1
|
Dumitru C, Iacob CI, Zamfirache F, Folostina R, Radu BM. Sleep deprivation and memory consolidation in rats: A meta-analysis of experimental studies. Behav Brain Res 2025; 487:115591. [PMID: 40216163 DOI: 10.1016/j.bbr.2025.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Sleep deprivation (SD) continues to be used today to examine the role of sleep across diverse cognitive domains. Extensive research has been conducted to investigate the impact of SD on memory, though findings across studies have been inconsistent. This meta-analysis systematically assessed the effects of SD on memory performance in rats and identified the factors that may moderate these effects. PubMed, PsychInfo, Google scholar, and Scopus databases were used to search for studies. Out of 128 identified studies, 25 studies with 78 reports were included in the final analysis. A random effects meta-analysis was performed, along with subgroup analysis and meta-regression. The results showed that overall, SD has a negative impact on memory in rats. Additionally, sex, memory response type, and number of learning trials for spatial tasks can act as moderators of the relationship between SD and memory. The type of memory task and assessment method used contributed to variability in observed outcomes, with hippocampus-dependent tasks showing the most pronounced memory impairments. The number of learning trials for spatial tasks also moderated the effects, with more trials mitigating the impact of SD. These findings reinforce the role of sleep in memory, particularly for hippocampus-dependent tasks.
Collapse
Affiliation(s)
- Cristina Dumitru
- Department of Educational Sciences, Faculty of Educational Sciences, Social Sciences and Psychology, The National University of Science and Technology POLITEHNICA Bucharest, Pitesti University Center, Targul din Vale, nr.1, Pitesti, Romania.
| | - Claudia Iuliana Iacob
- Department of Applied Psychology and Psychotherapy, Faculty of Psychology and Educational Sciences, University of Bucharest, Panduri Street no. 90, sector 5, Bucharest, Romania.
| | - Florin Zamfirache
- Department of Anatomy, Animal Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei, no. 91-95, Bucharest, Romania.
| | - Ruxandra Folostina
- Department of Special Education, Faculty of Psychology and Educational Sciences, University of Bucharest, Panduri Street no. 90, sector 5, Bucharest, Romania.
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology, and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei, no. 91-95, Bucharest, Romania.
| |
Collapse
|
2
|
Sowersby W, Kobayashi T, Awata S, Sogawa S, Kohda M. The influence of sleep disruption on learning and memory in fish. J Sleep Res 2025:e70005. [PMID: 40104880 DOI: 10.1111/jsr.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/22/2024] [Accepted: 01/29/2025] [Indexed: 03/20/2025]
Abstract
Sleep is a ubiquitous process that has been conserved in animals. Yet, our understanding of the functions of sleep largely derives from a few species. Sleep is considered to play an important role in mental processes, including learning and memory consolidation, but how widespread this relationship is across taxa remains unclear. Here, we test the impact of sleep disruption on the ability of the cleaner fish (Labroides dimidiatus) to both learn and remember a novel cognitive task. Sleep was disrupted by exposing a subset of fish to light at set intervals during the night. We found a significant negative relationship between sleep disruption and the ability to learn a novel task. Specifically, we found that fish in the light-disturbed sleep treatment took significantly longer and made more incorrect decisions to find a food reward, compared with the undisturbed sleep treatment. All fish were then allowed a normal sleep schedule and retested several days later to assess their ability to remember the task. In contrast to the learning phase, we observed no significant differences between the two treatment groups in remembering the food reward several days later. Our results demonstrate a negative impact of sleep disruption on performance in a cognitive challenging task that appeared to have the strongest effect when fish were first exposed to the challenge. Importantly, we show that the association between sleep and mental processes, such as learning, may be widespread across vertebrate taxa and potentially have an early origin in the evolutionary history of vertebrate animals.
Collapse
Affiliation(s)
- Will Sowersby
- Laboratory of Animal Sociology, Department of Biology, Osaka Metropolitan University, Osaka, Japan
| | - Taiga Kobayashi
- Laboratory of Animal Sociology, Department of Biology, Osaka Metropolitan University, Osaka, Japan
| | - Satoshi Awata
- Laboratory of Animal Sociology, Department of Biology, Osaka Metropolitan University, Osaka, Japan
| | - Shumpei Sogawa
- Laboratory of Animal Sociology, Department of Biology, Osaka Metropolitan University, Osaka, Japan
| | - Masanori Kohda
- Laboratory of Animal Sociology, Department of Biology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
3
|
Zou DF, Li ZH, Liu YB, Wang CZ. Progress in the study of the effects of electromagnetic radiation on the mood and rhythm. Electromagn Biol Med 2025; 44:212-227. [PMID: 39964745 DOI: 10.1080/15368378.2025.2460971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/27/2025] [Indexed: 04/24/2025]
Abstract
The ever-expanding use of a large number of electrical appliances and mobile communication systems, which outnumber the global population, emit electromagnetic radiation through mobile telephones, power stations, transmission lines, radar, microwave ovens, televisions, refrigerators, therapeutic and other electronic devices. Electromagnetic radiation has been classified by the International Agency for Research on Cancer (IARC) as possibly carcinogenic to humans (Group 2B). A large number of research results show that short-term and long-term exposure to electromagnetic radiation can lead to anxiety, depression, decreased learning ability, memory loss, sleep rhythm disorders and other adverse effects. Sleep rhythm disorders affect many people worldwide and may be associated with psychiatric disorders such as anxiety and depression. In this review, we summarise key experiments related to the effects of electric field exposure on mood and rhythms in animal and cellular studies over the past decade, describe the effects of electromagnetic radiation on emotional behaviors and circadian rhythms in humans and mammals, and explore the relationship between electromagnetic radiation,mood and rhythms as well as its underlying mechanisms of action. Most animal studies suggest that electromagnetic radiation may affect the physiological organization and functioning of the brain, influence neurotransmitters and receptors, interfere with neuronal formation and structure, or alter associated endocrine hormones and free radicals, which may lead to the unfavorable development of psychiatric disorders and sleep rhythm disorders. This summary may provide researchers with better clues and ideas to develop therapeutic solutions with sleep disorders and depressive psychiatric disorders.
Collapse
Affiliation(s)
- Dong-Fang Zou
- College of Life Science, Yangtze University, Jingzhou, China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhi-Hui Li
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying-Bao Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Chang-Zhen Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
4
|
Stimmell AC, Alday LJ, Marquez Diaz J, Moseley SC, Cushing SD, Salvador EM, Ragsdale SM, Wilber AA. Resting After Learning Facilitates Memory Consolidation and Reverses Spatial Reorientation Impairments in 'New Surroundings' in 3xTg-AD Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.622722. [PMID: 39605595 PMCID: PMC11601299 DOI: 10.1101/2024.11.12.622722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Sleep is an essential component of productive memory consolidation and waste clearance, including pathology associated with Alzheimer's disease (AD). Facilitation of sleep decreases Aβ and tau accumulation and is important for the consolidation of spatial memories. We previously found that 6-month female 3xTg-AD mice were impaired at spatial reorientation. Given the association between sleep and AD, we assessed the impact of added rest on impaired spatial reorientation that we previously observed. We randomly assigned 3xTg-AD mice to a rest (n=7; 50 min pre- & post-task induced rest) or a non-rest group (n=7; mice remained in the home cage pre- & post-task). Mice in both groups were compared to non-Tg, age-matched, non-rest controls (n=6). To confirm that our sleep condition induced sleep, we performed the same experiment with rest sessions for both 3xTg-AD and non-Tg mice (n=6/group) implanted with recording electrodes to capture local field potentials (LFPs), which were used to classify sleep states. Markers of pathology were also assessed in the parietal-hippocampal network, where we previously showed pTau positive cell density predicted spatial reorientation ability (pTau, 6E10, M78, and M22). However, we found that 3xTg-AD rest mice were not impaired at spatial reorientation compared to non-Tg mice and performed better than 3xTg-AD non-rest mice (replicating our previous work). This recovered behavior persisted despite no change in the density of pathology positive cells. Thus, improving sleep in early stages of AD pathology offers a promising approach for facilitating memory consolidation and improving cognition.
Collapse
|
5
|
Gutiérrez Pérez ML, Lugo Machado JA, Lozano Lavado V, Navarro Pimiento DC. Sleep and Learning: A Systematic Review. Int Arch Otorhinolaryngol 2024; 28:e657-e661. [PMID: 39464363 PMCID: PMC11511274 DOI: 10.1055/s-0043-1777294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/02/2023] [Indexed: 10/29/2024] Open
Abstract
Introduction Sleep deprivation has a great impact on the learning process in physicians in training. Therefore, inquiring on this phenomenon in the most recent investigations will facilitate the provision of evidence on the influence regarding the absence of sleep on the learning process in health personnel. Objectives The aim of this systematic review is to review, analyze and discuss the current literature that shows the impact of sleep on the learning process on doctors in training. Data Synthesis A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A search of the existing literature between the years of 2000 and 2022 was performed in the PubMed and Elsevier databases, taking into account the inclusion criteria of articles in English or Spanish and the established timeframe. As a result, 128 articles distributed in the databases were obtained and 23 articles that met the inclusion criteria were selected. Conclusion Sleep is a fundamental factor for the consolidation, processing and functioning of memory and learning. Health professionals are a population at risk of sleep deprivation, thus it is important to take into account the effects it has on patients and health personnel.
Collapse
Affiliation(s)
- Martha Lucía Gutiérrez Pérez
- Otorhinolaryngology Interest Group UEB (ORLIG-UEB), Colombian School of Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Juan Antonio Lugo Machado
- Department of Head and Neck Surgery, Hospital de Especialidades núm. 2, Centro Médico Nacional del Noroeste, Instituto Mexicano del Seguro Social, Ciudad Obregón, Sonora, Mexico
- Hospital General de Obregón, Ciudad Obregón, Sonora, Mexico
| | - Valeria Lozano Lavado
- Otorhinolaryngology Interest Group UEB (ORLIG-UEB), Colombian School of Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Diana Camila Navarro Pimiento
- Otorhinolaryngology Interest Group UEB (ORLIG-UEB), Colombian School of Medicine, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
6
|
Szücs-Bencze L, Vékony T, Pesthy O, Szabó N, Kincses TZ, Turi Z, Nemeth D. Modulating Visuomotor Sequence Learning by Repetitive Transcranial Magnetic Stimulation: What Do We Know So Far? J Intell 2023; 11:201. [PMID: 37888433 PMCID: PMC10607545 DOI: 10.3390/jintelligence11100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/23/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Predictive processes and numerous cognitive, motor, and social skills depend heavily on sequence learning. The visuomotor Serial Reaction Time Task (SRTT) can measure this fundamental cognitive process. To comprehend the neural underpinnings of the SRTT, non-invasive brain stimulation stands out as one of the most effective methodologies. Nevertheless, a systematic list of considerations for the design of such interventional studies is currently lacking. To address this gap, this review aimed to investigate whether repetitive transcranial magnetic stimulation (rTMS) is a viable method of modulating visuomotor sequence learning and to identify the factors that mediate its efficacy. We systematically analyzed the eligible records (n = 17) that attempted to modulate the performance of the SRTT with rTMS. The purpose of the analysis was to determine how the following factors affected SRTT performance: (1) stimulated brain regions, (2) rTMS protocols, (3) stimulated hemisphere, (4) timing of the stimulation, (5) SRTT sequence properties, and (6) other methodological features. The primary motor cortex (M1) and the dorsolateral prefrontal cortex (DLPFC) were found to be the most promising stimulation targets. Low-frequency protocols over M1 usually weaken performance, but the results are less consistent for the DLPFC. This review provides a comprehensive discussion about the behavioral effects of six factors that are crucial in designing future studies to modulate sequence learning with rTMS. Future studies may preferentially and synergistically combine functional neuroimaging with rTMS to adequately link the rTMS-induced network effects with behavioral findings, which are crucial to develop a unified cognitive model of visuomotor sequence learning.
Collapse
Affiliation(s)
- Laura Szücs-Bencze
- Department of Neurology, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, 95 Boulevard Pinel, F-69500 Bron, France
| | - Orsolya Pesthy
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, H-1064 Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd Universiry, Izabella utca 46, H-1064 Budapest, Hungary
| | - Nikoletta Szabó
- Department of Neurology, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
| | - Tamás Zsigmond Kincses
- Department of Neurology, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
- Department of Radiology, University of Szeged, Semmelweis utca 6, H-6725 Szeged, Hungary
| | - Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - Dezso Nemeth
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, 95 Boulevard Pinel, F-69500 Bron, France
- BML-NAP Research Group, Institute of Psychology & Institute of Cognitive Neuroscience and Psychology, ELTE Eötvös Loránd University & Research Centre for Natural Sciences, Damjanich utca 41, H-1072 Budapest, Hungary
| |
Collapse
|
7
|
Rubboli G, Gardella E, Cantalupo G, Alberto Tassinari C. Encephalopathy related to status epilepticus during slow sleep (ESES). Pathophysiological insights and nosological considerations. Epilepsy Behav 2023; 140:109105. [PMID: 36758358 DOI: 10.1016/j.yebeh.2023.109105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Encephalopathy related to Status Epilepticus during slow Sleep (ESES) is a childhood epilepsy syndrome characterized by the appearance of cognitive, behavioral, and motor disturbances in conjunction with a striking activation of EEG epileptic abnormalities during non-REM sleep. After more than 50 years since the first description, the pathophysiological mechanisms underlying the appearance of encephalopathy in association with a sleep-related enhancement of epileptic discharges are incompletely elucidated. Recent experimental data support the hypothesis that the development of the ESES encephalopathic picture depends on a spike-induced impairment of the synaptic homeostasis processes occurring during normal sleep and that is particularly pronounced during the developmental age. During sleep, synaptic homeostasis is promoted by synaptic weakening/elimination after the increment of synaptic strength that occurs during wakefulness. The EEG can display modifications in synaptic strength by changes in sleep slow wave activity (SWA). Recent studies during active ESES have failed to show changes in sleep SWA, while these changes occurred again after recovery from ESES, thus supporting a spike-related interference on the normal homeostatic processes of sleep. This impairment, during the developmental period, can lead to disruption of cortical wiring and brain plastic remodeling, which lead to the, often irreversible, neuropsychological compromise typical of ESES. From the nosographic point of view, these pathophysiological data lend support to the maintenance of the term ESES, i.e., "encephalopathy related to status epilepticus during sleep". Indeed, this term conveys the concept that the extreme activation of epileptic discharges during sleep is directly responsible for the encephalopathy, hence the importance of defining this condition as an encephalopathy related to the exaggerated activation of epileptic activity during sleep. In this respect, ESES represents a genuine example of a "pure" epileptic encephalopathy in which sleep-related epileptic activity "per se" has a crucial role in determining the encephalopathic picture. This paper was presented at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.
Collapse
Affiliation(s)
- Guido Rubboli
- Danish Epilepsy Center, member of ERN EpiCARE, Kolonivej 1, 4293 Dianalund, Denmark; Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Elena Gardella
- Danish Epilepsy Center, member of ERN EpiCARE, Kolonivej 1, 4293 Dianalund, Denmark; University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Gaetano Cantalupo
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Via S. Francesco, 22, 37129 Verona, Italy; Centro Ricerca per le Epilessie in età Pediatrica (CREP), Azienda Ospedaliera Universitaria di Verona, Verona, Italy.
| | | |
Collapse
|
8
|
Cohen H, Ephraim‐Oluwanuga OT, Akintunde OT, Gureje O, Matar MA, Todder D, Zohar J. The potential beneficial effect of sleep deprivation following traumatic events to preventing PTSD: Review of current insight regarding sleep, memory, and trauma resonating with ancient rituals-Àìsùn Oku (African) and Tsuya (Japanese). Neuropsychopharmacol Rep 2023; 43:2-11. [PMID: 36622038 PMCID: PMC10009425 DOI: 10.1002/npr2.12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sleep figures in numerous ancient texts, for example, Epic of Gilgamesh, and has been a focus for countless mystical and philosophical texts. Even in the present century, sleep remains one of the most complex behaviors whose function still remains to be further explored. Current hypotheses suggest that among other functions, sleep contributes to memory processes. Memory is a core topic of study in post-traumatic stress disorder (PTSD) and other stress-related phenomena. It is widely accepted that sleep plays a major role in the consolidation of newly encoded hippocampus-dependent memories to pre-existing knowledge networks. Conversely, sleep deprivation disrupts consolidation and impairs memory retrieval. Along this line, sleep deprivation following a potentially traumatic event may interfere with the consolidation of event-related memories and, thereby, may reduce long-term post-traumatic stress-related symptoms. This review consolidates clinical and animal studies on the relationships between sleep, sleep deprivation, memory processes, and trauma exposure while introducing new contemporary insights into an ancient African tribal ritual (Àìsùn Oku) and Japanese ceremony ritual (Tsuya). We propose that these findings, focusing specifically on the effects of sleep deprivation in the immediate aftermath of traumatic events, may be explored as a possible therapeutic measure. Along with a summary of the field questions on whether sleep is performed "to remember" or "to forget" we lay the rationale for using sleep deprivation as a clinical tool. A tool that may partially prevent the long-term persistence of these traumatic events' memory and thereby, at least partly, attenuating the development of PTSD.
Collapse
Affiliation(s)
- Hagit Cohen
- Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Beer‐Sheva Mental Health CenterBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | | | - Orunmuyi T. Akintunde
- Department of Nuclear Medicine, College of MedicineUniversity of IbadanIbadanNigeria
| | - Oye Gureje
- Department of PsychiatryCollege of Health Sciences University of AbujaAbujaNigeria
| | - Michael A. Matar
- Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Beer‐Sheva Mental Health CenterBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Doron Todder
- Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Beer‐Sheva Mental Health CenterBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Joseph Zohar
- Post‐Trauma Center, Sheba Medical CenterTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
9
|
D’Aurizio G, Tosti B, Tempesta D, Avvantaggiato L, Splendiani A, Sacco S, Mandolesi L, Curcio G. Reduced Sleep Amount and Increased Sleep Latency in Prisoners: A Pilot Study in an Italian Jail. Brain Sci 2023; 13:brainsci13010132. [PMID: 36672113 PMCID: PMC9856642 DOI: 10.3390/brainsci13010132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Several previous subjective- or interview-based reports indicated a reduced sleep quality and quantity as well as a great incidence of insomnia troubles in prisoners living in jail. The aim of the present study is to assess the quality and quantity of sleep by using, for the first time, actigraphy. A total of thirty male prisoners and thirty male control volunteers accepted to participate in this study: to this end, they filled in some questionnaires to assess state and trait anxiety, depression, sleep quality, and insomnia severity. In addition, their sleep was actigraphically recorded for seven consecutive nights. The main results indicate a worsened mood in prisoners than in controls (with increased anxiety and depression) as well as a subjectively reported low sleep quality (higher scores at PSQI) with a clinical presence of insomnia complaints (as indicated by ISI scores). Moreover, objectively assessed sleep by means of actigraphy exhibited some worrying results, namely a longer sleep onset and a reduced total sleep time was seen in prisoners with respect to controls. The results have been discussed in the light of potential effects of sleep quality and quantity as well as of mood symptoms on cognitive functioning, as well as with respect to prisoners' health and well-being.
Collapse
Affiliation(s)
- Giulia D’Aurizio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Beatrice Tosti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Daniela Tempesta
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Lucia Avvantaggiato
- Department of Penitentiary Administration, Ministry of Justice, 00164 Roma, Italy
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Laura Mandolesi
- Department of Humanities, University of Naples Federico II, 80138 Naples, Italy
| | - Giuseppe Curcio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-(0862)-433407
| |
Collapse
|
10
|
Picchioni D, Schmidt KC, Loutaev I, Pavletic AJ, Sheeler C, Bishu S, Balkin TJ, Smith CB. Increased rates of brain protein synthesis during [N1,N2] sleep: L-[1- 11C]leucine PET studies in human subjects. J Cereb Blood Flow Metab 2023; 43:59-71. [PMID: 36071616 PMCID: PMC9875345 DOI: 10.1177/0271678x221121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/30/2022] [Accepted: 07/24/2022] [Indexed: 01/28/2023]
Abstract
During sleep, reduced brain energy demands provide an opportunity for biosynthetic processes like protein synthesis. Sleep is required for some forms of memory consolidation which requires de novo protein synthesis. We measured regional cerebral protein synthesis rates (rCPS) in human subjects to ascertain how rCPS is affected during sleep. Subjects underwent three consecutive L-[1-11C]leucine PET scans with simultaneous polysomnography: 1. rested awake, 2. sleep-deprived awake, 3. sleep. Measured rCPS were similar across the three conditions. Variations in sleep stage times during sleep scans were used to estimate rCPS in sleep stages under the assumption that measured rCPS is the weighted sum of rCPS in each stage, with weights reflecting time and availability of [11C]leucine in that stage. During sleep scans, subjects spent most of the time in N2, N3, and awake and very little time in N1 and REM; rCPS in N1 and REM could not be reliably estimated. When stages N1 and N2 were combined [N1,N2], estimates of rCPS were more robust. In selective regions, estimated rCPS were statistically significantly higher (30-39%) in [N1,N2] compared with N3; estimated rCPS in N3 were similar to values measured in sleep-deprived awake scans. Results indicate increased rates of protein synthesis linked to [N1,N2] sleep.
Collapse
Affiliation(s)
- Dante Picchioni
- Section on Neuroadaptation and Protein Metabolism, National
Institute of Mental Health, Bethesda, MD, USA
- Advanced Magnetic Resonance Imaging Section, National Institute
of Neurological Disorders and Stroke, Bethesda, MD, USA
- Behavioral Biology Branch, Walter Reed Army Institute of
Research, Silver Spring, MD, USA
| | - Kathleen C Schmidt
- Section on Neuroadaptation and Protein Metabolism, National
Institute of Mental Health, Bethesda, MD, USA
| | - Inna Loutaev
- Section on Neuroadaptation and Protein Metabolism, National
Institute of Mental Health, Bethesda, MD, USA
| | - Adriana J Pavletic
- Office of the Clinical Director, National Institute of Mental
Health, Bethesda, MD, USA
| | - Carrie Sheeler
- Section on Neuroadaptation and Protein Metabolism, National
Institute of Mental Health, Bethesda, MD, USA
| | - Shrinivas Bishu
- Section on Neuroadaptation and Protein Metabolism, National
Institute of Mental Health, Bethesda, MD, USA
| | - Thomas J Balkin
- Behavioral Biology Branch, Walter Reed Army Institute of
Research, Silver Spring, MD, USA
| | - Carolyn B Smith
- Section on Neuroadaptation and Protein Metabolism, National
Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Malcom DR. The Power of Sleep to Transform Learning and Knowledge Retention. AMERICAN JOURNAL OF PHARMACEUTICAL EDUCATION 2022; 86:8915. [PMID: 34716139 PMCID: PMC10159460 DOI: 10.5688/ajpe8915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 05/06/2023]
Affiliation(s)
- Daniel R Malcom
- Sullivan University, College of Pharmacy and Health Sciences, Louisville, Kentucky
| |
Collapse
|
12
|
Yelden K, James LM, Duport S, Kempny A, Farmer SF, Leff AP, Playford ED. A simple intervention for disorders of consciousness- is there a light at the end of the tunnel? Front Neurol 2022; 13:824880. [PMID: 35937075 PMCID: PMC9355643 DOI: 10.3389/fneur.2022.824880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Sleep is a physiological state necessary for memory processing, learning and brain plasticity. Patients with disorders of consciousness (DOC) show none or minimal sign of awareness of themselves or their environment but appear to have sleep-wake cycles. The aim of our study was to assess baseline circadian rhythms and sleep in patients with DOC; to optimize circadian rhythm using an intervention combining blue light, melatonin and caffeine, and to identify the impact of this intervention on brain function using event related potentials. We evaluated baseline circadian rhythms and sleep in 17 patients with DOC with 24-h polysomnography (PSG) and 4-hourly saliva melatonin measurements for 48 h. Ten of the 17 patients (5 female, age 30-71) were then treated for 5 weeks with melatonin each night and blue light and caffeine treatment in the mornings. Behavioral assessment of arousal and awareness [Coma recovery scale-revised (CRS-R)], 24-h polysomnography and 4-hourly saliva melatonin measurements, oddball mismatch negativity (MMN) and subject's own name (SON) experiments were performed twice at baseline and following intervention. Baseline sleep was abnormal in all patients. Cosinor analysis of saliva melatonin results revealed that averaged baseline % rhythmicity was low (M: 31%, Range: 13-66.4%, SD: 18.4). However, increase in % Melatonin Rhythm following intervention was statistically significant (p = 0.012). 7 patients showed improvement of CRS-R scores with intervention and this was statistically significant (p = 0.034). All the patients who had improvement of clinical scores also had statistically significant improvement of neurophysiological responses on MMN and SON experiments at group level (p = 0.001). Our study shows that sleep and circadian rhythms are severely deranged in DOC but optimization is possible with melatonin, caffeine and blue light treatment. Clinical and physiological parameters improved with this simple and inexpensive intervention. Optimization of sleep and circadian rhythms should be integrated into rehabilitation programs for people with DOC.
Collapse
Affiliation(s)
- Kudret Yelden
- Neurological Rehabilitation, Royal Hospital for Neuro-Disability, London, United Kingdom
- Department of Neuroscience, King's College Hospital, London, United Kingdom
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Leon M. James
- Neurophysiology Department, Bupa Cromwell Hospital, London, United Kingdom
| | - Sophie Duport
- Research Department, Royal Hospital for Neuro-Disability, London, United Kingdom
| | - Agnieszka Kempny
- Research Department, Royal Hospital for Neuro-Disability, London, United Kingdom
| | - Simon F. Farmer
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | - Alex P. Leff
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- National Hospital for Neurology and Neurosurgery, University College London Hospital, London, United Kingdom
| | - E. Diane Playford
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
13
|
Maffi S, Scaricamazza E, Migliore S, Casella M, Ceccarelli C, Squitieri F. Sleep Quality and Related Clinical Manifestations in Huntington Disease. J Pers Med 2022; 12:jpm12060864. [PMID: 35743649 PMCID: PMC9224745 DOI: 10.3390/jpm12060864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Sleep patterns are frequently disrupted in neurodegenerative disorders such as Huntington disease (HD); however, they are still poorly understood, especially their association with clinic features. Our study aimed to explore potential correlations between sleep features and motor, cognitive, behavioural and functional changes in manifest HD subjects. (2) Methods: We enrolled 42 patients who were assessed by the Pittsburgh Sleep Quality Index (PSQI) and Insomnia Severity Index (ISI) questionnaires; clinical features were evaluated by the validated ENROLL-HD platform assay, including the Unified Huntington’s Disease Rating Scale (UHDRS) and the Problem Behaviours Assessment Short Form (PBA-s). (3) Results: We found a significant association between the patients’ perception of sleep abnormalities and scores of impaired independence, cognitive and motor performances. Specifically, sleep efficiency (PSQI—C4 subscores) and the use of sleep medications (PSQI—C6 subscores) seem to be more frequently associated with the severity of the disease progression. (4) Conclusion: sleep abnormalities represent an important part of the HD clinical profile and can impair patients’ quality of life by affecting their level of independence, cognition performance and mental well-being.
Collapse
Affiliation(s)
- Sabrina Maffi
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (S.M.); (E.S.); (S.M.)
| | - Eugenia Scaricamazza
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (S.M.); (E.S.); (S.M.)
| | - Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (S.M.); (E.S.); (S.M.)
| | - Melissa Casella
- Italian League for Research on Huntington (LIRH) Foundation, 00185 Rome, Italy; (M.C.); (C.C.)
| | - Consuelo Ceccarelli
- Italian League for Research on Huntington (LIRH) Foundation, 00185 Rome, Italy; (M.C.); (C.C.)
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (S.M.); (E.S.); (S.M.)
- Correspondence:
| |
Collapse
|
14
|
Urtnasan E, Park JU, Joo EY, Lee KJ. Deep Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal. Diagnostics (Basel) 2022; 12:1235. [PMID: 35626390 PMCID: PMC9140070 DOI: 10.3390/diagnostics12051235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sleep stage scoring, which is an essential step in the quantitative analysis of sleep monitoring, relies on human experts and is therefore subjective and time-consuming; thus, an easy and accurate method is needed for the automatic scoring of sleep stages. METHODS In this study, we constructed a deep convolutional recurrent (DCR) model for the automatic scoring of sleep stages based on a raw single-lead electrocardiogram (ECG). The DCR model uses deep convolutional and recurrent neural networks to apply the complex and cyclic rhythms of human sleep. It consists of three convolutional and two recurrent layers and is optimized by dropout and batch normalization. The constructed DCR model was evaluated using multiclass classification, including five-class sleep stages (wake, N1, N2, N3, and rapid eye movement (REM)) and three-class sleep stages (wake, non-REM (NREM), and REM), using a raw single-lead ECG signal. The single-lead ECG signal was collected from 112 subjects in two groups: control (52 subjects) and sleep apnea (60 subjects). The single-lead ECG signal was preprocessed, segmented at a duration of 30 s, and divided into a training set of 89 subjects and test set of 23 subjects. RESULTS We achieved an overall accuracy of 74.2% for five classes and 86.4% for three classes. CONCLUSIONS These results show the DCR model's superior performance over those in the previous studies, highlighting that the model can be an alternative tool for sleep monitoring and sleep screening.
Collapse
Affiliation(s)
- Erdenebayar Urtnasan
- Artificial Intelligence Big Data Medical Center, Wonju College of Medicine, Yonsei University, Wonju 26417, Korea;
| | - Jong-Uk Park
- Department of Medical Artificial Intelligence, Medical Engineering College, Konyang University, Daejeon 35365, Korea;
| | - Eun Yeon Joo
- Department of Neurology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea;
| | - Kyoung-Joung Lee
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
15
|
Strauss M, Griffon L, Van Beers P, Elbaz M, Bouziotis J, Sauvet F, Chennaoui M, Léger D, Peigneux P. Order matters: sleep spindles contribute to memory consolidation only when followed by rapid-eye-movement sleep. Sleep 2022; 45:6509075. [PMID: 35037060 DOI: 10.1093/sleep/zsac022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
Sleep is known to benefit memory consolidation, but little is known about the contribution of sleep stages within the sleep cycle. The sequential hypothesis proposes that memories are first replayed during nonrapid-eye-movement (NREM or N) sleep and then integrated into existing networks during rapid-eye-movement (REM or R) sleep, two successive critical steps for memory consolidation. However, it lacks experimental evidence as N always precedes R sleep in physiological conditions. We tested this sequential hypothesis in patients with central hypersomnolence disorder, including patients with narcolepsy who present the unique, anti-physiological peculiarity of frequently falling asleep in R sleep before entering N sleep. Patients performed a visual perceptual learning task before and after daytime naps stopped after one sleep cycle, starting in N or R sleep and followed by the other stage (i.e. N-R vs. R-N sleep sequence). We compared over-nap changes in performance, reflecting memory consolidation, depending on the sleep sequence during the nap. Thirty-six patients who slept for a total of 67 naps were included in the analysis. Results show that sleep spindles are associated with memory consolidation only when N is followed by R sleep, that is in physiologically ordered N-R naps, thus providing support to the sequential hypothesis in humans. In addition, we found a negative effect of rapid-eye-movements in R sleep on perceptual consolidation, highlighting the complex role of sleep stages in the balance to remember and to forget.
Collapse
Affiliation(s)
- Mélanie Strauss
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France.,Neuropsychology and Functional Imaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles, Brussels, Belgium.,Cliniques Universitaires de Bruxelles, Hôpital Erasme, Services de Neurologie, Psychiatrie et laboratoire du sommeil, Université Libre de Bruxelles, Brussels, Belgium
| | - Lucie Griffon
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France
| | - Pascal Van Beers
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France.,Unité Fatigue et vigilance, Institut de recherche biomédicale des armées, Brétigny sur Orge, France
| | - Maxime Elbaz
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France
| | - Jason Bouziotis
- Cliniques Universitaires de Bruxelles, Hôpital Erasme, Service de la Recherche Biomédicale, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabien Sauvet
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France.,Unité Fatigue et vigilance, Institut de recherche biomédicale des armées, Brétigny sur Orge, France
| | - Mounir Chennaoui
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France.,Unité Fatigue et vigilance, Institut de recherche biomédicale des armées, Brétigny sur Orge, France
| | - Damien Léger
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France
| | - Philippe Peigneux
- Neuropsychology and Functional Imaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neuroscience Institute (UNI), Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
16
|
Hoedlmoser K, Peigneux P, Rauchs G. Recent advances in memory consolidation and information processing during sleep. J Sleep Res 2022; 31:e13607. [DOI: 10.1111/jsr.13607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Kerstin Hoedlmoser
- Department of Psychology, Centre for Cognitive Neuroscience (CCNS), Laboratory for “Sleep, Cognition and Consciousness Research” University of Salzburg Salzburg Austria
| | - Philippe Peigneux
- UR2NF – Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN – Centre for Research in Cognition and Neurosciences and UNI – ULB Neuroscience Institute Bruxelles Belgium
| | - Géraldine Rauchs
- UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, Institut Blood and Brain @ Caen‐Normandie Normandie Univ Caen France
| |
Collapse
|
17
|
Toor B, van den Berg NH, Fang Z, Pozzobon A, Ray LB, Fogel SM. Age-related differences in problem-solving skills: Reduced benefit of sleep for memory trace consolidation. Neurobiol Aging 2022; 116:55-66. [DOI: 10.1016/j.neurobiolaging.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
|
18
|
Karaman MA, Aydın G, Sarı Hİ. Life balance and traumatic txperiences in undergraduate students living near conflict zones. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-020-00666-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Zheng X, Zhang D, Lau ENS, Xu Z, Zhang Z, Mo PKH, Yang X, Mak ECW, Wong SYS. Primary School Students' Online Learning During Coronavirus Disease 2019: Factors Associated With Satisfaction, Perceived Effectiveness, and Preference. Front Psychol 2022; 13:784826. [PMID: 35369184 PMCID: PMC8966684 DOI: 10.3389/fpsyg.2022.784826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Emergency online education has been adopted worldwide due to coronavirus disease 2019 (COVID-19) pandemic. Prior research regarding online learning predominantly focused on the perception of parents, teachers, and students in tertiary education, while younger children's perspectives have rarely been examined. This study investigated how family, school, and individual factors would be associated with primary school students' satisfaction, perceived effectiveness, and preference in online learning during COVID-19. A convenient sample of 781 Hong Kong students completed an anonymous online survey from June to October 2020. Logistic regression was conducted for 13 potential factors. Results indicated that only 57% of students were satisfied with their schools' online learning arrangement and 49.6% regarded the online learning as an effective learning mode. Only 12.8% of students preferred online learning, while 67.2% of students preferred in-person schooling. Multiple analyses suggested that teacher-student interaction during online classes was positively associated with students' satisfaction, perceived effectiveness, and preferences in online learning. Compared to grades 1-2 students, grades 3-6 students perceived more effectiveness and would prefer online learning. Happier schools were more likely to deliver satisfying and effective online education. Students who reported less happiness at school would prefer online learning, and students who reported less happiness at home would be less satisfied with online learning and reflected lower effectiveness. Teachers are encouraged to deliver more meaningful interactions to students and offer extra support to younger children during online classes. Primary schools and parents are encouraged to create a healthy and pleasant learning environment for children. The government may consider building up happy schools in the long run. The study findings are instrumental for policymakers, institutions, educators, and researchers in designing online education mechanisms.
Collapse
Affiliation(s)
- Xiaoxiang Zheng
- The Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dexing Zhang
- The Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Elsa Ngar Sze Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Zijun Xu
- The Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zihuang Zhang
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Phoenix Kit Han Mo
- The Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xue Yang
- The Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Eva Chui Wa Mak
- The Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Samuel Y. S. Wong
- The Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
20
|
Koroma M, Elbaz M, Léger D, Kouider S. Learning New Vocabulary Implicitly During Sleep Transfers With Cross-Modal Generalization Into Wakefulness. Front Neurosci 2022; 16:801666. [PMID: 35356055 PMCID: PMC8959773 DOI: 10.3389/fnins.2022.801666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
New information can be learned during sleep but the extent to which we can access this knowledge after awakening is far less understood. Using a novel Associative Transfer Learning paradigm, we show that, after hearing unknown Japanese words with sounds referring to their meaning during sleep, participants could identify the images depicting the meaning of newly acquired Japanese words after awakening (N = 22). Moreover, we demonstrate that this cross-modal generalization is implicit, meaning that participants remain unaware of this knowledge. Using electroencephalography, we further show that frontal slow-wave responses to auditory stimuli during sleep predicted memory performance after awakening. This neural signature of memory formation gradually emerged over the course of the sleep phase, highlighting the dynamics of associative learning during sleep. This study provides novel evidence that the formation of new associative memories can be traced back to the dynamics of slow-wave responses to stimuli during sleep and that their implicit transfer into wakefulness can be generalized across sensory modalities.
Collapse
Affiliation(s)
- Matthieu Koroma
- Brain and Consciousness Group (ENS, EHESS, CNRS), Département d’Études Cognitives, École Normale Supérieure, Paris, France
- École Doctorale Cerveau Cognition Comportement, Université Pierre et Marie Curie Sorbonne Universités, Paris, France
| | - Maxime Elbaz
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France
| | - Damien Léger
- Université de Paris, APHP, Hôtel-Dieu de Paris, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM Sommeil-Vigilance-Fatigue et Santé Publique, Paris, France
| | - Sid Kouider
- Brain and Consciousness Group (ENS, EHESS, CNRS), Département d’Études Cognitives, École Normale Supérieure, Paris, France
| |
Collapse
|
21
|
Papp A, Horváth A, Virág M, Tóth Z, Borbély C, Gombos F, Szűcs A, Kamondi A. Sleep alterations are related to cognitive symptoms in Parkinson's disease: A 24-hour ambulatory polygraphic EEG study. Int J Psychophysiol 2022; 173:93-103. [DOI: 10.1016/j.ijpsycho.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
|
22
|
Mogavero MP, Mezzapesa DM, Savarese M, DelRosso LM, Lanza G, Ferri R. Morphological analysis of the brain subcortical gray structures in restless legs syndrome. Sleep Med 2021; 88:74-80. [PMID: 34740168 DOI: 10.1016/j.sleep.2021.10.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although several studies have shown the involvement of specific structures of the central nervous system, the dopaminergic system, and iron metabolism in restless legs syndrome (RLS), the exact location and extent of its anatomical substrate is not yet known. The scope of this new study was to investigate the brain subcortical gray structures, by means of structural magnetic resonance imaging (MRI) studies, in RLS patients in order to assess the presence of any volume or shape abnormalities involving these structures. METHODS Thirty-three normal controls (24 females and nine males) and 45 RLS patients (34 females and 11 males) were retrospectively recruited and underwent a 1.5 Tesla MRI study with two-dimensional T1 sequences in the sagittal plane. Post-processing was performed by means of the Functional Magnetic Resonance Imaging of the Brain Analysis Group Integrated Registration and Segmentation Tool (FIRST) software, and both volumetric and morphological analyses of the thalamus, caudate, putamen, globus pallidus, brainstem, hippocampus, and amygdala, bilaterally, were carried out. RESULTS A statistically significant volumetric reduction in the left amygdala and left globus pallidus was found in subjects with RLS, as well as large surface morphological alterations affecting the amygdala bilaterally and other less widespread surface changes in both hippocampi, the right caudate, the left globus pallidus, and the left putamen. CONCLUSIONS These findings seem to indicate that the basic mechanisms of RLS might include a pathway involving not only the hypothalamus-spinal dopaminergic circuit (nucleus A11), but also pathways including the basal ganglia and structures that are part of the limbic system; moreover, structural alterations in RLS seem to concern the morphology as well as the volume of the above structures. The role of basal ganglia in the complex neurophysiological and neurochemical mechanism of RLS needs to carefully reconsidered.
Collapse
Affiliation(s)
- Maria P Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Italy
| | - Domenico M Mezzapesa
- Neurology Unit and Stroke Center, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Mariantonietta Savarese
- Neurology Unit and Stroke Center, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Lourdes M DelRosso
- Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy; Department of Neurology I.C., Oasi Research Institute - IRCCS, Troina, Italy
| | - Raffaele Ferri
- Department of Neurology I.C., Oasi Research Institute - IRCCS, Troina, Italy.
| |
Collapse
|
23
|
Mohammed HS, Khadrawy YA. Electrophysiological and neurochemical evaluation of the adverse effects of REM sleep deprivation and epileptic seizures on rat's brain. Life Sci 2021; 273:119303. [PMID: 33667518 DOI: 10.1016/j.lfs.2021.119303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
AIM The current study aims to investigate the impact of paradoxical (REM) sleep deprivation and/or epileptic seizures on rat's cortical brain tissues. MAIN METHODS Animals were divided into four groups; control, epileptic, REM sleep deprived and epileptic subjected to REM sleep deprivation. Electrocorticogram (ECoG) signals were recorded and quantitatively analyzed for each group. Concentrations of amino acid neurotransmitters; proinflammatory cytokines; and oxidative stress parameters; and acetylcholinesterase activity were determined in the cortex of the animals in different groups. KEY FINDINGS Results showed significant variations in the spectral distribution of ECoG waves in the epilepsy model, 24- and 48-hours of REM sleep deprivation and their combined effects indicating a state of cortical hyperexcitability. Significant increases in NO and taurine and significant decrement in glutamine, GABA and glycine were determined. In REM sleep deprived rats significant elevation in glutamate, aspartate, glycine and taurine and a significant lowering in GABA were obtained. This was accompanied by significant reduction in AchE and IL-β. In the cortical tissue of epileptic rats deprived from REM sleep significant increases in lipid peroxidation, TNF-α, IL-1β, IL-6 and aspartate and a significant reduction in AchE were observed. SIGNIFICANCE The present data indicate that REM sleep deprivation induces an increase in lipid peroxidation and storming in proinflammatory cytokines in the cortex of rat model of epilepsy during SRS. These changes are associated with a decreased seizure threshold as inferred from the increase in alpha and Beta waves and a decrease in Delta waves of ECoG.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Yasser A Khadrawy
- Medical Physiology Department, National Research Center, Giza, Egypt
| |
Collapse
|
24
|
MacDonald KJ, Cote KA. Contributions of post-learning REM and NREM sleep to memory retrieval. Sleep Med Rev 2021; 59:101453. [PMID: 33588273 DOI: 10.1016/j.smrv.2021.101453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
It has become clear that sleep after learning has beneficial effects on the later retrieval of newly acquired memories. The neural mechanisms underlying these effects are becoming increasingly clear as well, particularly those of non-REM sleep. However, much is still unknown about the sleep and memory relationship: the sleep state or features of sleep physiology that associate with memory performance often vary by task or experimental design, and the nature of this variability is not entirely clear. This paper describes pertinent features of sleep physiology and provides a detailed review of the scientific literature indicating beneficial effects of post-learning sleep on memory retrieval. This paper additionally introduces a hypothesis which attributes these beneficial effects of post-learning sleep to separable processes of memory reinforcement and memory refinement whereby reinforcement supports one's ability to retrieve a given memory and refinement supports the precision of that memory retrieval in the context of competitive alternatives. It is observed that features of non-REM sleep are involved in a post-learning substantiation of memory representations that benefit memory performance; thus, memory reinforcement is primarily attributed to non-REM sleep. Memory refinement is primarily attributed to REM sleep given evidence of bidirectional synaptic plasticity in REM sleep and findings from studies of selective REM sleep deprivation.
Collapse
|
25
|
Sadeghmousavi S, Eskian M, Rahmani F, Rezaei N. The effect of insomnia on development of Alzheimer's disease. J Neuroinflammation 2020; 17:289. [PMID: 33023629 PMCID: PMC7542374 DOI: 10.1186/s12974-020-01960-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disorder characterized by memory deficits especially forgetting recent information, recall ability impairment, and loss of time tracking, problem-solving, language, and recognition difficulties. AD is also a globally important health issue but despite all scientific efforts, the treatment of AD is still a challenge. Sleep has important roles in learning and memory consolidation. Studies have shown that sleep deprivation (SD) and insomnia are associated with the pathogenesis of Alzheimer's disease and may have an impact on the symptoms and development. Thus, sleep disorders have decisive effects on AD; this association deserves more attention in research, diagnostics, and treatment, and knowing this relation also can help to prevent AD through screening and proper management of sleep disorders. This study aimed to show the potential role of SD and insomnia in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nima Rezaei
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Velásquez-Torres A, Díaz-Forero A, Talero-Gutiérrez C. The Insomnia Plague in Fictional Macondo. Perm J 2020; 24:19.192. [PMID: 32663127 DOI: 10.7812/tpp/19.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Disease and medicine are found throughout Gabriel García Márquez's work. This article examines the insomnia plague described in the novel One Hundred Years of Solitude and performs a differential diagnosis exercise with conditions that affect both sleep and memory. The main finding is that the insomnia plague narrated by García Márquez, with its clinical manifestations, the sequence of symptoms, and its resolution, cannot be associated with any specific diagnosis. However, similarities to and differences from several clinical conditions are discussed, as well as the relation between the neurophysiologic phenomena of sleep and memory.
Collapse
Affiliation(s)
- Alejandro Velásquez-Torres
- Neuroscience Research Group Neuros, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogota, Colombia
| | - Andrés Díaz-Forero
- Undergraduate Neuroscience Research Group Semineuros, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogota, Colombia
| | - Claudia Talero-Gutiérrez
- Neuroscience Research Group Neuros, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogota, Colombia
| |
Collapse
|
27
|
D’Aurizio G, Caldarola A, Ninniri M, Avvantaggiato M, Curcio G. Sleep Quality and Psychological Status in a Group of Italian Prisoners. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124224. [PMID: 32545743 PMCID: PMC7344845 DOI: 10.3390/ijerph17124224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022]
Abstract
Prison could be considered a prolonged stressful situation that can trigger not only a dysregulation of sleep patterns but can also bring out psychiatric illness, such as anxiety and depression symptoms. Our study is aimed at exploring sleep quality and sleep habits in an Italian prison ward with three different security levels, and to attempt to clarify how anxiety state and the total time spent in prison can moderate insomnia complaints. There were 129 participants divided into three groups who enrolled in this study: 50 were in the medium-security prison ward (Group 1), 58 were in the high-security prison ward (Group 2) and 21 were in the medium-security following a protocol of detention with reduced custodial measures (Group 3). All participants filled in a set of questionnaires that included the Beck Depression Inventory (BDI-2), the State-Trait Anxiety Inventory (STAI), the Pittsburgh Sleep Quality Index (PSQI), and the Insomnia Severity Index (ISI). Based on their responses, we observed that all participants showed poor sleep quality and insomnia, mild to moderate depressive symptoms that tended to a higher severity in Groups 1 and 3, and the presence of clinically significant anxiety symptoms, mainly in Groups 1 and 3. Our study shows that increased anxiety state-level and the presence of mood alteration corresponds to an increase in both poor sleep quality and, more specifically, insomnia complaints. Finally, we propose that TiP (total time in prison) could have an interesting and stabilizing paradox-function on anxiety state and insomnia.
Collapse
Affiliation(s)
- Giulia D’Aurizio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.); (A.C.)
| | - Angelica Caldarola
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.); (A.C.)
| | - Marianna Ninniri
- Penitentiary Institution-Casa Circondariale Lanciano, 66034 Chieti, Italy; (M.N.); (M.A.)
| | | | - Giuseppe Curcio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.D.); (A.C.)
- Correspondence: ; Tel.: +39-0862-433407
| |
Collapse
|
28
|
Andrillon T, Kouider S. The vigilant sleeper: neural mechanisms of sensory (de)coupling during sleep. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Canales-Johnson A, Merlo E, Bekinschtein TA, Arzi A. Neural Dynamics of Associative Learning during Human Sleep. Cereb Cortex 2020; 30:1708-1715. [PMID: 31690927 PMCID: PMC7132910 DOI: 10.1093/cercor/bhz197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/13/2022] Open
Abstract
Recent evidence indicates that humans can learn entirely new information during sleep. To elucidate the neural dynamics underlying sleep-learning, we investigated brain activity during auditory–olfactory discriminatory associative learning in human sleep. We found that learning-related delta and sigma neural changes are involved in early acquisition stages, when new associations are being formed. In contrast, learning-related theta activity emerged in later stages of the learning process, after tone–odor associations were already established. These findings suggest that learning new associations during sleep is signaled by a dynamic interplay between slow-waves, sigma, and theta activity.
Collapse
Affiliation(s)
- Andrés Canales-Johnson
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.,Center for Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibanez 9170022, Santiago, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), Universidad Católica del Maule 3460000, Talca, Chile
| | - Emiliano Merlo
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.,IFIBIO-Houssay, Facultad de Medicina, Universidad de Buenos Aires-CONICET 1121, Buenos Aires, Argentina.,School of Psychology, University of Sussex, Brighton BN1 9RH, UK
| | | | - Anat Arzi
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
30
|
Baati H, Chtourou H, Moalla W, Jarraya M, Nikolaidis PT, Rosemann T, Knechtle B. Effect of Angle of View and Partial Sleep Deprivation on Distance Perception. Front Psychol 2020; 11:201. [PMID: 32218750 PMCID: PMC7078342 DOI: 10.3389/fpsyg.2020.00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/29/2020] [Indexed: 01/04/2023] Open
Abstract
The present study aimed to investigate the effects of intensive effort on egocentric distance perception according to different angles of view after sleep deprivation at the beginning (SDB) or at the end (SDE) of the night and after a normal sleep night (NNS). Ten male students soccer players (age 22.8 ± 1.3 years; body mass 72.0 ± 10.4 kg; body height 180.0 ± 3.0 cm) performed a repeated cycling (RS) exercise (10 × 6 s maximal cycling with 24 s in between) after SDB, SDE, and NNS. They were asked to estimate three distances (i.e. 15, 25, and 35 m) before and after RS from different angles of view [i.e. in front (0°) and in side (45° left and 45° right)]. For 35 m, distance estimation was better during NNS compared to SDB and SDE for the front and the two side angles either before or after RS (p < 0.05). Concerning 25 m, distance estimation was better after compared to before RS for the front angle during the NNS session (p < 0.05). For 15 m, distance estimation was better during NNS than SDB and SDE for the front and both side angles after RS (p < 0.05). We concluded that partial sleep deprivation negatively affected the estimation of the egocentric distance for the three angles of view either at rest or after RS exercise.
Collapse
Affiliation(s)
- Hamza Baati
- LR18JS01: Education, Motricité, Sport et Santé, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Hamdi Chtourou
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, Tunis, Tunisia.,Institut Supérieur du Sport et de l'Education Physique de Sfax, Université de Sfax, Sfax, Tunisia
| | - Wassim Moalla
- LR18JS01: Education, Motricité, Sport et Santé, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Mohamed Jarraya
- LR18JS01: Education, Motricité, Sport et Santé, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia.,Institut Supérieur du Sport et de l'Education Physique de Sfax, Université de Sfax, Sfax, Tunisia
| | | | - Thomas Rosemann
- Institute of Primary Care, University Hospital Zurich, Zurich, Switzerland
| | - Beat Knechtle
- Institute of Primary Care, University Hospital Zurich, Zurich, Switzerland.,Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
| |
Collapse
|
31
|
Hill VM, O’Connor RM, Shirasu-Hiza M. Tired and stressed: Examining the need for sleep. Eur J Neurosci 2020; 51:494-508. [PMID: 30295966 PMCID: PMC6453762 DOI: 10.1111/ejn.14197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
A key feature of circadian rhythms is the sleep/wake cycle. Sleep causes reduced responsiveness to the environment, which puts animals in a particularly vulnerable state; yet sleep has been conserved throughout evolution, indicating that it fulfils a vital purpose. A core function of sleep across species has not been identified, but substantial advances in sleep research have been made in recent years using the genetically tractable model organism, Drosophila melanogaster. This review describes the universality of sleep, the regulation of sleep, and current theories on the function of sleep, highlighting a historical and often overlooked theory called the Free Radical Flux Theory of Sleep. Additionally, we summarize our recent work with short-sleeping Drosophila mutants and other genetic and pharmacological tools for manipulating sleep which supports an antioxidant theory of sleep and demonstrates a bi-directional relationship between sleep and oxidative stress.
Collapse
Affiliation(s)
- Vanessa M. Hill
- Department of Genetics and Development; Columbia University Medical Center; NY, NY, 10032; USA
| | - Reed M. O’Connor
- Department of Genetics and Development; Columbia University Medical Center; NY, NY, 10032; USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development; Columbia University Medical Center; NY, NY, 10032; USA
| |
Collapse
|
32
|
Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 2019; 20:746-762. [DOI: 10.1038/s41583-019-0223-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
|
33
|
Cerasuolo M, Conte F, Giganti F, Ficca G. Sleep changes following intensive cognitive activity. Sleep Med 2019; 66:148-158. [PMID: 31877506 DOI: 10.1016/j.sleep.2019.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
Studies over the last 40 years have mainly investigated sleep structure changes as a result of wake duration, in the frame of the classical sleep regulation theories. However, wake intervals of the same duration can profoundly differ in their intensity, which actually reflects the degree of cognitive and physical activity. Data on how sleep can be modified by wake intensity changes (initially sparse and of little consistence) have become much more substantial, especially in the frame of the intense research debate on sleep-memory relationships. Our aim is to examine the vast repertoire of sleep modifications that depend on waking cognitive manipulations, highlighting the sleep features that appear most affected. By systematically addressing this issue, we want to set the basis for future research exploring both the specific nature of the mechanisms involved and the applicative psychosocial and clinical fall-outs, in terms of possible behavioural interventions for sleep quality improvement.
Collapse
Affiliation(s)
- Mariangela Cerasuolo
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Francesca Conte
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Fiorenza Giganti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Gianluca Ficca
- Department of Psychology, University of Campania "L. Vanvitelli", Caserta, Italy.
| |
Collapse
|
34
|
Arzilli C, Cerasuolo M, Conte F, Bittoni V, Gatteschi C, Albinni B, Giganti F, Ficca G. The Effect of Cognitive Activity on Sleep Maintenance in a Subsequent Daytime Nap. Behav Sleep Med 2019; 17:552-560. [PMID: 29368954 DOI: 10.1080/15402002.2018.1425870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Background/Objective: The aim of this study is to assess the effects of a learning task on the characteristics of a subsequent daytime nap. Participants and Methods: Thirty-eight subjects were administered a control nap (C) and one preceded by a cognitive training session (TR). Results: Relative to C, TR naps showed significantly increased sleep duration with decreased sleep latency, as well as significantly increased sleep efficiency due to reduced awakening frequency. Meaningful trends were also found toward an increase of Stage 2 sleep proportion and a reduction of Stage 1 sleep, percentage of wake after sleep onset (WASO), and frequency of state transitions. Conclusions: Our results indicate that presleep learning favors sleep propensity and maintenance, offering the possibility to explore planned cognitive training as a low-cost treatment for sleep impairments.
Collapse
Affiliation(s)
- Cinzia Arzilli
- a Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze , Firenze , Italy
| | - Mariangela Cerasuolo
- b Department of Psychology, University of Campania "Luigi Vanvitelli," , Caserta , Italy
| | - Francesca Conte
- b Department of Psychology, University of Campania "Luigi Vanvitelli," , Caserta , Italy
| | - Valentina Bittoni
- a Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze , Firenze , Italy
| | - Claudia Gatteschi
- a Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze , Firenze , Italy
| | - Benedetta Albinni
- b Department of Psychology, University of Campania "Luigi Vanvitelli," , Caserta , Italy
| | - Fiorenza Giganti
- a Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze , Firenze , Italy
| | - Gianluca Ficca
- b Department of Psychology, University of Campania "Luigi Vanvitelli," , Caserta , Italy
| |
Collapse
|
35
|
Banfi T, Coletto E, d'Ascanio P, Dario P, Menciassi A, Faraguna U, Ciuti G. Effects of Sleep Deprivation on Surgeons Dexterity. Front Neurol 2019; 10:595. [PMID: 31244758 PMCID: PMC6579828 DOI: 10.3389/fneur.2019.00595] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022] Open
Abstract
Sleep deprivation is an ordinary aspect in the global society and its prevalence is increasing. Chronic and acute sleep deprivation have been linked to diabetes and heart diseases as well as depression and enhanced impulsive behaviors. Surgeons are often exposed to long hour on call and few hours of sleep in the previous days. Nevertheless, few studies have focused their attention on the effects of sleep deprivation on surgeons and more specifically on the effects of sleep deprivation on surgical dexterity, often relying on virtual surgical simulators. A better understanding of the consequences of sleep loss on the key surgical skill of dexterity can shed light on the possible risks associated to a sleepy surgeon. In this paper, the authors aim to provide a comprehensive review of the relationship between sleep deprivation and surgical dexterity.
Collapse
Affiliation(s)
- Tommaso Banfi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Erika Coletto
- Norwich Research Park Innovation Centre, Quadram Institute of Bioscience, Norwich, United Kingdom
| | - Paola d'Ascanio
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Ugo Faraguna
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| |
Collapse
|
36
|
Samson DR, Vining A, Nunn CL. Sleep influences cognitive performance in lemurs. Anim Cogn 2019; 22:697-706. [PMID: 31055705 DOI: 10.1007/s10071-019-01266-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/14/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022]
Abstract
Primates spend almost half their lives asleep, yet little is known about how sleep influences their waking cognition. We hypothesized that diurnal and cathemeral lemurs differ in their need for consistent, non-segmented sleep for next-day cognitive function-including long-term memory consolidation, self-control, foraging efficiency, and sociality. Specifically, we expected that strictly diurnal Propithecus is more reliant on uninterrupted sleep for cognitive performance, as compared to four other lemur species that are more flexibly active (i.e., cathemeral). We experimentally inhibited sleep and tested next-day performance in 30 individuals of 5 lemur species over 960 total nights at the Duke Lemur Center in Durham, North Carolina. Each set of pair-housed lemurs experienced a sleep restriction and/or deprivation protocol and was subsequently tested in a variety of fitness-relevant cognitive tasks. Within-subject comparisons of performance on these tasks were made by switching the pair from the experimental sleep inhibited condition to a normal sleep environment, thus ensuring cognitive equivalency among individuals. We validated effectiveness of the protocol via actigraphy and infrared videography. Our results suggest that 'normal' non-disrupted sleep improved memory consolidation for all lemurs. Additionally, on nights of normal sleep, diurnal lemurs performed better in foraging efficiency tasks than cathemeral lemurs. Social behaviors changed in species-specific ways after exposure to experimental conditions, and self-control was not significantly linked with sleep condition. Based on these findings, the links between sleep, learning, and memory consolidation appear to be evolutionarily conserved in primates.
Collapse
Affiliation(s)
- David R Samson
- Department of Anthropology, University of Toronto, Mississauga, Canada. .,Department of Evolutionary Anthropology, Duke University, Durham, USA.
| | - Alexander Vining
- Animal Behavior Graduate Group, University of California, Davis, USA
| | - Charles L Nunn
- Duke Global Health Institute, Duke University, Durham, USA.,Department of Evolutionary Anthropology, Duke University, Durham, USA
| |
Collapse
|
37
|
Abstract
Is it really possible to learn new information during deep sleep? A new study suggests that implicit vocabulary binding can occur while we are snoozing. It also seems that the success of learning depends heavily upon the timing of such 'sleepy stimulation'.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK.
| |
Collapse
|
38
|
Legendre G, Andrillon T, Koroma M, Kouider S. Sleepers track informative speech in a multitalker environment. Nat Hum Behav 2019; 3:274-283. [DOI: 10.1038/s41562-018-0502-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/20/2018] [Indexed: 11/09/2022]
|
39
|
Rothkirch I, Wolff S, Margraf NG, Pedersen A, Witt K. Does Post-task Declarative Learning Have an Influence on Early Motor Memory Consolidation Over Day? An fMRI Study. Front Neurosci 2018; 12:280. [PMID: 29755315 PMCID: PMC5932143 DOI: 10.3389/fnins.2018.00280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/10/2018] [Indexed: 12/02/2022] Open
Abstract
Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence – random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups, results of the secondary analysis could be an indication for a beneficial effect of the verbal declarative task in the early post-learning phase. A nonverbal learning task did not affect the activation within the motor network. Further studies are needed to replicate this finding and to assess the usefulness of this manipulation.
Collapse
Affiliation(s)
- Inken Rothkirch
- Department of Neurology, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stephan Wolff
- Department of Radiology, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nils G Margraf
- Department of Neurology, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anya Pedersen
- Department of Psychology, Kiel University, Kiel, Germany
| | - Karsten Witt
- Department of Neurology, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany.,European Medical School Oldenburg-Groningen, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
40
|
Vecsey CG, Huang T, Abel T. Sleep deprivation impairs synaptic tagging in mouse hippocampal slices. Neurobiol Learn Mem 2018; 154:136-140. [PMID: 29551603 DOI: 10.1016/j.nlm.2018.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 11/17/2022]
Abstract
Metaplasticity refers to the ability of experience to alter synaptic plasticity, or modulate the strength of neuronal connections. Sleep deprivation has been shown to have a negative impact on synaptic plasticity, but it is unknown whether sleep deprivation also influences processes of metaplasticity. Therefore, we tested whether 5 h of total sleep deprivation (SD) in mice would impair hippocampal synaptic tagging and capture (STC), a form of heterosynaptic metaplasticity in which combining strong stimulation in one synaptic input with weak stimulation at another input allows the weak input to induce long-lasting synaptic strengthening. STC in stratum radiatum of area CA1 occurred normally in control mice, but was impaired following SD. After SD, potentiation at the weakly stimulated synapses decayed back to baseline within 2 h. Thus, sleep deprivation disrupts a prominent form of metaplasticity in which two independent inputs interact to generate long-lasting LTP.
Collapse
Affiliation(s)
- Christopher G Vecsey
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Ted Huang
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
41
|
Mantovani S, Smith SS, Gordon R, O'Sullivan JD. An overview of sleep and circadian dysfunction in Parkinson's disease. J Sleep Res 2018; 27:e12673. [PMID: 29493044 DOI: 10.1111/jsr.12673] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/18/2022]
Abstract
Sleep and circadian alterations are amongst the very first symptoms experienced in Parkinson's disease, and sleep alterations are present in the majority of patients with overt clinical manifestation of Parkinson's disease. However, the magnitude of sleep and circadian dysfunction in Parkinson's disease, and its influence on the pathophysiology of Parkinson's disease remains often unclear and a matter of debate. In particular, the confounding influences of dopaminergic therapy on sleep and circadian dysfunction are a major challenge, and need to be more carefully addressed in clinical studies. The scope of this narrative review is to summarise the current knowledge around both sleep and circadian alterations in Parkinson's disease. We provide an overview on the frequency of excessive daytime sleepiness, insomnia, restless legs, obstructive apnea and nocturia in Parkinson's disease, as well as addressing sleep structure, rapid eye movement sleep behaviour disorder and circadian features in Parkinson's disease. Sleep and circadian disorders have been linked to pathological conditions that are often co-morbid in Parkinson's disease, including cognitive decline, memory impairment and neurodegeneration. Therefore, targeting sleep and circadian alterations could be one of the earliest and most promising opportunities to slow disease progression. We hope that this review will contribute to advance the discussion and inform new research efforts to progress our knowledge in this field.
Collapse
Affiliation(s)
- Susanna Mantovani
- Faculty of Medicine, The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,Wesley Medical Research, Auchenflower, QLD, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Simon S Smith
- Institute for Social Science Research (ISSR), The University of Queensland, Indooroopilly, Australia
| | - Richard Gordon
- Faculty of Medicine, The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,Wesley Medical Research, Auchenflower, QLD, Australia
| | - John D O'Sullivan
- Faculty of Medicine, The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,Wesley Medical Research, Auchenflower, QLD, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| |
Collapse
|
42
|
Nunn CL, Samson DR. Sleep in a comparative context: Investigating how human sleep differs from sleep in other primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:601-612. [PMID: 29446072 DOI: 10.1002/ajpa.23427] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Primates vary in their sleep durations and, remarkably, humans sleep the least per 24-hr period of the 30 primates that have been studied. Using phylogenetic methods that quantitatively situate human phenotypes within a broader primate comparative context, we investigated the evolution of human sleep architecture, focusing on: total sleep duration, rapid eye movement (REM) sleep duration, non-rapid eye movement (NREM) sleep duration, and proportion of sleep in REM. MATERIALS AND METHODS We used two different Bayesian methods: phylogenetic prediction based on phylogenetic generalized least squares and a multistate Onrstein-Uhlenbeck (OU) evolutionary model of random drift and stabilizing selection. RESULTS Phylogenetic prediction confirmed that humans sleep less than predicted for a primate of our body mass, predation risk, brain size, foraging needs, sexual selection, and diet. These analyses further revealed that humans pack an unexpectedly higher proportion of REM sleep within a shorter overall sleep duration, and do so by reducing NREM sleep (rather than increasing REM). The OU model generally confirmed these findings, with shifts along the human lineage inferred for TST, NREM, and proportion of REM, but not for REM. DISCUSSION We propose that the risks and opportunity costs of sleep are responsible for shorter sleep durations in humans, with risks arising from terrestrial sleep involving threats from predators and conspecifics, and opportunity costs because time spent sleeping could be used for learning, creating material objects, and socializing.
Collapse
Affiliation(s)
- Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Duke Global Health Institute, Duke University, Durham, North Carolina
| | - David R Samson
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina.,Department of Anthropology, University of Toronto, Mississauga, Ontario, Canada
| |
Collapse
|
43
|
Viczko J, Sergeeva V, Ray LB, Owen AM, Fogel SM. Does sleep facilitate the consolidation of allocentric or egocentric representations of implicitly learned visual-motor sequence learning? ACTA ACUST UNITED AC 2018; 25:67-77. [PMID: 29339558 PMCID: PMC5772393 DOI: 10.1101/lm.044719.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 10/03/2017] [Indexed: 11/25/2022]
Abstract
Sleep facilitates the consolidation (i.e., enhancement) of simple, explicit (i.e., conscious) motor sequence learning (MSL). MSL can be dissociated into egocentric (i.e., motor) or allocentric (i.e., spatial) frames of reference. The consolidation of the allocentric memory representation is sleep-dependent, whereas the egocentric consolidation process is independent of sleep or wake for explicit MSL. However, it remains unclear the extent to which sleep contributes to the consolidation of implicit (i.e., unconscious) MSL, nor is it known what aspects of the memory representation (egocentric, allocentric) are consolidated by sleep. Here, we investigated the extent to which sleep is involved in consolidating implicit MSL, specifically, whether the egocentric or the allocentric cognitive representations of a learned sequence are enhanced by sleep, and whether these changes support the development of explicit sequence knowledge across sleep but not wake. Our results indicate that egocentric and allocentric representations can be behaviorally dissociated for implicit MSL. Neither representation was preferentially enhanced across sleep nor were developments of explicit awareness observed. However, after a 1-wk interval performance enhancement was observed in the egocentric representation. Taken together, these results suggest that like explicit MSL, implicit MSL has dissociable allocentric and egocentric representations, but unlike explicit sequence learning, implicit egocentric and allocentric memory consolidation is independent of sleep, and the time-course of consolidation differs significantly.
Collapse
Affiliation(s)
- Jeremy Viczko
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada
| | - Valya Sergeeva
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada
| | - Laura B Ray
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada
| | - Adrian M Owen
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada
| | - Stuart M Fogel
- The Brain & Mind Institute, Western University, London, Ontario N6A 5B7, Canada.,Department of Psychology, Western University, London, Ontario N6A 5C2, Canada.,School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.,The Royal's Institute for Mental Health Research, Ottawa, Ontario K1Z 7K5, Canada.,University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
44
|
Watson EJ, Coates AM, Banks S, Kohler M. Total dietary sugar consumption does not influence sleep or behaviour in Australian children. Int J Food Sci Nutr 2017; 69:503-512. [DOI: 10.1080/09637486.2017.1386628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emily J. Watson
- Centre for Sleep Research, School of Psychology, University of South Australia, Adelaide, Australia
| | - Alison M. Coates
- Alliance for Research in Exercise, Nutrition and Activity, School of Health Sciences, University of South Australia, Adelaide, Australia
| | - Siobhan Banks
- Centre for Sleep Research, School of Psychology, University of South Australia, Adelaide, Australia
| | - Mark Kohler
- Centre for Sleep Research, School of Psychology, University of South Australia, Adelaide, Australia
| |
Collapse
|
45
|
Gervais NJ, Mong JA, Lacreuse A. Ovarian hormones, sleep and cognition across the adult female lifespan: An integrated perspective. Front Neuroendocrinol 2017; 47:134-153. [PMID: 28803147 PMCID: PMC7597864 DOI: 10.1016/j.yfrne.2017.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022]
Abstract
Loss of ovarian function in women is associated with sleep disturbances and cognitive decline, which suggest a key role for estrogens and/or progestins in modulating these symptoms. The effects of ovarian hormones on sleep and cognitive processes have been studied in separate research fields that seldom intersect. However, sleep has a considerable impact on cognitive function. Given the tight connections between sleep and cognition, ovarian hormones may influence selective aspects of cognition indirectly, via the modulation of sleep. In support of this hypothesis, a growing body of evidence indicates that the development of sleep disorders following menopause contributes to accelerated cognitive decline and dementia in older women. This paper draws from both the animal and human literature to present an integrated view of the effects of ovarian hormones on sleep and cognition across the adult female lifespan.
Collapse
Affiliation(s)
- Nicole J Gervais
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 135 Hicks Way, Amherst, MA 01003, United States.
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, United States
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 135 Hicks Way, Amherst, MA 01003, United States
| |
Collapse
|
46
|
Sugawara SK, Koike T, Kawamichi H, Makita K, Hamano YH, Takahashi HK, Nakagawa E, Sadato N. Qualitative differences in offline improvement of procedural memory by daytime napping and overnight sleep: An fMRI study. Neurosci Res 2017; 132:37-45. [PMID: 28939415 DOI: 10.1016/j.neures.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/29/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
Daytime napping offers various benefits for healthy adults, including enhancement of motor skill learning. It remains controversial whether napping can provide the same enhancement as overnight sleep, and if so, whether the same neural underpinning is recruited. To investigate this issue, we conducted functional MRI during motor skill learning, before and after a short day-nap, in 13 participants, and compared them with a larger group (n=47) who were tested following regular overnight sleep. Training in a sequential finger-tapping task required participants to press a keyboard in the MRI scanner with their non-dominant left hand as quickly and accurately as possible. The nap group slept for 60min in the scanner after the training run, and the previously trained skill was subsequently re-tested. The whole-night sleep group went home after the training, and was tested the next day. Offline improvement of speed was observed in both groups, whereas accuracy was significantly improved only in the whole-night sleep group. Correspondingly, the offline increment in task-related activation was significant in the putamen of the whole-night group. This finding reveals a qualitative difference in the offline improvement effect between daytime napping and overnight sleep.
Collapse
Affiliation(s)
- Sho K Sugawara
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Faculty of Science and Engineering, Waseda University, Tokyo 169-0072, Japan; JSPS Research Fellow, Tokyo 102-0083, Japan
| | - Takahiko Koike
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | | | - Kai Makita
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Yuki H Hamano
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; JSPS Research Fellow, Tokyo 102-0083, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0115, Japan
| | - Haruka K Takahashi
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Eri Nakagawa
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0115, Japan.
| |
Collapse
|
47
|
Formation and suppression of acoustic memories during human sleep. Nat Commun 2017; 8:179. [PMID: 28790302 PMCID: PMC5548898 DOI: 10.1038/s41467-017-00071-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/30/2017] [Indexed: 11/09/2022] Open
Abstract
Sleep and memory are deeply related, but the nature of the neuroplastic processes induced by sleep remains unclear. Here, we report that memory traces can be both formed or suppressed during sleep, depending on sleep phase. We played samples of acoustic noise to sleeping human listeners. Repeated exposure to a novel noise during Rapid Eye Movements (REM) or light non-REM (NREM) sleep leads to improvements in behavioral performance upon awakening. Strikingly, the same exposure during deep NREM sleep leads to impaired performance upon awakening. Electroencephalographic markers of learning extracted during sleep confirm a dissociation between sleep facilitating memory formation (light NREM and REM sleep) and sleep suppressing learning (deep NREM sleep). We can trace these neural changes back to transient sleep events, such as spindles for memory facilitation and slow waves for suppression. Thus, highly selective memory processes are active during human sleep, with intertwined episodes of facilitative and suppressive plasticity.Though memory and sleep are related, it is still unclear whether new memories can be formed during sleep. Here, authors show that people could learn new sounds during REM or light non-REM sleep, but that learning was suppressed when sounds were played during deep NREM sleep.
Collapse
|
48
|
Influence of cued-fear conditioning and its impairment on NREM sleep. Neurobiol Learn Mem 2017; 144:155-165. [PMID: 28733208 DOI: 10.1016/j.nlm.2017.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/30/2017] [Accepted: 07/15/2017] [Indexed: 01/03/2023]
Abstract
Many studies suggest that fear conditioning influences sleep. It is, however, not known if the changes in sleep architecture after fear conditioning are essentially associated with the consolidation of fearful memory or with fear itself. Here, we have observed that within sleep, NREM sleep consistently remained augmented after the consolidation of cued fear-conditioned memory. But a similar change did not occur after impairing memory consolidation by blocking new protein synthesis and glutamate transmission between glial-neuronal loop in the lateral amygdala (LA). Anisomycin (a protein synthesis inhibitor) and DL-α-amino-adipic acid (DL- α -AA) (a glial glutamine synthetase enzyme inhibitor) were microinjected into the LA soon after cued fear-conditioning to induce memory impairment. On the post-conditioning day, animals in both the groups exhibited significantly less freezing. In memory-consolidated groups (vehicle groups), NREM sleep significantly increased during 2nd to 5th hours after training compared to their baseline days. However, in memory impaired groups (anisomycin and DL- α -AA microinjected groups), similar changes were not observed. Our results thus suggest that changes in sleep architecture after cued fear-conditioning are indeed a consolidation dependent event.
Collapse
|
49
|
Neural Markers of Responsiveness to the Environment in Human Sleep. J Neurosci 2017; 36:6583-96. [PMID: 27307244 DOI: 10.1523/jneurosci.0902-16.2016] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sleep is characterized by a loss of behavioral responsiveness. However, recent research has shown that the sleeping brain is not completely disconnected from its environment. How neural activity constrains the ability to process sensory information while asleep is yet unclear. Here, we instructed human volunteers to classify words with lateralized hand responses while falling asleep. Using an electroencephalographic (EEG) marker of motor preparation, we show how responsiveness is modulated across sleep. These modulations are tracked using classic event-related potential analyses complemented by Lempel-Ziv complexity (LZc), a measure shown to track arousal in sleep and anesthesia. Neural activity related to the semantic content of stimuli was conserved in light non-rapid eye movement (NREM) sleep. However, these processes were suppressed in deep NREM sleep and, importantly, also in REM sleep, despite the recovery of wake-like neural activity in the latter. In NREM sleep, sensory activations were counterbalanced by evoked down states, which, when present, blocked further processing of external information. In addition, responsiveness markers correlated positively with baseline complexity, which could be related to modulation in sleep depth. In REM sleep, however, this relationship was reversed. We therefore propose that, in REM sleep, endogenously generated processes compete with the processing of external input. Sleep can thus be seen as a self-regulated process in which external information can be processed in lighter stages but suppressed in deeper stages. Last, our results suggest drastically different gating mechanisms in NREM and REM sleep. SIGNIFICANCE STATEMENT Previous research has tempered the notion that sleepers are isolated from their environment. Here, we pushed this idea forward and examined, across all sleep stages, the brain's ability to flexibly process sensory information, up to the decision level. We extracted an EEG marker of motor preparation to determine the completion of the sensory processing chain and explored how it is constrained by baseline and evoked neural activity. In NREM sleep, slow waves elicited by stimuli appeared to block response preparation. We also used a novel analytic approach (Lempel-Ziv complexity) and showed that the ability to process external information correlates with neural complexity. A reversal of the correlation between complexity and motor indices in REM sleep suggests drastically different gating mechanisms across sleep stages.
Collapse
|
50
|
Environmental Factors Promoting Neural Plasticity: Insights from Animal and Human Studies. Neural Plast 2017; 2017:7219461. [PMID: 28740740 PMCID: PMC5504954 DOI: 10.1155/2017/7219461] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/17/2017] [Accepted: 05/10/2017] [Indexed: 11/17/2022] Open
Abstract
We do not all grow older in the same way. Some individuals have a cognitive decline earlier and faster than others who are older in years but cerebrally younger. This is particularly easy to verify in people who have maintained regular physical activity and healthy and cognitively stimulating lifestyle and even in the clinical field. There are patients with advanced neurodegeneration, such as Alzheimer's disease (AD), that, despite this, have mild cognitive impairment. What determines this interindividual difference? Certainly, it cannot be the result of only genetic factors. We are made in a certain manner and what we do acts on our brain. In fact, our genetic basis can be modulated, modified, and changed by our experiences such as education and life events; daily, by sleep schedules and habits; or also by dietary elements. And this can be seen as true even if our experiences are indirectly driven by our genetic basis. In this paper, we will review some current scientific research on how our experiences are able to modulate the structural organization of the brain and how a healthy lifestyle (regular physical activity, correct sleep hygiene, and healthy diet) appears to positively affect cognitive reserve.
Collapse
|