1
|
Rubin LH, Shirk EN, Pohlenz L, Romero H, Roti E, Dastgheyb RM, Santiuste I, Coughlin JM, Brown TT, Clements JE, Veenhuis RT. Intact HIV Reservoir in Monocytes Is Associated With Cognitive Function in Virally Suppressed Women With HIV. J Infect Dis 2025; 231:165-174. [PMID: 39293028 DOI: 10.1093/infdis/jiae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Monocytes are susceptible to human immunodeficiency virus (HIV) infection, form HIV reservoirs, and contribute to central nervous system complications (eg, cognitive impairment) in virally suppressed women with HIV (vsWWH). However, it remains unknown if the quality and/or quantity of the monocyte reservoir contributes to cognition in vsWWH. METHODS Sixty-two vsWWH (mean age = 56.1 years, SD = 7.1; 93% Black, non-Hispanic; all HIV RNA <250 copies/mL) completed a cognitive test battery, blood draw, and whole-blood immunophenotyping. Monocytes and CD4 T cells were isolated from a subset of 53 participants and the HIV reservoir was assessed using cell-specific intact proviral DNA assays (IPDA). Demographically adjusted z-scores were calculated for each outcome using data from participants without HIV in the Women's Interagency HIV Study. Cognitive outcomes of interest included domain-specific and global z-scores. RESULTS Thirty-Eight percent of vsWWH had detectable intact HIV genomes in monocytes (median = 21.5 copies/million). Higher levels of intact HIV genomes per million monocytes were associated with poorer verbal memory (delayed recall, r = 0.55, P = .01; recognition, r = 0.46, P = .04), fine motor skills (r = 0.50, P = .03), and global function (r = 0.47, P = .04). Higher levels of intact HIV genomes in monocytes were associated with percent intermediate monocytes (r = 0.60, P = .008), and the ratio of intact per intermediate monocyte was associated with worse memory (r = -0.59, P = .008). There were no associations between CD4 reservoir and cognition. CONCLUSIONS The number of intact HIV genomes per million monocytes was related to poorer cognition and the percentage of intermediate monocytes. These findings suggest that the presence of HIV genomes in general do not relate to cognitive complications, but intact, and therefore potentially replication-competent HIV, may contribute to cognitive complications in vsWWH.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lily Pohlenz
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hayley Romero
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth Roti
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Raha M Dastgheyb
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Isabel Santiuste
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Todd T Brown
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janice E Clements
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebecca T Veenhuis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
van Pul L, van Dort KA, Girigorie AF, Maurer I, Harskamp AM, Kootstra NA. Human Immunodeficiency Virus-Induced Interferon-Stimulated Gene Expression Is Associated With Monocyte Activation and Predicts Viral Load. Open Forum Infect Dis 2024; 11:ofae434. [PMID: 39104769 PMCID: PMC11298257 DOI: 10.1093/ofid/ofae434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 08/07/2024] Open
Abstract
Background Chronic immune activation is one of the hallmarks of human immunodeficiency virus (HIV) pathogenesis. Persistent upregulation of interferons (IFNs) and interferon-stimulated genes (ISGs) has previously been associated with chronic immune activation and HIV progression. Here a longitudinal analysis of the IFN and ISG response during HIV infection was performed to gain insights into the ongoing immune activation during HIV infection. Methods IFN and ISG levels were determined using quantitative polymerase chain reaction in peripheral blood mononuclear cells of people with HIV at pre-seroconversion, during acute and chronic HIV infection, and during suppressive antiretroviral therapy (ART). Results HIV infection induced the expression of a set of 4 ISGs-RSAD2, ISG15, IFI44L, and IFI27-which remained upregulated during chronic infection. This set of ISGs showed no clear correlations with T-cell activation as determined by co-expression of CD38 and HLA-DR. However, a strong correlation with monocyte activation marker soluble CD163 in serum was found. Furthermore, the expression of this ISG cluster was predictive of viral load before ART initiation and, on ART, expression levels normalized to pre-seroconversion levels. Conclusions The results presented here suggests that ISG expression is linked to monocyte activation, possibly driven by viral replication.
Collapse
Affiliation(s)
- Lisa van Pul
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karel A van Dort
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arginell F Girigorie
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Irma Maurer
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Agnes M Harskamp
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Galpayage Dona KNU, Benmassaoud MM, Gipson CD, McLaughlin JP, Ramirez SH, Andrews AM. Something to talk about; crosstalk disruption at the neurovascular unit during HIV infection of the CNS. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:97-111. [PMID: 39958876 PMCID: PMC11823645 DOI: 10.1515/nipt-2024-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/11/2024] [Indexed: 02/18/2025]
Abstract
Although treatable with antiretroviral therapy, HIV infection persists in people living with HIV (PLWH). It is well known that the HIV virus finds refuge in places for which antiretroviral medications do not reach therapeutic levels, mainly the CNS. It is clear that as PLWH age, the likelihood of developing HIV-associated neurological deficits increases. At the biochemical level neurological dysfunction is the manifestation of altered cellular function and ineffective intercellular communication. In this review, we examine how intercellular signaling in the brain is disrupted in the context of HIV. Specifically, the concept of how the blood-brain barrier can be a convergence point for crosstalk, is explored. Crosstalk between the cells of the neurovascular unit (NVU) (endothelium, pericytes, astrocytes, microglia and neurons) is critical for maintaining proper brain function. In fact, the NVU allows for rapid matching of neuronal metabolic needs, regulation of blood-brain barrier (BBB) dynamics for nutrient transport and changes to the level of immunosurveillance. This review invites the reader to conceptually consider the BBB as a router or convergence point for NVU crosstalk, to facilitate a better understanding of the intricate signaling events that underpin the function of the NVU during HIV associated neuropathology.
Collapse
Affiliation(s)
- Kalpani N. Udeni Galpayage Dona
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mohammed M. Benmassaoud
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Cassandra D. Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Servio H. Ramirez
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Allison M. Andrews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Anderson AM, Ances BM, Letendre SL. CROI 2023: Neuropsychiatric Complications in People With HIV. TOPICS IN ANTIVIRAL MEDICINE 2023; 31:543-555. [PMID: 37704201 PMCID: PMC10424763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The 2023 Conference on Retroviruses and Opportunistic Infections (CROI) featured new and impactful findings about neuropsychiatric complications in people with HIV and other infections. Reports included new evidence of (a) the importance of myeloid cells in the pathogenesis of HIV disease in the central nervous system, including as an HIV reservoir; (b) eukaryotic and prokaryotic viruses in cerebrospinal fluid during suppressive antiretroviral therapy; (c) the influence of sex on pathogenesis, including in novel neuropsychiatric biotypes identified by machine learning and other methods;(d) premature aging in people with HIV, including the brain-age gap observed on magnetic resonance imaging; (e) cellular and soluble biomarkers of neuropsychiatric complications in people with HIV; and (f) the neurotoxicity of certain antiretroviral drugs. This review summarizes these and other new findings and highlights new research directions for the neuro-HIV field.
Collapse
|
5
|
de Almeida SM, Beltrame MP, Tang B, Rotta I, Abramson I, Vaida F, Schrier R, Ellis RJ. Cerebrospinal fluid CD14 ++CD16 + monocytes in HIV-1 subtype C compared with subtype B. J Neurovirol 2023; 29:308-324. [PMID: 37219809 PMCID: PMC10769008 DOI: 10.1007/s13365-023-01137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/17/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023]
Abstract
CD14++CD16+ monocytes are susceptible to HIV-1 infection, and cross the blood-brain barrier. HIV-1 subtype C (HIV-1C) shows reduced Tat protein chemoattractant activity compared to HIV-1B, which might influence monocyte trafficking into the CNS. We hypothesized that the proportion of monocytes in CSF in HIV-1C is lower than HIV-1B group. We sought to assess differences in monocyte proportions in cerebrospinal fluid (CSF) and peripheral blood (PB) between people with HIV (PWH) and without HIV (PWoH), and by HIV-1B and -C subtypes. Immunophenotyping was performed by flow cytometry, monocytes were analyzed within CD45 + and CD64 + gated regions and classified in classical (CD14++CD16-), intermediate (CD14++CD16+), and non-classical (CD14lowCD16+). Among PWH, the median [IQR] CD4 nadir was 219 [32-531] cell/mm3; plasma HIV RNA (log10) was 1.60 [1.60-3.21], and 68% were on antiretroviral therapy (ART). Participants with HIV-1C and -B were comparable in terms of age, duration of infection, CD4 nadir, plasma HIV RNA, and ART. The proportion of CSF CD14++CD16+ monocytes was higher in participants with HIV-1C than those with HIV-1B [2.00(0.00-2.80) vs. 0.00(0.00-0.60) respectively, p = 0.03 after BH correction p = 0.10]. Despite viral suppression, the proportion of total monocytes in PB increased in PWH, due to the increase in CD14++CD16+ and CD14lowCD16+ monocytes. The HIV-1C Tat substitution (C30S31) did not interfere with the migration of CD14++CD16+ monocytes to the CNS. This is the first study to evaluate these monocytes in the CSF and PB and compare their proportions according to HIV subtype.
Collapse
Affiliation(s)
- Sergio M de Almeida
- Complexo Hospital de Clínicas-UFPR, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil.
| | | | - Bin Tang
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Indianara Rotta
- Complexo Hospital de Clínicas-UFPR, Seção de Virologia, Setor Análises Clínicas, Rua Padre Camargo, 280, Curitiba, PR, 80060-240, Brazil
| | - Ian Abramson
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Florin Vaida
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Rachel Schrier
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Ronald J Ellis
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| |
Collapse
|
6
|
Liu J, Nguchu BA, Liu D, Qi Y, Aili X, Han S, Gao Y, Wang X, Qiao H, Cai C, Huang X, Li H. Longitudinal white matter alterations in SIVmac239-infected rhesus monkeys with and without regular cART treatment. Front Immunol 2023; 13:1067795. [PMID: 36713432 PMCID: PMC9879061 DOI: 10.3389/fimmu.2022.1067795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Objective To use SIV-mac239-infected Chinese rhesus monkeys to study white matter changes with and without regular combined antiretroviral therapy (cART) and the relationships between the changes and clinical results. Methods Diffusion tensor imaging (DTI) data were collected at baseline and 10 days, 4 weeks, 12 weeks, 24 weeks, and 36 weeks after viral inoculation. Plasma CD4 T cell counts, CD4/CD8 ratio, plasma viral load, and cerebrospinal fluid (CSF) viral load were collected at baseline and 1 week, 5 weeks, 12 weeks, 24 weeks, and 36 weeks after viral inoculation. Microstructural characteristics were examined within 76 white matter areas defined by the DTI-white matter (WM) atlas for rhesus macaques. Corrections for multiple comparisons were performed using a false discovery rate (p < 0.05, FDR). Correlation analyzes between imaging markers and clinical markers (plasma CD4 T cell counts, CD4/CD8 ratio, plasma viral load, and cerebral spinal fluid viral load) were performed using Pearson correlations. Results White matter changes in SIV-infected macaques were detected in different brain regions as early as 4 weeks after inoculation. As time progressed, cART reversed, ameliorated, or even enhanced the effects. The CD4 T cell count was mainly associated with DTI metrics before cART, while the CD4/CD8 ratio was associated with white matter changes with and without cART. Viral load was positively associated with mean diffusivity in HIV patients without cART, and the opposite results were seen in HIV patients with cART. Conclusion SIV-mac239 infection may be an ideal tool for studying HIV-induced changes in the brain. The first white matter changes appeared in a structure adjacent to the periventricular area as early as 4 weeks after inoculation. As time progressed, cART had different effects on different regions, reversing, attenuating, or even progressing the pathology. Moreover, these changes were closely related to the CD4/CD8 ratio and viral load, even after cART.
Collapse
Affiliation(s)
- Jiaojiao Liu
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | | | - Dan Liu
- Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Qi
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xire Aili
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Shuai Han
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yuxun Gao
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiaoxiao Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China
| | - Hongwei Qiao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Cai
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Clinical and Research Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China,*Correspondence: Xiaojie Huang, ; Hongjun Li,
| | - Hongjun Li
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China,*Correspondence: Xiaojie Huang, ; Hongjun Li,
| |
Collapse
|
7
|
Murphy AJ, Kelschenbach J, He H, Chao W, Kim BH, Volsky DJ, Berman JW. Buprenorphine reverses neurocognitive impairment in EcoHIV infected mice: A potential therapy for HIV-NCI. Front Immunol 2022; 13:1004985. [PMID: 36275760 PMCID: PMC9585248 DOI: 10.3389/fimmu.2022.1004985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Thirty-eight million people worldwide are living with HIV, PWH, a major public health problem. Antiretroviral therapy (ART) revolutionized HIV treatment and significantly increased the lifespan of PWH. However, approximately 15-50% of PWH develop HIV associated neurocognitive disorders (HIV-NCI), a spectrum of cognitive deficits, that negatively impact quality of life. Many PWH also have opioid use disorder (OUD), and studies in animal models of HIV infection as well as in PWH suggest that OUD can contribute to HIV-NCI. The synthetic opioid agonist, buprenorphine, treats OUD but its effects on HIV-NCI are unclear. We reported that human mature inflammatory monocytes express the opioid receptors MOR and KOR, and that buprenorphine reduces important steps in monocyte transmigration. Monocytes also serve as HIV reservoirs despite effective ART, enter the brain, and contribute to HIV brain disease. Using EcoHIV infected mice, an established model of HIV infection and HIV-NCI, we previously showed that pretreatment of mice prior to EcoHIV infection reduces mouse monocyte entry into the brain and prevents NCI. Here we show that buprenorphine treatment of EcoHIV infected mice with already established chronic NCI completely reverses the disease. Disease reversal was associated with a significant reduction in brain inflammatory monocytes and reversal of dendritic injury in the cortex and hippocampus. These results suggest that HIV-NCI persistence may require a continuing influx of inflammatory monocytes into the brain. Thus, we recommend buprenorphine as a potential therapy for mitigation of HIV brain disease in PWH with or without OUD.
Collapse
Affiliation(s)
- Aniella J. Murphy
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jennifer Kelschenbach
- Laboratory or Dr. David J. Volsky, Department of Medicine, Icahn School of Medicine at Mount Sinai, Manhattan, NY, United States
| | - Hongxia He
- Laboratory or Dr. David J. Volsky, Department of Medicine, Icahn School of Medicine at Mount Sinai, Manhattan, NY, United States
| | - Wei Chao
- Laboratory or Dr. David J. Volsky, Department of Medicine, Icahn School of Medicine at Mount Sinai, Manhattan, NY, United States
| | - Boe-Hyun Kim
- Laboratory or Dr. David J. Volsky, Department of Medicine, Icahn School of Medicine at Mount Sinai, Manhattan, NY, United States
| | - David J. Volsky
- Laboratory or Dr. David J. Volsky, Department of Medicine, Icahn School of Medicine at Mount Sinai, Manhattan, NY, United States
| | - Joan W. Berman
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
8
|
Qi Y, Li RL, Wang YY, Wang W, Liu XZ, Liu J, Li X, Zhang XD, Yu W, Liu JJ, Guo YF, Rao B, Li HJ. Characteristics of Brain White Matter Microstructure in HIV Male Patients With Primary Syphilis Co-Infection. Front Neurol 2022; 12:776818. [PMID: 35115993 PMCID: PMC8805514 DOI: 10.3389/fneur.2021.776818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
Purpose: To investigate the effect of syphilis infection on the microstructure of white matter (WM) in HIV-infected male patients using diffusion tensor imaging (DTI). Methods: Twenty-seven HIV-infected male patients with current syphilis or a history of syphilis (HIV +/syphilis +), twenty-nine HIV-infected male patients without syphilis co-infection (HIV +/syphilis–), and twenty-nine healthy controls (HC) were enrolled. All participants received DTI, and all patients received comprehensive neuropsychological assessment. Tract-based spatial statistics (TBSS) was adopted to analyze the DTI measures: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Correlation analysis was conducted to investigate the relationships between DTI measures and cognitive performance. Results: There were no significant differences in DTI measures between HIV+/syphilis– and HC. Compared with HC, lower FA was found in body of corpus callosum (BCC), splenium of corpus callosum (SCC), genu of corpus callosum (GCC), the bilateral anterior corona radiata (ACR), superior corona radiata (SCR), posterior corona radiata (PCR), and posterior thalamic radiation (PTR) in HIV+/syphilis+ (p < 0.05). Higher RD was found in BCC and SCC (p < 0.05). Compared with HIV+/syphilis–, lower scores were found in complex motor skills (CMS) in HIV+/syphilis+, lower FA was found in BCC, SCC, GCC, the bilateral ACR, SCR, PCR, PTR, cingulate gyrus (CGC), the right inferior fronto-occipital fasciculus (IFO), the retrolenticular part of internal capsule (RLIC), sagittal stratum (SS), external capsule (EC) in HIV+/syphilis+ (p < 0.01). Correlation analysis uncorrected for multiple comparisons showed there was a positive correlation between FA in GCC and CMS, FA in BCC, and CMS in HIV+/syphilis+. Conclusions: Syphilis co-infection can have an additive or synergistic effect on the brain WM in HIV-infected subjects. HIV-infected patients without syphilis should be actively treated to avoid syphilis infection.
Collapse
Affiliation(s)
- Yu Qi
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rui-Li Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuan-Yuan Wang
- Department of Radiology, The Second Hospital of Beijing, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xu-Ze Liu
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Jing Liu
- Department of Radiology, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Xing Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Dong Zhang
- Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Wen Yu
- Geriatric Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jiao-Jiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yi-Fan Guo
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
- *Correspondence: Yi-Fan Guo
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Bo Rao
| | - Hong-Jun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Hong-Jun Li
| |
Collapse
|
9
|
Bai R, Li Z, Lv S, Wang R, Hua W, Wu H, Dai L. Persistent Inflammation and Non-AIDS Comorbidities During ART: Coming of the Age of Monocytes. Front Immunol 2022; 13:820480. [PMID: 35479083 PMCID: PMC9035604 DOI: 10.3389/fimmu.2022.820480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Monocytes are innate immune cells that serve as the first line of defense against pathogens by engulfing and destroying pathogens or by processing and presenting antigens to initiate adaptive immunity and stimulate immunological responses. Monocytes are classified into three types: classical, intermediate, and non-classical monocytes, each of which plays a particular function in response to pathogens. Human immunodeficiency virus type 1 (HIV-1) infection disrupts the balance of monocyte subsets, and the quantity and function of monocytes will not fully recover even with long-term antiretroviral therapy (ART). Monocytes are vital for the establishment and maintenance of HIV-1 latent viral reservoirs and are closely related to immune dysfunction even after ART. Therefore, the present review focuses on the phenotypic function of monocytes and their functions in HIV-1 infection to elucidate their roles in HIV patients.
Collapse
Affiliation(s)
- Ruojing Bai
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shiyun Lv
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ran Wang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Hua
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lili Dai
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Anderson AM, Ma Q, Letendre SL, Iudicello J. Soluble Biomarkers of Cognition and Depression in Adults with HIV Infection in the Combination Therapy Era. Curr HIV/AIDS Rep 2021; 18:558-568. [PMID: 34780037 PMCID: PMC8860504 DOI: 10.1007/s11904-021-00581-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Cognitive impairment and depression continue to be common among people with HIV (PWH) in the combination antiretroviral therapy (ART) era. A better understanding of the biological mechanisms that may underpin these disorders is needed. The purpose of this review is to describe published findings on soluble biomarkers from blood and cerebrospinal fluid (CSF) that have been associated with either cognition or depression among PWH in the setting of ART. RECENT FINDINGS Several biomarkers, including those that reflect viral persistence, monocyte/macrophage activation, and other processes, are associated with cognition and depressive symptoms. Some but not all results have been consistent across multiple studies. More research has been published on biomarkers of cognition relative to biomarkers of depression (particularly from CSF). More studies are needed that investigate multiple biomarkers to understand the role of distinct but additive pathways in these disorders and to guide the development of new therapies.
Collapse
Affiliation(s)
- Albert M Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 341 Ponce de Leon Avenue, Atlanta, GA, 30308, USA.
| | - Qing Ma
- University at Buffalo, Buffalo, NY, USA
| | - Scott L Letendre
- Departments of Medicine and Psychiatry, University of California at San Diego, San Diego, CA, USA
| | - Jennifer Iudicello
- Departments of Medicine and Psychiatry, University of California at San Diego, San Diego, CA, USA
| |
Collapse
|
11
|
Hall SA, Bell RP, Davis SW, Towe SL, Ikner TP, Meade CS. Human immunodeficiency virus-related decreases in corpus callosal integrity and corresponding increases in functional connectivity. Hum Brain Mapp 2021; 42:4958-4972. [PMID: 34382273 PMCID: PMC8449114 DOI: 10.1002/hbm.25592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
People living with human immunodeficiency virus (PLWH) often have neurocognitive impairment. However, findings on HIV-related differences in brain network function underlying these impairments are inconsistent. One principle frequently absent from these reports is that brain function is largely emergent from brain structure. PLWH commonly have degraded white matter; we hypothesized that functional communities connected by degraded white matter tracts would show abnormal functional connectivity. We measured white matter integrity in 69 PLWH and 67 controls using fractional anisotropy (FA) in 24 intracerebral white matter tracts. Then, among tracts with degraded FA, we identified gray matter regions connected to these tracts and measured their functional connectivity during rest. Finally, we identified cognitive impairment related to these structural and functional connectivity systems. We found HIV-related decreased FA in the corpus callosum body (CCb), which coordinates activity between the left and right hemispheres, and corresponding increases in functional connectivity. Finally, we found that individuals with impaired cognitive functioning have lower CCb FA and higher CCb functional connectivity. This result clarifies the functional relevance of the corpus callosum in HIV and provides a framework in which abnormal brain function can be understood in the context of abnormal brain structure, which may both contribute to cognitive impairment.
Collapse
Affiliation(s)
- Shana A. Hall
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Ryan P. Bell
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Simon W. Davis
- Department of NeurologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Sheri L. Towe
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Taylor P. Ikner
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Christina S. Meade
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
12
|
Veenhuis RT, Williams DW, Shirk EN, Abreu CM, Ferreira EA, Coughlin JM, Brown TT, Maki PM, Anastos K, Berman JW, Clements JE, Rubin LH. Higher circulating intermediate monocytes are associated with cognitive function in women with HIV. JCI Insight 2021; 6:146215. [PMID: 33914710 PMCID: PMC8262276 DOI: 10.1172/jci.insight.146215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Identifying a quantitative biomarker of neuropsychiatric dysfunction in people with HIV (PWH) remains a significant challenge in the neuroHIV field. The strongest evidence to date implicates the role of monocytes in central nervous system (CNS) dysfunction in HIV, yet no study has examined monocyte subsets in blood as a correlate and/or predictor of neuropsychiatric function in virally suppressed PWH. METHODS In 2 independent cohorts of virologically suppressed women with HIV (vsWWH; n = 25 and n = 18), whole blood samples were obtained either in conjunction with neuropsychiatric assessments (neuropsychological [NP] test battery, self-report depression and stress-related symptom questionnaires) or 1 year prior to assessments. Immune cell subsets were assessed by flow cytometry. RESULTS A higher proportion of intermediate monocytes (CD14+CD16+) was associated with lower global NP function when assessing monocytes concurrently and approximately 1 year before (predictive) NP testing. The same pattern was seen for executive function (mental flexibility) and processing speed. Conversely, there were no associations with monocyte subsets and depression or stress-related symptoms. Additionally, we found that a higher proportion of classical monocytes was associated with better cognition. CONCLUSION Although it is widely accepted that lentiviral infection of the CNS targets cells of monocyte-macrophage-microglial lineage and is associated with an increase in intermediate monocytes in the blood and monocyte migration into the brain, the percentage of intermediate monocytes in blood of vsWWH has not been associated with neuropsychiatric outcomes. Our findings provide evidence for a new, easily measured, blood-based cognitive biomarker in vsWWH. FUNDING R01-MH113512, R01-MH113512-S, P30-AI094189, R01-MH112391, R01-AI127142, R00-DA044838, U01-AI35004, and P30-MH075673
Collapse
Affiliation(s)
| | - Dionna W Williams
- Department of Molecular and Comparative Biology.,Division of Clinical Pharmacology
| | | | | | | | | | - Todd T Brown
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pauline M Maki
- Department of Psychiatry, College of Medicine, and Department of Psychology, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kathryn Anastos
- Department of Medicine and Epidemiology & Population Health, and
| | - Joan W Berman
- Department of Pathology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Janice E Clements
- Department of Molecular and Comparative Biology.,Department of Pathology and.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leah H Rubin
- Department of Psychiatry and Behavioral Sciences, and.,Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Yuan NY, Kaul M. Beneficial and Adverse Effects of cART Affect Neurocognitive Function in HIV-1 Infection: Balancing Viral Suppression against Neuronal Stress and Injury. J Neuroimmune Pharmacol 2021; 16:90-112. [PMID: 31385157 PMCID: PMC7233291 DOI: 10.1007/s11481-019-09868-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) persist despite the successful introduction of combination antiretroviral therapy (cART). While insufficient concentration of certain antiretrovirals (ARV) may lead to incomplete viral suppression in the brain, many ARVs are found to cause neuropsychiatric adverse effects, indicating their penetration into the central nervous system (CNS). Several lines of evidence suggest shared critical roles of oxidative and endoplasmic reticulum stress, compromised neuronal energy homeostasis, and autophagy in the promotion of neuronal dysfunction associated with both HIV-1 infection and long-term cART or ARV use. As the lifespans of HIV patients are increased, unique challenges have surfaced. Longer lives convey prolonged exposure of the CNS to viral toxins, neurotoxic ARVs, polypharmacy with prescribed or illicit drug use, and age-related diseases. All of these factors can contribute to increased risks for the development of neuropsychiatric conditions and cognitive impairment, which can significantly impact patient well-being, cART adherence, and overall health outcome. Strategies to increase the penetration of cART into the brain to lower viral toxicity may detrimentally increase ARV neurotoxicity and neuropsychiatric adverse effects. As clinicians attempt to control peripheral viremia in an aging population of HIV-infected patients, they must navigate an increasingly complex myriad of comorbidities, pharmacogenetics, drug-drug interactions, and psychiatric and cognitive dysfunction. Here we review in comparison to the neuropathological effects of HIV-1 the available information on neuropsychiatric adverse effects and neurotoxicity of clinically used ARV and cART. It appears altogether that future cART aiming at controlling HIV-1 in the CNS and preventing HAND will require an intricate balancing act of suppressing viral replication while minimizing neurotoxicity, impairment of neurocognition, and neuropsychiatric adverse effects. Graphical abstract Schematic summary of the effects exerted on the brain and neurocognitive function by HIV-1 infection, comorbidities, psychostimulatory, illicit drugs, therapeutic drugs, such as antiretrovirals, the resulting polypharmacy and aging, as well as the potential interactions of all these factors.
Collapse
Affiliation(s)
- Nina Y Yuan
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA.
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
14
|
Comparison of miRNA Expression Profiles between HIV-1 and HIV-2 Infected Monocyte-Derived Macrophages (MDMs) and Peripheral Blood Mononuclear Cells (PBMCs). Int J Mol Sci 2020; 21:ijms21186970. [PMID: 32971935 PMCID: PMC7556008 DOI: 10.3390/ijms21186970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
During the progression of HIV-1 infection, macrophage tropic HIV-1 that use the CCR5 co-receptor undergoes a change in co-receptor use to CXCR4 that is predominately T cell tropic. This change in co-receptor preference makes the virus able to infect T cells. HIV-2 is known to infect MDMs and T cells and is dual tropic. The aim of this study was to elucidate the differential expression profiles of host miRNAs and their role in cells infected with HIV-1/HIV-2. To achieve this goal, a comparative global miRNA expression profile was determined in human PBMCs and MDMs infected with HIV-1/HIV-2. Differentially expressed miRNAs were identified in HIV-1/HIV-2 infected PBMCs and MDMs using the next-generation sequencing (NGS) technique. A comparative global miRNA expression profile in infected MDMs and PBMCs with HIV-1 and HIV-2 identified differential expression of several host miRNAs. These differentially expressed miRNAs are likely to be involved in many signaling pathways, like the p53 signaling pathway, PI3K-Akt signaling pathways, MAPK signaling pathways, FoxO signaling pathway, and viral carcinogenesis. Thus, a comparative study of the differential expression of host miRNAs in MDMs and T cell in response to HIV-1 and HIV-2 infection will help us to identify unique biomarkers that can differentiate HIV-1 and HIV-2 infection.
Collapse
|
15
|
Oschwald A, Petry P, Kierdorf K, Erny D. CNS Macrophages and Infant Infections. Front Immunol 2020; 11:2123. [PMID: 33072074 PMCID: PMC7531029 DOI: 10.3389/fimmu.2020.02123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) harbors its own immune system composed of microglia in the parenchyma and CNS-associated macrophages (CAMs) in the perivascular space, leptomeninges, dura mater, and choroid plexus. Recent advances in understanding the CNS resident immune cells gave new insights into development, maturation and function of its immune guard. Microglia and CAMs undergo essential steps of differentiation and maturation triggered by environmental factors as well as intrinsic transcriptional programs throughout embryonic and postnatal development. These shaping steps allow the macrophages to adapt to their specific physiological function as first line of defense of the CNS and its interfaces. During infancy, the CNS might be targeted by a plethora of different pathogens which can cause severe tissue damage with potentially long reaching defects. Therefore, an efficient immune response of infant CNS macrophages is required even at these early stages to clear the infections but may also lead to detrimental consequences for the developing CNS. Here, we highlight the recent knowledge of the infant CNS immune system during embryonic and postnatal infections and the consequences for the developing CNS.
Collapse
Affiliation(s)
- Alexander Oschwald
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philippe Petry
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,CIBBS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Infrequent HIV Infection of Circulating Monocytes during Antiretroviral Therapy. J Virol 2019; 94:JVI.01174-19. [PMID: 31597764 DOI: 10.1128/jvi.01174-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Whereas human immunodeficiency virus (HIV) persists in tissue macrophages during antiretroviral therapy (ART), the role of circulating monocytes as HIV reservoirs remains controversial. Three magnetic bead selection methods and flow cytometry cell sorting were compared for their capacity to yield pure CD14+ monocyte populations. Cell sorting by flow cytometry provided the purest population of monocytes (median CD4+ T-cell contamination, 0.06%), and the levels of CD4+ T-cell contamination were positively correlated with the levels of integrated HIV DNA in the monocyte populations. Using cell sorting by flow cytometry, we assessed longitudinally the infection of monocytes and other cell subsets in a cohort of 29 Thai HIV-infected individuals. Low levels of HIV DNA were detected in a minority of monocyte fractions obtained before and after 1 year of ART (27% and 33%, respectively), whereas HIV DNA was readily detected in CD4+ T cells from all samples. Additional samples (2 to 5 years of ART) were obtained from 5 individuals in whom monocyte infection was previously detected. Whereas CD4+ T cells were infected at high levels at all time points, monocyte infection was inconsistent and absent in at least one longitudinal sample from 4/5 individuals. Our results indicate that infection of monocytes is infrequent and highlight the importance of using flow cytometry cell sorting to minimize contamination by CD4+ T cells.IMPORTANCE The role of circulating monocytes as persistent HIV reservoirs during ART is still controversial. Several studies have reported persistent infection of monocytes in virally suppressed individuals; however, others failed to detect HIV in this subset. These discrepancies are likely explained by the diversity of the methods used to isolate monocytes and to detect HIV infection. In this study, we show that only flow cytometry cell sorting yields a highly pure population of monocytes largely devoid of CD4 contaminants. Using this approach in a longitudinal cohort of HIV-infected individuals before and during ART, we demonstrate that HIV is rarely found in monocytes from untreated and treated HIV-infected individuals. This study highlights the importance of using methods that yield highly pure populations of cells as flow cytometry cell sorting to minimize and control for CD4+ T-cell contamination.
Collapse
|
17
|
Kruize Z, Kootstra NA. The Role of Macrophages in HIV-1 Persistence and Pathogenesis. Front Microbiol 2019; 10:2828. [PMID: 31866988 PMCID: PMC6906147 DOI: 10.3389/fmicb.2019.02828] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Current antiretroviral therapy (ART) effectively suppresses Human Immunodeficiency Virus type 1 (HIV-1) in infected individuals. However, even long term ART does not eradicate HIV-1 infected cells and the virus persists in cellular reservoirs. Beside memory CD4+ T cells, cells of the myeloid lineage, especially macrophages, are believed to be an important sanctuary for HIV-1. Monocytes and macrophages are key players in the innate immune response to pathogens and are recruited to sites of infection and inflammation. Due to their long life span and ability to reside in virtually every tissue, macrophages have been proposed to play a critical role in the establishment and persistence of the HIV-1 reservoir. Current HIV-1 cure strategies mainly focus on the concept of “shock and kill” to purge the viral reservoir. This approach aims to reactivate viral protein production in latently infected cells, which subsequently are eliminated as a consequence of viral replication, or recognized and killed by the immune system. Macrophage susceptibility to HIV-1 infection is dependent on the local microenvironment, suggesting that molecular pathways directing differentiation and polarization are involved. Current latency reversing agents (LRA) are mainly designed to reactivate the HIV-1 provirus in CD4+ T cells, while their ability to abolish viral latency in macrophages is largely unknown. Moreover, the resistance of macrophages to HIV-1 mediated kill and the presence of infected macrophages in immune privileged regions including the central nervous system (CNS), may pose a barrier to elimination of infected cells by current “shock and kill” strategies. This review focusses on the role of monocytes/macrophages in HIV-1 persistence. We will discuss mechanisms of viral latency and persistence in monocytes/macrophages. Furthermore, the role of these cells in HIV-1 tissue distribution and pathogenesis will be discussed.
Collapse
Affiliation(s)
- Zita Kruize
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
19
|
Burdo TH. Editor's Commentary for Special Issue: "The Role of Macrophages in HIV Persistence". J Neuroimmune Pharmacol 2019; 14:2-5. [PMID: 30737724 PMCID: PMC6424350 DOI: 10.1007/s11481-019-09836-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/27/2022]
Abstract
Macrophages as reservoirs for persistent HIV infection has gained renewed importance, with an intense research focus dedicated to eradication strategies. Clearance of both latent and productive HIV from these important reservoirs is essential for successful eradication. This spe cial theme issue contains 11 papers, including 6 Invited Reviews, 1 Brief Report and 4 Original Articles, that focus on the various aspects of the macrophage as pertains to HIV persistence, latency and cure. These topics include: functional latency of macrophages and microglia, the link between peripheral monocytes and pathogenesis, macrophages as sources of HIV RNA and DNA in virally suppressed patients, brain imaging of neuroinflammation, macrophages as drug delivery vehicles, therapeutic strategies of infected macrophages for cure, and the role of drugs of abuse in enhancing macrophage viral persistence.
Collapse
Affiliation(s)
- Tricia H Burdo
- Department of Neuroscience, Temple University School of Medicine, 3500 North Broad Street, MERB 755, Philadelphia, PA, 19140, USA.
| |
Collapse
|
20
|
Abstract
Current antiretroviral therapy (ART) effectively suppresses Human Immunodeficiency Virus type 1 (HIV-1) in infected individuals. However, even long term ART does not eradicate HIV-1 infected cells and the virus persists in cellular reservoirs. Beside memory CD4+ T cells, cells of the myeloid lineage, especially macrophages, are believed to be an important sanctuary for HIV-1. Monocytes and macrophages are key players in the innate immune response to pathogens and are recruited to sites of infection and inflammation. Due to their long life span and ability to reside in virtually every tissue, macrophages have been proposed to play a critical role in the establishment and persistence of the HIV-1 reservoir. Current HIV-1 cure strategies mainly focus on the concept of "shock and kill" to purge the viral reservoir. This approach aims to reactivate viral protein production in latently infected cells, which subsequently are eliminated as a consequence of viral replication, or recognized and killed by the immune system. Macrophage susceptibility to HIV-1 infection is dependent on the local microenvironment, suggesting that molecular pathways directing differentiation and polarization are involved. Current latency reversing agents (LRA) are mainly designed to reactivate the HIV-1 provirus in CD4+ T cells, while their ability to abolish viral latency in macrophages is largely unknown. Moreover, the resistance of macrophages to HIV-1 mediated kill and the presence of infected macrophages in immune privileged regions including the central nervous system (CNS), may pose a barrier to elimination of infected cells by current "shock and kill" strategies. This review focusses on the role of monocytes/macrophages in HIV-1 persistence. We will discuss mechanisms of viral latency and persistence in monocytes/macrophages. Furthermore, the role of these cells in HIV-1 tissue distribution and pathogenesis will be discussed.
Collapse
Affiliation(s)
- Zita Kruize
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
CCR2 on Peripheral Blood CD14 +CD16 + Monocytes Correlates with Neuronal Damage, HIV-Associated Neurocognitive Disorders, and Peripheral HIV DNA: reseeding of CNS reservoirs? J Neuroimmune Pharmacol 2018; 14:120-133. [PMID: 29981000 DOI: 10.1007/s11481-018-9792-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/24/2018] [Indexed: 10/28/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) occur in ~50% of HIV infected individuals despite combined antiretroviral therapy. Transmigration into the CNS of CD14+CD16+ monocytes, particularly those that are HIV infected and express increased surface chemokine receptor CCR2, contributes to neuroinflammation and HAND. To examine whether in HIV infected individuals CCR2 on CD14+CD16+ monocytes serves as a potential peripheral blood biomarker of HAND, we examined a cohort of 45 HIV infected people. We correlated CCR2 on CD14+CD16+ monocytes with cognitive status, proton magnetic resonance spectroscopy (1H-MRS) measured neurometabolite levels, and peripheral blood mononuclear cell (PBMC) HIV DNA copies. We determined that CCR2 was increased specifically on CD14+CD16+ monocytes from people with HAND (median [interquartile range (IQR)]) (63.3 [51.6, 79.0]), compared to those who were not cognitively impaired (38.8 [26.7, 56.4]) or those with neuropsychological impairment due to causes other than HIV (39.8 [30.2, 46.5]). CCR2 was associated with neuronal damage, based on the inverse correlation of CCR2 on CD14+CD16+ monocytes with total N-Acetyl Aspartate (tNAA)/total Creatine (tCr) (r2 = 0.348, p = 0.01) and Glutamine-Glutamate (Glx)/tCr (r2 = 0.356, p = 0.01) in the right and left caudate nucleus, respectively. CCR2 on CD14+CD16+ monocytes also correlated with PBMC HIV DNA copies (ρ = 0.618, p = 0.02) that has previously been associated with HAND. These findings suggest that CCR2 on CD14+CD16+ monocytes may be a peripheral blood biomarker of HAND, indicative of increased HIV infected CD14+CD16+ monocyte entry into the CNS that possibly increases the macrophage viral reservoir and contributes to HAND.
Collapse
|
22
|
Ramirez SH, Andrews AM, Paul D, Pachter JS. Extracellular vesicles: mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS 2018; 15:19. [PMID: 29960602 PMCID: PMC6026502 DOI: 10.1186/s12987-018-0104-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous, nano-sized vesicles that are shed into the blood and other body fluids, which disperse a variety of bioactive molecules (e.g., protein, mRNA, miRNA, DNA and lipids) to cellular targets over long and short distances. EVs are thought to be produced by nearly every cell type, however this review will focus specifically on EVs that originate from cells at the interface of CNS barriers. Highlighted topics include, EV biogenesis, the production of EVs in response to neuroinflammation, role in intercellular communication and their utility as a therapeutic platform. In this review, novel concepts regarding the use of EVs as biomarkers for BBB status and as facilitators for immune neuroinvasion are also discussed. Future directions and prospective are covered along with important unanswered questions in the field of CNS endothelial EV biology.
Collapse
Affiliation(s)
- Servio H Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA. .,Shriners Hospital Pediatric Research Center, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA.,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Debayon Paul
- Department of Immunology, Blood-Brain Barrier Laboratory & Laser Capture Microdissection Core, UConn Health, 263 Farmington Ave., Farmington, CT, 06070, USA
| | - Joel S Pachter
- Department of Immunology, Blood-Brain Barrier Laboratory & Laser Capture Microdissection Core, UConn Health, 263 Farmington Ave., Farmington, CT, 06070, USA.
| |
Collapse
|
23
|
Axonal chronic injury in treatment-naïve HIV+ adults with asymptomatic neurocognitive impairment and its relationship with clinical variables and cognitive status. BMC Neurol 2018; 18:66. [PMID: 29747571 PMCID: PMC5943991 DOI: 10.1186/s12883-018-1069-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
Background HIV is a neurotropic virus, and it can bring about neurodegeneration and may even result in cognitive impairments. The precise mechanism of HIV-associated white matter (WM) injury is unknown. The effects of multiple clinical contributors on WM impairments and the relationship between the WM alterations and cognitive performance merit further investigation. Methods Diffusion tensor imaging (DTI) was performed in 20 antiretroviral-naïve HIV-positive asymptomatic neurocognitive impairment (ANI) adults and 20 healthy volunteers. Whole-brain analysis of DTI metrics between groups was conducted by employing tract-based spatial statistics (TBSS), including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). DTI parameters were correlated with clinical variables (age, CD4+ cell count, CD4+/CD8+ ratio, plasma viral load and duration of HIV infection) and multiple cognitive tests by using multilinear regression analyses. Results DTI quantified diffusion alterations in the corpus callosum and corona radiata (MD increased significantly, P < 0.05) and chronic axonal injury in the corpus callosum, corona radiata, internal capsule, external capsule, posterior thalamic radiation, sagittal stratum, and superior longitudinal fasciculus (AD increased significantly, P < 0.05). The impairments in the corona radiata had significant correlations with the current CD4+/CD8+ ratios. Increased MD or AD values in multiple white matter structures showed significant associations with many cognitive domain tests. Conclusions WM impairments are present in neurologically asymptomatic HIV+ adults, periventricular WM (corpus callosum and corona radiata) are preferential occult injuries, which is associated with axonal chronic damage rather than demyelination. Axonopathy may exist before myelin injury. DTI-TBSS is helpful to explore the WM microstructure abnormalities and provide a new perspective for the investigation of the pathomechanism of HIV-associated WM injury.
Collapse
|
24
|
Jumare J, Ndembi N, El-Kamary SS, Magder L, Hungerford L, Burdo T, Eyzaguirre LM, Dakum P, Umlauf A, Cherner M, Abimiku A, Charurat M, Blattner WA, Royal W. Cognitive Function Among Antiretroviral Treatment-Naive Individuals Infected With Human Immunodeficiency Virus Type 1 Subtype G Versus CRF02_AG in Nigeria. Clin Infect Dis 2018; 66:1448-1453. [PMID: 29182762 PMCID: PMC5905588 DOI: 10.1093/cid/cix1019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) subtype has been shown to be associated with disease progression. We compared cognitive function between individuals infected with HIV-1 subtype G and CRF02_AG in Nigeria. Methods For this cross-sectional study, samples were analyzed from 146 antiretroviral-naive participants. Genotypic analysis of plasma HIV RNA was performed by nested polymerase chain reaction of protease and reverse transcriptase genes, and sequences were aligned with curated HIV-1 subtype references. Cognitive status was determined using demographically adjusted T scores and global deficit score (GDS) obtained from a comprehensive neuropsychological test battery. Results A total of 76 (52.1%) participants were infected with CRF02_AG, 48 (32.8%) with subtype G, and 22 (15.1%) with other HIV-1 strains. In a multivariable linear regression adjusting for plasma HIV RNA, CD4 count, and depression score, mean global T score was lower among subtype G-infected compared with CRF02_AG-infected participants (mean difference, -3.0 [95% confidence interval {CI}, -5.2, to -.7]; P = .011). Also, T scores were significantly lower among subtype G- than CRF02_AG-infected participants for the speed of information processing, executive function, and verbal fluency ability domains. Adjusting for similar variables in a logistic regression, the odds of global cognitive impairment (GDS ≥0.5) were 2.2 times higher among subtype G compared with CRF02_AG-infected participants (odds ratio, 2.2 [95% CI, .9-5.4]; P = .078). Conclusions Cognitive performance was significantly worse among antiretroviral-naive individuals with HIV-1 subtype G vs CRF02_AG infection. Further studies are required to characterize the mechanistic basis for these differences.
Collapse
Affiliation(s)
| | | | | | | | | | - Tricia Burdo
- School of Medicine, Temple University, Philadelphia, Pennsylvania
| | | | - Patrick Dakum
- School of Medicine, University of Maryland, Baltimore
| | - Anya Umlauf
- School of Medicine, University of California, San Diego
| | | | | | - Man Charurat
- School of Medicine, University of Maryland, Baltimore
| | | | - Walter Royal
- School of Medicine, University of Maryland, Baltimore
| |
Collapse
|
25
|
Methylglyoxal-bis-guanylhydrazone inhibits osteopontin expression and differentiation in cultured human monocytes. PLoS One 2018. [PMID: 29538412 PMCID: PMC5851547 DOI: 10.1371/journal.pone.0192680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Monocyte activation and polarization play essential roles in many chronic inflammatory diseases. An imbalance of M1 and M2 macrophage activation (pro-inflammatory and alternatively activated, respectively) is believed to be a key aspect in the etiology of these diseases, thus a therapeutic approach that regulates macrophage activation could be of broad clinical relevance. Methylglyoxal-bis-guanylhydrazone (MGBG), a regulator of polyamine metabolism, has recently been shown to be concentrated in monocytes and macrophages, and interfere with HIV integration into the DNA of these cells in vitro. RNA expression analysis of monocytes from HIV+ and control donors with or without MGBG treatment revealed the only gene to be consistently down regulated by MGBG to be osteopontin (OPN). The elevated expression of this pro-inflammatory cytokine and monocyte chemoattractant is associated with various chronic inflammatory diseases. We demonstrate that MGBG is a potent inhibitor of secreted OPN (sOPN) in cultured monocytes with 50% inhibition achieved at 0.1 μM of the drug. Furthermore, inhibition of OPN RNA transcription in monocyte cultures occurs at similar concentrations of the drug. During differentiation of monocytes into macrophages in vitro, monocytes express cell surface CD16 and the cells undergo limited DNA synthesis as measured by uptake of BrdU. MGBG inhibited both activities at similar doses to those regulating OPN expression. In addition, monocyte treatment with MGBG inhibited differentiation into both M1 and M2 classes of macrophages at non-toxic doses. The inhibition of differentiation and anti-OPN effects of MGBG were specific for monocytes in that differentiated macrophages were nearly resistant to MGBG activities. Thus MGBG may have potential therapeutic utility in reducing or normalizing OPN levels and regulating monocyte activation in diseases that involve chronic inflammation.
Collapse
|
26
|
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects roughly half the HIV-positive population. The symptoms of cognitive slowing, poor concentration, and memory problems can impact on everyday life. Its diagnosis is validated where possible by identifying deficits in two cognitive domains on neuropsychologic testing in patients either with or without symptoms. Corroborating evidence may be found on imaging, blood tests, and cerebrospinal fluid analysis, though sensitive and specific biomarkers are currently lacking. The introduction of combined antiretroviral therapy in the 1990s has generated a therapeutic paradox whereby the number of severe cases of HAND has fallen, yet milder forms continue to rise in prevalence. New emphasis has been placed on identifying the cause of apparent ongoing HIV infection and inflammation of the central nervous system (CNS) in the face of durable systemic viral suppression, and how this equates to the neuronal dysfunction underlying HAND. The interaction with aging and comorbidities is becoming increasingly common as the HIV-positive population enters older adulthood, with neurodegenerative, metabolic, and vascular causes of cognitive impairment combining and probably accelerating in the context of chronic HIV infection. Therapies targeted to the CNS, but without neurotoxic side-effects, are being investigated to attempt to reduce the likelihood of developing, and improving, HAND.
Collapse
Affiliation(s)
| | - Bruce James Brew
- Departments of Neurology and HIV Medicine, St. Vincent's Hospital and Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Ruhanya V, Jacobs GB, Glashoff RH, Engelbrecht S. Clinical Relevance of Total HIV DNA in Peripheral Blood Mononuclear Cell Compartments as a Biomarker of HIV-Associated Neurocognitive Disorders (HAND). Viruses 2017; 9:E324. [PMID: 29088095 PMCID: PMC5707531 DOI: 10.3390/v9110324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022] Open
Abstract
The pathogenesis of HIV-associated neurocognitive disorders is complex and multifactorial. It is hypothesized that the critical events initiating this condition occur outside the brain, particularly in the peripheral blood. Diagnoses of HIV-induced neurocognitive disorders largely rely on neuropsychometric assessments, which are not precise. Total HIV DNA in the peripheral blood mononuclear cells (PBMCs), quantified by PCR, correlate with disease progression, which is a promising biomarker to predict HAND. Numerous PCR assays for HIV DNA in cell compartments are prone to variation due to the lack of standardization and, therefore, their utility in predicting HAND produced different outcomes. This review evaluates the clinical relevance of total HIV DNA in circulating mononuclear cells using different published quantitative PCR (qPCR) protocols. The rationale is to shed light on the most appropriate assays and sample types used to accurately quantify HIV DNA load, which predicts severity of neurocognitive impairment. The role of monocytes as a vehicle for trafficking HIV into the CNS makes it the most suitable sample for determining a HAND associated reservoir. Studies have also shown significant associations between monocyte HIV DNA levels with markers of neurodamage. However, qPCR assays using PBMCs are cheaper and available commercially, thus could be beneficial in clinical settings. There is need, however, to standardise DNA extraction, normalisation and limit of detection.
Collapse
Affiliation(s)
- Vurayai Ruhanya
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Avenue, P.O. Box 241, Cape Town 8000, South Africa.
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, P.O. Box A178, Avondale Harare 00263, Zimbabwe.
| | - Graeme B Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Avenue, P.O. Box 241, Cape Town 8000, South Africa.
| | - Richard H Glashoff
- Division of Medical Microbiology and Immunology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Avenue, P.O. Box 241, Cape Town 8000, South Africa.
- Division of Medical Microbiology and Immunology, National Health Laboratory Service (NHLS), Tygerberg Business Unit, P.O. Box 241, Cape Town 8000, South Africa.
| | - Susan Engelbrecht
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Avenue, P.O. Box 241, Cape Town 8000, South Africa.
- Division of Medical Virology, National Health Laboratory Service (NHLS), Tygerberg Business Unit, P.O. Box 241, Cape Town 8000, South Africa.
| |
Collapse
|
28
|
Mechanisms of CNS Viral Seeding by HIV + CD14 + CD16 + Monocytes: Establishment and Reseeding of Viral Reservoirs Contributing to HIV-Associated Neurocognitive Disorders. mBio 2017; 8:mBio.01280-17. [PMID: 29066542 PMCID: PMC5654927 DOI: 10.1128/mbio.01280-17] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HIV reservoirs persist despite antiretroviral therapy (ART) and are established within a few days after infection. Infected myeloid cells in the central nervous system (CNS) may contribute to the establishment of a CNS viral reservoir. The mature CD14+ CD16+ monocyte subset enters the CNS in response to chemokines, including CCL2. Entry of infected CD14+ CD16+ monocytes may lead to infection of other CNS cells, including macrophages or microglia and astrocytes, and to release of neurotoxic early viral proteins and additional cytokines. This contributes to neuroinflammation and neuronal damage leading to HIV-associated neurocognitive disorders (HAND) in ~50% of HIV-infected individuals despite ART. We examined the mechanisms of monocyte entry in the context of HIV infection and report for the first time that HIV+ CD14+ CD16+ monocytes preferentially transmigrate across the blood-brain barrier (BBB). The junctional proteins JAM-A and ALCAM and the chemokine receptor CCR2 are essential to their preferential transmigration across the BBB to CCL2. We show here that JAM-A and ALCAM are increased on HIV+ CD14+ CD16+ monocytes compared to their expression on HIVexp CD14+ CD16+ monocytes-cells that are uninfected but exposed to HIV, viral proteins, and inflammatory mediators. Antibodies against JAM-A and ALCAM and the novel CCR2/CCR5 dual inhibitor cenicriviroc prevented or significantly reduced preferential transmigration of HIV+ CD14+ CD16+ monocytes. This indicates that JAM-A, ALCAM, and CCR2 may be potential therapeutic targets to block entry of these infected cells into the brain and prevent or reduce the establishment and replenishment of viral reservoirs within the CNS.IMPORTANCE HIV infects different tissue compartments of the body, including the central nervous system (CNS). This leads to establishment of viral reservoirs within the CNS that mediate neuroinflammation and neuronal damage, contributing to cognitive impairment. Our goal was to examine the mechanisms of transmigration of cells that contribute to HIV infection of the CNS and to continued replenishment of CNS viral reservoirs, to establish potential therapeutic targets. We found that an HIV-infected subset of monocytes, mature HIV+ CD14+ CD16+ monocytes, preferentially transmigrates across the blood-brain barrier. This was mediated, in part, by increased junctional proteins JAM-A and ALCAM and chemokine receptor CCR2. We show that the CCR2/CCR5 dual inhibitor cenicriviroc and blocking antibodies against the junctional proteins significantly reduce, and often completely block, the transmigration of HIV+ CD14+ CD16+ monocytes. This suggests new opportunities to eliminate infection and seeding or reseeding of viral reservoirs within the CNS, thus reducing neuroinflammation, neuronal damage, and cognitive impairment.
Collapse
|
29
|
Rahimian P, He JJ. HIV/neuroAIDS biomarkers. Prog Neurobiol 2017; 157:117-132. [PMID: 27084354 PMCID: PMC5705228 DOI: 10.1016/j.pneurobio.2016.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
HIV infection often causes neurological symptoms including cognitive and motor dysfunction, which have been collectively termed HIV/neuroAIDS. Neuropsychological assessment and clinical symptoms have been the primary diagnostic criteria for HIV/neuroAIDS, even for the mild cognitive and motor disorder, the most prevalent form of HIV/neuroAIDS in the era of combination antiretroviral therapy. Those performance-based assessments and symptoms are generally descriptive and do not have the sensitivity and specificity to monitor the diagnosis, progression, and treatment response of the disease when compared to objective and quantitative laboratory-based biological markers, or biomarkers. In addition, effects of demographics and comorbidities such as substance abuse, psychiatric disease, nutritional deficiencies, and co-infection on HIV/neuroAIDS could be more readily determined using biomarkers than using neuropsychological assessment and clinical symptoms. Thus, there have been great efforts in identification of HIV/neuroAIDS biomarkers over the past two decades. The need for reliable biomarkers of HIV/neuroAIDS is expected to increase as the HIV-infected population ages and their vulnerability to neurodegenerative diseases, particularly Alzheimer's disease increases. Currently, three classes of HIV/neuroAIDS biomarkers are being pursued to establish objective laboratory-based definitions of HIV-associated neurologic injury: cerebrospinal fluid biomarkers, blood biomarkers, and neuroimaging biomarkers. In this review, we will focus on the current knowledge in the field of HIV/neuroAIDS biomarker discovery.
Collapse
Affiliation(s)
- Pejman Rahimian
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
30
|
Eggers C, Arendt G, Hahn K, Husstedt IW, Maschke M, Neuen-Jacob E, Obermann M, Rosenkranz T, Schielke E, Straube E. HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol 2017; 264:1715-1727. [PMID: 28567537 PMCID: PMC5533849 DOI: 10.1007/s00415-017-8503-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 01/05/2023]
Abstract
The modern antiretroviral treatment of human immunodeficiency virus (HIV-1) infection has considerably lowered the incidence of opportunistic infections. With the exception of the most severe dementia manifestations, the incidence and prevalence of HIV-associated neurocognitive disorders (HAND) have not decreased, and HAND continues to be relevant in daily clinical practice. Now, HAND occurs in earlier stages of HIV infection, and the clinical course differs from that before the widespread use of combination antiretroviral treatment (cART). The predominant clinical feature is a subcortical dementia with deficits in the domains concentration, attention, and memory. Motor signs such as gait disturbance and impaired manual dexterity have become less prominent. Prior to the advent of cART, the cerebral dysfunction could at least partially be explained by the viral load and by virus-associated histopathological findings. In subjects where cART has led to undetectable or at least very low viral load, the pathogenic virus-brain interaction is less direct, and an array of poorly understood immunological and probably toxic phenomena are discussed. This paper gives an overview of the current concepts in the field of HAND and provides suggestions for the diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Christian Eggers
- Department of Neurology, Krankenhaus Barmherzige Brüder, Seilerstätte 2, 4021, Linz, Austria.
| | - Gabriele Arendt
- Neurologische Klinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Katrin Hahn
- Neurologische Klinik, Charité, Berlin, Germany
| | - Ingo W Husstedt
- Klinik für Neurologie, Universitätsklinikum Münster, Münster, Germany
| | - Matthias Maschke
- Neurologische Abteilung, Brüderkrankenhaus Trier, Trier, Germany
| | - Eva Neuen-Jacob
- Institut für Neuropathologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Mark Obermann
- Direktor des Zentrums für Neurologie, Asklepios Kliniken Schildautal, Seesen, Germany
| | - Thorsten Rosenkranz
- Neurologische Abteilung, Asklepios-Klinik Hamburg-St. Georg, Hamburg, Germany
| | - Eva Schielke
- Praxis für Neurologie Berlin-Mitte, 10117, Berlin, Germany
| | - Elmar Straube
- HIV-Schwerpunktpraxis, 30890, Barsinghausen, Germany
| |
Collapse
|
31
|
Knights MJ, Chatziagorakis A, Kumar Buggineni S. HIV infection and its psychiatric manifestations: A clinical overview. BJPSYCH ADVANCES 2017. [DOI: 10.1192/apt.bp.116.016311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SummaryHighly active antiretroviral therapy (HAART) has led to a reduction in HIV-related morbidity and mortality, and the life expectancy of HIV-positive individuals has improved significantly. It is therefore becoming more likely that clinicians will encounter patients with psychiatric manifestations of the disease. This review summarises the evidence on prevalence, manifestations and treatment of psychiatric conditions in HIV-positive adults. The most prevalent psychiatric illness in this population is depression (35.6%), followed by substance misuse, anxiety, psychosis, adjustment disorder and bipolar affective disorder. Neurocognitive impairment is also common, ranging in severity from asymptomatic (the most frequent) to dementia (the least frequent). Effective treatment of both HIV and psychiatric manifestations is essential to maximising life expectancy and quality of life.Learning Objectives• Comprehend the prevalence, manifestations and treatment of psychiatric conditions in HIV-positive individuals• Learn about the HIV-associated neurocognitive disorders• Develop an understanding of the relationship between HIV infection and psychiatric symptoms
Collapse
|
32
|
Busby E, Whale AS, Ferns RB, Grant PR, Morley G, Campbell J, Foy CA, Nastouli E, Huggett JF, Garson JA. Instability of 8E5 calibration standard revealed by digital PCR risks inaccurate quantification of HIV DNA in clinical samples by qPCR. Sci Rep 2017; 7:1209. [PMID: 28446770 PMCID: PMC5430807 DOI: 10.1038/s41598-017-01221-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/22/2017] [Indexed: 11/09/2022] Open
Abstract
ABTRACT Establishing a cure for HIV is hindered by the persistence of latently infected cells which constitute the viral reservoir. Real-time qPCR, used for quantification of this reservoir by measuring HIV DNA, requires external calibration; a common choice of calibrator is the 8E5 cell line, which is assumed to be stable and to contain one HIV provirus per cell. In contrast, digital PCR requires no external calibration and potentially provides 'absolute' quantification. We compared the performance of qPCR and dPCR in quantifying HIV DNA in 18 patient samples. HIV DNA was detected in 18 by qPCR and in 15 by dPCR, the difference being due to the smaller sample volume analysed by dPCR. There was good quantitative correlation (R2 = 0.86) between the techniques but on average dPCR values were only 60% of qPCR values. Surprisingly, investigation revealed that this discrepancy was due to loss of HIV DNA from the 8E5 cell calibrant. 8E5 extracts from two other sources were also shown to have significantly less than one HIV DNA copy per cell and progressive loss of HIV from 8E5 cells during culture was demonstrated. We therefore suggest that the copy number of HIV in 8E5 extracts be established by dPCR prior to use as calibrator.
Collapse
Affiliation(s)
- Eloise Busby
- Molecular and Cell Biology Team, LGC, Teddington, UK
| | | | - R Bridget Ferns
- Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Paul R Grant
- Department of Clinical Virology, University College London Hospital NHS Foundation Trust, and the UCL/UCLH NIHR Biomedical Research Centre, London, UK
| | - Gary Morley
- Molecular and Cell Biology Team, LGC, Teddington, UK
| | | | - Carole A Foy
- Molecular and Cell Biology Team, LGC, Teddington, UK
| | - Eleni Nastouli
- Department of Clinical Virology, University College London Hospital NHS Foundation Trust, and the UCL/UCLH NIHR Biomedical Research Centre, London, UK.,Department of Population Policy and Practice, UCL GOS Institute of Child Health, London, UK
| | - Jim F Huggett
- Molecular and Cell Biology Team, LGC, Teddington, UK. .,School of Biosciences & Medicine, Faculty of Health & Medical Science, University of Surrey, Guildford, GU2 7XH, UK.
| | - Jeremy A Garson
- Department of Infection, Division of Infection and Immunity, University College London, London, UK. .,National Transfusion Microbiology Laboratories, NHS Blood and Transplant, Colindale, London, UK.
| |
Collapse
|
33
|
Carroll A, Brew B. HIV-associated neurocognitive disorders: recent advances in pathogenesis, biomarkers, and treatment. F1000Res 2017; 6:312. [PMID: 28413625 PMCID: PMC5365228 DOI: 10.12688/f1000research.10651.1] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain prevalent despite plasma viral suppression by antiretroviral agents. In fact, the prevalence of milder subtypes of cognitive impairment is increasing. Neuropsychologic testing remains the "gold standard" of diagnosis; however, this is time consuming and costly in a resource-poor environment. Recently developed screening tools, such as CogState and the revised HIV dementia scale, have very good sensitivity and specificity in the more severe stages of HAND. However, questions remain regarding the utility of, optimal population for, and insensitivity of tests in mild HAND. Recognition of ongoing viral persistence and the inflammatory milieu in the central nervous system (CNS) has advanced our understanding of the pathogenesis of HAND and facilitated the development of biomarkers of CNS disease. The importance of the monocyte-macrophage lineage cell and the astrocyte as viral reservoirs, HIV viral proteins, self-perpetuating CNS inflammation, and CCR5 chemokine receptor neurotropism has been identified. Whilst biomarkers demonstrate monocyte activation, inflammation, and neuronal injury, they remain limited in their clinical utility. The improved understanding of pathogenic mechanisms has led to novel approaches to the treatment of HAND; however, despite these advances, the optimal management is still undefined.
Collapse
Affiliation(s)
- Antonia Carroll
- Department of Neurology, St Vincent’s Hospital, Level 4, Xavier Building, Victoria Street, Darlinghurst, Sydney, Australia
- University of New South Wales, St. Vincent’s Clinical School, Delacy Building, Victoria Street, Darlinghurst, Sydney, Australia
| | - Bruce Brew
- Department of Neurology, St Vincent’s Hospital, Level 4, Xavier Building, Victoria Street, Darlinghurst, Sydney, Australia
- Peter Duncan Neurosciences Unit, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, Australia
- Department of HIV Medicine, St Vincent’s Hospital, Level 4, Xavier Building, Victoria Street, Darlinghurst, Sydney, Australia
- University of New South Wales, St. Vincent’s Clinical School, Delacy Building, Victoria Street, Darlinghurst, Sydney, Australia
| |
Collapse
|
34
|
Peripheral blood lymphocyte HIV DNA levels correlate with HIV associated neurocognitive disorders in Nigeria. J Neurovirol 2017; 23:474-482. [PMID: 28243867 DOI: 10.1007/s13365-017-0520-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
Mononuclear cells play key roles in the pathogenic mechanisms leading to HIV-associated neurocognitive disorders (HANDs). We examined the association between HIV DNA within peripheral blood mononuclear cell (PBMC) subsets and HAND in Nigeria. PBMCs were collected at baseline from 36 antiretroviral naive participants. CD14+ cells and T&B lymphocyte fractions were isolated by, respectively, positive and negative magnetic bead separation. Total HIV DNA within CD14+ and T&B cells were separately quantified using real-time PCR assay targeting HIV LTR-gag and cell input numbers determined by CCR5 copies/sample. Utilizing demographically adjusted T scores obtained from a 7-domain neuropsychological test battery, cognitive status was determined by the global deficit score (GDS) approach, with a GDS of ≥0.5 indicating cognitive impairment. In a linear regression adjusting for plasma HIV RNA, CD4 and lymphocyte count, Beck's depression score, and years of education, there was 0.04 lower log10 HIV DNA copies within T&B lymphocytes per unit increase in global T score (p = 0.02). Adjusting for the same variables in a logistic regression, the odds of cognitive impairment were 6.2 times greater per log10 increase in HIV DNA within T&B lymphocytes (p = 0.048). The association between cognitive impairment and HIV DNA within CD14+ monocytes did not reach statistical significance. In this pretreatment cohort with mild cognitive dysfunction, we found a strong association between levels of HIV DNA within the lymphocyte subset and HAND independent of plasma HIV RNA. These findings likely reflect the neurologic impact of a larger HIV reservoir and active viral replication.
Collapse
|
35
|
Ganief T, Gqamana P, Garnett S, Hoare J, Stein DJ, Joska J, Soares N, Blackburn JM. Quantitative proteomic analysis of HIV-1 Tat-induced dysregulation in SH-SY5Y neuroblastoma cells. Proteomics 2017; 17. [PMID: 28101920 DOI: 10.1002/pmic.201600236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 11/11/2022]
Abstract
Despite affecting up to 70% of HIV-positive patients and being the leading cause of dementia in patients under 40 years, the molecular mechanisms involved in the onset of HIV-associated neurocognitive disorders (HAND) are not well understood. To address this, we performed SILAC-based quantitative proteomic analysis on HIV-Tat treated SH-SY5Y neuroblastoma cells. Isolated protein was fractionated by SDS-PAGE and analyzed by nLC-MS/MS on an Orbitrap Velos. Using MaxQuant, we identified and quantified 3077 unique protein groups, of which 407 were differentially regulated. After applying an additional standard deviation-based cutoff, 29 of these were identified as highly significantly and stably dysregulated. GO term analysis shows dysregulation in both protein translation machinery as well as cytoskeletal regulation that have both been implicated in other dementias. In addition, several key cytoskeletal regulatory proteins such as ARHGEF17, the Rho GTPase, SHROOM3, and CMRP1 are downregulated. Together, these data demonstrate that HIV-Tat can dysregulate neuronal cytoskeletal regulatory proteins that could lead to the major HAND clinical manifestation-synapse loss.
Collapse
Affiliation(s)
- Tariq Ganief
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Putuma Gqamana
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Shaun Garnett
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Jackie Hoare
- Department of Psychiatry, University of Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry, University of Cape Town, South Africa.,MRC Unit on Anxiety and Stress Disorders, University of Cape Town, South Africa
| | - John Joska
- Department of Psychiatry, University of Cape Town, South Africa
| | - Nelson Soares
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| |
Collapse
|
36
|
Sanchez AB, Kaul M. Neuronal Stress and Injury Caused by HIV-1, cART and Drug Abuse: Converging Contributions to HAND. Brain Sci 2017; 7:brainsci7030025. [PMID: 28241493 PMCID: PMC5366824 DOI: 10.3390/brainsci7030025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Multiple mechanisms appear to contribute to neuronal stress and injury underlying HIV-associated neurocognitive disorders (HAND), which occur despite the successful introduction of combination antiretroviral therapy (cART). Evidence is accumulating that components of cART can itself be neurotoxic upon long-term exposure. In addition, abuse of psychostimulants, such as methamphetamine (METH), seems to compromise antiretroviral therapy and aggravate HAND. However, the combined effect of virus and recreational and therapeutic drugs on the brain is still incompletely understood. However, several lines of evidence suggest a shared critical role of oxidative stress, compromised neuronal energy homeostasis and autophagy in promotion and prevention of neuronal dysfunction associated with HIV-1 infection, cART and psychostimulant use. In this review, we present a synopsis of recent work related to neuronal stress and injury induced by HIV infection, antiretrovirals (ARVs) and the highly addictive psychostimulant METH.
Collapse
Affiliation(s)
- Ana B Sanchez
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Marcus Kaul
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
37
|
Dopamine Increases CD14 +CD16 + Monocyte Transmigration across the Blood Brain Barrier: Implications for Substance Abuse and HIV Neuropathogenesis. J Neuroimmune Pharmacol 2017; 12:353-370. [PMID: 28133717 DOI: 10.1007/s11481-017-9726-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023]
Abstract
In human immunodeficiency virus-1 (HIV) infected individuals, substance abuse may accelerate the development and/or increase the severity of HIV associated neurocognitive disorders (HAND). It is proposed that CD14+CD16+ monocytes mediate HIV entry into the central nervous system (CNS) and that uninfected and infected CD14+CD16+ monocyte transmigration across the blood brain barrier (BBB) contributes to the establishment and propagation of CNS HIV viral reservoirs and chronic neuroinflammation, important factors in the development of HAND. The effects of substance abuse on the frequency of CD14+CD16+ monocytes in the peripheral circulation and on the entry of these cells into the CNS during HIV neuropathogenesis are not known. PBMC from HIV infected individuals were analyzed by flow cytometry and we demonstrate that the frequency of peripheral blood CD14+CD16+ monocytes in HIV infected substance abusers is increased when compared to those without active substance use. Since drug use elevates extracellular dopamine concentrations in the CNS, we examined the effects of dopamine on CD14+CD16+ monocyte transmigration across our in vitro model of the human BBB. The transmigration of this monocyte subpopulation is increased by dopamine and the dopamine receptor agonist, SKF 38393, implicating D1-like dopamine receptors in the increase in transmigration elicited by this neurotransmitter. Thus, elevated extracellular CNS dopamine may be a novel common mechanism by which active substance use increases uninfected and HIV infected CD14+CD16+ monocyte transmigration across the BBB. The influx of these cells into the CNS may increase viral seeding and neuroinflammation, contributing to the development of HIV associated neurocognitive impairments.
Collapse
|
38
|
de Oliveira MF, Murrell B, Murrel B, Pérez-Santiago J, Vargas M, Ellis RJ, Letendre S, Grant I, Smith DM, Woods SP, Gianella S. Circulating HIV DNA Correlates With Neurocognitive Impairment in Older HIV-infected Adults on Suppressive ART. Sci Rep 2015; 5:17094. [PMID: 26603568 PMCID: PMC4658529 DOI: 10.1038/srep17094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/20/2015] [Indexed: 11/09/2022] Open
Abstract
Older HIV-infected adults have a higher risk of neurocognitive impairment, but the underlying mechanisms are poorly understood. Here, we investigated the associations between levels of HIV DNA in peripheral blood, soluble markers of inflammation and cellular trafficking in blood and cerebrospinal fluid (CSF) and neurocognitive functioning among 18 younger (22–40 years) and 26 older (50–71 years) HIV-infected subjects, who were administered a comprehensive neurocognitive battery. Older HIV-infected individuals presented higher levels of inflammation in CSF and blood compared to younger individuals, but no difference was observed in HIV DNA levels. Among older participants, higher HIV DNA levels were significantly associated with more severe neurocognitive impairment (p = 0.005), particularly in the Executive Functions domain (p = 0.004). No association was observed between HIV DNA and neurocognition among younger individuals. Despite significantly increased inflammation observed in the older group, none of the inflammatory markers were associated with neurocognitive impairment among older HIV+ individuals (p > 0.05). Our study supports the involvement of peripheral HIV DNA reservoir in the pathogenesis of neurocognitive disorder during suppressive ART. Correlates of neurocognitive impairment might differ between younger and older adults, suggesting that future treatment and prevention strategies for HIV-associated neurocognitive disorders likely need to be tailored based on age.
Collapse
Affiliation(s)
| | | | - Ben Murrel
- University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | - Igor Grant
- HIV Neurobehavioral Research Center, San Diego, CA, USA
| | - Davey M Smith
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | | | - Sara Gianella
- University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
39
|
de Oliveira MF, Gianella S, Letendre S, Scheffler K, Kosakovsky Pond SL, Smith DM, Strain M, Ellis RJ. Comparative Analysis of Cell-Associated HIV DNA Levels in Cerebrospinal Fluid and Peripheral Blood by Droplet Digital PCR. PLoS One 2015; 10:e0139510. [PMID: 26431315 PMCID: PMC4592012 DOI: 10.1371/journal.pone.0139510] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/13/2015] [Indexed: 11/28/2022] Open
Abstract
Background Measurement of HIV DNA-bearing cells in cerebrospinal fluid (CSF) is challenging because few cells are present. We present a novel application of the sensitive droplet digital (dd)PCR in this context. Methods We analyzed CSF cell pellets and paired peripheral blood mononuclear cells (PBMC) from 28 subjects, 19 of whom had undetectable HIV RNA (<48 copies/mL) in both compartments. We extracted DNA from PBMC using silica-based columns and used direct lysis on CSF cells. HIV DNA and the host housekeeping gene (RPP30) were measured in CSF and PBMC by (dd)PCR. We compared HIV DNA levels in virally-suppressed and-unsuppressed subgroups and calculated correlations between HIV DNA and RNA levels in both compartments using non-parametric tests. Results HIV DNA was detected in 18/28 (64%) CSF cell pellets, including 10/19 (53%) samples with undetectable HIV RNA. HIV DNA levels in CSF cell pellets were not correlated with RPP30 (p = 0.3), but correlated positively with HIV RNA in CSF (p = 0.04) and HIV DNA in PBMC (p = 0.03). Cellular HIV DNA in CSF was detected in comparable levels in HIV RNA-suppressed and unsuppressed subjects (p = 0.14). In contrast, HIV DNA levels in PBMC were significantly lower in HIV RNA-suppressed than in unsuppressed subjects (p = 0.014). Among subjects with detectable HIV DNA in both compartments, HIV DNA levels in CSF were significantly higher than in PBMC (p<0.001). Conclusions Despite low mononuclear cell numbers in CSF, HIV DNA was detected in most virally suppressed individuals. In contrast to PBMC, suppressive ART was not associated with lower HIV DNA levels in CSF cells, compared to no ART, perhaps due to poorer ART penetration, slower decay of HIV DNA, or enrichment of HIV DNA-bearing mononuclear cells into the CSF, compared to blood. Future studies should determine what fraction of HIV DNA is replication-competent in CSF leukocytes, compared to PBMC.
Collapse
Affiliation(s)
- Michelli Faria de Oliveira
- University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (MFO); (RJE)
| | - Sara Gianella
- University of California, San Diego, La Jolla, California, United States of America
| | - Scott Letendre
- HIV Neurobehavioral Research Center, University of California, San Diego, San Diego, California, United States of America
| | - Konrad Scheffler
- University of California, San Diego, La Jolla, California, United States of America
- Stellenbosch University, Stellenbosch, South Africa
| | | | - Davey M. Smith
- University of California, San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, United States of America
| | - Matt Strain
- University of California, San Diego, La Jolla, California, United States of America
| | - Ronald J. Ellis
- HIV Neurobehavioral Research Center, University of California, San Diego, San Diego, California, United States of America
- * E-mail: (MFO); (RJE)
| |
Collapse
|
40
|
Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone. J Virol 2015. [PMID: 26223636 DOI: 10.1128/jvi.01692-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. IMPORTANCE Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection.
Collapse
|
41
|
[HIV 1-associated neurocognitive disorder: current epidemiology, pathogenesis, diagnosis and management]. DER NERVENARZT 2015; 85:1280-90. [PMID: 25292163 DOI: 10.1007/s00115-014-4082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
By restoring the immunological function the modern antiretroviral treatment of human immunodeficiency virus (HIV-1) infection has considerably lowered the incidence of opportunistic infections. As opposed to the classical manifestations of HIV-induced immunosuppression the incidence and prevalence of HIV-associated neurocognitive disorders (HAND) has not noticeably decreased and HAND continues to be relevant in daily clinical practice. At present, HAND occurs in earlier stages of HIV infection, and the clinical course differs from that before the introduction of combination antiretroviral treatment (cART). The predominant clinical manifestation is a subcortical dementia with deficits in the domains attention, concentration and memory. Signs of central motor pathway lesions have become less frequent and less prominent. Prior to the advent of cART the cerebral dysfunction could at least partially be explained by the viral load and by virus-associated histopathological findings. In patients with at least partially successfully treated infections, this relationship no longer exists, but a plethora of poorly understood immunological and probably toxic phenomena are under discussion.This consensus paper summarizes the progress made in the last 12 years in the field of HAND and provides suggestions for the diagnostic and therapeutic management.
Collapse
|
42
|
HIV DNA in CD14+ reservoirs is associated with regional brain atrophy in patients naive to combination antiretroviral therapy. AIDS 2014; 28:1619-24. [PMID: 25232899 DOI: 10.1097/qad.0000000000000306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine associations between regional brain volumes and HIV DNA in peripheral CD14 cells (monocytes) among HIV-infected individuals naive to combination antiretroviral therapy (cART). DESIGN A prospective study of HIV-infected Thai individuals who met Thai national criteria for cART initiation. Enrolment was stratified by HIV DNA in a blinded fashion. METHODS CD14 cells were isolated from peripheral mononuclear cells to high purity (median 91.4% monocytes by flow cytometry), and HIV DNA was quantified by multiplex real-time PCR. Baseline regional brain volumes obtained by T1-weighted 1.5-Tesla MRI were compared between HIV DNA groups using analysis of covariance (ANCOVA). RESULTS We studied 60 individuals with mean (SD) age of 34.7 (7.0) years, CD4 T-lymphocyte count of 232 (137) cells/μl and log10 plasma HIV RNA of 4.8 (0.73). Median (interquartile range, IQR) HIV DNA copy number per 10 CD14 cells was 54 (102). Using our previously determined optimal cut-point of 45 copies/10 cells for this cohort, a threshold value above which CD14 HIV DNA identified HIV-associated neurocognitive disorders (HANDs), we found that CD14 HIV DNA ≥ 45 copies/10 cells was associated with reduced volumes of the nucleus accumbens (P=0.021), brainstem (P=0.033) and total gray matter (P=0.045) independently of age, CD4 cell count and intracranial volume. CONCLUSION HIV DNA burden in CD14 monocytes is directly linked to brain volumetric loss. Our findings implicate peripheral viral reservoirs in HIV-associated brain atrophy and support their involvement in the neuropathogenesis of HAND, underscoring the need for therapies that target these cells.
Collapse
|
43
|
Valcour VG, Ananworanich J, Agsalda M, Sailasuta N, Chalermchai T, Schuetz A, Shikuma C, Liang CY, Jirajariyavej S, Sithinamsuwan P, Tipsuk S, Clifford DB, Paul R, Fletcher JLK, Marovich MA, Slike BM, DeGruttola V, Shiramizu B. HIV DNA reservoir increases risk for cognitive disorders in cART-naïve patients. PLoS One 2013; 8:e70164. [PMID: 23936155 PMCID: PMC3729685 DOI: 10.1371/journal.pone.0070164] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/15/2013] [Indexed: 11/19/2022] Open
Abstract
Objectives Cognitive impairment remains frequent in HIV, despite combination antiretroviral therapy (cART). Leading theories implicate peripheral monocyte HIV DNA reservoirs as a mechanism for spread of the virus to the brain. These reservoirs remain present despite cART. The objective of this study was to determine if the level of HIV DNA in CD14+ enriched monocytes predicted cognitive impairment and brain injury. Methods We enrolled 61 cART-naïve HIV-infected Thais in a prospective study and measured HIV DNA in CD14+ enriched monocyte samples in a blinded fashion. We determined HAND diagnoses by consensus panel and all participants underwent magnetic resonance spectroscopy (MRS) to measure markers of brain injury. Immune activation was measured via cytokines in cerebrospinal fluid (CSF). Results The mean (SD) age was 35 (6.9) years, CD4 T-lymphocyte count was 236 (139) and log10 plasma HIV RNA was 4.8 (0.73). Twenty-eight of 61 met HAND criteria. The log10 CD14+ HIV DNA was associated with HAND in unadjusted and adjusted models (p = 0.001). There was a 14.5 increased odds ratio for HAND per 1 log-value of HIV DNA (10-fold increase in copy number). Plasma CD14+ HIV DNA was associated with plasma and CSF neopterin (p = 0.023) and with MRS markers of neuronal injury (lower N-acetyl aspartate) and glial dysfunction (higher myoinositol) in multiple brain regions. Interpretation Reservoir burden of HIV DNA in monocyte-enriched (CD14+) peripheral blood cells increases risk for HAND in treatment-naïve HIV+ subjects and is directly associated with CSF immune activation and both brain injury and glial dysfunction by MRS.
Collapse
Affiliation(s)
- Victor G Valcour
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vassallo M, Dunais B, Durant J, Carsenti-Dellamonica H, Harvey-Langton A, Cottalorda J, Ticchioni M, Laffon M, Lebrun-Frenay C, Dellamonica P, Pradier C. Relevance of lipopolysaccharide levels in HIV-associated neurocognitive impairment: the Neuradapt study. J Neurovirol 2013; 19:376-82. [PMID: 23846287 DOI: 10.1007/s13365-013-0181-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 06/12/2013] [Accepted: 06/21/2013] [Indexed: 02/07/2023]
Abstract
Contributory factors to HIV-associated neurocognitive disorders (HAND) have been shown to include age, co-morbid infections, medication toxicity, virological, genetic and vascular mechanisms, as well as microbial translocation of lipopolysaccharide (LPS), which is suspected to trigger monocyte activation and increase trafficking of infected cells into the brain. In this study, our aim was to assess the degree of neurocognitive impairment in a group of randomly selected HIV-infected patients and investigate potential risk factors, including LPS plasma levels. Furthermore, we evaluated the relevance of LPS as a potential marker for screening patients with mild neurocognitive impairment. LPS plasma levels were compared among patients with HAND and those with no HAND. As LPS has also been shown to be elevated in hepatitis C co-infection, the analysis was stratified according to the presence or not of hepatitis C virus (HCV) co-infection. Differences between groups were evaluated using chi-square tests and Kruskal-Wallis non-parametric tests. Stepwise logistic regression was performed to identify independent risk factors for HAND in the subgroups of HCV-positive and negative patients. A p value <0.05 was considered significant. Analyses were conducted using SPSS® software. From December 2007 to July 2009, 179 patients were tested (mean age 44, 73 % male, 87 % on treatment, 30 % HCV co-infected, median CD4 504/ml and 67 % with viral load below 40 copies/ml). HAND was identified in 40/179 patients (22 %), the majority displaying asymptomatic neurocognitive impairment or mild neurocognitive disorder. Univariate analysis showed that age, illicit drug use, hepatitis C co-infection, prior AIDS-defining events, CD4/CD8 ratio and LPS plasma levels were significantly associated with HAND. The median LPS level was 98.2 pg/ml in the non-HAND group versus 116.1 pg/ml in the HAND group (p < 0.014). No differences were found in LPS values between subgroups of impairment. There was a clear association between LPS levels and HAND in the HCV-positive group (p = 0.036), while there was none in the HCV-negative group (p = 0.502). No difference in degree of hepatic fibrosis was found between the HAND and non-HAND groups. In conclusion, LPS levels were associated with HAND in the HCV-positive group, while, in the HCV-negative group, age and pro-viral DNA were the only variables independently associated with HAND. There was no difference in degree of liver disease as predicted by score of fibrosis between HAND and non-HAND groups. The role of HCV co-infection and higher LPS levels in the pathogenesis of HAND in patients with viral suppression on treatment requires further investigation.
Collapse
Affiliation(s)
- Matteo Vassallo
- Department of Infectious Diseases, L'Archet Hospital, University of Nice, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gaskill PJ, Calderon TM, Coley JS, Berman JW. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND. J Neuroimmune Pharmacol 2013; 8:621-42. [PMID: 23456305 PMCID: PMC4303241 DOI: 10.1007/s11481-013-9443-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/13/2013] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70 % of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
46
|
|
47
|
Kallianpur KJ, Shikuma C, Kirk GR, Shiramizu B, Valcour V, Chow D, Souza S, Nakamoto B, Sailasuta N. Peripheral blood HIV DNA is associated with atrophy of cerebellar and subcortical gray matter. Neurology 2013; 80:1792-9. [PMID: 23596064 DOI: 10.1212/wnl.0b013e318291903f] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We evaluated regional brain volumes and cerebral metabolite levels as correlates of HIV DNA in peripheral blood mononuclear cells (PBMCs). METHODS In this cross-sectional study, 35 HIV+ subjects aged ≥40 years (25 with detectable PBMC HIV DNA; 10 with HIV DNA <10 copies/10(6) cells, the threshold of detection) and 12 seronegative controls underwent structural brain MRI and magnetic resonance spectroscopy at 3 T. HIV+ subjects were on combination antiretroviral therapy ≥1 year; all but 1 had plasma HIV RNA <50 copies/mL. We used logistic regression to evaluate relationships of likely predictor variables to the outcome of PBMC HIV DNA detectability in the HIV+ subjects. Effects of serostatus and HIV DNA on regional brain volumes (normalized to intracranial volume) and on metabolite ratios over creatine were evaluated by analyses of covariance, controlling for age. RESULTS Relative to the HIV+ group with undetectable HIV DNA, subjects with detectable HIV DNA demonstrated decreased volumes of cerebellar (-14%, p = 0.020) and total subcortical (-10%, p = 0.024) gray matter. Compared to healthy controls, only the detectable HIV DNA group showed significant (p < 0.05) enlargement of lateral ventricles and volumetric reductions of caudate, putamen, thalamus, hippocampus, nucleus accumbens, brainstem, total cortical gray matter, and cerebral white matter. Detectable HIV DNA was not associated with significantly altered cerebral metabolite levels. CONCLUSION Inability to clear peripheral blood of HIV DNA is associated with regional brain atrophy in well-controlled HIV infection, supporting the involvement of peripheral viral reservoirs in the neuropathogenesis of persistent HIV-related neurocognitive disorders.
Collapse
Affiliation(s)
- Kalpana J Kallianpur
- Department of Medicine, Hawaii Center for AIDS, University of Hawaii, Honolulu, HI, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhou L, Conceicao V, Gupta P, Saksena NK. Why are the neurodegenerative disease-related pathways overrepresented in primary HIV-infected peripheral blood mononuclear cells: a genome-wide perspective. Virol J 2012; 9:308. [PMID: 23241427 PMCID: PMC3546955 DOI: 10.1186/1743-422x-9-308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 12/04/2012] [Indexed: 01/07/2023] Open
Abstract
We demonstrate for the first time that the genome-wide profiling of HIV-infected peripheral blood mononuclear cells (PBMCs) from HIV-patients free of neurologic disease show overrepresentation of neurodegenerative pathways (Alzheimer’s, Parkinson’s, ALS, Huntington’s and Prion Disease, etc.) in genome-wide microarray analysis, which suggests that this genome-wide representation of neurodegenerative diseases-related pathways in PBMCs could possibly be a subcellular manifestation of neurologic interference by HIV. Further, the cell-tagging analysis attested this belief showing the large majority of genes tagged with cells of monocyte and macrophage lineage, which are implicated in neuronal dysfunction in both viral and non-viral neurodegenerative diseases. Together, these findings suggest that the genomic interference of HIV with neurodegenerative pathways is not by chance, but may be an early sign of HIV-mediated sub-genomic and sub-cellular manifestation of neurologic disease. Moreover, these findings signify the utility of PBMC and genome-wide mapping of the host gene expression as a powerful tool in predicting possible early events in neurologic deterioration in HIV patients.
Collapse
Affiliation(s)
- Li Zhou
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, the University of Sydney, Westmead, Sydney, 2145, NSW, Australia
| | | | | | | |
Collapse
|
49
|
Kusao I, Shiramizu B, Liang CY, Grove J, Agsalda M, Troelstrup D, Velasco VN, Marshall A, Whitenack N, Shikuma C, Valcour V. Cognitive performance related to HIV-1-infected monocytes. J Neuropsychiatry Clin Neurosci 2012; 24:71-80. [PMID: 22450616 PMCID: PMC3335340 DOI: 10.1176/appi.neuropsych.11050109] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect that HIV type 1 (HIV) has on neurocognition is a dynamic process whereby peripheral events are likely involved in setting the stage for clinical findings. In spite of antiretroviral therapy (ART), patients continue to be at risk for HIV-associated neurocognitive disorders (HAND), which might be related to persistence of inflammation. In a yearly assessment of HIV DNA levels in activated monocytes, increased HIV DNA copies were found in patients with persistent HAND. Furthermore, activated monocytes from patients with high HIV DNA copies secreted more inflammatory cytokines. Since these activated monocytes traffic to the CNS and enter the brain, they may contribute to an inflammatory environment in the CNS that leads to HAND.
Collapse
|
50
|
Wong KL, Yeap WH, Tai JJY, Ong SM, Dang TM, Wong SC. The three human monocyte subsets: implications for health and disease. Immunol Res 2012; 53:41-57. [PMID: 22430559 DOI: 10.1007/s12026-012-8297-3] [Citation(s) in RCA: 512] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human blood monocytes are heterogeneous and conventionally subdivided into two subsets based on CD16 expression. Recently, the official nomenclature subdivides monocytes into three subsets, the additional subset arising from the segregation of the CD16+ monocytes into two based on relative expression of CD14. Recent whole genome analysis reveal that specialized functions and phenotypes can be attributed to these newly defined monocyte subsets. In this review, we discuss these recent results, and also the description and utility of this new segregation in several disease conditions. We also discuss alternative markers for segregating the monocyte subsets, for example using Tie-2 and slan, which do not necessarily follow the official method of segregating monocyte subsets based on relative CD14 and CD16 expressions.
Collapse
Affiliation(s)
- Kok Loon Wong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04/04 Immunos, Biopolis, Singapore
| | | | | | | | | | | |
Collapse
|