1
|
Robinson TD, Chad JA, Sun YL, Chang PTH, Chen JJ. Testing retrogenesis and physiological explanations for tract-wise white matter aging: links to developmental order, fibre calibre, and vascularization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576373. [PMID: 38328223 PMCID: PMC10849490 DOI: 10.1101/2024.01.20.576373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
To understand the consistently observed spatial distribution of white-matter (WM) aging, developmentally driven theories termed "retrogenesis" have gained traction, positing that the order of WM tract development predicts the order of declines. Regions that develop first are expected to deteriorate the last, i.e. "last-in-first-out". Alternatively, regions which develop most rapidly may also decline most rapidly in aging, or "gains-predict-loss". The validity of such theories remains uncertain, in part due to lack of clarity on the definition of developmental order. Importantly, our recent findings suggest that WM aging is also associated with physiological parameters such as perfusion, which may be linked to fibre metabolic need, which in turn varies with fibre size. Here we address the extent to which the degree of WM aging is determined by development trajectory (i.e. retrogenesis) and/or by physiological state. We obtained microstructural and perfusion measures using data from the Human Connectome Project in Aging (HCP-A), complemented by a meta-analysis involving maps of fibre calibre and macrovascular volume. Our results suggest that (1) while tracts that appear last or finish myelinating first in development display the slowest aging, the pattern of aging is not fully explained by retrogenesis; in fact, time courses of tract emergence and myelination give rise to opposite associations with WM decline; (2) tracts that appear earlier also have higher mean axon calibre and are also associated with lower degrees of WM microstructural aging; (3) such tracts also tend to exhibit relatively sustained CBF with a higher rate of lengthening of the arterial transit times (ATT), suggestive of collateral blood supply. These findings were also sex dependent in a tract-specific manner. Future work will investigate whether these are ultimately influenced by each tract's metabolic demand and the role of macrovascular collateral flow.
Collapse
|
2
|
Barakovic M, Pizzolato M, Tax CMW, Rudrapatna U, Magon S, Dyrby TB, Granziera C, Thiran JP, Jones DK, Canales-Rodríguez EJ. Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology. Front Neurosci 2023; 17:1209521. [PMID: 37638307 PMCID: PMC10457121 DOI: 10.3389/fnins.2023.1209521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit of dMRI signals even when using the most advanced human MRI scanners. Therefore, new MRI methods that are sensitive to small axon radii are needed. In this proof-of-concept investigation, we examine whether a surface-based axonal relaxation process could mediate a relationship between intra-axonal T2 and T1 times and inner axon radius, as measured using postmortem histology. A unique in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting (i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced diffusion-T2 dataset was collected at various echo times to evaluate the model further. The intra-axonal relaxation times were estimated by fitting a diffusion-relaxation model to the orientation-averaged spherical mean signals. Our analysis revealed that the proposed surface-based relaxation model effectively explains the relationship between the estimated relaxation times and the histological axon radius measured in various corpus callosum regions. Using these histological values, we developed a novel calibration approach to predict axon radius in other areas of the corpus callosum. Notably, the predicted radii and those determined from histological measurements were in close agreement.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Stefano Magon
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d’Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
3
|
Mendez Colmenares A, Hefner MB, Calhoun VD, Salerno EA, Fanning J, Gothe NP, McAuley E, Kramer AF, Burzynska AZ. Symmetric data-driven fusion of diffusion tensor MRI: Age differences in white matter. Front Neurol 2023; 14:1094313. [PMID: 37139071 PMCID: PMC10149813 DOI: 10.3389/fneur.2023.1094313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
In the past 20 years, white matter (WM) microstructure has been studied predominantly using diffusion tensor imaging (DTI). Decreases in fractional anisotropy (FA) and increases in mean (MD) and radial diffusivity (RD) have been consistently reported in healthy aging and neurodegenerative diseases. To date, DTI parameters have been studied individually (e.g., only FA) and separately (i.e., without using the joint information across them). This approach gives limited insights into WM pathology, increases the number of multiple comparisons, and yields inconsistent correlations with cognition. To take full advantage of the information in a DTI dataset, we present the first application of symmetric fusion to study healthy aging WM. This data-driven approach allows simultaneous examination of age differences in all four DTI parameters. We used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) in cognitively healthy adults (age 20-33, n = 51 and age 60-79, n = 170). Four-way mCCA + jICA yielded one high-stability modality-shared component with co-variant patterns of age differences in RD and AD in the corpus callosum, internal capsule, and prefrontal WM. The mixing coefficients (or loading parameters) showed correlations with processing speed and fluid abilities that were not detected by unimodal analyses. In sum, mCCA + jICA allows data-driven identification of cognitively relevant multimodal components within the WM. The presented method should be further extended to clinical samples and other MR techniques (e.g., myelin water imaging) to test the potential of mCCA+jICA to discriminate between different WM disease etiologies and improve the diagnostic classification of WM diseases.
Collapse
Affiliation(s)
- Andrea Mendez Colmenares
- BRAiN Laboratory, Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, United States
| | - Michelle B. Hefner
- BRAiN Laboratory, Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, United States
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, United States
| | - Elizabeth A. Salerno
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Jason Fanning
- Department of Health and Exercise Sciences, Wake Forest University, Winston-Salem, NC, United States
| | - Neha P. Gothe
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Edward McAuley
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Arthur F. Kramer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Agnieszka Z. Burzynska
- BRAiN Laboratory, Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, United States
- Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, United States
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
4
|
Malakshan SR, Daneshvarfard F, Abrishami Moghaddam H. A correlational study between microstructural, macrostructural and functional age-related changes in the human visual cortex. PLoS One 2023; 18:e0266206. [PMID: 36662780 PMCID: PMC9858032 DOI: 10.1371/journal.pone.0266206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023] Open
Abstract
Age-related changes in the human brain can be investigated from either structural or functional perspectives. Analysis of structural and functional age-related changes throughout the lifespan may help to understand the normal brain development process and monitor the structural and functional pathology of the brain. This study, combining dedicated electroencephalography (EEG) and magnetic resonance imaging (MRI) approaches in adults (20-78 years), highlights the complex relationship between micro/macrostructural properties and the functional responses to visual stimuli. Here, we aimed to relate age-related changes of the latency of visual evoked potentials (VEPs) to micro/macrostructural indexes and find any correlation between micro/macrostructural features, as well. We studied age-related structural changes in the brain, by using the MRI and diffusion-weighted imaging (DWI) as preferred imaging methods for extracting brain macrostructural parameters such as the cortical thickness, surface area, folding and curvature index, gray matter volume, and microstructural parameters such as mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD). All the mentioned features were significantly correlated with age in V1 and V2 regions of the visual cortex. Furthermore, we highlighted, negative correlations between structural features extracted from T1-weighted images and DWI. The latency and amplitude of the three dominants peaks (C1, P1, N1) of the VEP were considered as the brain functional features to be examined for correlation with age and structural features of the corresponding age. We observed significant correlations between mean C1 latency and GM volume averaged in V1 and V2. In hierarchical regression analysis, the structural index did not contribute to significant variance in the C1 latency after regressing out the effect of age. However, the age explained significant variance in the model after regressing out the effect of structural feature.
Collapse
Affiliation(s)
- Sahar Rahimi Malakshan
- Faculty of Electrical Engineering, Department of Biomedical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Farveh Daneshvarfard
- Faculty of Electrical Engineering, Department of Biomedical Engineering, K.N. Toosi University of Technology, Tehran, Iran
- INSERM U1105, Université de Picardie, CURS, Amiens, France
| | - Hamid Abrishami Moghaddam
- Faculty of Electrical Engineering, Department of Biomedical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Eikenes L, Visser E, Vangberg T, Håberg AK. Both brain size and biological sex contribute to variation in white matter microstructure in middle-aged healthy adults. Hum Brain Mapp 2022; 44:691-709. [PMID: 36189786 PMCID: PMC9842919 DOI: 10.1002/hbm.26093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 01/25/2023] Open
Abstract
Whether head size and/or biological sex influence proxies of white matter (WM) microstructure such as fractional anisotropy (FA) and mean diffusivity (MD) remains controversial. Diffusion tensor imaging (DTI) indices are also associated with age, but there are large discrepancies in the spatial distribution and timeline of age-related differences reported. The aim of this study was to evaluate the associations between intracranial volume (ICV), sex, and age and DTI indices from WM in a population-based study of healthy individuals (n = 812) aged 50-66 in the Nord-Trøndelag health survey. Semiautomated tractography and tract-based spatial statistics (TBSS) analyses were performed on the entire sample and in an ICV-matched sample of men and women. The tractography results showed a similar positive association between ICV and FA in all major WM tracts in men and women. Associations between ICV and MD, radial diffusivity and axial diffusivity were also found, but to a lesser extent than FA. The TBSS results showed that both men and women had areas of higher and lower FA when controlling for age, but after controlling for age and ICV only women had areas with higher FA. The ICV matched analysis also demonstrated that only women had areas of higher FA. Age was negatively associated with FA across the entire WM skeleton in the TBSS analysis, independent of both sex and ICV. Combined, these findings demonstrated that both ICV and sex contributed to variation in DTI indices and emphasized the importance of considering ICV as a covariate in DTI analysis.
Collapse
Affiliation(s)
- Live Eikenes
- Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
| | - Eelke Visser
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK,Donders InstituteRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Torgil Vangberg
- Department of Clinical MedicineUiT The Arctic University of NorwayTromsøNorway,PET CenterUniversity Hospital North NorwayTromsøNorway
| | - Asta K. Håberg
- Department of NeuroscienceNorwegian University of Science and TechnologyTrondheimNorway,Department of Diagnostic Imaging, MR‐CenterSt. Olav's University HospitalTrondheimNorway
| |
Collapse
|
6
|
Chaychi S, Valera E, Tartaglia MC. Sex and gender differences in mild traumatic brain injury/concussion. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:349-375. [PMID: 36038209 DOI: 10.1016/bs.irn.2022.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The high incidence of concussions/mild traumatic brain injury and the significant number of people with persisting concussion symptoms as well as the concern for delayed, neurodegenerative effects of concussions makes them a major public health concern. There is much to learn on concussions with respect to pathophysiology as well as vulnerability and resiliency factors. The heterogeneity in outcome after a concussion warrants a more personalized approach to better understand the biological and psychosocial factors that may affect outcome. In this chapter we address biological sex and gender as they impact different aspects of concussion including incidence, risk factors and outcome. As well, this chapter will provide a more fulsome overview of intimate partner violence, an often-overlooked cause of concussion in women. Applying the sex and gender lens to concussion/mild traumatic brain injury is imperative for discovery of its pathophysiology and moving closer to treatments.
Collapse
Affiliation(s)
- Samaneh Chaychi
- Memory Clinic, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Eve Valera
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, United States
| | - Maria Carmela Tartaglia
- Memory Clinic, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Canadian Concussion Centre, Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Yang Q, Reutens DC, Vegh V. Generalisation of continuous time random walk to anomalous diffusion MRI models with an age-related evaluation of human corpus callosum. Neuroimage 2022; 250:118903. [PMID: 35033674 DOI: 10.1016/j.neuroimage.2022.118903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/22/2022] Open
Abstract
Diffusion MRI measures of the human brain provide key insight into microstructural variations across individuals and into the impact of central nervous system diseases and disorders. One approach to extract information from diffusion signals has been to use biologically relevant analytical models to link millimetre scale diffusion MRI measures with microscale influences. The other approach has been to represent diffusion as an anomalous transport process and infer microstructural information from the different anomalous diffusion equation parameters. In this study, we investigated how parameters of various anomalous diffusion models vary with age in the human brain white matter, particularly focusing on the corpus callosum. We first unified several established anomalous diffusion models (the super-diffusion, sub-diffusion, quasi-diffusion and fractional Bloch-Torrey models) under the continuous time random walk modelling framework. This unification allows a consistent parameter fitting strategy to be applied from which meaningful model parameter comparisons can be made. We then provided a novel way to derive the diffusional kurtosis imaging (DKI) model, which is shown to be a degree two approximation of the sub-diffusion model. This link between the DKI and sub-diffusion models led to a new robust technique for generating maps of kurtosis and diffusivity using the sub-diffusion parameters βSUB and DSUB. Superior tissue contrast is achieved in kurtosis maps based on the sub-diffusion model. 7T diffusion weighted MRI data for 65 healthy participants in the age range 19-78 years was used in this study. Results revealed that anomalous diffusion model parameters α and β have shown consistent positive correlation with age in the corpus callosum, indicating α and β are sensitive to tissue microstructural changes in ageing.
Collapse
Affiliation(s)
- Qianqian Yang
- School of Mathematical Sciences, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia.
| | - David C Reutens
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, Brisbane 4072, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, Brisbane 4072, Australia
| |
Collapse
|
8
|
Tract-specific statistics based on diffusion-weighted probabilistic tractography. Commun Biol 2022; 5:138. [PMID: 35177755 PMCID: PMC8854429 DOI: 10.1038/s42003-022-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022] Open
Abstract
Diffusion-weighted neuroimaging approaches provide rich evidence for estimating the structural integrity of white matter in vivo, but typically do not assess white matter integrity for connections between two specific regions of the brain. Here, we present a method for deriving tract-specific diffusion statistics, based upon predefined regions of interest. Our approach derives a population distribution using probabilistic tractography, based on the Nathan Kline Institute (NKI) Enhanced Rockland sample. We determine the most likely geometry of a path between two regions and express this as a spatial distribution. We then estimate the average orientation of streamlines traversing this path, at discrete distances along its trajectory, and the fraction of diffusion directed along this orientation for each participant. The resulting participant-wise metrics (tract-specific anisotropy; TSA) can then be used for statistical analysis on any comparable population. Based on this method, we report both negative and positive associations between age and TSA for two networks derived from published meta-analytic studies (the “default mode” and “what-where” networks), along with more moderate sex differences and age-by-sex interactions. The proposed method can be applied to any arbitrary set of brain regions, to estimate both the spatial trajectory and DWI-based anisotropy specific to those regions. Andrew Reid et al. use publicly available data to present a method for deriving tract-specific statistics based on diffusion-weighted MRI, based upon arbitrarily-defined regions of interest. Their approach enables them to report both negative and positive associations between age and tract-specific anisotropy along with more moderate sex differences and age-by-sex interactions.
Collapse
|
9
|
Smith DR, Caban-Rivera DA, McGarry MD, Williams LT, McIlvain G, Okamoto RJ, Van Houten EE, Bayly PV, Paulsen KD, Johnson CL. Anisotropic mechanical properties in the healthy human brain estimated with multi-excitation transversely isotropic MR elastography. BRAIN MULTIPHYSICS 2022; 3. [DOI: 10.1016/j.brain.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
10
|
Lynn JD, Anand C, Arshad M, Homayouni R, Rosenberg DR, Ofen N, Raz N, Stanley JA. Microstructure of Human Corpus Callosum across the Lifespan: Regional Variations in Axon Caliber, Density, and Myelin Content. Cereb Cortex 2021; 31:1032-1045. [PMID: 32995843 PMCID: PMC7906774 DOI: 10.1093/cercor/bhaa272] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
The myeloarchitecture of the corpus callosum (CC) is characterized as a mosaic of distinct differences in fiber density of small- and large-diameter axons along the anterior-posterior axis; however, regional and age differences across the lifespan are not fully understood. Using multiecho T2 magnetic resonance imaging combined with multi-T2 fitting, the myelin water fraction (MWF) and geometric-mean of the intra-/extracellular water T2 (geomT2IEW) in 395 individuals (7-85 years; 41% males) were examined. The approach was validated where regional patterns along the CC closely resembled the histology; MWF matched mean axon diameter and geomT2IEW mirrored the density of large-caliber axons. Across the lifespan, MWF exhibited a quadratic association with age in all 10 CC regions with evidence of a positive linear MWF-age relationship among younger participants and minimal age differences in the remainder of the lifespan. Regarding geomT2IEW, a significant linear age × region interaction reflected positive linear age dependence mostly prominent in the regions with the highest density of small-caliber fibers-genu and splenium. In all, these two indicators characterize distinct attributes that are consistent with histology, which is a first. In addition, these results conform to rapid developmental progression of CC myelination leveling in middle age as well as age-related degradation of axon sheaths in older adults.
Collapse
Affiliation(s)
- Jonathan D Lynn
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
| | - Chaitali Anand
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
| | - Muzamil Arshad
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
- Department of Psychology, Wayne State University, Detroit MI 48201, USA
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
- Department of Psychology, Wayne State University, Detroit MI 48201, USA
- Lifespan Cognitive Neuroscience, Merrill Palmer Skillman Institute, Wayne State University, Detroit MI 14195, USA
| | - Naftali Raz
- Institute of Gerontology, Wayne State University, Detroit MI 48202, USA
- Department of Psychology, Wayne State University, Detroit MI 48201, USA
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit MI 48201, USA
| |
Collapse
|
11
|
Edde M, Theaud G, Rheault F, Dilharreguy B, Helmer C, Dartigues JF, Amieva H, Allard M, Descoteaux M, Catheline G. Free water: A marker of age-related modifications of the cingulum white matter and its association with cognitive decline. PLoS One 2020; 15:e0242696. [PMID: 33216815 PMCID: PMC7678997 DOI: 10.1371/journal.pone.0242696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/08/2020] [Indexed: 11/19/2022] Open
Abstract
Diffusion MRI is extensively used to investigate changes in white matter microstructure. However, diffusion measures within white matter tissue can be affected by partial volume effects due to cerebrospinal fluid and white matter hyperintensities, especially in the aging brain. In previous aging studies, the cingulum bundle that plays a central role in the architecture of the brain networks supporting cognitive functions has been associated with cognitive deficits. However, most of these studies did not consider the partial volume effects on diffusion measures. The aim of this study was to evaluate the effect of free water elimination on diffusion measures of the cingulum in a group of 68 healthy elderly individuals. We first determined the effect of free water elimination on conventional DTI measures and then examined the effect of free water elimination on verbal fluency performance over 12 years. The cingulum bundle was reconstructed with a tractography pipeline including a white matter hyperintensities mask to limit the negative impact of hyperintensities on fiber tracking algorithms. We observed that free water elimination increased the ability of conventional DTI measures to detect associations between tissue diffusion measures of the cingulum and changes in verbal fluency in older individuals. Moreover, free water content and mean diffusivity measured along the cingulum were independently associated with changes in verbal fluency. This suggests that both tissue modifications and an increase in interstitial isotropic water would contribute to cognitive decline. These observations reinforce the importance of using free water elimination when studying brain aging and indicate that free water itself could be a relevant marker for age-related cingulum white matter modifications and cognitive decline.
Collapse
Affiliation(s)
- Manon Edde
- EPHE, PSL, Bordeaux, France
- CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Catherine Helmer
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Jean-François Dartigues
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
| | - Hélène Amieva
- Université de Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
| | - Michèle Allard
- EPHE, PSL, Bordeaux, France
- CNRS, INCIA, UMR 5287, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gwénaëlle Catheline
- EPHE, PSL, Bordeaux, France
- CNRS, INCIA, UMR 5287, Bordeaux, France
- Université de Bordeaux, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
12
|
Avelar-Pereira B, Bäckman L, Wåhlin A, Nyberg L, Salami A. Increased functional homotopy of the prefrontal cortex is associated with corpus callosum degeneration and working memory decline. Neurobiol Aging 2020; 96:68-78. [PMID: 32949903 DOI: 10.1016/j.neurobiolaging.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/29/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022]
Abstract
Functional homotopy reflects the link between spontaneous activity in a voxel and its counterpart in the opposite hemisphere. Alterations in homotopic functional connectivity (FC) are seen in normal aging, with highest and lowest homotopy being present in sensory-motor and higher-order regions, respectively. Homotopic FC relates to underlying structural connections, but its neurobiological underpinnings remain unclear. The genu of the corpus callosum joins symmetrical parts of the prefrontal cortex (PFC) and is susceptible to age-related degeneration, suggesting that PFC homotopic connectivity is linked to changes in white-matter integrity. We investigated homotopic connectivity changes and whether these were associated with white-matter integrity in 338 individuals. In addition, we examined whether PFC homotopic FC was related to changes in the genu over 10 years and working memory over 5 years. There were increases and decreases in functional homotopy, with the former being prevalent in subcortical and frontal regions. Increased PFC homotopic FC was partially driven by structural degeneration and negatively associated with working memory, suggesting that it reflects detrimental age-related changes.
Collapse
Affiliation(s)
- Bárbara Avelar-Pereira
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Danielsen VM, Vidal-Piñeiro D, Mowinckel AM, Sederevicius D, Fjell AM, Walhovd KB, Westerhausen R. Lifespan trajectories of relative corpus callosum thickness: Regional differences and cognitive relevance. Cortex 2020; 130:127-141. [PMID: 32652340 DOI: 10.1016/j.cortex.2020.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 02/03/2023]
Abstract
The cerebral hemispheres are specialized for different cognitive functions and receive divergent information from the sensory organs, so that the interaction between the hemispheres is a crucial aspect of perception and cognition. At the same time, the major fiber tract responsible for this interaction, the corpus callosum, shows a structural development across the lifespan which is over-proportional. That is, compared to changes in overall forebrain volume, the corpus callosum shows an accentuated growth during childhood, adolescence, and early adulthood, as well as pronounced decline in older age. However, this over-proportionality of growth and decline along with potential consequences for cognition, have been largely overlooked in empirical research. In the present study we systematically address the proportionality of callosal development in a large mixed cross-sectional and longitudinal sample (1867 datasets from 1014 unique participants), covering the human lifespan (age range 4-93 years), and examine the cognitive consequences of the observed changes. Relative corpus callosum thickness was measured at 60 segments along the midsagittal surface, and lifespan trajectories were clustered to identify callosal subsections of comparable lifespan development. While confirming the expected inverted u-shaped lifespan trajectories, we also found substantial regional variation. Compared with anterior clusters, the most posterior sections exhibited an accentuated growth during development which extends well into the third decade of life, and a protracted decline in older age which is delayed by about 10 years (starting mid to late 50s). We further showed that the observed longitudinal changes in relative thickness of the mid splenium significantly mediates age-related changes in tests assessing verbal knowledge and non-verbal visual-spatial abilities across the lifespan. In summary, we demonstrate that analyzing the proportionality of callosal growth and decline offers valuable insight into lifespan development of structural connectivity between the hemispheres, and suggests consequences for the cognitive development of perception and cognition.
Collapse
Affiliation(s)
- V M Danielsen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - D Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - A M Mowinckel
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - D Sederevicius
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - A M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - K B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - R Westerhausen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway.
| |
Collapse
|
14
|
Thapaliya K, Vegh V, Bollmann S, Barth M. Influence of 7T GRE-MRI Signal Compartment Model Choice on Tissue Parameters. Front Neurosci 2020; 14:271. [PMID: 32457565 PMCID: PMC7206227 DOI: 10.3389/fnins.2020.00271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Quantitative assessment of tissue microstructure is important in studying human brain diseases and disorders. Ultra-high field magnetic resonance imaging (MRI) data obtained using a multi-echo gradient echo sequence have been shown to contain information on myelin, axonal, and extracellular compartments in tissue. Quantitative assessment of water fraction, relaxation time (T2*), and frequency shift using multi-compartment models has been shown to be useful in studying white matter properties via specific tissue parameters. It remains unclear how tissue parameters vary with model selection based on 7T multiple echo time gradient-recalled echo (GRE) MRI data. We applied existing signal compartment models to the corpus callosum and investigated whether a three-compartment model can be reduced to two compartments and still resolve white matter parameters [i.e., myelin water fraction (MWF) and g-ratio]. We show that MWF should be computed using a three-compartment model in the corpus callosum, and the g-ratios obtained using three compartment models are consistent with previous reports. We provide results for other parameters, such as signal compartment frequency shifts.
Collapse
Affiliation(s)
- Kiran Thapaliya
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| | - Steffen Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.,ARC Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Diffusion tensor imaging of the corpus callosum in healthy aging: Investigating higher order polynomial regression modelling. Neuroimage 2020; 213:116675. [PMID: 32112960 DOI: 10.1016/j.neuroimage.2020.116675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Previous diffusion tensor imaging (DTI) studies confirmed the vulnerability of corpus callosum (CC) fibers to aging. However, most studies employed lower order regressions to study the relationship between age and white matter microstructure. The present study investigated whether higher order polynomial regression modelling can better describe the relationship between age and CC DTI metrics compared to lower order models in 140 healthy participants (ages 18-85). The CC was found to be non-uniformly affected by aging, with accelerated and earlier degradation occurring in anterior portion; callosal volume, fiber count, fiber length, mean fibers per voxel, and FA decreased with age while mean, axial, and radial diffusivities increased. Half of the parameters studied also displayed significant age-sex interaction or intracranial volume effects. Higher order models were chosen as the best fit, based on Bayesian Information Criterion minimization, in 16 out of 23 significant cases when describing the relationship between DTI measurements and age. Higher order model fits provided different estimations of aging trajectory peaks and decline onsets than lower order models; however, a likelihood ratio test found that higher order regressions generally did not fit the data significantly better than lower order polynomial or linear models. The results contrast the modelling approaches and highlight the importance of using higher order polynomial regression modelling when investigating associations between age and CC white matter microstructure.
Collapse
|
16
|
Tétreault P, Harkins KD, Baron CA, Stobbe R, Does MD, Beaulieu C. Diffusion time dependency along the human corpus callosum and exploration of age and sex differences as assessed by oscillating gradient spin-echo diffusion tensor imaging. Neuroimage 2020; 210:116533. [PMID: 31935520 DOI: 10.1016/j.neuroimage.2020.116533] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Conventional diffusion imaging uses pulsed gradient spin echo (PGSE) waveforms with diffusion times of tens of milliseconds (ms) to infer differences of white matter microstructure. The combined use of these long diffusion times with short diffusion times (<10 ms) enabled by oscillating gradient spin echo (OGSE) waveforms can enable more sensitivity to changes of restrictive boundaries on the scale of white matter microstructure (e.g. membranes reflecting the axon diameters). Here, PGSE and OGSE images were acquired at 4.7 T from 20 healthy volunteers aged 20-73 years (10 males). Mean, radial, and axial diffusivity, as well as fractional anisotropy were calculated in the genu, body and splenium of the corpus callosum (CC). Monte Carlo simulations were also conducted to examine the relationship of intra- and extra-axonal radial diffusivity with diffusion time over a range of axon diameters and distributions. The results showed elevated diffusivities with OGSE relative to PGSE in the genu and splenium (but not the body) in both males and females, but the OGSE-PGSE difference was greater in the genu for males. Females showed positive correlations of OGSE-PGSE diffusivity difference with age across the CC, whereas there were no such age correlations in males. Simulations of radial diffusion demonstrated that for axon sizes in human brain both OGSE and PGSE diffusivities were dominated by extra-axonal water, but the OGSE-PGSE difference nonetheless increased with area-weighted outer-axon diameter. Therefore, the lack of OGSE-PGSE difference in the body is not entirely consistent with literature that suggests it is composed predominantly of axons with large diameter. The greater OGSE-PGSE difference in the genu of males could reflect larger axon diameters than females. The OGSE-PGSE difference correlation with age in females could reflect loss of smaller axons at older ages. The use of OGSE with short diffusion times to sample the microstructural scale of restriction implies regional differences of axon diameters along the corpus callosum with preliminary results suggesting a dependence on age and sex.
Collapse
Affiliation(s)
- Pascal Tétreault
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kevin D Harkins
- Institute of Imaging Science and Department of Biomedical Engineering, Vanderbilt, University, Nashville, TN, USA
| | - Corey A Baron
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Rob Stobbe
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mark D Does
- Institute of Imaging Science and Department of Biomedical Engineering, Vanderbilt, University, Nashville, TN, USA
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Ghavidel N, Khodagholi F, Ahmadiani A, Khosrowabadi R, Asadi S, Shams J. Frontocingulate Dysfunction Is Associated with Depression and Decreased Serum PON1 in Methamphetamine-Dependent Patients. Neuropsychiatr Dis Treat 2020; 16:489-499. [PMID: 32110023 PMCID: PMC7037144 DOI: 10.2147/ndt.s237528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Studies have been reported that frequent use of methamphetamine (MA) is associated with brain function impairment, mood disorders and excessive free radical production accompanied by the decreased level of the antioxidant response elements, but no study investigated their correlations simultaneously. In the current study, the correlation of brain function, depression and anxiety levels, and the serum levels of PON1 (an antioxidant) in MA-dependent patients were investigated. METHODS Nineteen active MA abusers and 18 control subjects performed color-word Stroop task during fMRI and the state of their depression, anxiety, and stress were measured by the Depression, Anxiety and Stress Scale-21 Items (DASS-21) questionnaire. Their blood samples were collected to measure the level of PON1 by the human enzyme-linked immunosorbent assay (ELISA) kit and its correlation with the measured variables was studied. RESULTS Analysis of fMRI findings showed frontocingulate dysfunction in Stroop effect condition, including left anterior cingulate cortex, paracingulate gyrus, superior frontal gyrus, and frontal pole in MA-dependent patients, which was associated with a higher level of depression and decreased level of serum PON1 in these patients. DISCUSSION The results of the current study showed that MA-dependency is associated with frontocingulate dysfunction, decreased serum PON1 concentration, and increased depression/anxiety, which is worth to be more studied to elucidate their roles in the pathophysiology of MA addiction.
Collapse
Affiliation(s)
- Nooshin Ghavidel
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Sareh Asadi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Shams
- Behavioral Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Anand C, Brandmaier AM, Arshad M, Lynn J, Stanley JA, Raz N. White-matter microstructural properties of the corpus callosum: test-retest and repositioning effects in two parcellation schemes. Brain Struct Funct 2019; 224:3373-3385. [PMID: 31734773 PMCID: PMC9732928 DOI: 10.1007/s00429-019-01981-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
We investigated test-retest reliability of two MRI-derived indices of white-matter microstructural properties in the human corpus callosum (CC): myelin water fraction (MWF) and geometric mean T2 relaxation time of intra/extracellular water (geomT2IEW), using a 3D gradient and multi spin-echo sequence in 20 healthy adults (aged 24-69 years, 10 men). For each person, we acquired two back-to-back acquisitions in a single session, and the third after a break and repositioning the participant in the scanner. We assessed the contribution of session-related variance to reliability, using intra-class effect decomposition (ICED) while comparing two CC parcellation schemes that divided the CC into five and ten regions. We found high construct-level reliability of MWF and geomT2IEW in all regions of both schemes, except the posterior body-a slender region with a smaller number of large myelinated fibers. Only in that region, we observed significant session-specific variance in the MWF, interpreted as an effect of repositioning in the scanner. The geomT2IEW demonstrated higher reliability than MWF across both parcellation schemes and all CC regions. Thus, in both CC parcellation approaches, MWF and geomT2IEW have good test-retest reliability and are, therefore, suitable for longitudinal investigations in healthy adults. However, the five-region scheme appears more appropriate for MWF, whereas both schemes are suitable for geomT2IEW studies. Given the lower reliability in the posterior body, which may reflect sensitivity to the repositioning of the participant in the scanner, caution should be exercised in interpreting differential findings in that region.
Collapse
Affiliation(s)
- Chaitali Anand
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA,Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Andreas M. Brandmaier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany,Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany,Max Planck, UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Muzamil Arshad
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Jonathan Lynn
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA,Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Jeffrey A. Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Naftali Raz
- Institute of Gerontology, Wayne State University, Detroit, MI, USA,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany,Department of Psychology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
19
|
Huang SY, Tian Q, Fan Q, Witzel T, Wichtmann B, McNab JA, Daniel Bireley J, Machado N, Klawiter EC, Mekkaoui C, Wald LL, Nummenmaa A. High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain. Brain Struct Funct 2019; 225:1277-1291. [PMID: 31563995 DOI: 10.1007/s00429-019-01961-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/19/2019] [Indexed: 12/01/2022]
Abstract
Axon diameter and density are important microstructural metrics that offer valuable insight into the structural organization of white matter throughout the human brain. We report the systematic acquisition and analysis of a comprehensive diffusion MRI data set acquired with 300 mT/m maximum gradient strength in a cohort of 20 healthy human subjects that yields distinct and consistent patterns of axon diameter index in white matter tracts of arbitrary orientation. We use a straightforward, previously validated approach to estimating indices of axon diameter and volume fraction that involves interpolating the diffusion signal perpendicular to the principal fiber orientation and fitting a three-compartment model of intra-axonal, extra-axonal and free water diffusion. The resultant maps confirm the presence of larger diameter indices in the body of corpus callosum compared to the genu and splenium, as previously reported, and show larger axon diameter index in the corticospinal tracts compared to adjacent white matter tracts such as the cingulum. An anterior-to-posterior gradient in axon diameter index is also observed, with smaller diameter indices in the frontal lobes and larger diameter indices in the parieto-occipital white matter. These observations are consistent with known trends from prior histologic studies in humans and non-human primates. Rather than serving as fully quantitative measures of axon diameter and density, our results may be considered as axon diameter- and volume fraction-weighted images that appear to be modulated by the underlying microstructure and may capture broad trends in axonal size and packing density, acknowledging that the precise origin of such modulation requires further investigation that will be facilitated by the availability of high gradient strengths for in vivo human imaging.
Collapse
Affiliation(s)
- Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara Wichtmann
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jennifer A McNab
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, USA
| | - J Daniel Bireley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalya Machado
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Pareek V, Nath B, Roy PK. Role of Neuroimaging Modality in the Assessment of Oxidative Stress in Brain: A Comprehensive Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:372-381. [DOI: 10.2174/1871527318666190507102340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
Abstract
Background & Objective:Oxidative stress (OS) is the secondary source of an injury in consequence to the earlier caused primary injury; it is the condition of an imbalance between oxidants and antioxidants within the physiological system. OS causes alterations in proteins and DNA structure, leading to inflammation, apoptotic cell death, and tissue damage. Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease, Glioma-induced neurodegeneration and the normal aging-related neuro-degeneration are primarily associated with the increased OS. The present review article is committed to delivering a comprehensive overview of the current neuroimaging modalities which estimates an indirect correlate of OS in the brain. OS-induced changes in white matter tracts and the gray matter volumes are reviewed assessing the role of diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) respectively. Further, the role of magnetic resonance spectroscopy (MRS) to assess the OS-induced alterations of chemical moieties, and thus the resultant structural implications in the neurological disorders are also briefly as well as precisely reviewed.Conclusions:In the present review article we present an overview of the role of neuroimaging modalities in the diagnosis, and longitudinal assessment during treatment of the OS induced changes.
Collapse
Affiliation(s)
- Vikas Pareek
- National Neuroimaging Facility, Computational Neuroscience & Neuroimaging Department, National Brain Research Center, Manesar, Haryana, 122052, India
| | - Banshi Nath
- CERVO Brain Research Centre, Quebec QC, Canada
| | - Prasun K. Roy
- Computational Neuroscience & Neuro-Imaging Laboratory, School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 122005, India
| |
Collapse
|
21
|
Howell BR, Ahn M, Shi Y, Godfrey JR, Hu X, Zhu H, Styner M, Sanchez MM. Disentangling the effects of early caregiving experience and heritable factors on brain white matter development in rhesus monkeys. Neuroimage 2019; 197:625-642. [PMID: 30978495 PMCID: PMC7179761 DOI: 10.1016/j.neuroimage.2019.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022] Open
Abstract
Early social experiences, particularly maternal care, shape behavioral and physiological development in primates. Thus, it is not surprising that adverse caregiving, such as child maltreatment leads to a vast array of poor developmental outcomes, including increased risk for psychopathology across the lifespan. Studies of the underlying neurobiology of this risk have identified structural and functional alterations in cortico-limbic brain circuits that seem particularly sensitive to these early adverse experiences and are associated with anxiety and affective disorders. However, it is not understood how these neurobiological alterations unfold during development as it is very difficult to study these early phases in humans, where the effects of maltreatment experience cannot be disentangled from heritable traits. The current study examined the specific effects of experience ("nurture") versus heritable factors ("nature") on the development of brain white matter (WM) tracts with putative roles in socioemotional behavior in primates from birth through the juvenile period. For this we used a randomized crossfostering experimental design in a naturalistic rhesus monkey model of infant maltreatment, where infant monkeys were randomly assigned at birth to either a mother with a history of maltreating her infants, or a competent mother. Using a longitudinal diffusion tensor imaging (DTI) atlas-based tract-profile approach we identified widespread, but also specific, maturational changes on major brain tracts, as well as alterations in a measure of WM integrity (fractional anisotropy, FA) in the middle longitudinal fasciculus (MdLF) and the inferior longitudinal fasciculus (ILF), of maltreated animals, suggesting decreased structural integrity in these tracts due to early adverse experience. Exploratory voxelwise analyses confirmed the tract-based approach, finding additional effects of early adversity, biological mother, social dominance rank, and sex in other WM tracts. These results suggest tract-specific effects of postnatal maternal care experience versus heritable or biological factors on primate WM microstructural development. Further studies are needed to determine the specific behavioral outcomes and biological mechanisms associated with these alterations in WM integrity.
Collapse
Affiliation(s)
- Brittany R Howell
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
| | - Mihye Ahn
- Department of Mathematics and Statistics, University of Nevada, Reno, NV, USA; Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Yundi Shi
- Department. of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Jodi R Godfrey
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Xiaoping Hu
- Biomedical Imaging Technology Center, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hongtu Zhu
- Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Martin Styner
- Department. of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Mar M Sanchez
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
22
|
Fan Q, Tian Q, Ohringer NA, Nummenmaa A, Witzel T, Tobyne SM, Klawiter EC, Mekkaoui C, Rosen BR, Wald LL, Salat DH, Huang SY. Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI. Neuroimage 2019; 191:325-336. [PMID: 30790671 DOI: 10.1016/j.neuroimage.2019.02.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Cerebral white matter exhibits age-related degenerative changes during the course of normal aging, including decreases in axon density and alterations in axonal structure. Noninvasive approaches to measure these microstructural alterations throughout the lifespan would be invaluable for understanding the substrate and regional variability of age-related white matter degeneration. Recent advances in diffusion magnetic resonance imaging (MRI) have leveraged high gradient strengths to increase sensitivity toward axonal size and density in the living human brain. Here, we examined the relationship between age and indices of axon diameter and packing density using high-gradient strength diffusion MRI in 36 healthy adults (aged 22-72) in well-defined central white matter tracts in the brain. A recently validated method for inferring the effective axonal compartment size and packing density from diffusion MRI measurements acquired with 300 mT/m maximum gradient strength was applied to the in vivo human brain to obtain indices of axon diameter and density in the corpus callosum, its sub-regions, and adjacent anterior and posterior fibers in the forceps minor and forceps major. The relationships between the axonal metrics, corpus callosum area and regional gray matter volume were also explored. Results revealed a significant increase in axon diameter index with advancing age in the whole corpus callosum. Similar analyses in sub-regions of the corpus callosum showed that age-related alterations in axon diameter index and axon density were most pronounced in the genu of the corpus callosum and relatively absent in the splenium, in keeping with findings from previous histological studies. The significance of these correlations was mirrored in the forceps minor and forceps major, consistent with previously reported decreases in FA in the forceps minor but not in the forceps major with age. Alterations in the axonal imaging metrics paralleled decreases in corpus callosum area and regional gray matter volume with age. Among older adults, results from cognitive testing suggested an association between larger effective compartment size in the corpus callosum, particularly within the genu of the corpus callosum, and lower scores on the Montreal Cognitive Assessment, largely driven by deficits in short-term memory. The current study suggests that high-gradient diffusion MRI may be sensitive to the axonal substrate of age-related white matter degeneration reflected in traditional DTI metrics and provides further evidence for regionally selective alterations in white matter microstructure with advancing age.
Collapse
Affiliation(s)
- Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ned A Ohringer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sean M Tobyne
- Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Eric C Klawiter
- Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
23
|
Skumlien M, Sederevicius D, Fjell AM, Walhovd KB, Westerhausen R. Parallel but independent reduction of emotional awareness and corpus callosum connectivity in older age. PLoS One 2018; 13:e0209915. [PMID: 30596756 PMCID: PMC6312250 DOI: 10.1371/journal.pone.0209915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/13/2018] [Indexed: 11/19/2022] Open
Abstract
Differential functional specialization of the left and right hemispheres for linguistic and emotional functions, respectively, suggest that interhemispheric communication via the corpus callosum is critical for emotional awareness. Accordingly, it has been hypothesized that the age-related decline in callosal connectivity mediates the frequently demonstrated reduction in emotional awareness in older age. The present study tests this hypothesis in a sample of 307 healthy individuals between 20-89 years using combined structural and diffusion-tensor magnetic resonance imaging (MRI) of the corpus callosum. As assumed, inter-hemispheric connectivity (midsagittal callosal area and thickness, as well as fractional anisotropy, FA) and emotional awareness (i.e., increase in externally-oriented thinking, EOT; assessed with the Toronto Alexithymia Scale, TAS-20) were found to be reduced in older (> 60 years) compared to younger participants. Furthermore, relating callosal measures to emotional awareness, FA in the genu of the corpus callosum was found to be negatively correlated with EOT in male participants. Thus, "stronger" structural connectivity (higher FA) was related with higher emotional awareness (lower EOT). However, a formal mediation analysis did not support the notion that age-related decline in emotional awareness is mediated by the corpus callosum. Thus, the observed reduction of emotional awareness and callosal connectivity in older age likely reflects parallel but not inter-dependent processes.
Collapse
Affiliation(s)
- Martine Skumlien
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Donatas Sederevicius
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Anders M. Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristine B. Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - René Westerhausen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Solomito MJ, Reuman H, Wang DH. Sex differences in concussion: a review of brain anatomy, function, and biomechanical response to impact. Brain Inj 2018; 33:105-110. [DOI: 10.1080/02699052.2018.1542507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Matthew J. Solomito
- Elite Sports Medicine, Connecticut Children’s Medical Center, Farmington, Connecticut, USA
| | - Hannah Reuman
- Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - David H. Wang
- Elite Sports Medicine, Connecticut Children’s Medical Center, Farmington, Connecticut, USA
| |
Collapse
|
25
|
Dyrby TB, Innocenti GM, Bech M, Lundell H. Validation strategies for the interpretation of microstructure imaging using diffusion MRI. Neuroimage 2018; 182:62-79. [PMID: 29920374 DOI: 10.1016/j.neuroimage.2018.06.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Extracting microanatomical information beyond the image resolution of MRI would provide valuable tools for diagnostics and neuroscientific research. A number of mathematical models already suggest microstructural interpretations of diffusion MRI (dMRI) data. Examples of such microstructural features could be cell bodies and neurites, e.g. the axon's diameter or their orientational distribution for global connectivity analysis using tractography, and have previously only been possible to access through conventional histology of post mortem tissue or invasive biopsies. The prospect of gaining the same knowledge non-invasively from the whole living human brain could push the frontiers for the diagnosis of neurological and psychiatric diseases. It could also provide a general understanding of the development and natural variability in the healthy brain across a population. However, due to a limited image resolution, most of the dMRI measures are indirect estimations and may depend on the whole chain from experimental parameter settings to model assumptions and implementation. Here, we review current literature in this field and highlight the integrative work across anatomical length scales that is needed to validate and trust a new dMRI method. We encourage interdisciplinary collaborations and data sharing in regards to applying and developing new validation techniques to improve the specificity of future dMRI methods.
Collapse
Affiliation(s)
- Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Giorgio M Innocenti
- Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden; Brain and Mind Institute, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Martin Bech
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
26
|
Thapaliya K, Vegh V, Bollmann S, Barth M. Assessment of microstructural signal compartments across the corpus callosum using multi-echo gradient recalled echo at 7 T. Neuroimage 2017; 182:407-416. [PMID: 29183776 DOI: 10.1016/j.neuroimage.2017.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022] Open
Abstract
Quantitative assessment of tissue microstructure is important in studying human brain diseases and disorders in which white matter is implicated, as it has been linked to demyelination, re-myelination, and axonal damage in clinical conditions. Ultra-high field magnetic resonance imaging data obtained using a multi-echo gradient echo sequence has been shown to contain information on myelin, axonal and extracellular compartments in white matter. In this study, we aimed to assess the sensitivity of a three-compartment model to estimate the variation of corresponding compartment parameters (water fraction, relaxation time and frequency shift) of the corpus callosum sub-regions, which are known to have different tissue structure. Additionally, we computed the g-ratio using myelin and axonal water fractions and performed a voxel-by-voxel analysis in the corpus callosum. Based on data acquired for ten participants, we show that the myelin compartment water fraction and T2∗ is consistent across the corpus callosum sub-regions, whilst myelin frequency shift varies. The results show that the variation in water fraction, T2∗ and frequency shift for the myelin signal compartment across the corpus callosum is smaller than for the axonal and extracellular signal compartments. The computed g-ratio was comparable to previously published studies in the corpus callosum. Our study suggests that a multi-echo GRE approach in vivo combined with a complex three-compartment model is sensitive to microstructural parameter variations across the human corpus callosum.
Collapse
Affiliation(s)
- Kiran Thapaliya
- Centre for Advanced Imaging, The University of Queensland, Queensland, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, The University of Queensland, Queensland, Australia
| | - Steffen Bollmann
- Centre for Advanced Imaging, The University of Queensland, Queensland, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Queensland, Australia.
| |
Collapse
|
27
|
Björnholm L, Nikkinen J, Kiviniemi V, Nordström T, Niemelä S, Drakesmith M, Evans JC, Pike GB, Veijola J, Paus T. Structural properties of the human corpus callosum: Multimodal assessment and sex differences. Neuroimage 2017; 152:108-118. [DOI: 10.1016/j.neuroimage.2017.02.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 11/17/2022] Open
|
28
|
Merluzzi AP, Dean DC, Adluru N, Suryawanshi GS, Okonkwo OC, Oh JM, Hermann BP, Sager MA, Asthana S, Zhang H, Johnson SC, Alexander AL, Bendlin BB. Age-dependent differences in brain tissue microstructure assessed with neurite orientation dispersion and density imaging. Neurobiol Aging 2016; 43:79-88. [PMID: 27255817 PMCID: PMC4893194 DOI: 10.1016/j.neurobiolaging.2016.03.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/17/2016] [Accepted: 03/26/2016] [Indexed: 02/01/2023]
Abstract
Human aging is accompanied by progressive changes in executive function and memory, but the biological mechanisms underlying these phenomena are not fully understood. Using neurite orientation dispersion and density imaging, we sought to examine the relationship between age, cellular microstructure, and neuropsychological scores in 116 late middle-aged, cognitively asymptomatic participants. Results revealed widespread increases in the volume fraction of isotropic diffusion and localized decreases in neurite density in frontal white matter regions with increasing age. In addition, several of these microstructural alterations were associated with poorer performance on tests of memory and executive function. These results suggest that neurite orientation dispersion and density imaging is capable of measuring age-related brain changes and the neural correlates of poorer performance on tests of cognitive functioning, largely in accordance with published histological findings and brain-imaging studies of people of this age range. Ultimately, this study sheds light on the processes underlying normal brain development in adulthood, knowledge that is critical for differentiating healthy aging from changes associated with dementia.
Collapse
Affiliation(s)
- Andrew P Merluzzi
- Department of Medicine, Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, Madison, WI, USA; Neuroscience and Public Policy Program, University of Wisconsin, Madison, WI, USA
| | - Douglas C Dean
- Waisman Laboratory for Brain Imaging and Behavior, Madison, WI, USA
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, Madison, WI, USA
| | | | - Ozioma C Okonkwo
- Department of Medicine, Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jennifer M Oh
- Department of Medicine, Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, Madison, WI, USA
| | - Bruce P Hermann
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mark A Sager
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sanjay Asthana
- Department of Medicine, Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's Hospital, Madison, WI, USA
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London, UK
| | - Sterling C Johnson
- Department of Medicine, Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's Hospital, Madison, WI, USA
| | - Andrew L Alexander
- Waisman Laboratory for Brain Imaging and Behavior, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Barbara B Bendlin
- Department of Medicine, Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, Madison, WI, USA; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
29
|
Adalbert R, Coleman MP. Review: Axon pathology in age-related neurodegenerative disorders. Neuropathol Appl Neurobiol 2015; 39:90-108. [PMID: 23046254 DOI: 10.1111/j.1365-2990.2012.01308.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 09/24/2012] [Indexed: 12/12/2022]
Abstract
'Dying back' axon degeneration is a prominent feature of many age-related neurodegenerative disorders and is widespread in normal ageing. Although the mechanisms of disease- and age-related losses may differ, both contribute to symptoms. Here, we review recent advances in understanding axon pathology in age-related neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. In particular, we highlight the importance of axonal transport, autophagy, traumatic brain injury and mitochondrial quality control. We then place these disease mechanisms in the context of changes to axons and dendrites that occur during normal ageing. We discuss what makes ageing such an important risk factor for many neurodegenerative disorders and conclude that the processes of normal ageing and disease combine at the molecular, cellular or systems levels in a range of disorders to produce symptoms. Pathology identical to disease also occurs at the cellular level in most elderly individuals. Thus, normal ageing and age-related disease are inextricably linked and the term 'healthy ageing' downplays the important contributions of cellular pathology. For a full understanding of normal ageing or age-related disease we must study both processes.
Collapse
Affiliation(s)
- R Adalbert
- Signalling Programme, The Babraham Institute, Babraham, Cambridge, UK
| | - M P Coleman
- Signalling Programme, The Babraham Institute, Babraham, Cambridge, UK
| |
Collapse
|
30
|
Ansado J, Collins L, Fonov V, Garon M, Alexandrov L, Karama S, Evans A, Beauchamp MH. A new template to study callosal growth shows specific growth in anterior and posterior regions of the corpus callosum in early childhood. Eur J Neurosci 2015; 42:1675-84. [PMID: 25864842 DOI: 10.1111/ejn.12869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/29/2015] [Accepted: 02/06/2015] [Indexed: 11/28/2022]
Abstract
Most of the studies conducted on the development of the corpus callosum (CC) have been limited to a relatively simple assessment of callosal area, providing an estimation of the size of the CC in two dimensions rather than its actual measurement. The goal of this study was to revisit callosal development in childhood and adolescence by using a three-dimensional (3D) magnetic resonance imaging template of the CC that considers the horizontal width of the CC and compares this with the two-dimensional (2D) callosal area. We mapped callosal growth in a large sample of youths followed longitudinally (N = 370 at T1; N = 304 at T2; and N = 246 at T3). Both techniques were based on a five-section subdivision of the CC. The results obtained with the 3D method revealed that the rate of CC growth over a 4-year period in the rostrum, the genu, the anterior body and the splenium was significantly higher in the youngest age group (< 7 years) than in older groups, indicating an intense period of development in early childhood for the anterior and posterior parts of the CC. Similar results were obtained when 2D callosal area was used for the anterior and posterior parts of the CC. However, divergent results were found in the mid-body and the caudal body of the CC. As shown by differences between 2D estimations and actual 3D measurements of callosal growth, our study highlights the importance of considering the horizontal width in measuring developmental changes in the CC.
Collapse
Affiliation(s)
- Jennyfer Ansado
- Ste-Justine Hospital Research Center, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, H3C 3J7, Canada.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Louis Collins
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,McConnell Brain Imaging Center, McGill University, Montreal, QC, Canada
| | - Vladimir Fonov
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,McConnell Brain Imaging Center, McGill University, Montreal, QC, Canada
| | - Mathieu Garon
- Ste-Justine Hospital Research Center, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | | | - Sherif Karama
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,McConnell Brain Imaging Center, McGill University, Montreal, QC, Canada
| | - Alan Evans
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,McConnell Brain Imaging Center, McGill University, Montreal, QC, Canada
| | - Miriam H Beauchamp
- Ste-Justine Hospital Research Center, Montreal, QC, Canada.,Department of Psychology, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | | |
Collapse
|
31
|
Age-related changes in the central auditory system. Cell Tissue Res 2015; 361:337-58. [DOI: 10.1007/s00441-014-2107-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022]
|
32
|
Salo R, Fassbender C. Structural, functional and spectroscopic MRI studies of methamphetamine addiction. Curr Top Behav Neurosci 2015; 11:321-64. [PMID: 22094881 DOI: 10.1007/7854_2011_172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
This chapter reviews selected neuroimaging findings related to long-term amphetamine and methamphetamine (MA) use. An overview of structural and functional (fMRI) MR studies, Diffusion Tensor Imaging (DTI), Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography (PET) studies conducted in long-term MA abusers is presented. The focus of this chapter is to present the relevant studies as tools to understand brain changes following drug abstinence and recovery from addiction. The behavioral relevance of these neuroimaging studies is discussed as they relate to clinical symptoms and treatment. Within each imaging section this chapter includes a discussion of the relevant imaging studies as they relate to patterns of drug use (i.e., duration of MA use, cumulative lifetime dose and time MA abstinent) as well as an overview of studies that link the imaging findings to cognitive measures. In our conclusion we discuss some of the future directions of neuroimaging as it relates to the pathophysiology of addiction.
Collapse
Affiliation(s)
- Ruth Salo
- UC Davis Imaging Research Center, 4701 X Street, Sacramento, CA, USA,
| | | |
Collapse
|
33
|
Huang SY, Nummenmaa A, Witzel T, Duval T, Cohen-Adad J, Wald LL, McNab JA. The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. Neuroimage 2014; 106:464-72. [PMID: 25498429 DOI: 10.1016/j.neuroimage.2014.12.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/01/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022] Open
Abstract
Diffusion magnetic resonance imaging (MRI) methods for axon diameter mapping benefit from higher maximum gradient strengths than are currently available on commercial human scanners. Using a dedicated high-gradient 3T human MRI scanner with a maximum gradient strength of 300 mT/m, we systematically studied the effect of gradient strength on in vivo axon diameter and density estimates in the human corpus callosum. Pulsed gradient spin echo experiments were performed in a single scan session lasting approximately 2h on each of three human subjects. The data were then divided into subsets with maximum gradient strengths of 77, 145, 212, and 293 mT/m and diffusion times encompassing short (16 and 25 ms) and long (60 and 94 ms) diffusion time regimes. A three-compartment model of intra-axonal diffusion, extra-axonal diffusion, and free diffusion in cerebrospinal fluid was fitted to the data using a Markov chain Monte Carlo approach. For the acquisition parameters, model, and fitting routine used in our study, it was found that higher maximum gradient strengths decreased the mean axon diameter estimates by two to three fold and decreased the uncertainty in axon diameter estimates by more than half across the corpus callosum. The exclusive use of longer diffusion times resulted in axon diameter estimates that were up to two times larger than those obtained with shorter diffusion times. Axon diameter and density maps appeared less noisy and showed improved contrast between different regions of the corpus callosum with higher maximum gradient strength. Known differences in axon diameter and density between the genu, body, and splenium of the corpus callosum were preserved and became more reproducible at higher maximum gradient strengths. Our results suggest that an optimal q-space sampling scheme for estimating in vivo axon diameters should incorporate the highest possible gradient strength. The improvement in axon diameter and density estimates that we demonstrate from increasing maximum gradient strength will inform protocol development and encourage the adoption of higher maximum gradient strengths for use in commercial human scanners.
Collapse
Affiliation(s)
- Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tanguy Duval
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada
| | - Julien Cohen-Adad
- Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jennifer A McNab
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
34
|
Gong NJ, Wong CS, Chan CC, Leung LM, Chu YC. Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging. Neurobiol Aging 2014; 35:2203-16. [DOI: 10.1016/j.neurobiolaging.2014.03.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/08/2014] [Accepted: 03/13/2014] [Indexed: 11/26/2022]
|
35
|
Diffusion tensor imaging in Alzheimer's disease and affective disorders. Eur Arch Psychiatry Clin Neurosci 2014; 264:467-83. [PMID: 24595744 DOI: 10.1007/s00406-014-0496-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/20/2014] [Indexed: 12/18/2022]
Abstract
The functional organization of the brain in segregated neuronal networks has become a leading paradigm in the study of brain diseases. Diffusion tensor imaging (DTI) allows testing the validity and clinical utility of this paradigm on the structural connectivity level. DTI in Alzheimer's disease (AD) suggests a selective impairment of intracortical projecting fiber tracts underlying the functional disorganization of neuronal networks supporting memory and other cognitive functions. These findings have already been tested for their utility as clinical markers of AD in large multicenter studies. Affective disorders, including major depressive disorder (MDD) and bipolar disorder (BP), show a high comorbidity with AD in geriatric populations and may even have a pathogenetic overlap with AD. DTI studies in MDD and BP are still limited to small-scale monocenter studies, revealing subtle abnormalities in cortico-subcortial networks associated with affect regulation and reward/aversion control. The clinical utility of these findings remains to be further explored. The present paper presents the methodological background of diffusion imaging, including DTI and diffusion spectrum imaging, and discusses key findings in AD and affective disorders. The results of our review strongly point toward the necessity of large-scale multicenter multimodal transnosological networks to study the structural and functional basis of neuronal disconnection underlying different neuropsychiatric diseases.
Collapse
|
36
|
Moreno MB, Concha L, González-Santos L, Ortiz JJ, Barrios FA. Correlation between corpus callosum sub-segmental area and cognitive processes in school-age children. PLoS One 2014; 9:e104549. [PMID: 25170897 PMCID: PMC4149349 DOI: 10.1371/journal.pone.0104549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
We assessed the relationship between structural characteristics (area) and microstructure (apparent diffusion coefficient; ADC) of the corpus callosum (CC) in 57 healthy children aged 7.0 to 9.1 years, with diverse cognitive and academic abilities as well as executive functions evaluated with a neuropsychological battery for children. The CC was manually delineated and sub-segmented into six regions, and their ADC and area were measured. There were no significant differences between genders in the callosal region area or in ADC. The CC area and ADC, mainly of anterior regions, correlated with different cognitive abilities for each gender. Our results suggest that the relationship between cognitive abilities and CC characteristics is different between girls and boys and between the anterior and posterior regions of the CC. Furthermore, these findings strenghten the idea that regardless of the different interhemispheric connectivity schemes per gender, the results of cognitive tasks are very similar for girls and boys throughout childhood.
Collapse
Affiliation(s)
- Martha Beatriz Moreno
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, México
| | - Luis Concha
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, México
| | | | - Juan Jose Ortiz
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, México
| | | |
Collapse
|
37
|
Gruber SA, Dahlgren MK, Sagar KA, Gönenç A, Lukas SE. Worth the wait: effects of age of onset of marijuana use on white matter and impulsivity. Psychopharmacology (Berl) 2014; 231:1455-65. [PMID: 24190588 PMCID: PMC3967072 DOI: 10.1007/s00213-013-3326-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/08/2013] [Indexed: 11/30/2022]
Abstract
RATIONALE Marijuana (MJ) use continues to rise, and as the perceived risk of using MJ approaches an all-time historic low, initiation of MJ use is occurring at even younger ages. As adolescence is a critical period of neuromaturation, teens and emerging adults are at greater risk for experiencing the negative effects of MJ on the brain. In particular, MJ use has been shown to be associated with alterations in frontal white matter microstructure, which may be related to reports of increased levels of impulsivity in this population. OBJECTIVES The aim of this study was to examine the relationship between age of onset of MJ use, white matter microstructure, and reported impulsivity in chronic, heavy MJ smokers. METHODS Twenty-five MJ smokers and 18 healthy controls underwent diffusion tensor imaging and completed the Barratt Impulsiveness Scale. MJ smokers were also divided into early onset (regular use prior to age 16) and late onset (age 16 or later) groups in order to clarify the impact of age of onset of MJ use on these variables. RESULTS MJ smokers exhibited significantly reduced fractional anisotropy (FA) relative to controls, as well as higher levels of impulsivity. Earlier MJ onset was also associated with lower levels of FA. Interestingly, within the early onset group, higher impulsivity scores were correlated with lower FA, a relationship that was not observed in the late onset smokers. CONCLUSIONS MJ use is associated with white matter development and reported impulsivity, particularly in early onset smokers.
Collapse
Affiliation(s)
- Staci A Gruber
- Cognitive and Clinical Neuroimaging Core, McLean Imaging Center, McLean Hospital, 115 Mill St, Belmont, MA, 02478, USA,
| | | | | | | | | |
Collapse
|
38
|
Profant O, Škoch A, Balogová Z, Tintěra J, Hlinka J, Syka J. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging. Neuroscience 2014; 260:87-97. [PMID: 24333969 DOI: 10.1016/j.neuroscience.2013.12.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/13/2013] [Accepted: 12/05/2013] [Indexed: 01/12/2023]
Affiliation(s)
- O Profant
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Department of Otorhinolaryngology and Head and Neck Surgery, 1st Medical Faculty of Charles University, University Hospital Motol, Prague, Czech Republic.
| | - A Škoch
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Z Balogová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Department of Otorhinolaryngology and Head and Neck Surgery, 1st Medical Faculty of Charles University, University Hospital Motol, Prague, Czech Republic
| | - J Tintěra
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - J Hlinka
- Department of Nonlinear Dynamics and Complex Systems, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
39
|
Bennett IJ, Madden DJ. Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience 2013; 276:187-205. [PMID: 24280637 DOI: 10.1016/j.neuroscience.2013.11.026] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging.
Collapse
Affiliation(s)
- I J Bennett
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, United States
| | - D J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, United States; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, United States.
| |
Collapse
|
40
|
An age-related change in the ipsilateral silent period of a small hand muscle. Clin Neurophysiol 2012; 124:346-53. [PMID: 22883478 DOI: 10.1016/j.clinph.2012.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 06/27/2012] [Accepted: 07/11/2012] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To establish the presence or absence of an age effect on the ipsilateral silent period (iSP) for the abductor pollicis brevis (APB) muscle in healthy subjects. METHODS Twenty young adults (10 men, 10 women; age range: 20-40) and 20 older adults (10 men, 10 women; age range: 50-70) were matched by age (+30 years), gender and height (±5 cm). All were right-handed. We investigated the iSP for the APB by applying transcranial magnetic stimulation (TMS) and recording surface electromyograms. The contralateral motor-evoked potential (MEP) onset latency, the iSP onset and end latency (iSPOL and iSPEL) were measured and the iSP duration (iSPD) and transcallosal conduction time (TCT) were calculated. We evaluated the correlation between age and iSP, the latter's intra- and intersession reproducibility and potential influencing factors. RESULTS Mean iSPOL, iSPEL and TCT values were significantly greater in older adults (both men and women) than in young adults. Intra- and intersession reproducibility was good. The mean left-side iSPEL and iSPD were longer than the right-side mean values in young adults but not in older adults. In both age groups, women displayed shorter latencies than men. CONCLUSIONS There is a strong effect of age on iSP parameters. SIGNIFICANCE Our iSP results may evidence a decrease in transcallosal excitability with age, rather than slowing of the transcallosal interneuron conduction velocity.
Collapse
|
41
|
Zhu M, Gao W, Wang X, Shi C, Lin Z. Progression of corpus callosum atrophy in early stage of Alzheimer's disease: MRI based study. Acad Radiol 2012; 19:512-7. [PMID: 22342652 DOI: 10.1016/j.acra.2012.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 11/18/2022]
Abstract
RATIONALE AND OBJECTIVES Magnetic resonance imaging (MRI) studies reveal that atrophy of the corpus callosum (CC) is involved in early Alzheimer's disease (AD). The aim of this study was to investigate when and how callosal changes occur in the early course of AD. MATERIALS AND METHODS The Open Access Series of Imaging Studies data sets were used in this study to investigate callosal change. High-resolution structural MRI was performed in 196 older patients. Subjects were characterized using the Clinical Dementia Rating (CDR); 98 healthy controls were not demented (CDR 0), and 98 patients had clinical diagnosis of AD in the very mild dementia stage (CDR 0.5; n = 70) and the mild dementia stage (CDR 1; n = 28). A semiautomatic segmentation method was used to extract the CC in the midsagittal plane. The total and regional areas of the CC were measured. RESULTS The results indicated that callosal atrophy occurred in when subjects' CDRs were 0.5. The area of the genu and rostral body of the CC in the healthy controls (CDR 0) was significantly different from that of the subjects with very mild dementia (CDR 0.5) (P < .05). A significant difference could also be found in the area of the rostral body and midbody of the CC between subjects with very mild dementia (CDR 0.5) and those with mild dementia (CDR 1) (P < .05). CONCLUSIONS Callosal atrophy can be detected in subjects with CDRs of 0.5. The change in the CC in the early stage of AD indicates an anterior-to-posterior atrophic process as the degree of dementia assessed by the CDR (from 0 to 0.5 to 1) increases.
Collapse
Affiliation(s)
- Minwei Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | | | | | | |
Collapse
|
42
|
Nowinski WL, Chua BC, Yang GL, Qian GY. Three-dimensional interactive and stereotactic human brain atlas of white matter tracts. Neuroinformatics 2012; 10:33-55. [PMID: 21505883 DOI: 10.1007/s12021-011-9118-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a human brain atlas of white matter (WM) tracts containing 40 major tracts, which is three-dimensional (3D), segmented, labeled, interactive, stereotactic and correlated to structure and vasculature. We consider: (1) WM accuracy by correlating WM tracts to underlying neuroanatomy and quantifying them; (2) balance between realism and completeness by processing a sequence of track volumes generated for various parameters with the increasing track number to enable a tract "shape convergence". MPRAGE and DTI in 64 directions of the same subject were acquired on 3 Tesla. The method has three steps: DTI-MPRAGE registration, 3D tract generation from DTI, to WM reconstruction from MPRAGE to parcellation into 17 components. 82 track volumes were generated for a wide spectrum of parameter values: Fractional Anisotropy threshold in [0.0125, 0.55] and trajectory angle lower than 45°, 60°, 65°, 70°, 75°, 80°, 85°, 90°. For each tract, a sequence of track volumes was processed to create/edit contours delineating this tract to achieve its shape convergence. The parcellated tracts were grouped into commissures, associations, projections and posterior fossa tracts, and labeled following Terminologia Anatomica. To facilitate that, a dedicated tract editor is developed which processes multiple track volumes, handles tracts in three representations (tracks, contours, envelopes); provides editing/visualization simultaneously on axial, coronal, sagittal planes; enables tract labeling and coloring; and provides numerous tools (track counting, smoothing and length thresholding; representation conversion and saving; structural atlas support). A stereotactic tract atlas along with parcellated WM was developed to explore in real-time any individual tract or their groups along with surrounding neuroanatomy.
Collapse
Affiliation(s)
- Wieslaw L Nowinski
- Biomedical Imaging Lab, Agency for Science Technology and Research, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.
| | | | | | | |
Collapse
|
43
|
Madden DJ, Bennett IJ, Burzynska A, Potter GG, Chen NK, Song AW. Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta Mol Basis Dis 2011; 1822:386-400. [PMID: 21871957 DOI: 10.1016/j.bbadis.2011.08.003] [Citation(s) in RCA: 345] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 12/29/2022]
Abstract
In this article we review recent research on diffusion tensor imaging (DTI) of white matter (WM) integrity and the implications for age-related differences in cognition. Neurobiological mechanisms defined from DTI analyses suggest that a primary dimension of age-related decline in WM is a decline in the structural integrity of myelin, particularly in brain regions that myelinate later developmentally. Research integrating behavioral measures with DTI indicates that WM integrity supports the communication among cortical networks, particularly those involving executive function, perceptual speed, and memory (i.e., fluid cognition). In the absence of significant disease, age shares a substantial portion of the variance associated with the relation between WM integrity and fluid cognition. Current data are consistent with one model in which age-related decline in WM integrity contributes to a decreased efficiency of communication among networks for fluid cognitive abilities. Neurocognitive disorders for which older adults are at risk, such as depression, further modulate the relation between WM and cognition, in ways that are not as yet entirely clear. Developments in DTI technology are providing a new insight into both the neurobiological mechanisms of aging WM and the potential contribution of DTI to understanding functional measures of brain activity. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.
Collapse
Affiliation(s)
- David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Gruber SA, Silveri MM, Dahlgren MK, Yurgelun-Todd D. Why so impulsive? White matter alterations are associated with impulsivity in chronic marijuana smokers. Exp Clin Psychopharmacol 2011; 19:231-42. [PMID: 21480730 PMCID: PMC3659424 DOI: 10.1037/a0023034] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Difficulty monitoring and inhibiting impulsive behaviors has been reported in marijuana (MJ) smokers; neuroimaging studies, which examined frontal systems in chronic MJ smokers, have reported alterations during inhibitory tasks. Diffusion tensor imaging (DTI) provides a quantitative estimate of white matter integrity at the microstructural level. We applied DTI, clinical ratings, and impulsivity measures to explore the hypotheses that chronic, heavy MJ smokers would demonstrate alterations in white matter microstructure and a different association between white matter measures and impulsivity relative to nonsmoking control subjects (NS). Fractional anisotropy (FA), a measure of directional coherence, and trace, a measure of overall diffusivity, were calculated for 6 locations including bilateral frontal regions in 15 chronic MJ smokers and 15 NS. Subjects completed clinical rating scales, including the Barratt Impulsivity Scale (BIS). Analyses revealed significant reductions in left frontal FA in MJ smokers relative to NS and significantly higher levels of trace in the right genu. MJ smokers also had significantly higher BIS total and motor subscale scores relative to NS, which were positively correlated with left frontal FA values. Finally, age of onset of MJ use was positively correlated with frontal FA values and inversely related to trace. These data represent the first report of significant alterations in frontal white matter tracts associated with measures of impulsivity in chronic MJ smokers. Early MJ use may result in reduced FA and increased diffusivity, which may be associated with increased impulsivity, and ultimately contribute to the initiation of MJ use or the inability to discontinue use.
Collapse
Affiliation(s)
- Staci A. Gruber
- Cognitive and Clinical Neuroimaging Core and Brain Imaging Center, McLean Hospital, and Department of Psychiatry, Harvard Medical School
| | - Marisa M. Silveri
- Brain Imaging Center, McLean Hospital, and Department of Psychiatry, Harvard Medical School
| | | | - Deborah Yurgelun-Todd
- Brain Imaging Center, McLean Hospital and Department of Psychiatry, Harvard Medical School, The Brain Institute at the University of Utah
| |
Collapse
|
45
|
Structural organization of the prefrontal white matter pathways in the adult and aging brain measured by diffusion tensor imaging. Brain Struct Funct 2011; 216:417-31. [PMID: 21559982 DOI: 10.1007/s00429-011-0321-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/23/2011] [Indexed: 10/18/2022]
Abstract
Previous diffusion tensor imaging (DTI) studies confirmed the vulnerability of frontal callosal fibers to normal aging. The present study extended this examination systematically to other prefrontal white matter regions. Structural magnetic resonance imaging and DTI datasets were acquired from 69 healthy subjects aged 22-84 years. The prefrontal white matter was parcellated into several anatomical sub-regions: medial and lateral orbitofrontal white matter, dorsolateral prefrontal white matter, and medial prefrontal white matter, using reliable DTI-tractography protocols. Tract-specific characteristics were calculated using Matlab. Regression models were used to determine the relationship between age and structural integrity of white matter tracts. The results of our study demonstrate regional age-related changes in the prefrontal white matter tracts of the human brain. This study was cross-sectional and therefore additional longitudinal studies are needed to confirm our findings.
Collapse
|
46
|
Abstract
The corpus callosum (CC) is the brain's largest white matter tract, mostly composed by both myelinated and unmyelinated fibres, connecting the two cerebral hemispheres. The CC can be divided into different sections: rostrum, genu, body, isthmus and splenium (Aboitiz et al., 1992). Myelinated fibres predominate in the midbody and the splenium while unmyelinated fibres are more numerous in the rostrum and the genu. The callosal fiber disposition approximately reflects brain topography: the anterior sections connect the frontal lobes, the median sections connect temporal and parietal regions, and the posterior sections link occipital areas (Pandya et al., 1971). This traditional picture, however, which has been obtained mainly through studies in non-human primates has been partly modified by modern diffusion tensor imaging studies in humans (Hofer & Frahm, 2006). The CC matures after birth through adolescence and into early adulthood and is involved in different cognitive processes such as sensory-motor integration, attention, language, arousal and memory. Its size has been shown to be associated with handedness, sex (i.e., greater splenium in females and greater genu in males, Dubb et al., 2003) and cerebral laterality (i.e., inverse correlation between callosal connectivity and brain lateralization in males; Luders et al., 2003), and age (Ota et al., 2006) Specifically, age-related callosal degeneration has been detected by a diffusion tensor imaging (DTI) study (Ota et al., 2006) in the sub-regions that connect areas which are thought to be vulnerable to normal aging: the genu, rostral body, and isthmus. This result replicated post mortem findings of callosal degeneration in rostral body, anterior midbody and isthmus (Aboitiz et al., 1996).
Collapse
|
47
|
Agosta F, Valsasina P, Absinta M, Riva N, Sala S, Prelle A, Copetti M, Comola M, Comi G, Filippi M. Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2011; 21:2291-8. [PMID: 21368084 DOI: 10.1093/cercor/bhr002] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We investigated whether the functional connections to the primary sensorimotor cortex (SMC) at rest are abnormal in 26 patients with amyotrophic lateral sclerosis (ALS) and whether such changes are related to the corticospinal tract (CST) damage, measured using diffusion tensor magnetic resonance imaging (DT MRI). ALS patients versus controls showed a significantly increased functional connectivity between the left SMC and the right cingulate cortex, parahippocampal gyrus, and cerebellum-crus II. No right SMC connectivity changes were found. The pattern of increased functional connectivity to the left SMC was more widespread when considering only patients with no CST DT MRI abnormalities than the whole group of patients. In this patient group, functional connectivity was also increased between the right SMC and the right parahippocampal gyrus. On the contrary, in ALS patients with CST damage (as assessed using DT MRI) versus controls, functional connectivity was increased between the left SMC and the right cingulate cortex only, while it was decreased between the right SMC and the right cerebellum-lobule VI. In ALS patients, disease severity correlated with reduced SMC functional connectivity. Functional brain changes do occur in ALS with mild disability. These changes might have a role in compensating for (limited) structural damage and might exhaust with increasing burden of disease pathology.
Collapse
Affiliation(s)
- F Agosta
- Neuroimaging Research Unit, University Ospedale San Raffaele, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Colrain IM, Sullivan EV, Ford JM, Mathalon DH, McPherson SL, Roach BJ, Crowley KE, Pfefferbaum A. Frontally mediated inhibitory processing and white matter microstructure: age and alcoholism effects. Psychopharmacology (Berl) 2011; 213:669-79. [PMID: 21161189 PMCID: PMC3033525 DOI: 10.1007/s00213-010-2073-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/08/2010] [Indexed: 10/31/2022]
Abstract
RATIONALE The NOGO P3 event-related potential is a sensitive marker of alcoholism, relates to EEG oscillation in the δ and θ frequency ranges, and reflects activation of an inhibitory processing network. Degradation of white matter tracts related to age or alcoholism should negatively affect the oscillatory activity within the network. OBJECTIVE This study aims to evaluate the effect of alcoholism and age on δ and θ oscillations and the relationship between these oscillations and measures of white matter microstructural integrity. METHODS Data from ten long-term alcoholics to 25 nonalcoholic controls were used to derive P3 from Fz, Cz, and Pz using a visual GO/NOGO protocol. Total power and across trial phase synchrony measures were calculated for δ and θ frequencies. DTI, 1.5 T, data formed the basis of quantitative fiber tracking in the left and right cingulate bundles and the genu and splenium of the corpus callosum. Fractional anisotropy and diffusivity (λL and λT) measures were calculated from each tract. RESULTS NOGO P3 amplitude and δ power at Cz were smaller in alcoholics than controls. Lower δ total power was related to higher λT in the left and right cingulate bundles. GO P3 amplitude was lower and GO P3 latency was longer with advancing age, but none of the time-frequency analysis measures displayed significant age or diagnosis effects. CONCLUSIONS The relation of δ total power at CZ with λT in the cingulate bundles provides correlational evidence for a functional role of fronto-parietal white matter tracts in inhibitory processing.
Collapse
Affiliation(s)
- Ian M Colrain
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Camlar M, Ersahin Y, Ozer FD, Sen F, Orman M. Can using a peel-away sheath in shunt implantation prevent ventricular catheter obstruction? Childs Nerv Syst 2011; 27:295-8. [PMID: 20625740 DOI: 10.1007/s00381-010-1226-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Shunt obstruction is the most common shunt complication. In 2003, Kehler et al. used peel-away sheath while implanting the ventricular catheter in 20 patients. They found less revision rate in the peel-away sheath group. We aimed to test the efficacy of this technique in cadavers. METHODS We used 100 fresh brains obtained from medicolegal autopsies. Posterior parietal and frontal approaches were used to puncture the lateral ventricle in each cerebral hemisphere. The ventricle is punctured with a peel-away sheath system. After the ventricle is reached, the mandarin is retracted and the ventricular catheter is introduced through the opening. The ventricular catheter was removed from the ventricle, the opening at the tip of the ventricular catheter was checked out for obstruction, and the number of patent and plugged openings was recorded. This procedure was repeated four times for each location with and without using peel-away sheath. The control group consisted of the procedures done without using peel-away sheath. RESULTS The number of the plugged openings in the peel-away sheath group was significantly smaller than the control group. There was no significant difference between the two groups in terms of gender and left and right cerebral hemispheres. The obstruction rate was significantly lower in the posterior parietal approach. Pearson's correlation showed that increasing age was associated with less obstruction rate. CONCLUSION Peel-away sheath decreases the number of plugged openings of the ventricular catheter. A clinical cooperative study is needed to prove that a peel-away sheath should be included in the ventricular shunt systems in the market.
Collapse
Affiliation(s)
- Mahmut Camlar
- Department of Neurosurgery, Izmir Education and Research Hospital, Izmir, Turkey
| | | | | | | | | |
Collapse
|
50
|
Carmichael O, Lockhart S. The role of diffusion tensor imaging in the study of cognitive aging. Curr Top Behav Neurosci 2011; 11:289-320. [PMID: 22081443 DOI: 10.1007/7854_2011_176] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter gives an overview of the role that diffusion tensor MRI (DTI) can play in the study of cognitive decline that is associated with advancing age. A brief overview of biological injury processes that impinge on the aging brain is provided, and their overall effect on the integrity of neural architecture is described. Cognitive decline associated with aging, and white matter connectivity degradation as a biological substrate for that decline, is then described. We then briefly describe the technology of DTI as a means for in vivo, non-invasive interrogation of white matter connectivity, and relate it to FLAIR, a more traditional MRI method for assessing white matter injury. We then survey the existing findings on relationships between aging-associated neuropathological processes and DTI measurements on one hand; and relationships between DTI measurements and late-life cognitive function on the other. We conclude with a summary of current research directions in relation to DTI studies of cognitive aging.
Collapse
Affiliation(s)
- Owen Carmichael
- Neurology Department, University of California, Davis, Davis, CA, USA,
| | | |
Collapse
|