/s11060-007-9433-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 06/07/2007] [Indexed: 01/21/2023]
Abstract
Purpose Anti-glioma strategies are generally based on trials involving rodent models whose choice remains based on proliferative capacity and availability. Recently, our group obtained the most protracted survival of rats bearing F98 gliomas by combining synchrotron X-rays and intracerebral cisplatin injection (Biston et al., Cancer Res, 64:2317-2323, 2004). The response to such treatment was suggested to be dependent on BRCA1, a tumour suppressor known to be involved in the response to radiation and cisplatin. In order to verify the impact of BRCA1 functionality upon success of anti-glioma trials, radiobiological features and BRCA1-dependent stress signalling were investigated in the most extensively used rodent glioma models. Methods Cell death pathways, cell cycle arrests, DNA repair and stress signalling were evaluated in response to radiation and cisplatin in C6, 9L and F98 models. Results Rodent glioma models showed a large spectrum of cellular radiation response. Surprisingly, BRCA1 was found to be functionally impaired in C6 and F98 favouring genomic instability, tumour heterogeneity and tolerance of unrepaired DNA damage. Significance Our findings strengthened the importance of the choice of the glioma model on genetic and radiobiological bases, inasmuch as all these rat glioma models are induced by nitrosourea-mediated mutagenesis that may favour specific gene mutations. Particularly, BRCA1 status may condition the response to anti-glioma treatments. Furthermore, since BRCA1 acts as a tumour suppressor in a number of malignancies, our findings raise also the question of the implication of BRCA1 in brain tumours formation.
Collapse
Affiliation(s)
- Zuzana Bencokova
- Inserm, U647, ID17, European Synchrotron Radiation Facility, Grenoble, 38043, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
MRI has contributed to significant advances in the understanding of neurological diseases in humans. It has also been used to evaluate the spectrum of mouse models spanning from developmental abnormalities during embryogenesis, evaluation of transgenic and knockout models, through various neurological diseases such as stroke, tumors, degenerative and inflammatory diseases. The MRI techniques used clinically are technically more challenging in the mouse because of the size of the brain; however, mouse imaging provides researchers with the ability to explore cellular and molecular imaging that one day may translate into clinical practice. This article presents an overview of the use of MRI in mouse models of a variety of neurological disorders and a brief review of cellular imaging using magnetically tagged cells in the mouse central nervous system.
Collapse
Affiliation(s)
- Stasia A Anderson
- Animal MRI/Imaging Core, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
7
|
Xu J, You C, Zhang S, Huang S, Cai B, Wu Z, Li H. Angiogenesis and cell proliferation in human craniopharyngioma xenografts in nude mice. J Neurosurg 2007; 105:306-10. [PMID: 17328281 DOI: 10.3171/ped.2006.105.4.306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECT Craniopharyngioma is one of the most common congenital tumors of the sellar and suprasellar regions and accounts for between 4 and 6% of all intracranial tumors. Its oncogenesis and biological behavior have not been well studied, and neither a cell line nor an animal model have been established. To better understand the tumor and improve its clinical management, the authors investigated the angiogenesis and cellular proliferation in subcutaneous craniopharyngioma xenografts obtained by implanting human tumor cells into athymic nude mice. METHODS Human craniopharyngioma cells obtained from surgical specimens were subcutaneously implanted into BALB/c-nu/nu nude mice to establish a preliminary animal model of a transplanted tumor. Immunohistochemical staining with streptavidin-peroxidase complex was used to identify the cell phenotype and to evaluate the angiogenesis and proliferation in the xenografts. Expression of cytokeratin, minichromosome maintenance deficient 6 (MCM6) protein, and endothelial cell marker CD34 on the xenograft sections were assayed quantitatively by computer-assisted microscopy. Twenty-seven surviving subcutaneous xenografts were obtained in 15 nude mice. The total implantation success rate was 28.12% (adamantine epithelioma [AE], 37.50%; squamous papillary tumor [SPT], 18.75%). Formation of capillaries and cell proliferation were observed in all of these xenografts. Microvessel density and degree of MCM6 immunostaining were positively correlated in the surviving grafts (r = 0.410, p < 0.05), but there was no significant difference in these variables between the AE and SPT groups (p > 0.05). CONCLUSIONS A preliminary animal model of human craniopharyngioma was established in the nude mouse by heterotopic implantation. Surviving xenografts maintained their vascularization and proliferation activities until harvesting at 12 weeks.
Collapse
Affiliation(s)
- Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Salhia B, Tran NL, Symons M, Winkles JA, Rutka JT, Berens ME. Molecular pathways triggering glioma cell invasion. Expert Rev Mol Diagn 2006; 6:613-26. [PMID: 16824034 DOI: 10.1586/14737159.6.4.613] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The efficacy of treating malignant gliomas with adjuvant therapies remains largely unsuccessful due to the inability to effectively target invading cells. Although our understanding of glioma oncogenesis has steadily improved, the molecular mechanisms that mediate glioma invasion are still poorly understood. It is clear that genetic alterations in malignant gliomas affect cell proliferation and cell cycle control, which are the targets of most chemotherapeutic agents. However, effective therapy against cell invasion has been less successful. Future treatment protocols must incorporate pharmacotherapeutic strategies that target resistant infiltrative glioma cells as well as proliferating ones. Thus, delineating the point of convergence of signaling pathways, which mediate glioma invasion, proliferation and apoptosis, may identify novel targets that can serve as possible points of therapeutic intervention. The optimization of novel strategies will require reliable preclinical testing using an in vivo animal model of brain invasion. Current applications of existing animal models are not currently optimized or characterized for use in glioma invasion research. As such, the development of a bona fide brain invasion model in vivo must be established. Progress in understanding molecular mechanisms driving glioma invasion will be critical to the success of managing and improving the outcome of patients with this grave disease.
Collapse
Affiliation(s)
- Bodour Salhia
- The Arthur & Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
9
|
Serfozo P, Schlarman MS, Pierret C, Maria BL, Kirk MD. Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines. Cancer Cell Int 2006; 6:1. [PMID: 16436212 PMCID: PMC1397869 DOI: 10.1186/1475-2867-6-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 01/25/2006] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pluripotent mouse embryonic stem (ES) cells can be induced in vitro to become neural progenitors. Upon transplantation, neural progenitors migrate toward areas of damage and inflammation in the CNS. We tested whether undifferentiated and neuralized mouse ES cells migrate toward media conditioned by glioma cell lines (C6, U87 & N1321) or Stem Cell Factor (SCF). RESULTS Cell migration assays revealed selective migration by neuralized ES cells to conditioned media as well as to synthetic SCF. Migration of undifferentiated ES cells was extensive, but not significantly different from that of controls (Unconditioned Medium). RT-PCR analysis revealed that all the three tumor cell lines tested synthesized SCF and that both undifferentiated and neuralized ES cells expressed c-kit, the receptor for SCF. CONCLUSION Our results demonstrate that undifferentiated ES cells are highly mobile and that neural progenitors derived from ES cells are selectively attracted toward factors produced by gliomas. Given that the glioma cell lines synthesize SCF, SCF may be one of several factors that contribute to the selective migration observed.
Collapse
Affiliation(s)
- Peter Serfozo
- Division of Biological Sciences, 114 Lefevre Hall, University of Missouri, Columbia MO 65211
| | - Maggie S Schlarman
- Division of Biological Sciences, 114 Lefevre Hall, University of Missouri, Columbia MO 65211
| | - Chris Pierret
- Division of Biological Sciences, 114 Lefevre Hall, University of Missouri, Columbia MO 65211
| | - Bernard L Maria
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, 135 Rutledge Ave., Charleston, SC 29425
| | - Mark D Kirk
- Division of Biological Sciences, 114 Lefevre Hall, University of Missouri, Columbia MO 65211
| |
Collapse
|
10
|
Stillman BN, Mischel PS, Baum LG. New roles for galectins in brain tumors--from prognostic markers to therapeutic targets. Brain Pathol 2005; 15:124-32. [PMID: 15912884 PMCID: PMC8095905 DOI: 10.1111/j.1750-3639.2005.tb00507.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite advances in diagnosis and treatment, brain tumors continue to be the leading cause of cancer-related death in patients under 35 years of age, demonstrating the need for better prognostic and therapeutic targets. Galectins, a family of mammalian carbohydrate binding proteins, are involved in many processes important for tumor survival and dissemination, including proliferation, apoptosis, transcriptional regulation, intracellular signaling, cell adhesion, and cell migration. Several galectins are expressed in human brain, with many galectins demonstrating altered expression during tumor progression. Thus, galectins and the functions regulated by this family of proteins are potential targets for the diagnosis and treatment of brain cancer. This review highlights the roles of galectins in cancer and specifically, the developing field of galectins in brain cancer.
Collapse
Affiliation(s)
- Brianna N. Stillman
- Department of Pathology and Laboratory Medicine and the Jonsson Comprehensive Cancer Center, UCLA School of Medicine, Los Angeles, Calif
| | - Paul S. Mischel
- Department of Pathology and Laboratory Medicine and the Jonsson Comprehensive Cancer Center, UCLA School of Medicine, Los Angeles, Calif
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine and the Jonsson Comprehensive Cancer Center, UCLA School of Medicine, Los Angeles, Calif
| |
Collapse
|
11
|
Abstract
Selection of mouse models of cancer is often based simply on availability of a mouse strain and a known compatible tumor. Frequently this results in use of tumor models long on history but short on homology and quality control. Other factors including genetics, sex, immunological status, method and site of tumor implantation, technical competence, biological activity of the tumor, protocol sequence and timing, and selection of endpoints interact to produce outcomes in tumor models. Common reliance on survival and tumor burden data in a single mouse model often skews expectations towards high remission and cure rates; a finding seldom duplicated in clinical trials. Inherent limitations of tumor models coupled with the advent of new therapeutic targets reinforce need for careful attention to design, conduct, and stringent selection of in vivo and ex vivo endpoints. Preclinical efficacy testing for anti-tumor therapies should progress through a series of models of increasing sophistication that includes incorporation of genetically engineered animals, and orthotopic and combination therapy models. Pharmacology and safety testing in tumor-bearing animals may also help to improve predictive value of these models for clinical efficacy. Trends in bioinformatics, genetic refinements, and specialized imaging techniques are helping to maintain mice as the most scientifically and economically powerful model of malignant neoplasms.
Collapse
Affiliation(s)
- JoAnn C L Schuh
- Applied Veterinary Pathobiology, Bainbridge Island, Washington 98110-3663, USA.
| |
Collapse
|
12
|
Loop T, Leemans R, Stiefel U, Hermida L, Egger B, Xie F, Primig M, Certa U, Fischbach KF, Reichert H, Hirth F. Transcriptional signature of an adult brain tumor in Drosophila. BMC Genomics 2004; 5:24. [PMID: 15090076 PMCID: PMC419699 DOI: 10.1186/1471-2164-5-24] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 04/16/2004] [Indexed: 11/18/2022] Open
Abstract
Background Mutations and gene expression alterations in brain tumors have been extensively investigated, however the causes of brain tumorigenesis are largely unknown. Animal models are necessary to correlate altered transcriptional activity and tumor phenotype and to better understand how these alterations cause malignant growth. In order to gain insights into the in vivo transcriptional activity associated with a brain tumor, we carried out genome-wide microarray expression analyses of an adult brain tumor in Drosophila caused by homozygous mutation in the tumor suppressor gene brain tumor (brat). Results Two independent genome-wide gene expression studies using two different oligonucleotide microarray platforms were used to compare the transcriptome of adult wildtype flies with mutants displaying the adult bratk06028 mutant brain tumor. Cross-validation and stringent statistical criteria identified a core transcriptional signature of bratk06028 neoplastic tissue. We find significant expression level changes for 321 annotated genes associated with the adult neoplastic bratk06028 tissue indicating elevated and aberrant metabolic and cell cycle activity, upregulation of the basal transcriptional machinery, as well as elevated and aberrant activity of ribosome synthesis and translation control. One fifth of these genes show homology to known mammalian genes involved in cancer formation. Conclusion Our results identify for the first time the genome-wide transcriptional alterations associated with an adult brain tumor in Drosophila and reveal insights into the possible mechanisms of tumor formation caused by homozygous mutation of the translational repressor brat.
Collapse
Affiliation(s)
- Thomas Loop
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Ronny Leemans
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Urs Stiefel
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Leandro Hermida
- Biocenter, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Boris Egger
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Fukang Xie
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Michael Primig
- Biocenter, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Ulrich Certa
- Roche Genetics Pharmaceuticals Division, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | | | - Heinrich Reichert
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| | - Frank Hirth
- Institute of Zoology, Biocenter/Pharmacenter, University of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland
| |
Collapse
|
13
|
Wesling M, Brady S, Jensen M, Nickell M, Statkus D, Escobar N. Dysphagia outcomes in patients with brain tumors undergoing inpatient rehabilitation. Dysphagia 2003; 18:203-10. [PMID: 14506986 DOI: 10.1007/s00455-002-0098-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The purpose of this retrospective study was to compare functional dysphagia outcomes following inpatient rehabilitation for patients with brain tumors with that of patients following a stroke. Group 1 (n = 24) consisted of consecutive admissions to the brain injury program with the diagnosis of brain tumor and dysphagia. Group 2 (n = 24) consisted of matched, consecutive admissions, with the diagnosis of acute stroke and dysphagia. Group 2 was matched for age, site of lesion, and initial composite cognitive FIM score. The main outcome measures for this study included the American Speech-Language-Hearing Association (ASHA) National Outcome Measurement System (NOMS) swallowing scale, length of stay, hospital charges, and medical complications. Results showed that swallowing gains made by both groups as evaluated by the admission and discharge ASHA NOMS levels were considered to be statistically significant. The differences for length of stay, total hospital charges, and speech charges between the two groups were not considered to be statistically significant. Three patients in the brain tumor group (12.5%) demonstrated dysphagia complications of either dehydration or pneumonia during their treatment course as compared to 0% in the stroke group. This study confirms that functional dysphagia gains can be achieved for patients with brain tumors undergoing inpatient rehabilitation and that they should be afforded the same type and intensity of rehabilitation for their swallowing that is provided to patients following a stroke.
Collapse
Affiliation(s)
- Michele Wesling
- Department of Speech-Language Pathology, Marianjoy Rehabilitation Hospital, Wheaton, Illinois 60187, USA
| | | | | | | | | | | |
Collapse
|
14
|
Agius LM. Justification of glioma biology beyond a cellular basis of interpretation. Med Hypotheses 2003; 61:486-94. [PMID: 13679018 DOI: 10.1016/s0306-9877(03)00202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gliomas as neoplasms primarily arising from and constituted by glial cells would appear to implicate cell types that inherently reflect variation of aspects of a putative reparative process. The prominence of an astrocytic type cell of origin would further perhaps constitute a system of malignant transformation based on aberrant progression in cell proliferation and of cell pathology related to aspects on one hand of a gliosis and on the other of an autonomous process of progressiveness. In such terms, perhaps, one might consider the molecular aspects of gliomatous pathogenesis as simply a process of integral aberration of various aspects of astrocytic or glial cell responsiveness outside the normal confines of the normal reparative process and inherently beyond a strict cellular basis of interpretation in pathobiologic terms of such processes as anti-apoptosis and amplification of growth factor receptivity.
Collapse
Affiliation(s)
- L M Agius
- St. Luke's Hospital, Gwardamangia, University of Malta, Malta.
| |
Collapse
|
15
|
Cha S, Johnson G, Wadghiri YZ, Jin O, Babb J, Zagzag D, Turnbull DH. Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 2003; 49:848-55. [PMID: 12704767 DOI: 10.1002/mrm.10446] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The aim of this study was to develop an MRI protocol to evaluate the growth and vascularity of implanted GL261 mouse gliomas on a 7T microimaging system. Both conventional T(1)- and T(2)-weighted imaging and dynamic, contrast-enhanced T(2)*-weighted imaging were performed on 34 mice at different stages of tumor development. MRI measurements of relative cerebral blood volume (rCBV) were compared to histological assessments of microvascular density (MVD). Enhancement on postcontrast T(1)-weighted images was compared to histological assessments of Evan's blue extravasation. Conventional T(2)-weighted and postcontrast T(1)-weighted images demonstrated tumor growth characteristics consistent with previous descriptions of GL261 glioma. Furthermore, measurements of rCBV from MRI data were in good agreement with histological measurements of MVD from the same tumors. Postcontrast enhancement on T(1)-weighted images was observed at all stages of GL261 glioma progression, even before evidence of angiogenesis, indicating that the mechanism of conventional contrast enhancement in MRI does not require neovascularization. These results provide quantitative support for MRI approaches currently used to assess human brain tumors, and form the basis for future studies of angiogenesis in genetically engineered mouse brain tumor models.
Collapse
Affiliation(s)
- Soonmee Cha
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Lefranc F, Sadeghi N, Metens T, Brotchi J, Salmon I, Kiss R. Characterization of gastrin-induced cytostatic effect on cell proliferation in experimental malignant gliomas. Neurosurgery 2003; 52:881-90; discussion 890-1. [PMID: 12657185 DOI: 10.1227/01.neu.0000053366.00088.80] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2002] [Accepted: 12/04/2002] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Growth patterns of astrocytic tumors can be modulated in vitro by gastrin. In this study, the influence of gastrin on the in vitro cell cycle kinetics and the in vivo growth features of three experimental malignant gliomas was investigated. METHODS Gastrin-induced influence on overall growth was assayed in vitro by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium colorimetric assay for human U373 and rat C6 gliomas and for rat 9L gliosarcoma. Although cell cycle analyses were performed by means of computer-assisted microscope analyses of Feulgen-stained nuclei, the gastrin-induced effects of the levels of expression of cyclins D3 and E, CDK2, CDK4, CDK5, CDK7, p15, p16, E2F1, and E2F2 were assayed by means of quantitative Western blot test. The presence of ribonucleic acids for the CCK(B) and CCK(C) gastrin receptors in the U373, C6, and 9L models was assayed by means of quantitative reverse transcriptase-polymerase chain reaction, and the presence or absence of ribonucleic acids for CCK(A) receptor was checked by means of conventional polymerase chain reaction. The influence of gastrin was also characterized in vivo in terms of the survival periods of conventional rats orthotopically grafted with the C6 and 9L models and nude rats with the U373 model. RESULTS Gastrin significantly decreased the overall growth rate in the rat C6 and the human U373 high-grade astrocytic tumor models with either CCK(B) or CCK(C) gastrin receptor but not in the 9L rat gliosarcoma, which had no CCK(B) gastrin receptor (but had CCK(A) receptor) and only weak amounts of CCK(C) receptor. This effect seems to occur via a cytostatic effect; that is, an accumulation of tumor astrocytes occurs in the G(1) cell cycle phase. The cytostatic effect could relate to a gastrin-induced decrease in the amounts of the cyclin D3-CDK4 complex in both C6 and U373 glioma cells. In vivo, gastrin significantly increased the survival periods of C6 and U373 glioma-bearing rats, but not of 9L gliosarcoma-bearing rats. CONCLUSION Gastrin is able to significantly modify the growth levels of a number of experimental gliomas.
Collapse
Affiliation(s)
- Florence Lefranc
- Department of Neurosurgery, Erasmus University Hospital, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Ellison D. Classifying the medulloblastoma: insights from morphology and molecular genetics. Neuropathol Appl Neurobiol 2002; 28:257-82. [PMID: 12175339 DOI: 10.1046/j.1365-2990.2002.00419.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significant advances in the treatment of the medulloblastoma (MB) have been made in the last 30 years, reducing mortality by 2-fold. Further improvements in the cure rate require an increased understanding of the biology of MBs, and this will translate into refinements in their classification. Scrutiny of the cytological variation found among MBs has recently led to the concept of the anaplastic MB, which overlaps the large-cell variant and appears to share its poor prognosis. In contrast, the MB with extensive nodularity, a distinctive nodular/desmoplastic variant occurring in infants, has a better outcome than most MBs in these young patients. Building on cytogenetic studies that have drawn attention to abnormalities on chromosome 17 in over a third of MBs, research shows non-random losses on chromosomes 8, 9, 10, 11 and 16, and gains on chromosomes 1, 7 and 9. Overexpression of ErbB2 receptors and losses on chromosome 17p have been proposed as independent indicators of aggressive behaviour, while high TrkC receptor expression indicates a favourable outcome. There is a strong association between anaplastic/large-cell tumours and MYC amplification, which has previously been linked with aggressive disease, but associations between abnormalities on chromosome 17 and anaplastic/large-cell MBs and between abnormalities in the shh/PTCH pathway and the desmoplastic variant are more controversial. Classification of the MB histopathologically and according to profiles of molecular abnormalities will help both to rationalize approaches to therapy, increasing the cure rate and reducing long-term side-effects, and to suggest novel treatments.
Collapse
Affiliation(s)
- D Ellison
- Northern Institute for Cancer Research, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK.
| |
Collapse
|