1
|
Goel R, Shah S, Sundar G, Arora R, Gupta S, Khullar T. Orbital and ocular perfusion in thyroid eye disease. Surv Ophthalmol 2023; 68:481-506. [PMID: 36681278 DOI: 10.1016/j.survophthal.2023.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Thyroid eye disease (TED) is characterized by enlargement of extraocular muscles, an increase in retrobulbar fat, orbital fibrosis, and fluctuations in plasma thyroid hormone levels in most patients, often associated with raised autoantibody titers. The occurrence of orbital space conflict compromises the orbital perfusion, unchecked progression of which results in irreversible loss of visual acuity and visual fields. The quantitative assessment of orbital perfusion can be done by measurement of blood flow velocities in the superior ophthalmic vein (SOV), ophthalmic artery (OA), central retinal artery (CRA), and posterior ciliary artery by color Doppler imaging. The retinal and choroidal microvasculature is studied by optical coherence tomography and optical coherence tomography angiography. The orbital and ocular perfusion fluctuates during the course of TED. Orbital congestion is reflected by the reduction or reversal of SOV flow and an increase in subfoveal choroidal thickness. The active phase is characterized by high blood flow velocities of the OA and CRA. The onset of dysthyroid optic neuropathy is associated with reduced arterial perfusion and reduction in parafoveal and peripapillary vascular density. Orbital decompression improves the SOV flow and decreases the resistivity index of CRA. Sequential evaluation of orbital hemodynamic changes can thus supplement the clinical scoring systems for monitoring and planning intervention in TED.
Collapse
Affiliation(s)
- Ruchi Goel
- Department of Ophthalmology, Maulana Azad Medical College, New Delhi, India.
| | - Shalin Shah
- Department of Ophthalmology, Maulana Azad Medical College, New Delhi, India
| | - Gangadhara Sundar
- Department of Ophthalmology, National University Hospital, Kent Ridge, Singapore
| | - Ritu Arora
- Department of Ophthalmology, Maulana Azad Medical College, New Delhi, India
| | - Swati Gupta
- Department of Radiology, Maulana Azad Medical College, New Delhi, India
| | - Tamanna Khullar
- Department of Radiology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
2
|
Vargas A, Yamamoto KL, Craft CM, Lee EJ. Clusterin enhances cell survival by suppressing neuronal nitric-oxide synthase expression in the rhodopsin S334ter-line3 retinitis pigmentosa model. Brain Res 2021; 1768:147575. [PMID: 34242654 DOI: 10.1016/j.brainres.2021.147575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/20/2021] [Accepted: 06/26/2021] [Indexed: 11/18/2022]
Abstract
Environmental changes in the retina, including oxidative stress-induced cell death, influence photoreceptor degeneration in Retinitis Pigmentosa (RP). Previously, we tested and discovered that a cytoprotective chaperone protein, clusterin, produced robust preservation of rod photoreceptors of a rat autosomal dominant rhodopsin transgenic model of RP, S334ter-line3. To investigate the biochemical and molecular cytoprotective pathways of clusterin, we examined and compared a known source of cone cell death, nitric oxide (NO), observing nNOS expression using antibody against nNOS in RP retinas with intravitreal injections of saline, clusterin (10 μg/ml), or a non-isoform-selective NOS inhibitor (25 mM), L-NAME, or with an intraperitoneal injection (IP) of L-NAME (100 mg/kg). Rhodopsin-immunoreactive rod photoreceptor cells and nNOS-immunoreactive cells were quantified with immunohistochemistry in the presence or absence of L-NAME or clusterin, and the total nNOS retinal expression was determined by immunoblot analysis. In this study, the level of nNOS expression was significantly up-regulated postnatally (P) at P15 (P < 0.05), P30 (P < 0.001) and P60 (P < 0.0001) in RP retinas compared to normal controls. Clusterin treatment suppressed the up-regulated nNOS expression in RP retinas (P < 0.0001) and was enhanced in Type II amacrine cells. Additionally, IP injection of L-NAME at P15 prolonged rod survival in the later stage of RP retinas (P < 0.001). Conversely, rod survival in L-NAME-treated RP retinas was not equivalent to the rod survival number seen in clusterin-treated retinas, which suggests induction of nNOS expression in RP retinas and its reduction by clusterin is only partly responsible for the rescue observed through the reduction of nNOS expression in S334ter-line3 rat retinas.
Collapse
Affiliation(s)
- Andrew Vargas
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Los Angeles, CA, United States
| | - Kyra L Yamamoto
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Los Angeles, CA, United States
| | - Cheryl Mae Craft
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Los Angeles, CA, United States; Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Eun-Jin Lee
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Los Angeles, CA, United States; Department of Ophthalmology, Stanford University, Palo Alto, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Palo Alto, CA, United States.
| |
Collapse
|
3
|
López JM, Morona R, González A. Pattern of nitrergic cells and fibers organization in the central nervous system of the Australian lungfish, Neoceratodus forsteri (Sarcopterygii: Dipnoi). J Comp Neurol 2019; 527:1771-1800. [PMID: 30689201 DOI: 10.1002/cne.24645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022]
Abstract
The Australian lungfish Neoceratodus forsteri is the only extant species of the order Ceratodontiformes, which retained most of the primitive features of ancient lobe finned-fishes. Lungfishes are the closest living relatives of land vertebrates and their study is important for deducing the neural traits that were conserved, modified, or lost with the transition from fishes to land vertebrates. We have investigated the nitrergic system with neural nitric oxide synthase (NOS) immunohistochemistry and NADPH-diaphorase (NADPH-d) histochemistry, which yielded almost identical results except for the primary olfactory projections and the terminal and preoptic nerve fibers labeled only for NADPH-d. Combined immunohistochemistry was used for simultaneous detection of NOS with catecholaminergic, cholinergic, and serotonergic structures, aiming to establish accurately the localization of the nitrergic elements and to assess possible interactions between these neurotransmitter systems. The results demonstrated abundant nitrergic cells in the basal ganglia, amygdaloid complex, preoptic area, basal hypothalamus, mesencephalic tectum and tegmentum, laterodorsal tegmental nucleus, reticular formation, spinal cord, and retina. In addition, low numbers of nitrergic cells were observed in the olfactory bulb, all pallial divisions, lateral septum, suprachiasmatic nucleus, prethalamic and thalamic areas, posterior tubercle, pretectum, torus semicircularis, cerebellar nucleus, interpeduncular nucleus, the medial octavolateral nucleus, nucleus of the solitary tract, and the dorsal column nucleus. Colocalization of NOS and tyrosine hydroxylase was observed in numerous cells of the ventral tegmental area/substantia nigra complex. Comparison with other vertebrates, using a neuromeric analysis, reveals that the nitrergic system of Neoceratodus shares many neuroanatomical features with tetrapods and particularly with amphibians.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Carr BJ, Stell WK. Nitric Oxide (NO) Mediates the Inhibition of Form-Deprivation Myopia by Atropine in Chicks. Sci Rep 2016; 6:9. [PMID: 28442706 PMCID: PMC5431363 DOI: 10.1038/s41598-016-0002-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/22/2016] [Indexed: 11/30/2022] Open
Abstract
Myopia is the most common childhood refractive disorder. Atropine inhibits myopia progression, but its mechanism is unknown. Here, we show that myopia-prevention by atropine requires production of nitric oxide (NO). Form-deprivation myopia (FDM) was induced in week-old chicks by diffusers over the right eye (OD); the left eye (OS) remained ungoggled. On post-goggling days 1, 3, and 5, OD received intravitreally 20 µL of phosphate-buffered saline (vehicle), or vehicle plus: NO source: L-arginine (L-Arg, 60–6,000 nmol) or sodium nitroprusside (SNP, 10–1,000 nmol); atropine (240 nmol); NO inhibitors: L-NIO or L-NMMA (6 nmol); negative controls: D-Arg (10 µmol) or D-NMMA (6 nmol); or atropine plus L-NIO, L-NMMA, or D-NMMA; OS received vehicle. On day 6 post-goggling, refractive error, axial length, equatorial diameter, and wet weight were measured. Vehicle-injected goggled eyes developed significant FDM. This was inhibited by L-Arg (ED50 = 400 nmol) or SNP (ED50 = 20 nmol), but not D-Arg. Higher-dose SNP, but not L-Arg, was toxic to retina/RPE. Atropine inhibited FDM as expected; adding NOS-inhibitors (L-NIO, L-NMMA) to atropine inhibited this effect dose-dependently, but adding D-NMMA did not. Equatorial diameter, wet weight, and metrics of control eyes were not affected by any treatment. In summary, intraocular NO inhibits myopia dose-dependently and is obligatory for inhibition of myopia by atropine.
Collapse
Affiliation(s)
- Brittany J Carr
- Neuroscience Graduate Program, Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - William K Stell
- Department of Cell Biology and Anatomy and Department of Surgery; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Abstract
The role of nitric oxide (NO) signaling in the retina can be simply termed as "extensive." The picture remains incomplete, but it is now known that NO has many sites of production and action in the retina, both physiological and pathophysiological in nature. Perspectives from retinal neurophysiology and clinical pathology have merged in a number of studies examining NO action, but renewed emphasis is needed to discover the links between the roles of NO in the neurons, glia, and vasculature of the retina. NEUROSCIENTIST 3:357-360, 1997
Collapse
|
6
|
López JM, Lozano D, Morona R, González A. Organization of the nitrergic neuronal system in the primitive bony fishes Polypterus senegalus and Erpetoichthys calabaricus (Actinopterygii: Cladistia). J Comp Neurol 2015; 524:1770-804. [PMID: 26517971 DOI: 10.1002/cne.23922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/22/2023]
Abstract
Cladistians are a group of basal actinopterygian fishes that constitute a good model for studying primitive brain features, most likely present in the ancestral bony fishes. The analysis of the nitrergic neurons (with the enzyme nitric oxide synthase; NOS) has helped in understanding important aspects of brain organization in all vertebrates studied. We investigated the nitrergic system of two cladistian species by means of specific antibodies against NOS and NADPH-diaphorase (NADPH-d) histochemistry, which, with the exception of the primary olfactory and terminal nerve fibers, labeled only for NADPH-d, yielded identical results. Double immunohistochemistry was conducted for simultaneous detection of NOS with tyrosine hydroxylase, choline acetyltransferase, calbindin, calretinin, and serotonin, to establish accurately the localization of the nitrergic neurons and fibers and to assess possible interactions between these neuroactive substances. The pattern of distribution in both species showed only subtle differences in the density of labeled cells. Distinct groups of NOS-immunoreactive cells were observed in pallial and subpallial areas, paraventricular region, tuberal and retromammillary hypothalamic areas, posterior tubercle, prethalamic and thalamic areas, optic tectum, torus semicircularis, mesencephalic tegmentum, interpeduncular nucleus, superior and middle reticular nuclei, magnocellular vestibular nucleus, solitary tract nucleus, nucleus medianus magnocellularis, the spinal cord and amacrine cells in the retina. Large neurons in cranial nerve sensory ganglia were also labeled. The comparison of these results with those from other vertebrates, using a neuromeric analysis, reveals a conserved pattern of organization of the nitrergic system from this primitive fish group to amniotes, including mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| |
Collapse
|
7
|
Abstract
The transient receptor potential (TRP) channels play a wide variety of essential roles in the sensory systems of various species, both invertebrates and vertebrates. The TRP channel was first identified as a molecule required for proper light response in Drosophila melanogaster. We and another group recently revealed that TRPM1, the founding member of the melanoma-related transient receptor potential (TRPM) subfamily, is required for the photoresponse in mouse retinal ON-bipolar cells. We further demonstrated that Trpm1 is a component of the transduction cation channel negatively regulated by the metabotropic glutamate receptor 6 (mGulR6) cascade in ON-bipolar cells through a reconstitution experiment using CHO cells expressing Trpm1, mGluR6, and Goα. Furthermore, human TRPM1 mutations are associated with congenital stationary night blindness (CSNB), whose patients lack rod function and suffer from night blindness starting in early childhood. In addition to the function of transduction cation channel, TRPM1 is one of the retinal autoantigens in some paraneoplastic retinopathy (PR) associated with retinal ON-bipolar cell dysfunction. In this chapter, we describe physiological functions of the TRPM1 channel and its underlying biochemical mechanisms in retinal ON-bipolar cells in association with CSNB and PR.
Collapse
Affiliation(s)
- Shoichi Irie
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|
8
|
Next-generation sequencing analysis of gene regulation in the rat model of retinopathy of prematurity. Doc Ophthalmol 2013; 127:13-31. [PMID: 23775346 DOI: 10.1007/s10633-013-9396-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/03/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE The purpose of this study was to identify the genes, biochemical signaling pathways, and biological themes involved in the pathogenesis of retinopathy of prematurity (ROP). METHODS Next-generation sequencing (NGS) was performed on the RNA transcriptome of rats with the Penn et al. (Pediatr Res 36:724-731, 1994) oxygen-induced retinopathy model of ROP at the height of vascular abnormality, postnatal day (P) 19, and normalized to age-matched, room-air-reared littermate controls. Eight custom-developed pathways with potential relevance to known ROP sequelae were evaluated for significant regulation in ROP: The three major Wnt signaling pathways, canonical, planar cell polarity (PCP), and Wnt/Ca(2+); two signaling pathways mediated by the Rho GTPases RhoA and Cdc42, which are, respectively, thought to intersect with canonical and non-canonical Wnt signaling; nitric oxide signaling pathways mediated by two nitric oxide synthase (NOS) enzymes, neuronal (nNOS) and endothelial (eNOS); and the retinoic acid (RA) signaling pathway. Regulation of other biological pathways and themes was detected by gene ontology using the Kyoto Encyclopedia of Genes and Genomes and the NIH's Database for Annotation, Visualization, and Integrated Discovery's GO terms databases. RESULTS Canonical Wnt signaling was found to be regulated, but the non-canonical PCP and Wnt/Ca(2+) pathways were not. Nitric oxide signaling, as measured by the activation of nNOS and eNOS, was also regulated, as was RA signaling. Biological themes related to protein translation (ribosomes), neural signaling, inflammation and immunity, cell cycle, and cell death were (among others) highly regulated in ROP rats. CONCLUSIONS These several genes and pathways identified by NGS might provide novel targets for intervention in ROP.
Collapse
|
9
|
Blom J, Giove T, Deshpande M, Eldred WD. Characterization of nitric oxide signaling pathways in the mouse retina. J Comp Neurol 2013; 520:4204-17. [PMID: 22592770 DOI: 10.1002/cne.23148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitric oxide (NO) is a gaseous neuromodulator with physiological functions in every retinal cell type. NO is synthesized by several nitric oxide synthases (NOS) and often functions through its second messenger, cyclic guanosine monophosphate (cGMP), and protein kinase G (PKG). This study combined NO imaging, immunocytochemistry, biochemistry, and molecular biology to localize NO and its downstream signaling pathways in the mouse retina. Neuronal NOS (nNOS) was localized primarily in puncta in the inner plexiform layer, in amacrine cells, and in somata in the ganglion cell layer. Endothelial NOS was in blood vessels. Light-stimulated NO production imaged with diaminofluorescein was present in somata in the inner nuclear layer and in synaptic boutons in the inner plexiform layer. The downstream target of NO, soluble guanylate cyclase (sGC), was in somata in the inner and outer nuclear layers and in both plexiform layers. Cyclic GMP immunocytochemistry was used functionally to localize sGC that was activated by an NO donor in amacrine, bipolar, and ganglion cells. Cyclic GMP-dependent protein kinase (PKG) Iα was found in bipolar cells, ganglion cells, and both plexiform layers, whereas PKG II was found in the outer plexiform layer, amacrine cells, and somata in the ganglion cell layer. This study shows that the NO/cGMP/PKG signaling pathway is functional and widely distributed in specific cell types in the outer and inner mouse retina. A better understanding of these signaling pathways in normal retina will provide a firm basis for targeting their roles in retinal pathology.
Collapse
Affiliation(s)
- Jan Blom
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
10
|
Nitric oxide amplifies the rat electroretinogram. Exp Eye Res 2010; 91:700-9. [DOI: 10.1016/j.exer.2010.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 07/26/2010] [Accepted: 08/12/2010] [Indexed: 12/30/2022]
|
11
|
Hu SSJ, Arnold A, Hutchens JM, Radicke J, Cravatt BF, Wager-Miller J, Mackie K, Straiker A. Architecture of cannabinoid signaling in mouse retina. J Comp Neurol 2010; 518:3848-66. [PMID: 20653038 DOI: 10.1002/cne.22429] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cannabinoid receptors and their ligands constitute an endogenous signaling system that is found throughout the body, including the eye. This system can be activated by Delta(9)-tetrahydrocannabinol, a major drug of abuse. Cannabinoids offer considerable therapeutic potential in modulating ocular immune and inflammatory responses and in regulating intraocular pressure. The location of cannabinoid receptor 1 (CB(1)) in the retina is known, but recently a constellation of proteins has been identified that produce and break down endocannabinoids (eCBs) and modulate CB(1) function. Localization of these proteins is critical to defining specific cannabinoid signaling circuitry in the retina. Here we show the localization of diacylglycerol lipase-alpha and -beta (DGLalpha/beta), implicated in the production of the eCB 2-arachidonoyl glycerol (2-AG); monoacylglycerol lipase (MGL) and alpha/beta-hydrolase domain 6 (ABHD6), both implicated in the breakdown of 2-AG; cannabinoid receptor-interacting protein 1a (CRIP1a), a protein that may modulate CB(1) function; and fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase (NAAA), which have been shown to break down the eCB anandamide and related acyl amides. Our most prominent finding was that DGLalpha is present in postsynaptic type 1 OFF cone bipolar cells juxtaposed to CB(1)-containing cone photoreceptor terminals. CRIP1a is reliably presynaptic to DGLalpha, consistent with a possible role in cannabinoid signaling, and NAAA is restricted to retinal pigment epithelium, whereas DGLbeta is limited to retinal blood vessels. These results taken together with previous anatomical and functional studies define specific cannabinoid circuitry likely to modulate eCB signaling at the first synapse of the retina as well as in the inner plexiform layer.
Collapse
Affiliation(s)
- Sherry Shu-Jung Hu
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nemargut JP, Wang GY. Inhibition of nitric oxide synthase desensitizes retinal ganglion cells to light by diminishing their excitatory synaptic currents under light adaptation. Vision Res 2009; 49:2936-47. [PMID: 19772868 DOI: 10.1016/j.visres.2009.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/11/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
The effect of inhibiting nitric oxide synthase (NOS) on the visual responses of mouse retinal ganglion cells (RGCs) was studied under light adaptation by using patch-clamp recordings. The results demonstrated that NOS inhibitor, l-NAME, reduced the sensitivity of RGCs to light under light adaptation at different ambient light conditions. These observations were seen in all cells that recordings were made from. l-NAME diminished the excitatory synaptic currents (EPSCs), rather than increasing the inhibitory synaptic currents, of RGCs to reduce the sensitivity of RGCs to light. Cones may be the sites that l-NAME acted to diminish the EPSCs of RGCs.
Collapse
Affiliation(s)
- Joseph P Nemargut
- Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, United States
| | | |
Collapse
|
13
|
Abstract
Nitric oxide (NO) is a gaseous neuromodulator that has physiological functions in every cell type in the retina. Evidence indicates that NO often plays a role in the processing of visual information in the retina through the second messenger cyclic guanosine monophosphate (cGMP). Despite numerous structural and functional studies of this signaling pathway in the retina, none have examined many of the elements of this pathway within a single study in a single species. In this study, the NO/cGMP pathway was localized to specific regions and cell types within the inner and outer retina. We have immunocytochemically localized nitric oxide synthase, the enzyme that produces NO, in photoreceptor ellipsoids, four distinct classes of amacrine cells, Müller and bipolar cells, somata in the ganglion cell layer, as well as in processes within both plexiform layers. Additionally, we localized NO production in specific cell types using the NO-sensitive dye diaminofluorescein. cGMP immunocytochemistry was used to functionally localize soluble guanylate cyclase that was activated by an NO donor in select amacrine and bipolar cell classes. Analysis of cGMP and its downstream target, cGMP-dependent protein kinase II (PKGII), showed colocalization within processes in the outer retina as well as in somata in the inner retina. The results of this study showed that the NO/cGMP signaling pathway was functional and its components were widely distributed throughout specific cell types in the outer and inner salamander retina.
Collapse
|
14
|
Dhingra A, Sulaiman P, Xu Y, Fina ME, Veh RW, Vardi N. Probing neurochemical structure and function of retinal ON bipolar cells with a transgenic mouse. J Comp Neurol 2008; 510:484-96. [PMID: 18671302 DOI: 10.1002/cne.21807] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Retinal ON bipolar cells make up about 70% of all bipolar cells. Glutamate hyperpolarizes these cells by binding to the metabotropic glutamate receptor mGluR6, activating the G-protein G(o1), and closing an unidentified cation channel. To facilitate investigation of ON bipolar cells, we here report on the production of a transgenic mouse (Grm6-GFP) in which enhanced green fluorescent protein (EGFP), under control of mGluR6 promoter, was expressed in all and only ON bipolar cells. We used the mouse to determine density of ON bipolar cells, which in central retina was 29,600 cells/mm(2). We further sorted the fluorescent cells and created a pure ON bipolar cDNA library that was negative for photoreceptor unique genes. With this library, we determined expression of 27 genes of interest. We obtained positive transcripts for G(o) interactors: regulators of G-protein signaling (RGS), Ret-RGS1 (a variant of RGS20), RGS16, RGS7, purkinje cell protein 2 (PCP2, also called L7 or GPSM4), synembryn (RIC-8), LGN (GPSM2), RAP1GAP, and Gbeta5; cGMP modulators: guanylyl cyclase (GC) 1alpha1, GC1beta1, phosphodiesterase (PDE) 1C, and PDE9A; and channels: inwardly rectifying potassium channel Kir2.4, transient receptor potential TRPC2, and sperm-specific cation channels CatSper 2-4. The following transcripts were not found in our library: AGS3 (GPSM1), RGS10, RGS19 (GAIP), calbindin, GC1alpha2, GC1beta2, PDE5, PDE2A, amiloride-sensitive sodium channel ACCN4, and CatSper1. We then localized Kir2.4 to several cell types and showed that, in ON bipolar cells, the channel concentrates in their dendritic tips. The channels and modulators found in ON bipolar cells likely shape their light response. Additional uses of the Grm6-GFP mouse are also discussed.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Synaptic transmission from photoreceptors to all types of ON bipolar cells is primarily mediated by the mGluR6 receptor. This receptor, which is apparently expressed uniquely in the nervous system by ON bipolar cells, couples negatively to a nonselective cation channel. This arrangement results in a sign reversal at photoreceptor/ON bipolar cell synapse, which is necessary in order to establish parallel ON and OFF pathways in the retina. The synapse is an important target for second messenger molecules that are known to modulate synaptic transmission elsewhere in the nervous system, second messengers that act on a time scale ranging from milliseconds to minutes. This review focuses on two of these molecules, Ca2+ and cGMP, summarizing our current knowledge of how they modulate gain at the photoreceptor/ON bipolar cell synapse, as well as their proposed sites of action within the mGluR6 cascade. The implications of plasticity at this synapse for retinal function will also be examined.
Collapse
Affiliation(s)
- Josefin Snellman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, SHM-B103, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
16
|
Cimini BA, Strang CE, Wotring VE, Keyser KT, Eldred WD. Role of acetylcholine in nitric oxide production in the salamander retina. J Comp Neurol 2008; 507:1952-63. [PMID: 18273886 DOI: 10.1002/cne.21655] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although acetylcholine is one of the most widely studied neurotransmitters in the retina, many questions remain about its downstream signaling mechanisms. In this study we initially characterized the cholinergic neurotransmitter system in the salamander retina by localizing a variety of cholinergic markers. We then examined the link between both muscarinic and nicotinic receptor activation and nitric oxide production by using immunocytochemistry for cyclic guanosine monophosphate (cGMP) as an indicator. We found a large increase in cGMP-like immunoreactivity (cGMP-LI) in the inner retina in response to muscarinic (but not nicotinic) receptor activation. Based on the amplification of mRNA transcripts, receptor immunocytochemistry, and the use of selective antagonists, we identified these receptors as M2 muscarinic receptors. Using double-labeling techniques, we established that these increases in cGMP-LI were seen in GABAergic but not cholinergic amacrine cells, and that the increases were blocked by inhibitors of nitric oxide production. The creation of nitric oxide in response to cholinergic receptor activation may provide a mechanism for modulating the well-known mutual interactions of acetylcholine-glycine-GABA in the inner retina. As GABA and glycine are the primary inhibitory neurotransmitters in the retina, signaling pathways that modulate their levels or release will have major implications for the processing of complex stimuli by the retina.
Collapse
Affiliation(s)
- Beth A Cimini
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
17
|
Yu DY, Li WF, Deng B, Mao XF. Effects of lead on hepatic antioxidant status and transcription of superoxide dismutase gene in pigs. Biol Trace Elem Res 2008; 126:121-8. [PMID: 18709493 DOI: 10.1007/s12011-008-8198-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 07/11/2008] [Indexed: 11/24/2022]
Abstract
Ninety-six castrated boars (Duroc x Landrace x Yorkshire) were randomly divided into four groups, each of which was replicated three times with eight pigs. The groups received the same basal diet supplemented with 0, 5, 10, and 20 mg/kg lead, respectively. The malondialdehyde and glutathione levels, antioxidant enzymes activities, and zinc/copper superoxide dismutase (Zn/Cu SOD) mRNA content in the liver were determined to evaluate the lead hepatic intoxication caused by the lead. Results showed the increased lipid peroxides level and the reduced glutathione content, along with a concomitant decrease in the activities of superoxide dismutase, catalase, and glutathione peroxidase. Moreover, the level of hepatic Zn/Cu SOD mRNA was also significantly reduced. We suggest potential mechanism for lead intoxication in liver as follows: lead causes parallel decrease in Zn/Cu SOD mRNA and activities of antioxidant enzymes, leading to the declined ability of scavenging free radicals with excessive production of lipid peroxides, which seriously damages the hepatic structure and function.
Collapse
Affiliation(s)
- D Y Yu
- College of Animal Science, Feed Science Institute, Zhejiang University, No. 164, Qiutao North Road, Hangzhou 310029, People's Republic of China.
| | | | | | | |
Collapse
|
18
|
Changes of nitric oxide synthase and cyclic guanosine monophosphate in form deprivation myopia in guinea pigs. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200712020-00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
19
|
Time-course of changes to nitric oxide signaling pathways in form-deprivation myopia in guinea pigs. Brain Res 2007; 1186:155-63. [PMID: 17999927 DOI: 10.1016/j.brainres.2007.09.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 09/18/2007] [Accepted: 09/26/2007] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the time-course change of nitric oxide synthase (NOS) activity and cyclic GMP (cGMP) concentration in the posterior retina, choroid and sclera after differing periods of form-deprivation in guinea pigs. Three groups of guinea pigs were subjected to monocular FD for 7, 14 or 21 days. NOS activity and cGMP concentrations in ocular tissues of FD eyes and control eyes were analyzed by radioimmunoassay. The presence of NOS isoforms was detected by immunohistochemistry. Guinea pigs presented with considerable myopia after 14 days of FD. Retinal NOS activity in the FD group was lower than in the control group after 7 days of FD and was higher than in the control group after 14 and 21 days of FD. The choroidal and scleral NOS activities in the FD groups were higher than in the control groups after 21 days. The cGMP concentrations in the FD groups were higher than in the control groups at 21 days of the retinal, choroidal, and scleral tissues. Furthermore, the retinal cGMP concentration in the FD group was also significantly elevated at 14 days relative to the control group. We detected expression of three NOS isoforms in guinea pig ocular tissues. Our main observations were a change in NOS activity and an up-regulation in cGMP concentrations in posterior ocular tissues during the development of myopia. The function of elevated NOS activity may be mediated by cGMP.
Collapse
|
20
|
Park SH, Kim JH, Kim YH, Park CK. Expression of neuronal nitric oxide synthase in the retina of a rat model of chronic glaucoma. Vision Res 2007; 47:2732-40. [PMID: 17825345 DOI: 10.1016/j.visres.2007.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 07/13/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
Abstract
We investigated the expression of neuronal nitric oxide synthase (nNOS) in a rat retina model of chronic glaucoma, which was produced by electrocauterization of the episcleral vessels. Western-blot analysis showed that nNOS expression was significantly increased in cauterized retinas. nNOS immunoreactivity was observed in the cells of both the inner nuclear layer and the ganglion cell layer. Double labeling of retinal ganglion cells (RGCs) revealed that RGCs in the retina of cauterized rat was nNOS-immunopositive. Systemic administration of L-NAME (N(G)-nitro-L-arginine-methyl-ester), a non-specific NOS inhibitor, reduced RGC loss in cauterized rat retina, but there was no statistical significance (P =.06). These results suggest that the cytotoxicity of excessive NO plays a role in selective RGC loss in glaucoma.
Collapse
Affiliation(s)
- Shin Hae Park
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Socho-Gu, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
21
|
Yu D, Eldred WD. Gycine and GABA interact to regulate the nitric oxide/cGMP signaling pathway in the turtle retina. Vis Neurosci 2006; 22:825-38. [PMID: 16469191 PMCID: PMC1464840 DOI: 10.1017/s0952523805226123] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 07/27/2005] [Indexed: 11/05/2022]
Abstract
Nitric oxide (NO) is a free radical that is important in retinal signal transduction and cyclic guanosine monophosphate (cGMP) is a critical downstream messenger of NO. The NO/cGMP signaling pathway has been shown to modulate neurotransmitter release and gap junction coupling in horizontal cells and amacrine cells, and increase the gain of the light response in photoreceptors. However, many of the mechanisms controlling the production of NO and cGMP remain unclear. Previous studies have shown activation of NO/cGMP production in response to stimulation with N-methyl-d-aspartate (NMDA) or nicotine, and the differential modulation of cGMP production by GABA(A) and GABA(C) receptors (GABA(A)Rs and GABA(C)Rs). This study used cGMP immunocytochemistry and NO imaging to investigate how the inhibitory GABAergic and glycinergic systems modulate the production of NO and cGMP. Our data show that blocking glycine receptors (GLYR) with strychnine (STRY) produced moderate increases in cGMP-like immunoreactivity (cGMP-LI) in select types of amacrine and bipolar cells, and strong increases in NO-induced fluorescence (NO-IF). TPMPA, a selective GABACR antagonist, greatly reduced the increases in cGMP-LI stimulated by STRY, but did not influence the increase in NO-IF stimulated by STRY. Bicuculline (BIC), a GABA(A)R antagonist, however, enhanced the increases in both the cGMP-LI and NO-IF stimulated by STRY. CNQX, a selective antagonist for alpha-Amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid hydrobromide/kainic acid (AMPA/KA) receptors, eliminated both the increases in cGMP-LI and NO-IF stimulated by STRY, while MK801, a selective antagonist for NMDA receptors, slightly increased the cGMP-LI and slightly decreased the NO-IF stimulated by STRY. Finally, double labeling of NO-stimulated cGMP and either GLY or GABA indicated that cGMP predominantly colocalized with GLY. Taken together, these findings support the hypothesis that GLY and GABA interact in the regulation of the NO/cGMP signaling pathway, where GLY primarily inhibits NO production and GABA has a greater effect on cGMP production. Such interacting inhibitory pathways could shape the course of signal transduction of the NO/cGMP pathway under different physiological situations.
Collapse
Affiliation(s)
- Dou Yu
- Boston University, Program in Neuroscience, Massachusetts 02215, USA
| | | |
Collapse
|
22
|
Park JW, Park SJ, Park SH, Kim KY, Chung JW, Chun MH, Oh SJ. Up-regulated expression of neuronal nitric oxide synthase in experimental diabetic retina. Neurobiol Dis 2006; 21:43-9. [PMID: 16023354 DOI: 10.1016/j.nbd.2005.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 06/03/2005] [Accepted: 06/08/2005] [Indexed: 11/18/2022] Open
Abstract
Nitric oxide (NO) can play either a neuroprotective or a neurotoxic role in diverse neurodegenerative conditions. This study investigated the differential expression of neuronal nitric oxide synthase (nNOS) in the streptozotocin-induced diabetic rat retina to clarify the involvement of NO produced from neurons in the early pathogenesis of diabetic retinopathy. A decrease in thickness of the outer retina was evident at 12 and 24 weeks after onset of diabetes. nNOS was immunolocalized in two subtypes of amacrine cells, displaced amacrine cells and in some bipolar cells in the normal retinas. The densities of each type of nNOS-expressing neuron showed no significant differences in the diabetic retinas with the exception of the bipolar cells. The numbers of nNOS bipolar cells at 12 weeks of diabetes increased threefold, showing dendritic polarity of nNOS expression. Protein levels of nNOS increased throughout the diabetic retinas reaching a peak value at 24 weeks of diabetes. Thus, diabetes up-regulates the expression of nNOS in bipolar cells, and NO from these cells may aggravate the degeneration of the outer retina in the diabetic retinas.
Collapse
Affiliation(s)
- Jun-Won Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhan XA, Wang M, Xu ZR, Li WF, Li JX. Effects of fluoride on hepatic antioxidant system and transcription of Cu/Zn SOD gene in young pigs. J Trace Elem Med Biol 2006; 20:83-7. [PMID: 16785047 DOI: 10.1016/j.jtemb.2005.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
Thirty-two barrows (Duroc x Landrace x Yorkshire) were randomly divided into four groups, each of which included eight pigs. The groups received the same basal diet supplemented with 0, 100, 250 and 400mg/kg fluoride, respectively. The malondialdehyde (MDA) and glutathione (GSH) levels, antioxidant enzymes activities and zinc/copper superoxide dismutase (Cu/Zn SOD) mRNA content in the liver were determined to evaluate the fluoride hepatic intoxication. Results showed the increased lipid peroxides (LPO) level and the reduced GSH content, along with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px). Moreover, the level of hepatic Cu/Zn SOD mRNA was also significantly reduced. We suggest the mechanism of fluoride injuring the liver as follows: fluoride causes a decrease in Cu/Zn SOD mRNA and the reduced activities of antioxidant enzymes, leads to the declined ability of scavenging free radicals with excessive production of LPO, which seriously damages the hepatic structure and function.
Collapse
Affiliation(s)
- Xiu An Zhan
- College of Animal Science, Feed Science Institute, Zhejiang University, No. 268, Kaixuan Road, HangZhou 310029, PR China
| | | | | | | | | |
Collapse
|
24
|
Eldred WD, Blute TA. Imaging of nitric oxide in the retina. Vision Res 2005; 45:3469-86. [PMID: 16171845 PMCID: PMC1464841 DOI: 10.1016/j.visres.2005.07.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/22/2005] [Accepted: 07/25/2005] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is the most widespread signaling molecule found in the retina in that it can be made by every retinal cell type. NO is able to influence a wide variety of synaptic mechanisms ranging from increasing or decreasing neurotransmitter release to the modulation of gap junction conductivity. Although biochemical methods can analyze overall levels of NO, such methods cannot indicate the specific cell types involved. In the last few years, fluorescent imaging methods utilizing diaminofluorescein have allowed the real-time visualization of neurochemically or light stimulated NO-induced fluorescence (NO-IF) in specific retinal cells. Recent experiments have shown that this NO-IF can be stabilized using paraformaldehyde fixation. This aldehyde stabilization has allowed the imaging of NO production in the dark and in response to light, as well as the neurochemical modulation of light stimulated NO production. The results of these studies indicate that NO is not always freely diffusible and that NO is largely retained in many cells which make it. The NO production in retina is highly damped in that in the absence of stimulation, the endogenous levels of NO production are extremely low. Finally, different neurochemical or light stimulation protocols activate NO production in specific cells and subcellular compartments. Therefore, although the NO signaling is widespread in retina, it is very selectively activated and has different functions in specific retinal cell types. The use of NO imaging will continue to play a critical role in future studies of the function of NO in retina and other neural systems.
Collapse
Affiliation(s)
- William D Eldred
- Laboratory of Visual Neurobiology, Department of Biology, Boston University, MA 02215, USA.
| | | |
Collapse
|
25
|
Abstract
The visual system can adjust its sensitivity over a wide range of light intensities. Photoreceptors account for some of this adjustment, but there is evidence that postreceptoral processes also exist. To investigate the latter, we pharmacologically mimicked the effects of light stimulation on mouse On bipolar cells, thus avoiding confounding effects of receptoral mechanisms. Here, we report that cGMP selectively enhances responses to dim, but not bright, stimuli through a purely postsynaptic mechanism. This action of cGMP was completely blocked by inhibitors of cGMP-dependent kinase. We propose that cGMP-dependent kinase decreases coupling of the On bipolar cell glutamate receptor to the downstream cascade, thus amplifying small decreases in photoreceptor transmitter levels that would otherwise go undetected by the visual system.
Collapse
Affiliation(s)
- Josefin Snellman
- Department of Neuroscience, Albert Einstein College of Medicine, The Rose F. Kennedy Center, Bronx, New York 10461, USA.
| | | |
Collapse
|
26
|
Wellard JW, Morgan IG. Inhibitory modulation of photoreceptor melatonin synthesis via a nitric oxide-mediated mechanism. Neurochem Int 2004; 45:1143-53. [PMID: 15380624 DOI: 10.1016/j.neuint.2004.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 06/23/2004] [Accepted: 06/23/2004] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) has been suggested to have many physiological functions in the vertebrate retina, including a role in light-adaptive processes. The aim of this study was to examine the influence of the NO-donor sodium nitroprusside (SNP) on the activity of arylalkylamine-N-acetyltransferase (AA-NAT; EC. 2.3.1.87), the activity of which responds to light and reflects the changes in retinal melatonin synthesis--a key feature of light-adaptive responses in photoreceptors. Incubation of dark-adapted and dark-maintained retinas with SNP lead to the NO-specific suppression of AA-NAT activity, with NO suppressing AA-NAT activity to a level similar to that seen in the presence of dopaminergic agonists or light. Increased levels of cGMP appeared to be causally involved in the suppression of AA-NAT activity by SNP, as non-hydrolysable analogues of cGMP and the cGMP-specific phosphodiesterase (PDE) inhibitor zaprinast also significantly suppressed AA-NAT activity, while an inhibitor of soluble guanylate cyclase blocked the effect of SNP. While this chain of events may not be part of the normal physiology of the retina, it could be important in pathological circumstances that are associated with marked increase in levels of cGMP, as is found to be the case in certain forms photoreceptor degeneration, which are produced by defects in cGMP phosphodiesterase activity.
Collapse
Affiliation(s)
- John W Wellard
- Visual Sciences Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra ACT 2601, Australia
| | | |
Collapse
|
27
|
Yu D, Eldred WD. GABA(A) and GABA(C) receptor antagonists increase retinal cyclic GMP levels through nitric oxide synthase. Vis Neurosci 2004; 20:627-37. [PMID: 15088716 DOI: 10.1017/s0952523803206052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signal transduction pathway plays a role in every retinal cell type. Previous studies have shown that excitatory glutamatergic synaptic pathways can increase cGMP-like immunoreactivity (cGMP-LI) in retina through stimulation of NO production, but little is known about the role of synaptic inhibition in the modulation of cGMP-LI. Gamma-amino-n-butyric acid (GABA) plays critical roles in modulating excitatory synaptic pathways in the retina. Therefore, we used GABA receptor antagonists to explore the role of GABAergic inhibitory synaptic pathways on the modulation of the NO/cGMP signal-transduction system. Cyclic GMP immunocytochemistry was used to investigate the effects of the GABA receptor antagonists bicuculline, picrotoxin, and (1,2,5,6-tetrahyropyridin-4-yl) methylphosphinic acid (TPMPA) on levels of cGMP-LI. Cyclic GMP-LI was strongly increased in response to the GABA(A) receptor antagonist bicuculline, while the GABA(C) receptor antagonist TPMPA had little effect on cGMP-LI. The GABA(A)/GABA(C) receptor antagonist, picrotoxin, caused a moderate increase in cGMP-LI, which was mimicked by the combination of bicuculline and TPMPA. The nitric oxide synthase inhibitor, S-methyl-L-thiocitrulline (SMTC), blocked the increased cGMP-LI in response to stimulation with either bicuculline or picrotoxin. Treatments with either of the glutamate receptor antagonists (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) partially blocked the increases in cGMP-LI seen in response to bicuculline, but a combination of MK-801 and CNQX completely eliminated these increases. These results suggest that inhibitory synaptic pathways involving both types of GABA receptors work through excitatory glutamatergic receptors to regulate the NO/cGMP signal-transduction pathway in retina.
Collapse
Affiliation(s)
- Dou Yu
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
28
|
Liu G, Chai C, Cui L. Fluoride causing abnormally elevated serum nitric oxide levels in chicks. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2003; 13:199-204. [PMID: 21782655 DOI: 10.1016/s1382-6689(03)00002-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Accepted: 01/07/2003] [Indexed: 05/31/2023]
Abstract
Serum fluoride, nitric oxide (NO), malondialdehyde (MDA) contents and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities were determined in chicks treated with graded doses of sodium fluoride. Compared with chicks in the control group, in the groups treated with fluoride, serum NO and MDA levels largely increased, and the activities of SOD, GSH-Px, and CAT decreased, most of which changed significantly (P<0.05). Serum fluoride levels significantly and positively correlated with serum NO, MDA levels, respectively (P<0.05), and significantly and negatively with serum SOD, GSH-Px, CAT activities, respectively (P<0.05). The results indicated fluoride was associated with the elevated NO levels and the decreased activities of antioxidant enzymes and the deposit of lipid peroxides (LPO). We suggest the mechanism of fluoride injuring soft tissues as follows: fluoride causes excessive production of NO, LPO and oxygen free radicals, which can damage seriously the structure and function of soft tissues.
Collapse
Affiliation(s)
- Guoyan Liu
- Department of Animal Science, College of Agriculture and Biology, Shanghai JiaoTong University, Shanghai 201101, PR China
| | | | | |
Collapse
|
29
|
Harumi T, Watanabe T, Yamamoto T, Tanabe Y, Suzuki N. Expression of membrane-bound and soluble guanylyl cyclase mRNAs in embryonic and adult retina of the medaka fish Oryzias latipes. Zoolog Sci 2003; 20:133-40. [PMID: 12655176 DOI: 10.2108/zsj.20.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Localization of mRNAs for four membrane-bound guanylyl cyclases (membrane GCs; OlGC3, OlGC4, OlGC5, and OlGC-R2), three soluble guanylyl cyclase subunits (soluble GC; OlGCS-alpha(1), OlGCS-alpha(2), and OlGCS-beta(1)), neuronal nitric oxide synthase (nNOS), and cGMP-dependent protein kinase I (cGK I) was examined in the embryonic and adult retinas of the medaka fish Oryzias latipes by in situ hybridization. All of the membrane GC mRNAs were detected in the photoreceptor cells of the adult and embryonic retinas, but in different parts; the OlGC3 and OlGC5 mRNAs were expressed in the proximal part and the OlGC4 and OlGC-R2 mRNAs were expressed in the outer nuclear layer. The mRNA for nNOS was expressed in a scattered fashion on the inner side of the inner nuclear layer in the adult and embryonic retinas. The mRNAs (OlGCS-alpha(2) and OlGCS- beta(1)) of two soluble GC subunits (alpha(2) and beta(1)) were expressed mainly in the inner nuclear layer and the ganglion cell layer of the embryonic retina while the mRNAs of the soluble GC alpha(1) subunit and cGK I were not detected in either the adult or embryonic retina. These results suggest that NO itself and/or the cGMP generated by soluble GC (alpha(2)/beta(1) heterodimer) play a novel role in the neuronal signaling and neuronal development in the medaka fish embryonic retina in addition to the role played by phototransduction through membrane GCs in the adult and embryonic retinas.
Collapse
Affiliation(s)
- Tatsuo Harumi
- Department of Anatomy, Asahikawa Medical College, Hokkaido, Japan.
| | | | | | | | | |
Collapse
|
30
|
Haamedi SN, Djamgoz MBA. Dopamine and nitric oxide control both flickering and steady-light-induced cone contraction and horizontal cell spinule formation in the teleost (carp) retina: serial interaction of dopamine and nitric oxide. J Comp Neurol 2002; 449:120-8. [PMID: 12115683 DOI: 10.1002/cne.10278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adaptation to ambient light, which is an important characteristic of the vertebrate visual system, involves cellular and subcellular (synaptic) plasticity of the retina. The present study investigated dopamine (DA) and nitric oxide (NO) as possible neurochemical modulators controlling cone photomechanical movements (PMMs) and horizontal cell (HC) spinules in relation to steady and flickering light adaptation in the carp retina. Haloperidol (HAL; a nonspecific DA receptor blocker) or cPTIO (a NO scavenger) largely inhibited the cone PMMs and HC spinule formation induced by either steady or flickering light. These results suggested that both DA and NO could be involved in the light-adaptation changes induced by either pattern of input and that DA and NO effects may not be completely independent. The possibility that NO and DA interact serially was evaluated pharmacologically by cross-antagonist application (i.e., DA + cPTIO or NO + HAL). When a NO donor was coapplied with HAL to dark-adapted eyecups, normal light-adaptive cone PMMs and HC spinules occurred. In contrast, when DA was applied in the presence of cPTIO, the dark-adapted state persisted. It was concluded 1) that DA and NO are both light-adaptive neurochemicals, released in the retina during either steady or flickering light; 2) that the effects of DA and NO on light-adaptive cone PMMs and HC spinules do not occur in parallel; and 3) that NO and DA act mainly in series, specifically as follows: Light --> DA --> NO --> Cone PMMs + HC spinules.
Collapse
Affiliation(s)
- Sakineh N Haamedi
- Neurobiology Group, Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom.
| | | |
Collapse
|
31
|
Shiells RA, Falk G. Potentiation of 'on' bipolar cell flash responses by dim background light and cGMP in dogfish retinal slices. J Physiol 2002; 542:211-20. [PMID: 12096062 PMCID: PMC2290387 DOI: 10.1113/jphysiol.2002.019752] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The high sensitivity of the vertebrate visual system results from amplification inherent in phototransduction in rods and from the amplification of rod signals on their synaptic transfer at the first synapse with 'on' bipolar cells. These cells possess a metabotropic glutamate receptor linked via a cGMP cascade to the control of cGMP-activated channels. In the study presented here, we show that very dim background light, isomerising only one rhodopsin in 1 out of 10 rods per second, potentiates 'on' bipolar cell responses to superimposed flashes. Responses to dim flashes, which were undetectable above the noise in the dark, were boosted above the increased noise level induced by the background. This potentiation could be reproduced by elevating cGMP, which increases with light, or by dialysing the cells with a non-hydrolysable cGMP analogue. Inhibition of tyrosine kinase activity also reproduced the effect and induced a speeding up of the rising phase of the flash response, similar to the action of dim background light. Conversely, inhibition of tyrosine phosphatase activity blocked the potentiation. These results suggest that cGMP promotes tyrosine-site dephosphorylation of 'on' bipolar cell cGMP-activated channels, resulting in a rise in the sensitivity to cGMP, as has recently been demonstrated for rod cGMP-activated channels. This constitutes a positive feedback mechanism such that as cGMP increases with light, the sensitivity of the channels to cGMP increases and boosts the signal above background noise. This mechanism would allow stochastic resonance to occur, facilitating single-photon detection when dark-adapted, and may therefore lead to improved discrimination.
Collapse
Affiliation(s)
- R A Shiells
- Biophysics Unit, Physiology Department, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
32
|
Abstract
PURPOSE To examine the retinal blood flow in normal eyes before and during retinal stimulation by flickering light. DESIGN A prospective cross-sectional study. PARTICIPANTS AND TESTING: Twenty-seven eyes of 27 normal subjects with a mean age +/- SD of 38 +/- 15 years (study I) and 21 eyes of 21 normal subjects with a mean age +/- SD of 46 +/- 17 years (study II) were examined with respect to capillary retinal blood flow and central retinal artery and central retinal vein blood flow velocities during flickering light stimulation. A luminance flicker light with a frequency of 8 Hz increased the neuronal activity of retinal ganglion cells. In study I, the retinal capillary blood flow was measured before and during flickering by scanning laser Doppler flowmetry (670 nm, Heidelberg Retina Flowmeter). In study II, the blood flow velocities in the central retinal artery and central retinal vein were examined by pulsed Doppler sonography. MAIN OUTCOME MEASURES Change in blood flow velocities in the central retinal artery and vein and in retinal capillary blood flow after full-field flicker stimulation. RESULTS In study I, measurements of blood flow during retinal flicker stimulation showed a significant increase in the mean value of blood flow +/- SD from 317 +/- 72 arbitrary units to 416 +/- 103 arbitrary units. The change was on average 46 +/- 19%. In study II, the systolic and end-diastolic blood flow velocities in the central retinal artery increased significantly (P < 0.0001): systolic, 9 cm/s to 15 cm/s (+62%); end-diastolic, 2.7 cm/s to 5.3 cm/s (+96%). In the central retinal vein, the systolic and end-diastolic blood flow velocities increased significantly (P < 0.0001): systolic, 4.3 cm/s to 6.7 cm/s (+56%); end-diastolic, 1.8 cm/s to 3.6 cm/s (+100%). The authors found no significant change in blood pressure and heartbeat frequency. CONCLUSIONS Visual stimulation of the retina by flickering light strongly increased the juxtapapillary retinal capillary blood flow and central retinal artery blood flow velocity in normal eyes.
Collapse
Affiliation(s)
- George Michelson
- Augenklinik mit Poliklinik, Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | |
Collapse
|
33
|
Barabás P, Kovács I, Kovács R, Pálhalmi J, Kardos J, Schousboe A. Light-induced changes in glutamate release from isolated rat retina is regulated by cyclic guanosine monophosphate. J Neurosci Res 2002; 67:149-55. [PMID: 11782958 DOI: 10.1002/jnr.10117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Isolated rat retina was preloaded with [(14)C]glutamate and subsequently superfused to follow release of glutamate (Glu). After 20 min of superfusion in the dark, exposure of the [(14)C]Glu preloaded rat retina to a single train of white light pulses reduced Glu efflux significantly in the absence as well as in the presence of low (4 microM) and high (0.5 mM) concentrations of the Glu uptake inhibitor trans-L-pyrrolidine-2,4-dicarboxylate (t-PDC). The dark-light response was the highest in the presence of 4 microM t-PDC by establishing a plateau at 75% +/- 7% of the tonic Glu release in the dark (100%). Displaying transient to saturating responses with increasing relative luminance, time series of four trains of white light pulses arrived at a plateau of 85% +/- 10%. The cyclic guanosine monophosphate (cGMP) phosphodiesterase inhibitor Zaprinast (200 microM) antagonized the effect of the light series, leading to a plateau of 115% +/- 9%. Exposure of the retina to the guanylyl cyclase inhibitor LY83583 (30 and 100 microM) showed fast, transient responses characterized by peaks at 90% +/- 1% and 80% +/- 3%, respectively.
Collapse
Affiliation(s)
- Péter Barabás
- Department of Neurochemistry, Insitute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
34
|
Shiells RA, Falk G. Rectification of cGMP-activated channels induced by phosphorylation in dogfish retinal 'on' bipolar cells. J Physiol 2001; 535:697-702. [PMID: 11559768 PMCID: PMC2278814 DOI: 10.1111/j.1469-7793.2001.00697.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Whole-cell current responses to brief flashes were obtained from voltage-clamped 'on' bipolar cells in dark-adapted dogfish retinal slices. When internal Ca2+ was buffered to low levels, the current-voltage (I-V) relation of their flash responses was linear, with a reversal potential near 0 mV. 2. On elevating internal Ca2+ the light-dependent I-V relation showed outward rectification, such that the current response to a flash decreased e-fold for a hyperpolarization of 22 mV. 3. Inclusion of a CaMKII inhibitory peptide in the patch-pipette solution removed the rectification even in the presence of 50 microM Ca2+. 4. These results are consistent with CaMKII phosphorylation of cGMP-activated channels leading to a voltage-dependent reduction in conductance (outward rectification) and a reduced light response. The voltage-dependent property suggests that phosphorylation creates an energy barrier near the outer part of the channel, reducing the flow principally of monovalent cations. 5. This is the first reported instance of CaMKII phosphorylation acting to change the electrical characteristics of a membrane channel from linear to rectifying. 6. Ca2+-dependent desensitization by background light and channel rectification may underlie the change in centre-surround organization of the visual system with light adaptation.
Collapse
Affiliation(s)
- R A Shiells
- Biophysics Unit, Physiology Department, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
35
|
Abstract
In the recent past there has been great interest in the blood supply of the optic nerve head (ONH), how to evaluate ONH blood flow, and what factors influence it, in health and disease. This is because evidence has progressively accumulated that there is vascular insufficiency in the ONH in both anterior ischemic optic neuropathy (AION) and glaucomatous optic neuropathy (GON)-two major causes of blindness or of seriously impaired vision in man. For the management and prevention of visual loss in these two disorders, a proper understanding of the factors that influence the blood flow in the ONH is essential. The objective of this paper is, therefore, to review and discuss all these factors. The various factors that influence the vascular resistance, mean blood pressure and intraocular pressure are discussed, to create a better basic understanding of the ONH blood flow, which may help us toward a logical strategy for prevention and management of ischemic disorders of the ONH.
Collapse
Affiliation(s)
- S S Hayreh
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, IA 52242-1091, USA.
| |
Collapse
|
36
|
Shiells RA, Falk G. Activation of Ca2+--calmodulin kinase II induces desensitization by background light in dogfish retinal 'on' bipolar cells. J Physiol 2000; 528 Pt 2:327-38. [PMID: 11034622 PMCID: PMC2270140 DOI: 10.1111/j.1469-7793.2000.00327.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Accepted: 07/26/2000] [Indexed: 11/28/2022] Open
Abstract
Retinal 'on' bipolar cells possess a metabotropic glutamate receptor (mGluR6) linked to the control of a G-protein and cGMP-activated channels which functions to generate high synaptic amplification of rod signals under dark-adapted conditions. Desensitization of 'on' bipolar cells is initiated by a rise in Ca2+ during background light too weak to adapt rod photoreceptors. Desensitization could also be elicited by raising intracellular Ca2+ above 1 microM. In order to investigate the mechanism of desensitization, whole-cell current responses to brief flashes and to steps of light were obtained from voltage-clamped 'on' bipolar cells in dark-adapted dogfish retinal slices. The inclusion of Ca2+-calmodulin kinase II (CaMKII) inhibitor peptides in the patch pipette solutions not only blocked desensitization of 'on' bipolar cells by dim background light and by 50 microM Ca2+, but also increased their flash sensitivity. The substrate of phosphorylation by CaMKII is the 'on' bipolar cell cGMP-activated channels. Desensitization probably results from a reduction in their sensitivity to cGMP and a voltage-dependent decrease in their conductance. A role for protein kinase C (PKC) in this process was excluded since activating PKC independently of Ca2+ with the phorbol ester PMA failed to induce desensitization of 'on' bipolar cells.
Collapse
Affiliation(s)
- R A Shiells
- Biophysics Unit, Physiology Department, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
37
|
Abstract
The development of immunocytochemistry has led to a better understanding of synaptic transmission carried out by neuroactive substances in the mammalian brain, including the retina. In the mammalian retina, nitric oxide (NO) is widely accepted as a neuromodulator. Histochemistry based on NADPH-d and immunocytochemistry based on nitric oxide synthase (NOS) have been used to identify the presence of nitric oxide in the mammalian retina. Certain types of amacrine cells and a class of displaced amacrine cells have been labeled consistently in all mammalian retinae studied to date. Other cell types showing NADPH-d reactivity or NOS immunoreactivity varied between species. NADPH-d reactive or NOS immunoreactive amacrine cells may serve as a source of NO for amacrine, bipolar, and ganglion cells in the inner retina, whereas interplexiform cells, bipolar cells, and horizontal cells may serve as a source of NO for the outer retina of mammals.
Collapse
Affiliation(s)
- I B Kim
- Department of Anatomy, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | |
Collapse
|
38
|
Johansson K, Bruun A, Grasbon T, Ehinger B. Growth of postnatal rat retina in vitro. Development of neurotransmitter systems. J Chem Neuroanat 2000; 19:117-28. [PMID: 10936747 DOI: 10.1016/s0891-0618(00)00058-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study, we demonstrate that explanted neonatal rat retina can be maintained in culture for periods up to 3 weeks. The cultured retinas displayed a distinct layering that was almost identical to litter-matched retinas of the same age, but the majority of the ganglion cells did not survive and photoreceptor outer segments did not develop properly. Distinct synaptophysin immunoreactivity was expressed in both the inner and outer plexiform layers of cultured retina and the pattern mimicked that one observed in vivo. After 2-3 weeks in vitro, the inner retina expressed immunoreactivities to various components of the cholinergic and nitrergic transmitter systems, including nitric oxide activated cyclic GMP immunoreactivity. The investigated cell populations displayed similar distribution patterns as in situ, but morphological differences appeared in vitro. Such differences were mainly observed as irregularities in the arborization patterns in the inner part of the inner plexiform layer. We suggest that these discrepancies may arise as a result of reduced ganglion cell survival. Our observations demonstrate that some neurotransmitter systems develop in vitro and their neural circuitry appears similar to the in vivo situation. The presence of synapses, receptor proteins and transmitter substances implies that neural communication can occur in cultured retinas.
Collapse
Affiliation(s)
- K Johansson
- Department of Ophthalmology, Wallenberg Retina Center, Lund University Hospital, SE-221 85 Lund, Sweden.
| | | | | | | |
Collapse
|
39
|
Chapter IV Nitric oxide in the retina. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
Gelperin A, Flores J, Raccuia-Behling F, Cooke IR. Nitric oxide and carbon monoxide modulate oscillations of olfactory interneurons in a terrestrial mollusk. J Neurophysiol 2000; 83:116-27. [PMID: 10634858 DOI: 10.1152/jn.2000.83.1.116] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spontaneous or odor-induced oscillations in local field potential are a general feature of olfactory processing centers in a large number of vertebrate and invertebrate species. The ubiquity of such oscillations in the olfactory bulb of vertebrates and analogous structures in arthropods and mollusks suggests that oscillations are fundamental to the computations performed during processing of odor stimuli. Diffusible intercellular messengers such as nitric oxide (NO) and carbon monoxide (CO) also are associated with central olfactory structures in a wide array of species. We use the procerebral (PC) lobe of the terrestrial mollusk Limax maximus to demonstrate a role for NO and CO in the oscillatory dynamics of the PC lobe: synthesizing enzymes for NO and CO are associated with the PC lobes of Limax, application of NO to the Limax PC lobe increases the local field potential oscillation frequency, whereas block of NO synthesis slows or stops the oscillation, the bursting cells of the PC lobe that drive the field potential oscillation are driven to higher burst frequency by application of NO, the nonbursting cells of the PC lobe receive trains of inhibitory postsynaptic potentials, presumably from bursting cells, due to application of NO, and application of CO to the PC lobe by photolysis of caged CO results in an increase in oscillation frequency proportional to CO dosage.
Collapse
Affiliation(s)
- A Gelperin
- Biological Computation Research Department, Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA.
| | | | | | | |
Collapse
|
41
|
Blute TA, Lee HK, Huffmaster T, Haverkamp S, Eldred WD. Localization of natriuretic peptides and their activation of particulate guanylate cyclase and nitric oxide synthase in the retina. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000904)424:4<689::aid-cne10>3.0.co;2-k] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Wadhwa S, Nag TC. Nitric oxide synthase immunoreactivity in the developing and adult human retina. J Biosci 1999. [DOI: 10.1007/bf02942660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Kim IB, Lee EJ, Kim KY, Ju WK, Oh SJ, Joo CK, Chun MH. Immunocytochemical localization of nitric oxide synthase in the mammalian retina. Neurosci Lett 1999; 267:193-6. [PMID: 10381009 DOI: 10.1016/s0304-3940(99)00363-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The localization of nitric oxide synthase (NOS) was investigated by immunocytochemistry and immunoblotting using an antiserum against neuronal NOS in the rat, mouse, guinea pig, rabbit and cat retinae. Western blot analysis of retinal tissue extracts showed that the NOS-immunoreactive band of 155 kDa was present in all species. In the rat, mouse, guinea pig and rabbit retinae, two types of amacrine cells and a class of displaced amacrine cells were consistently NOS-labeled. In the cat retina, unlike other mammals, one type of amacrine cells and two types of displaced amacrine cells showed NOS immunoreactivity. NOS immunoreactivity was further found in some bipolar cells of the rat and guinea pig, some interplexiform cells of the mouse, some photoreceptor cells of the rabbit and some Müller cells of the cat.
Collapse
Affiliation(s)
- I B Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul
| | | | | | | | | | | | | |
Collapse
|
44
|
Wei JY, Roy DS, Leconte L, Barnstable CJ. Molecular and pharmacological analysis of cyclic nucleotide-gated channel function in the central nervous system. Prog Neurobiol 1998; 56:37-64. [PMID: 9723130 DOI: 10.1016/s0301-0082(98)00029-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most functional studies of cyclic nucleotide-gated (CNG) channels have been confined to photoreceptors and olfactory epithelium, in which CNG channels are abundant and easy to study. The widespread distribution of CNG channels in tissues throughout the body has only recently been recognized and the functions of this channel family in many of these tissues remain largely unknown. The molecular biological and pharmacological properties of the CNG channel family are summarized in order to put in context studies aimed at probing CNG channel functions in these tissues using pharmacological and genetic methods. Compounds have now been identified that are useful in distinguishing CNG channel activated pathways from cAMP/cGMP dependent-protein kinases or other pathways. The ways in which these interact with CNG channels are understood and this knowledge is leading to the identification of more potent and more specific CNG channel subtype-specific agonists or antagonists. Recent molecular and genetic analyses have identified novel roles of CNG channels in neuronal development and plasticity in both invertebrates and vertebrates. Targeting CNG channels via specific drugs and genetic manipulation (such as knockout mice) will permit better understanding of the role of CNG channels in both basic and higher orders of brain function.
Collapse
Affiliation(s)
- J Y Wei
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
45
|
Haverkamp S, Eldred WD. Localization of nNOS in photoreceptor, bipolar and horizontal cells in turtle and rat retinas. Neuroreport 1998; 9:2231-5. [PMID: 9694205 DOI: 10.1097/00001756-199807130-00015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuronal nitric oxide synthase (nNOS), an enzyme that synthesizes NO, has been found in the outer retina using light microscopic immunocytochemistry, but its subcellular localization is unknown. We used electron immunocytochemistry to examine nNOS-like immunoreactivity (nNOS-LI) in the outer plexiform layer of turtle and rat retinas. In turtle, nNOS-LI was present in some bipolar and horizontal cell processes at photoreceptor ribbon synapses and at basal junctions between photoreceptors. In rat, nNOS-LI was present in some rod bipolar and B-type horizontal cell axon terminals at rod ribbon synapses. These results indicate that in vertebrates, NO is produced by all of the major nerve cell types in the outer retina at specific synaptic contacts.
Collapse
Affiliation(s)
- S Haverkamp
- Boston University, Department of Biology, MA 02215, USA
| | | |
Collapse
|
46
|
Djamgoz MB, Petruv R, Yasui S, Furukawa T, Yamada M. Modulation of chromatic difference in receptive field size of H1 horizontal cells in carp retina: dopamine- and APB-sensitive mechanisms. Neurosci Res 1998; 30:13-24. [PMID: 9572576 DOI: 10.1016/s0168-0102(97)00107-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromatic aspects of receptive field size in the H1 horizontal cell syncytium of the carp retina were investigated using spectral photostimuli (blue or red) presented in the form of either a pair of a small spot and annulus, or a narrow moving slit. In the light-adapted retina, the receptive field for the blue stimulus was found to be significantly smaller than that for the red, i.e. there was a chromatic difference in the receptive field size. During the course of dark adaptation, the overall receptive field size increased, but the chromatic difference decreased. Immediately after adaptation to bright light, the receptive field sizes were reduced significantly, but the chromatic difference increased, mainly due to a greater reduction in the receptive field for the blue stimulus. Application of dopamine (5 microM) to a dark-adapted retina gradually decreased the receptive field size for both colours, but the chromatic difference became larger, again due to a greater reduction in the receptive field size for the blue stimulus. 2-Amino-4-phosphonobutyrate (APB) applied to light-adapted retinae at a working concentration of 1 mM, greatly expanded the receptive field size and suppressed the chromatic difference due to the effect being greater for the receptive field for the blue stimulus. The effect of APB was slow and cumulative. On the other hand, intracellular injection of cGMP or dibutyryl-cGMP increased the chromatic difference in the receptive field size. It is suggested (i) that the chromatic difference in the receptive field size could be due to a cGMP-coupled, conductance-decreasing receptor mechanism activated by APB; and (ii) that the mechanism is associated with short-wavelength sensitive cone input to the H1 cells and operates in the light-adapted state of the retina.
Collapse
Affiliation(s)
- M B Djamgoz
- Department of Biology, Imperial College of Science, Technology and Medicine, London, UK.
| | | | | | | | | |
Collapse
|
47
|
Llomovatte DW, Lacoste FF, Zotter C, Sarmiento MI, Rosenstein RE. Photic control of nitric oxide synthase activity in golden hamster retina. Neuroreport 1997; 8:3763-6. [PMID: 9427366 DOI: 10.1097/00001756-199712010-00021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A characterization of nitric oxide synthase (NOS) in the golden hamster retina was performed. Enzymatic activity was partially Ca2+ and calmodulin-dependent, required NADPH, and was inhibited by L-arginine analogs. Retinal NOS activity was higher at midnight than at midday. When the hamster were placed under constant darkness for 24 or 48 h, and killed at equivalent time points, representing subjective day and subjective night respectively, the differences in NOS activity disappeared. One hour of darkness during the day increased, while the same period of light during the night decreased, retinal NOS activity. From these results, it might be presumed that hamster retinal NOS activity is regulated by the photic stimulus.
Collapse
Affiliation(s)
- D W Llomovatte
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
48
|
Ostwald P, Park SS, Toledano AY, Roth S. Adenosine receptor blockade and nitric oxide synthase inhibition in the retina: impact upon post-ischemic hyperemia and the electroretinogram. Vision Res 1997; 37:3453-61. [PMID: 9425522 DOI: 10.1016/s0042-6989(96)00222-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We preformed this study to determine the effect on ocular blood flow and the electroretinogram of either nitric oxide synthase (NOS) inhibition, adenosine receptor blockade or the combination of both after 1 hr of ocular ischemia. Thirty-seven cats under general anesthesia were subjected to 1 hr of complete ischemia in one eye by raising the intraocular pressure above systolic blood pressure. The other eye in each animal served as a non-ischemic control. Arterial blood gas tension, systemic arterial pressure, body temperature, hematocrit, and anesthetic level were controlled in each experiment. Cats were divided into four groups. Group 1 received normal saline injections [intravenous (i.v.) and intravitreal], Group 2 adenosine receptor blockade (0.1 ml of 0.01 M 8-sulfophenyltheophylline intravitreal) and saline i.v., Group 3 NOS inhibition (30 mg/kg l-NG-nitroarginine-methyl-ester i.v.) and saline intravitreal, and Group 4 intravitreal adenosine receptor blockade and NOS inhibition i.v. A subset of Group 3 received l-arginine to investigate the reversibility of NOS inhibition, after the blood flow measurements were completed. Five minutes after the end of ischemia, blood flows in retina and choroid were measured using injections of radioactively labeled microspheres. Electroretinographic (ERG) studies were carried out before treatment, before ischemia, during ischemia, and 1, 2, 3, and 4 hr after ischemia ended. NOS inhibition significantly reduced basal blood flow in the choroid, and in the retina when combined with adenosine receptor blockade. Adenosine receptor blockade completely attenuated post-ischemic hyperemia in the retina, but retinal hyperemia reappeared when adenosine receptor blockade and NOS inhibition were combined. Adenosine receptor blockade had no effect on ERG recovery after ischemia. NOS inhibition led to a reduction of ERG a- and b-wave amplitudes in control eyes, that could be reversed by l-arginine. Nitric oxide (NO) appears to be a significant factor in the regulation of basal blood flow in the choroid. Adenosine appears to be a major mediator of retinal hyperemia after 60 min of ischemia. Since NOS inhibition appeared to have direct effects on ERG wave amplitudes, short-term ERG studies may be of limited use in assessing the role of NO in postischemic recovery of the retina. Our observations correlate well with the emerging role of NO as a neurotransmitter in the retina.
Collapse
Affiliation(s)
- P Ostwald
- Department of Anesthesia and Critical Care, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Recent works have highlighted the role of nitric oxide in a wide array of disease entities, including septic shock, hypertension, cerebral ischemia, and chronic degenerative diseases of the nervous system. The functions of nitric oxide appear very diverse, having actions on vascular tone, neurotransmission, immune cytotoxicity, and many others. Nitric oxide is an important mediator of homeostatic processes in the eye, such as regulation of aqueous humor dynamics, retinal neurotransmission and phototransduction. Changes in its generation or actions could contribute to pathological states such as inflammatory diseases (uveitis, retinitis) or degenerative diseases (glaucoma, retinal degeneration). Localization in the eye and biochemical characteristics of nitric oxide will be reviewed. A better understanding of the nitric oxide pathway will be the key to the development of new approaches to the management and treatment of various ocular diseases.
Collapse
Affiliation(s)
- F Becquet
- Retinal Development, Aging, and Pathology Laboratory, Inserm U450, Claude Bernard Association, University of Paris V, France
| | | | | |
Collapse
|
50
|
Kondo M, Wang L, Bill A. The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats. ACTA OPHTHALMOLOGICA SCANDINAVICA 1997; 75:232-5. [PMID: 9253963 DOI: 10.1111/j.1600-0420.1997.tb00762.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE To elucidate the role of nitric oxide (NO) in the eye and the flicker-induced vascular response. METHODS The blood flow in the retina and different parts of the optic nerve was compared in cats treated with the NO-synthase blocker, N(G)-nitro-L-arginine methyl ester and in control animals. In both groups, one of the eyes was dark-adapted, the other was subjected to 8 Hz flickering light. The regional blood flow was measured with the microsphere method. RESULTS In control animals, flickering light increased blood flow in the retina and optic nerve head by 39% and 256%, respectively. Pretreatment with N(G)-nitro-L-arginine methyl ester prevented this increase in retinal blood flow and markedly reduced the blood flow in the optic nerve heads. CONCLUSION NO release may mediate much of the vasodilating effect of flicker in cats, and play a role in maintaining normal vascular tone in the optic nerve head.
Collapse
Affiliation(s)
- M Kondo
- Department of Physiology and Medical Biophysics, University of Uppsala, Sweden
| | | | | |
Collapse
|