1
|
Justil-Guerrero HJ, Arroyo-Acevedo JL, Rojas-Armas JP, García-Bustamante CO, Palomino-Pacheco M, Almonacid-Román RD, Calva Torres JW. Evaluation of Bioactive Compounds, Antioxidant Capacity, and Anti-Inflammatory Effects of Lipophilic and Hydrophilic Extracts of the Pericarp of Passiflora tripartita var. mollissima at Two Stages of Ripening. Molecules 2024; 29:4964. [PMID: 39459332 PMCID: PMC11510094 DOI: 10.3390/molecules29204964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic disease inflammation requires safe complementary treatments. The pericarp of Passiflora tripartita var. mollissima (PTM) contains potential anti-inflammatory metabolites. This study aimed to evaluate the bioactive components, antioxidant capacity, and anti-inflammatory effects of PTM extracts at two ripening stages. The bioactive compounds in the hydrophilic and lipophilic extracts of mature and green pericarps were identified by GC-MS and UV-VIS, while the antioxidant capacity was measured by free radical reduction. Anti-inflammatory effects were tested using a rat paw edema model with carrageenan-induced edema, indomethacin, or PTM extracts (100, 250, and 500 mg/kg). The effect of mature hydrophilic extract was further evaluated in an air pouch model, where rats received the placebo, carrageenan, indomethacin, or the extract (500 and 1000 mg/kg). Leukocytes, cytokines, and markers of oxidative stress were evaluated. The results showed the presence of organic compounds, total phenols, and flavonoids. The mature hydrophilic extract exhibited the highest antioxidant activity. At 500 mg/kg, it reduced edema, leukocyte migration, and levels of IL-1β, IL-6, and TNF-α while managing oxidative stress and preventing histological damage. In conclusion, PTM contains bioactive compounds with potential pharmacological properties. The hydrophilic extract of the mature pericarp, at a dose of 500 mg/kg, exhibits an enhanced antioxidant and anti-inflammatory effect.
Collapse
Affiliation(s)
- Hugo Jesús Justil-Guerrero
- Laboratory of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru; (J.L.A.-A.); (J.P.R.-A.); (C.O.G.-B.)
| | - Jorge Luis Arroyo-Acevedo
- Laboratory of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru; (J.L.A.-A.); (J.P.R.-A.); (C.O.G.-B.)
| | - Juan Pedro Rojas-Armas
- Laboratory of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru; (J.L.A.-A.); (J.P.R.-A.); (C.O.G.-B.)
| | - Carlos Orlando García-Bustamante
- Laboratory of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru; (J.L.A.-A.); (J.P.R.-A.); (C.O.G.-B.)
| | - Miriam Palomino-Pacheco
- Laboratory of Biochemistry, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru;
| | - Robert Dante Almonacid-Román
- Laboratory of Microbiology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Huanta 1182, Lima 15001, Peru;
| | - James Willan Calva Torres
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador;
| |
Collapse
|
2
|
Bathrinarayanan PV, Hallam SM, Grover LM, Vigolo D, Simmons MJH. Microfluidics as a Powerful Tool to Investigate Microvascular Dysfunction in Trauma Conditions: A Review of the State-of-the-Art. Adv Biol (Weinh) 2024; 8:e2400037. [PMID: 39031943 DOI: 10.1002/adbi.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Indexed: 07/22/2024]
Abstract
Skeletal muscle trauma such as fracture or crush injury can result in a life-threatening condition called acute compartment syndrome (ACS), which involves elevated compartmental pressure within a closed osteo-fascial compartment, leading to collapse of the microvasculature and resulting in necrosis of the tissue due to ischemia. Diagnosis of ACS is complex and controversial due to the lack of standardized objective methods, which results in high rates of misdiagnosis/late diagnosis, leading to permanent neuro-muscular damage. ACS pathophysiology is poorly understood at a cellular level due to the lack of physiologically relevant models. In this context, microfluidics organ-on-chip systems (OOCs) provide an exciting opportunity to investigate the cellular mechanisms of microvascular dysfunction that leads to ACS. In this article, the state-of-the-art OOCs designs and strategies used to investigate microvasculature dysfunction mechanisms is reviewed. The differential effects of hemodynamic shear stress on endothelial cell characteristics such as morphology, permeability, and inflammation, all of which are altered during microvascular dysfunction is highlighted. The article then critically reviews the importance of microfluidics to investigate closely related microvascular pathologies that cause ACS. The article concludes by discussing potential biomarkers of ACS with a special emphasis on glycocalyx and providing a future perspective.
Collapse
Affiliation(s)
- P Vasanthi Bathrinarayanan
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - S M Hallam
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - D Vigolo
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| |
Collapse
|
3
|
Giuffrè M, Merli N, Pugliatti M, Moretti R. The Metabolic Impact of Nonalcoholic Fatty Liver Disease on Cognitive Dysfunction: A Comprehensive Clinical and Pathophysiological Review. Int J Mol Sci 2024; 25:3337. [PMID: 38542310 PMCID: PMC10970252 DOI: 10.3390/ijms25063337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 01/03/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) exponentially affects the global healthcare burden, and it is currently gaining increasing interest in relation to its potential impact on central nervous system (CNS) diseases, especially concerning cognitive deterioration and dementias. Overall, scientific research nowadays extends to different levels, exploring NAFLD's putative proinflammatory mechanism of such dysmetabolic conditions, spreading out from the liver to a multisystemic involvement. The aim of this review is to analyze the most recent scientific literature on cognitive involvement in NAFLD, as well as understand its underlying potential background processes, i.e., neuroinflammation, the role of microbiota in the brain-liver-gut axis, hyperammonemia neurotoxicity, insulin resistance, free fatty acids, and vitamins.
Collapse
Affiliation(s)
- Mauro Giuffrè
- Department of Internal Medicine (Digestive Diseases), Yale School of Medicine, New Haven, CT 06511, USA
| | - Nicola Merli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (N.M.); (M.P.)
| | - Maura Pugliatti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy; (N.M.); (M.P.)
- Interdepartmental Research Center for Multiple Sclerosis and Other Inflammatory and Degenerative Disorders of the Nervous System, University of Ferrara, 44124 Ferrara, Italy
| | - Rita Moretti
- Department of Clinical, Medical and Surgical Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
4
|
Hildebrand D, Böhringer J, Körner E, Chiriac U, Förmer S, Sähr A, Hoppe-Tichy T, Heeg K, Nurjadi D. Cefiderocol Protects against Cytokine- and Endotoxin-Induced Disruption of Vascular Endothelial Cell Integrity in an In Vitro Experimental Model. Antibiotics (Basel) 2022; 11:581. [PMID: 35625225 PMCID: PMC9137736 DOI: 10.3390/antibiotics11050581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
The severe course of bloodstream infections with Gram-negative bacilli can lead to organ dysfunctions and compromise the integrity of the vascular barrier, which are the hallmarks of sepsis. This study aimed to investigate the potential effect of cefiderocol on the barrier function of vascular endothelial cells (vECs) in an in vitro experimental set-up. Human umbilical vein cells (HUVECs), co-cultured with erythrocyte-depleted whole blood for up to 48 h, were activated with tumor necrosis factor-alpha (TNF-α) or lipopolysaccharide (LPS) to induce endothelial damage in the absence or presence of cefiderocol (concentrations of 10, 40 and 70 mg/L). The endothelial integrity was quantified using transendothelial electrical resistance (TEER) measurement, performed at 0, 3, 24 and 48 h after stimulation. Stimulation with TNF-α and LPS increased the endothelial permeability assessed by TEER at 24 and 48 h of co-culture. Furthermore, cefiderocol reduces interleukin-6 (IL-6), interleukin-1β (IL-1β) and TNF-α release in peripheral blood mononuclear cells (PBMCs) following LPS stimulation in a dose-dependent manner. Collectively, the data suggest that cefiderocol may have an influence on the cellular immune response and might support the maintenance of vEC integrity during inflammation associated with infection with Gram-negative bacteria, which warrants further investigations.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Medical Microbiology and Hygiene, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (E.K.); (S.F.); (A.S.); (K.H.)
| | - Jana Böhringer
- Medical Microbiology and Hygiene, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (E.K.); (S.F.); (A.S.); (K.H.)
| | - Eva Körner
- Medical Microbiology and Hygiene, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (E.K.); (S.F.); (A.S.); (K.H.)
- Hospital Pharmacy, Heidelberg University Hospital, 69120 Heidelberg, Germany; (U.C.); (T.H.-T.)
| | - Ute Chiriac
- Hospital Pharmacy, Heidelberg University Hospital, 69120 Heidelberg, Germany; (U.C.); (T.H.-T.)
| | - Sandra Förmer
- Medical Microbiology and Hygiene, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (E.K.); (S.F.); (A.S.); (K.H.)
| | - Aline Sähr
- Medical Microbiology and Hygiene, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (E.K.); (S.F.); (A.S.); (K.H.)
| | - Torsten Hoppe-Tichy
- Hospital Pharmacy, Heidelberg University Hospital, 69120 Heidelberg, Germany; (U.C.); (T.H.-T.)
| | - Klaus Heeg
- Medical Microbiology and Hygiene, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (E.K.); (S.F.); (A.S.); (K.H.)
| | - Dennis Nurjadi
- Medical Microbiology and Hygiene, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany; (J.B.); (E.K.); (S.F.); (A.S.); (K.H.)
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
5
|
Menendez M, Drozd A, Borawska K, Chmielewska JJ, Wu ML, Griffin CT. IL-1β Impacts Vascular Integrity and Lymphatic Function in the Embryonic Omentum. Circ Res 2022; 130:366-383. [PMID: 34986653 PMCID: PMC8813910 DOI: 10.1161/circresaha.121.319032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The chromatin-remodeling enzyme BRG1 (brahma-related gene 1) regulates gene expression in a variety of rapidly differentiating cells during embryonic development. However, the critical genes that BRG1 regulates during lymphatic vascular development are unknown. METHODS We used genetic and imaging techniques to define the role of BRG1 in murine embryonic lymphatic development, although this approach inadvertently expanded our study to multiple interacting cell types. RESULTS We found that omental macrophages fine-tune an unexpected developmental process by which erythrocytes escaping from naturally discontinuous omental blood vessels are collected by nearby lymphatic vessels. Our data indicate that circulating fibrin(ogen) leaking from gaps in omental blood vessels can trigger inflammasome-mediated IL-1β (interleukin-1β) production and secretion from nearby macrophages. IL-1β destabilizes adherens junctions in omental blood and lymphatic vessels, contributing to both extravasation of erythrocytes and their uptake by lymphatics. BRG1 regulates IL-1β production in omental macrophages by transcriptionally suppressing the inflammasome trigger RIPK3 (receptor interacting protein kinase 3). CONCLUSIONS Genetic deletion of Brg1 in embryonic macrophages leads to excessive IL-1β production, erythrocyte leakage from blood vessels, and blood-filled lymphatics in the developing omentum. Altogether, these results highlight a novel context for epigenetically regulated crosstalk between macrophages, blood vessels, and lymphatics.
Collapse
Affiliation(s)
- Matthew Menendez
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Anna Drozd
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA,Present address: Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N., Denmark
| | - Katarzyna Borawska
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Joanna J. Chmielewska
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA,Present address: Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Meng-Ling Wu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
6
|
Czamara K, Stojak M, Pacia MZ, Zieba A, Baranska M, Chlopicki S, Kaczor A. Lipid Droplets Formation Represents an Integral Component of Endothelial Inflammation Induced by LPS. Cells 2021; 10:cells10061403. [PMID: 34204022 PMCID: PMC8227392 DOI: 10.3390/cells10061403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial inflammation is the hallmark of vascular pathology often proceeding with cardiovascular diseases. Here, we adopted a multiparameter approach combining various imaging techniques at the nano- and microscale (Raman, AFM and fluorescence) to investigate endothelial inflammation in response to lipopolysaccharides (LPS) in vitro in human microvascular endothelial cells (HMEC-1) with a focus on lipid droplets (LDs) formation. Our results show that LPS-induced LDs in HMEC-1 have a composition depending on LPS-incubation time and their formation requires the presence of serum. Robust endothelial inflammation induced by LPS was linked to LDs composed of highly unsaturated lipids, as well as prostacyclin release. LPS-induced LDs were spatially associated with nanostructural changes in the cell membrane architecture. In summary, LDs formation represents an integral component of endothelial inflammation induced by LPS.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
| | - Marta Stojak
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
| | - Marta Z. Pacia
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
| | - Alicja Zieba
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Malgorzata Baranska
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Stefan Chlopicki
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
- Pharmacology Department, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (K.C.); (M.S.); (M.Z.P.); (M.B.); (S.C.)
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
- Correspondence:
| |
Collapse
|
7
|
Mohamed GA, Abd-Elrahman MZ, Bahriz R, Albehairy A. Inflammatory cytokine and plasma C-reactive protein response to ketoacidosis in adults with type 1 diabetes: Egyptian multicenter study. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2020. [DOI: 10.1186/s43162-020-00011-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
In adults with diabetic ketoacidosis (DKA), high plasma levels of C-reactive protein (CRP) and inflammatory cytokines such as interleukin-6 (IL-6) were reported to be sensitive markers of infection. However, elevation of both CRP and the pro-inflammatory cytokines which regulate CRP are probable without infection and may act as indicator of systemic inflammatory response (SIR). So, we wanted to determine if increased plasma CRP levels occur in young patients with severe DKA who do not have clinical evidence of infection and to relate observed changes in CRP level to the pro-inflammatory cytokine levels.
Results
Upon admission of 30 DKA patients with age ranging from 17 to 40 years, we found significant elevation of CRP (P = 0.001) and IL-6 (P = 0.001) in DKA patients than control group. After resolution of DKA, there was significant reduction in CRP and IL-6 compared to before DKA correction (P value = 0.054 and 0.001), respectively. There was a significant negative correlation between CRP after correction of DKA and RBCs (P = 0.042), and serum K (P = 0.021) and between CRP prior to DKA correction and PH (P = 0.025).
Conclusions
Patients with DKA without infection had increased levels of CRP and inflammatory cytokines. Intensive insulin therapy has a powerful anti-inflammatory effect that, at the time of DKA improvement, can normalize levels of CRP and inflammatory cytokines, and this beneficial effect is greater for IL-6 than CRP.
Collapse
|
8
|
Re-Evaluating Biologic Pharmacotherapies that Target the Host Response during Sepsis. Int J Mol Sci 2019; 20:ijms20236049. [PMID: 31801287 PMCID: PMC6929091 DOI: 10.3390/ijms20236049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 02/04/2023] Open
Abstract
Multiple organ dysfunction syndrome (MODS) caused by the systemic inflammatory response during sepsis is responsible for millions of deaths worldwide each year, and despite broad consensus concerning its pathophysiology, no specific or effective therapies exist. Recent efforts to treat and/or prevent MODS have included a variety of biologics, recombinant proteins targeting various components of the host response to the infection (e.g., inflammation, coagulation, etc.) Improvements in molecular biology and pharmaceutical engineering have enabled a wide range of utility for biologics to target various aspects of the systemic inflammatory response. The majority of clinical trials to date have failed to show clinical benefit, but some have demonstrated promising results in certain patient populations. In this review we summarize the underlying rationale and outcome of major clinical trials where biologics have been tested as a pharmacotherapy for MODS in sepsis. A brief description of the study design and overall outcome for each of the major trials are presented. Emphasis is placed on discussing targets and/or trials where promising results were observed. Post hoc analyses of trials where therapy demonstrated harm or additional risk to certain patient subgroups are highlighted, and details are provided about specific trials where more stringent inclusion/exclusion criteria are warranted.
Collapse
|
9
|
Crampton AL, Cummins KA, Wood DK. A high-throughput microtissue platform to probe endothelial function in vitro. Integr Biol (Camb) 2019; 10:555-565. [PMID: 30140833 DOI: 10.1039/c8ib00111a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A critical role of vascular endothelium is as a semi-permeable barrier, dynamically regulating the flux of solutes between blood and the surrounding tissue. Existing platforms that quantify endothelial function in vitro are either significantly throughput limited or overlook physiologically relevant extracellular matrix (ECM) interactions and thus do not recapitulate in vivo function. Leveraging droplet microfluidics, we developed a scalable platform to measure endothelial function in nanoliter-volume, ECM-based microtissues. In this study, we describe our high-throughput method for fabricating endothelial-coated collagen microtissues that incorporate physiologically relevant cell-ECM interactions. We showed that the endothelial cells had characteristic morphology, expressed tight junction proteins, and remodeled the ECM via compaction and deposition of basement membrane. We also measured macromolecular permeability using two optical modalities, and found the cell layers: (1) had permeability values comparable to in vivo measurements and (2) were responsive to physiologically-relevant modulators of endothelial permeability (TNF-α and TGF-β). This is the first demonstration, to the authors' knowledge, of high-throughput assessment (n > 150) of endothelial permeability on natural ECM. Additionally, this technology is compatible with standard cell culture equipment (e.g. multi-well plates) and could be scaled up further to be integrated with automated liquid handling systems and automated imaging platforms. Overall, this platform recapitulates the functions of traditional transwell inserts, but extends application to high-throughput studies and introduces new possibilities for interrogating cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Alexandra L Crampton
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, USA.
| | | | | |
Collapse
|
10
|
Chen ZH, Liu ZH, Yu C, Ji DX, Li LS. Endothelial Dysfunction in Patients with Severe Acute Pancreatitis: Improved by Continuous Blood Purification Therapy. Int J Artif Organs 2018; 30:393-400. [PMID: 17551902 DOI: 10.1177/039139880703000506] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives. Endothelium dysfunction is one of the critical pathophysiologic disorders in patients with severe acute pancreatitis (SAP). To investigate the effect of continuous blood purification (CBP) on endothelial function, we conducted a prospective study of 20 patients with SAP, 9 of whom had evidence of sepsis. Methods. All patients underwent CVVH for 72 h. Soluble E-selectin (sE-selectin), soluble thrombomodulin, permeability of the endothelial monolayer, and endothelial intracellular calcium ([Ca2+]i) levels were used as the markers for the assessment of endothelial function and the effect of CBP therapy in patients with SAP. Blood samples were taken from the patients at 0, 2, 12, 24, 48, and 72 h during CVVH therapy. sE-selectin and thrombomoduiln were measured by ELISA. The endothelial permeability and activation were evaluated using cultured endothelial monolayer and intracellular Ca2+ concentration. Results. The results showed that during CVVH treatment, the hemodynamics and mean arterial pressure (MAP) were stable. The Acute Physiology and Chronic Health Evaluation (APACHE) II score was improved significantly after CVVH. Endothelial dysfunction was evident in patients with SAP as compared to normal controls. Patients with SAP had increased levels of sE-selectin, endothelial permeability and intracellular [Ca2+]i, which was higher in patients with sepsis than in those without sepsis. The level of thrombomodulin showed a tendency to increase; however, these changes were not significant between SAP patients and controls. After CBP treatment, sE-selectin levels substantially decreased in all patients. CBP treatment also significantly diminished the endothelial permeability and decreased the intracellular [Ca2+] concentration. Conclusions. These data demonstrate that endothelial dysfunction is present in patients with SAP and the degree of endothelial damage may be correlated with the disease severity. CBP therapy can not only improve the general conditions, as measured by the APACHE II score, but also effectively improve endothelial dysfunction.
Collapse
Affiliation(s)
- Z-H Chen
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | | | | | | | | |
Collapse
|
11
|
Abstract
BACKGROUND The purpose of this study was to characterize associations among serum proteins, negative-pressure wound therapy (NPWT) fluid loss, and primary fascial closure (PFC) following emergent laparotomy and temporary abdominal closure (TAC). We hypothesized that high levels of C-reactive protein (CRP) and NPWT output would be associated with hypoalbuminemia and failure to achieve PFC. METHODS We performed a retrospective analysis of 233 patients managed with NPWT TAC. Serum proteins and resuscitation indices were assessed on admission, initial laparotomy, and then at 48 hours, 96 hours, 7 days, and discharge. Correlations were assessed by Pearson coefficient. Multivariable regression was performed to identify predictors of PFC with cutoff values for continuous variables determined by Youden index. RESULTS Patients who failed to achieve PFC (n = 55) had significantly higher CRP at admission (249 vs. 148 mg/L, p = 0.003), initial laparotomy (237 vs. 154, p = 0.002), and discharge (124 vs. 72, p = 0.003), as well as significantly lower serum albumin at 7 days (2.3 vs. 2.5 g/dL, p = 0.028) and discharge (2.5 vs. 2.8, p = 0.004). Prealbumin (in milligrams per deciliter) was similar between groups at each time point. There was an inverse correlation between nadir serum albumin and total milliliters of NPWT output (r = -0.33, p < 0.001). Exogenous albumin administration (in grams per day) correlated with higher serum albumin levels at each time point: 48 hours: r = 0.26 (p = 0.002), 96 hours: r = 0.29 (p = 0.002), 7 days: r = 0.40 (p < 0.001). Albumin of less than 2.6 g/dL was an independent predictor of failure to achieve PFC (odds ratio, 2.59; 95% confidence interval, 1.02-6.61) in a multivariate model including abdominal sepsis, body mass index of greater than 40 kg/m, and CRP of greater than 250 mg/L. CONCLUSIONS Early and persistent systemic inflammation and high NPWT output were associated with hypoalbuminemia, which was an independent predictor of failure to achieve PFC. The utility of exogenous albumin following TAC requires further study. LEVEL OF EVIDENCE Prognostic study, level III; Therapeutic study, level IV.
Collapse
|
12
|
Shirasu T, Koyama H, Miura Y, Hoshina K, Kataoka K, Watanabe T. Nanoparticles Effectively Target Rapamycin Delivery to Sites of Experimental Aortic Aneurysm in Rats. PLoS One 2016; 11:e0157813. [PMID: 27336852 PMCID: PMC4919101 DOI: 10.1371/journal.pone.0157813] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022] Open
Abstract
Several drugs targeting the pathogenesis of aortic aneurysm have shown efficacy in model systems but not in clinical trials, potentially owing to the lack of targeted drug delivery. Here, we designed a novel drug delivery system using nanoparticles to target the disrupted aortic aneurysm micro-structure. We generated poly(ethylene glycol)-shelled nanoparticles incorporating rapamycin that exhibited uniform diameter and long-term stability. When injected intravenously into a rat model in which abdominal aortic aneurysm (AAA) had been induced by infusing elastase, labeled rapamycin nanoparticles specifically accumulated in the AAA. Microscopic analysis revealed that rapamycin nanoparticles were mainly distributed in the media and adventitia where the wall structures were damaged. Co-localization of rapamycin nanoparticles with macrophages was also noted. Rapamycin nanoparticles injected during the process of AAA formation evinced significant suppression of AAA formation and mural inflammation at 7 days after elastase infusion, as compared with rapamycin treatment alone. Correspondingly, the activities of matrix metalloproteinases and the expression of inflammatory cytokines were significantly suppressed by rapamycin nanoparticle treatment. Our findings suggest that the nanoparticle-based delivery system achieves specific delivery of rapamycin to the rat AAA and might contribute to establishing a drug therapy approach targeting aortic aneurysm.
Collapse
Affiliation(s)
- Takuro Shirasu
- Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Koyama
- Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Translational Research Center, The University of Tokyo Hospital, Tokyo, Japan
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
- * E-mail:
| | - Yutaka Miura
- Departments of Materials Engineering and Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuyuki Hoshina
- Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kataoka
- Departments of Materials Engineering and Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Watanabe
- Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Du L, Dong F, Guo L, Hou Y, Yi F, Liu J, Xu D. Interleukin-1β increases permeability and upregulates the expression of vascular endothelial-cadherin in human renal glomerular endothelial cells. Mol Med Rep 2015; 11:3708-14. [PMID: 25572875 DOI: 10.3892/mmr.2015.3172] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/20/2014] [Indexed: 01/30/2023] Open
Abstract
The renal glomerular capillary endothelium is part of the glomerular filtration barrier and is involved in acute and chronic inflammation of the glomerulus. Glomerular endothelial cells are a unique type of microvascular cell, which remain to be fully characterized. The aim of the present study was to examine the permeability of glomerular endothelial cells and their responses to interleukin (IL)‑1β, a pro‑inflammatory cytokine. Human glomerular endothelial cell (HRGEC) and human umbilical vein endothelial cell (HUVEC) monolayers were examined using a Transwell permeability assay, transendothelial electrical resistance (TEER) and by determining the expression of the adhesion molecule, vascular endothelial (VE)‑cadherin, in the absence or presence of 10 ng/ml IL‑1β. Compared with the HUVECs, the HRGECs demonstrated higher permeability, lower TEER and reduced expression of VE‑cadherin. IL‑1β induced an increase in the permeability and a decrease in the TEER of the HRGECs, however, to a lesser extent compared with the HUVECs. Following IL‑1β treatment, the expression of VE‑cadherin was increased in the HRGECs and decreased in the HUVECs. These results suggested that HRGECs have distinct biological properties and specific gene expression features in response to IL‑1β.
Collapse
Affiliation(s)
- Linna Du
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fengyun Dong
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Ling Guo
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
14
|
Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, Hj Lajis N, Ahmad Israf D. The synthetic curcuminoid BHMC restores endotoxin-stimulated HUVEC dysfunction:Specific disruption on enzymatic activity of p38 MAPK. Eur J Pharmacol 2015; 749:1-11. [PMID: 25560198 DOI: 10.1016/j.ejphar.2014.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/08/2023]
Abstract
2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC) has been proven to selectively inhibit the synthesis of proinflammatory mediators in lipopolysaccharide-induced U937 monocytes through specific interruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and improves the survival rate in a murine lethal sepsis model. The present study addressed the effects of BHMC upon lipopolysaccharide-induced endothelial dysfunction in human umbilical vein endothelial cells to determine the underlying mechanisms. The cytotoxicity effect of BHMC on HUVEC were determined by MTT assay. The effects of BHMC on endothelial dysfunction induced by lipopolysaccharide such as endothelial hyperpermeability, monocyte-endothelial adhesion, transendothelial migration, up-regulation of adhesion molecules and chemokines were evaluated. The effects of BHMC at transcriptional and post-translational levels were determined by Reverse Transcriptase-Polymerase Chain Reaction and Western Blots. The mode of action of BHMC was dissected by looking into the activation of Nuclear Factor-kappa B and Mitogen-Activated Protein Kinases. BHMC concentration-dependently reduced endothelial hyperpermeability, leukocyte-endothelial cell adhesion and monocyte transendothelial migration through inhibition of the protein expression of adhesion molecules (Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1) and secretion of chemokines (Monocyte Chemotactic Protein-1) at the transcriptional level. BHMC restored endothelial dysfunction via selective inhibition of p38 Mitogen-Activated Protein Kinase enzymatic activity which indirectly prevents the activation of Nuclear Factor-kappaB and Activator Protein-1 transcription factors. These findings further support earlier observations on the inhibition of BHMC on inflammatory events through specific disruption of p38 Mitogen-Activated Protein Kinase enzymatic activity and provide new insights into the inhibitory effects of BHMC on lipopolysaccharide-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Kok Wai Lam
- Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Yi Joong Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nordin Hj Lajis
- Scientific Chairs Unit, Taibah University, PO Box 30001, 41311 Madinah al Munawarah, Saudi Arabia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
15
|
Bae JS, Lee W, Son HN, Lee YM, Kim IS. Anti-transforming growth factor β-induced protein antibody ameliorates vascular barrier dysfunction and improves survival in sepsis. Acta Physiol (Oxf) 2014; 212:306-15. [PMID: 25219400 DOI: 10.1111/apha.12398] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/11/2014] [Accepted: 09/09/2014] [Indexed: 11/30/2022]
Abstract
AIM Sepsis is a systemic inflammatory response syndrome resulting from a microbial infection. Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein expressed by human endothelial cells and platelets that induces sepsis through interaction with integrin αvβ5. The aim of this study was to investigate the role of TGFBIp in vascular permeability and the underlying mechanisms using TGFBIp-neutralizing antibody. METHODS Mice were subjected to caecal ligation and puncture (CLP) with or without neutralizing anti-TGFBIp antibody (300 μg kg(-1), intravenously). Wild-type or integrin β5-null mice received TGFBIp (0.1 mg kg(-1), intravenously) or were subjected to CLP. Human umbilical vein endothelial cells were exposed to lipopolysaccharide (100 ng mL(-1)) with or without neutralizing anti-TGFBIp antibody (50 μg mL(-1)). RESULTS Administration of neutralizing anti-TGFBIp antibody in mice attenuated CLP-induced secretion of TGFBIp, leucocyte migration and vascular permeability and reduced septic mortality. Injected TGFBIp did not enhance vascular barrier permeability or leucocyte migration in β5-null mice. Finally, neutralizing anti-TGFBIp antibody inhibited the specific interactions between TGFBIp and its receptor, integrin αvβ5. CONCLUSION Our findings demonstrate that treatment with a TGFBIp-neutralizing antibody can ameliorate the deleterious effects of sepsis.
Collapse
Affiliation(s)
- J.-S. Bae
- College of Pharmacy; Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Korea
- BK21 Plus KNU Biomedical Convergence Program; Department of Biochemistry and Cell Biology; Cell and Matrix Research Institute; School of Medicine; Kyungpook National University; Daegu Korea
| | - W. Lee
- College of Pharmacy; Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Korea
- BK21 Plus KNU Biomedical Convergence Program; Department of Biochemistry and Cell Biology; Cell and Matrix Research Institute; School of Medicine; Kyungpook National University; Daegu Korea
| | - H.-N. Son
- BK21 Plus KNU Biomedical Convergence Program; Department of Biochemistry and Cell Biology; Cell and Matrix Research Institute; School of Medicine; Kyungpook National University; Daegu Korea
| | - Y.-M. Lee
- College of Pharmacy; Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu Korea
| | - I.-S. Kim
- BK21 Plus KNU Biomedical Convergence Program; Department of Biochemistry and Cell Biology; Cell and Matrix Research Institute; School of Medicine; Kyungpook National University; Daegu Korea
- Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| |
Collapse
|
16
|
Sumagin R, Sarelius IH. Emerging understanding of roles for arterioles in inflammation. Microcirculation 2014; 20:679-92. [PMID: 23701383 DOI: 10.1111/micc.12068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/20/2013] [Indexed: 12/20/2022]
Abstract
Arterioles, capillaries, and venules all actively change their cellular functions and phenotypes during inflammation in ways that are essential for maintenance of homeostasis and self-defense, and are also associated with many inflammatory disorders. ECs, together with pericytes and ECM proteins, can regulate blood flow, the coagulation cascade, fluid and solute exchange, and leukocyte trafficking. While capillary and venular functions in inflammation are well characterized, the arteriolar contribution to inflammation has only recently come into focus. Arterioles differ from venules in structure, EC morphology, shear environment, expression, and distribution of surface ligands; hence, regulation and function of arteriolar wall cells during inflammation may also be distinct from venules. Recent work indicates that in response to proinflammatory stimuli, arterioles alter barrier function, and support leukocyte and platelet interactions through upregulation of adhesion molecules. This suggests that in addition to their role in blood flow regulation, arterioles may also participate in inflammatory responses. In this review, we will discuss mechanisms that characterize arteriolar responses to proinflammatory stimuli. We will detail how distinct arteriolar features contribute to regulation of barrier function and leukocyte-EC interactions in inflammation, and further highlight the potential priming effects of arteriolar responses on venular function and progression of inflammatory responses.
Collapse
Affiliation(s)
- Ronen Sumagin
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | | |
Collapse
|
17
|
Nymo S, Niyonzima N, Espevik T, Mollnes TE. Cholesterol crystal-induced endothelial cell activation is complement-dependent and mediated by TNF. Immunobiology 2014; 219:786-92. [PMID: 25053140 DOI: 10.1016/j.imbio.2014.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/26/2014] [Indexed: 11/16/2022]
Abstract
Cholesterol crystals are known to be a hallmark of atherosclerosis with recent studies demonstrating deposition of these crystals in early fatty streak formation as well as penetrating the intima following plaque rupture. Inflammation has also become a central focus in atheroma development and endothelial cell activation is recognized as necessary for the recruitment of inflammatory cells to the plaque. However, the extent to which cholesterol crystals can induce inflammation and activate endothelial cells is not known. To investigate this, we developed a novel model activating human umbilical vein endothelial cells using lepirudin anticoagulated human whole blood. We found that cholesterol crystals caused a marked and dose-dependent increase in the adhesion molecules E-selectin and ICAM-1 on the surface of the endothelial cells after incubation with whole blood. There was no activation of the cells when the crystals were incubated in medium alone, or in human serum, despite substantial crystal-induced complement activation in serum. Complement inhibitors at the C3 and C5 levels reduced the whole blood induced endothelial cell activation by up to 89% (p<0.05) and abolished TNF release (p<0.01). Finally, the TNF inhibitor infliximab reduced endothelial activation to background levels (p<0.05). In conclusion, these data demonstrate that endothelial activation by cholesterol crystals is mediated by complement-dependent TNF release, and suggests that complement-inhibition might have a role in alleviating atherosclerosis-induced inflammation.
Collapse
Affiliation(s)
- Stig Nymo
- Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway.
| | - Nathalie Niyonzima
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom Eirik Mollnes
- Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen IRC, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
The effects of inflammatory cytokines on lymphatic endothelial barrier function. Angiogenesis 2013; 17:395-406. [PMID: 24141404 DOI: 10.1007/s10456-013-9393-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/23/2013] [Indexed: 12/22/2022]
Abstract
Proper lymphatic function is necessary for the transport of fluids, macromolecules, antigens and immune cells out of the interstitium. The lymphatic endothelium plays important roles in the modulation of lymphatic contractile activity and lymph transport, but it's role as a barrier between the lymph and interstitial compartments is less well understood. Alterations in lymphatic function have long been associated with edema and inflammation although the integrity of the lymphatic endothelial barrier during inflammation is not well-defined. In this paper we evaluated the integrity of the lymphatic barrier in response to inflammatory stimuli commonly associated with increased blood endothelial permeability. We utilized in vitro assays of lymphatic endothelial cell (LEC) monolayer barrier function after treatment with different inflammatory cytokines and signaling molecules including TNF-α, IL-6, IL-1β, IFN-γ and LPS. Moderate increases in an index of monolayer barrier dysfunction were noted with all treatments (20-60 % increase) except IFN-γ which caused a greater than 2.5-fold increase. Cytokine-induced barrier dysfunction was blocked or reduced by the addition of LNAME, except for IL-1β and LPS treatments, suggesting a regulatory role for nitric oxide. The decreased LEC barrier was associated with modulation of both intercellular adhesion and intracellular cytoskeletal activation. Cytokine treatments reduced the expression of VE-cadherin and increased scavenging of β-catenin in the LECs and this was partially reversed by LNAME. Likewise the phosphorylation of myosin light chain 20 at the regulatory serine 19 site, which accompanied the elevated monolayer barrier dysfunction in response to cytokine treatment, was also blunted by LNAME application. This suggests that the lymphatic barrier is regulated during inflammation and that certain inflammatory signals may induce large increases in permeability.
Collapse
|
19
|
Robert J, Lehner M, Frank S, Perisa D, von Eckardstein A, Rohrer L. Interleukin 6 stimulates endothelial binding and transport of high-density lipoprotein through induction of endothelial lipase. Arterioscler Thromb Vasc Biol 2013; 33:2699-706. [PMID: 24115033 DOI: 10.1161/atvbaha.113.301363] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In the reverse cholesterol transport pathway, high-density lipoprotein (HDL) passes the endothelial cell barrier by mechanisms involving the scavenger receptor class B type I and the ATP-binding cassette G1. However, little is known on how inflammation influences this transendothelial transport. APPROACH AND RESULTS On stimulation with interleukin-6, cultivated primary endothelial cells showed increased binding and transport of (125)I-HDL without changing the expression of scavenger receptor class B type I and ATP-binding cassette G1. Therefore, we analyzed the involvement of endothelial lipase (EL), a known HDL-binding protein expressed by endothelial cells. Here, we show an increased EL expression after interleukin-6 stimulation. Moreover, using pharmacological inhibitors or RNA interference against EL, we demonstrated its participation in HDL binding and transport through the endothelium. Furthermore, adenovirus-mediated transfection of endothelial cells with either catalytically active or nonactive EL revealed that EL facilitates the endothelial binding and transport by both bridging and lipolysis of HDL. EL was also found responsible for the reduction of HDL particle size occurring during the specific transport through a monolayer of endothelial cells. Finally, pharmacological inhibition of EL reversed the inducing effect of interleukin-6 on HDL binding and transport. CONCLUSIONS Interleukin-6 stimulates the translocation of HDL through the endothelium, the first step in reverse cholesterol transport pathway, by enhancing EL expression. In addition, we demonstrated the role of EL in the transendothelial transport of HDL.
Collapse
Affiliation(s)
- Jérôme Robert
- From the Institute of Clinical Chemistry, University Hospital of Zurich, Zurich, Switzerland (J.R., M.L., D.P., A.v.E., L.R.); Zurich Center of Integrated Human Physiology, University of Zurich, Zurich, Switzerland (J.R., D.P., A.v.E., L.R.); and Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Graz, Austria (S.F.)
| | | | | | | | | | | |
Collapse
|
20
|
Lv SS, Liu G, Wang JP, Wang WW, Cheng J, Sun AL, Liu HY, Nie HB, Su MR, Guan GJ. Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting macrophage infiltration. Int Immunopharmacol 2013; 17:275-82. [PMID: 23791972 DOI: 10.1016/j.intimp.2013.05.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/13/2013] [Accepted: 05/27/2013] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) treatment has been shown to be effective in diabetic nephropathy (DN). However, the mechanisms involved in the renoprotective effects of MSCs have not been clearly demonstrated. Especially, there was no study on the relationship of MSCs and macrophages in diabetic kidney. To explore the effect of MSCs on macrophages in DN, streptozotocin-induced diabetes animals received no treatment or treatment with MSCs (2×10(6), via tail vein) for two continuous weeks. Eight weeks after treatment, physical, biochemical and morphological parameters were measured. Immunohistochemistry for fibronectin (FN), CollagenI, ED-1, monocyte chemoattractant protein-1 (MCP-1) was performed. Expressions of pro-inflammatory cytokines and hepatocyte growth factor (HGF) at gene level and protein level were determined by real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Blood glucose, urinary albumin excretion, creatinine clearance were significantly reduced after MSCs treatment. The glomerulosclerosis as revealed by periodic acid Schiff stain and expression of FN and CollagenI was also dramatically attenuated. Most importantly, the expression of MCP-1 and the number of infiltrated macrophages in kidney were effectively suppressed by MSCs treatment. The expression of HGF in MSCs group was up-regulated. Meanwhile, the expressions of IL-1β, IL-6 and TNFα were significantly down-regulated by MSCs treatment. Our study suggest that MSCs treatment ameliorates DN via inhibition of MCP-1 expression by secreting HGF, thus reducing macrophages infiltration, down-regulating IL-1β, IL-6, TNFα expression in renal tissue in diabetic rats.
Collapse
Affiliation(s)
- Sha-Sha Lv
- Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stein DM, Scalea TM. Capillary leak syndrome in trauma: what is it and what are the consequences? Adv Surg 2012; 46:237-53. [PMID: 22873043 DOI: 10.1016/j.yasu.2012.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
TICS is a complex disease that is clearly multifactorial in the traumatically injured patient (Fig. 2). Although systemic inflammation that occurs directly as a result of injury plays the most prominent role, the local tissue and organ injury effects of trauma not only cause local capillary leak and edema but also further amplify the SIRS response. High volume fluid administration and hypoproteinemic states further exacerbate the problem. All of this leads to organ dysfunction and failure, which is the third leading cause of death following injury. Strategies to treat TICS and attenuate its effects once it occurs by targeting inflammatory pathways have been wholly unsuccessful. The mainstay of therapy for TICS is prevention and minimization of its lethal effects. Newer resuscitation strategies such as hemostatic resuscitation and early goal-directed therapies are currently the best available strategies to combat TICS. Whether these result in better outcomes remains to be seen and the authors anxiously await the results of well-designed prospective trials.
Collapse
Affiliation(s)
- Deborah M Stein
- University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
22
|
Koch L, Hofer S, Weigand MA, Frommhold D, Poeschl J, Ruef P. Inhibition of LPS-Induced Activation of Coagulation by p38 MAPK Inhibitor. ISRN HEMATOLOGY 2012; 2012:762614. [PMID: 22461999 PMCID: PMC3313583 DOI: 10.5402/2012/762614] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/27/2011] [Indexed: 11/23/2022]
Abstract
During Gram-negative sepsis, lipopolysaccharide (LPS) activates toll-like receptor (TLR) 4 and induces complex responses of immune system and coagulation. However, the underlying LPS signalling mechanism on coagulation activation remains complex. To determine the role of the intracellular signalling factors p38 mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and c-Jun N-terminal kinase (JNK) in the procoagulant response to LPS, coagulation process of human whole blood exposed to specific inhibitors was measured by thrombelastography. Samples were stimulated with LPS (100 μg/mL) after preincubation with BAY117082 (specific NF-κB inhibitor), SP600125 (specific JNK inhibitor), SB203580 (specific p38 MAPK inhibitor), or vehicle. SB203580 strongly inhibited LPS-induced coagulation activation, whereas BAY117082 and SP600125 showed no significant effect. Activation of p38 MAPK, NF-κB, and JNK and respective inhibitory effects were confirmed by Multi-Target Sandwich ELISA. In conclusion, activation of p38 MAPK is crucial for early LPS-induced activation of coagulation.
Collapse
Affiliation(s)
- Lutz Koch
- Division of Neonatology, Department of Paediatrics, Medical School, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Effects of (-)-epigallocatechin gallate on HMGB1 and interleukin-1β-mediated barrier disruption in human endothelial cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-1041-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Osmotic pressure of gingiva in periodontitis: Correlation with gingival proinflammatory cytokine production and alveolar bone destruction. J Dent Sci 2011. [DOI: 10.1016/j.jds.2011.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Proudman CJ, Edwards GB, Barnes J, French NR. Factors affecting long-term survival of horses recovering from surgery of the small intestine. Equine Vet J 2010; 37:360-5. [PMID: 16028629 DOI: 10.2746/0425164054529481] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Epiploic foramen entrapment (EFE) has been associated with a particularly poor post operative prognosis for equine colic cases, but the reasons for this are unknown. OBJECTIVES To identify variables associated with post operative survival following surgery for small intestinal disease; develop a model describing long-term post operative survival; and identify reasons for the poor prognosis associated with EFE. METHODS Data from 382 horses undergoing surgery were used to identify variables associated with survival. A multivariable Cox proportional hazards model for post operative survival was developed and model fit evaluated. RESULTS The final model included the variables total plasma protein (TP) and packed cell volume (PCV) at admission, duration of surgery and the dichotomous variable relaparotomy (yes/no). Risk of death was positively associated with increasing PCV, but negatively associated with increasing TP (which decreased the probability of death). In a univariable model, EFE cases had a significantly higher death rate than other types of small intestinal disease (hazard ratio = 1.7, P = 0.035). Multivariable modelling indicated that some of the increased risk associated with EFE cases was due to lower TP values and longer duration of surgery. CONCLUSIONS Preoperative TP is associated negatively with the risk of post operative death in horses recovering from small intestinal surgery. Other variables associated with the probability of survival are preoperative PCV, duration of surgery and relaparotomy. The increased post operative death rate of EFE cases can be explained in part by lower TP and longer surgery times of these cases. POTENTIAL RELEVANCE Total plasma protein may be not simply a measure of hydration status in small intestinal colic cases, but an important determinant of survival. Further investigation of this relationship is warranted. Our model for post operative survival highlights the importance of preoperative TP, PCV and duration of surgery as prognostic indicators. This information should allow a more accurate post operative prognosis following small intestinal surgery.
Collapse
Affiliation(s)
- C J Proudman
- Faculty of Veterinary Science, University of Liverpool, Leahurst, Neston, Wirral CH64 7TE, UK
| | | | | | | |
Collapse
|
26
|
Dozier KC, Cureton EL, Kwan RO, Curran B, Sadjadi J, Victorino GP. Glucagon-like peptide-1 protects mesenteric endothelium from injury during inflammation. Peptides 2009; 30:1735-41. [PMID: 19560500 PMCID: PMC2954434 DOI: 10.1016/j.peptides.2009.06.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/29/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is a proglucagon-derived hormone with cellular protective actions. We hypothesized that GLP-1 would protect the endothelium from injury during inflammation. Our aims were to determine the: (1) effect of GLP-1 on basal microvascular permeability, (2) effect of GLP-1 on increased microvascular permeability induced by lipopolysaccaride (LPS), (3) involvement of the GLP-1 receptor in GLP-1 activity, and (4) involvement of the cAMP/PKA pathway in GLP-1 activity. Microvascular permeability (L(p)) of rat mesenteric post-capillary venules was measured in vivo. First, the effect of GLP-1 on basal L(p) was measured. Second, after systemic LPS injection, L(p) was measured after subsequent perfusion with GLP-1. Thirdly, L(p) was measured after LPS injection and perfusion with GLP-1+GLP-1 receptor antagonist. Lastly, L(p) was measured after LPS injection and perfusion with GLP-1+inhibitors of the cAMP/PKA pathway. Results are presented as mean area under the curve (AUC)+/-SEM. GLP-1 had no effect on L(p) (AUC: baseline=27+/-1.4, GLP-1=1+/-0.4, p=0.08). LPS increased L(p) two-fold (AUC: LPS=54+/-1.7, p<0.0001). GLP-1 reduced the LPS increase in L(p) by 75% (AUC: LPS+GLP-1=34+/-1.5, p<0.0001). GLP-1 antagonism reduced the effects of GLP-1 by 60% (AUC: LPS+GLP-1+antagonist=46+/-2.0, p<0.001). The cAMP synthesis inhibitor reduced the effects of GLP-1 by 60% (AUC: LPS+GLP-1+cAMP inhibitor=46+/-1.5, p<0.0001). The PKA inhibitor reduced the effects of GLP-1 by 100% (AUC: LPS+GLP-1+PKA inhibitor=56+/-1.5, p<0.0001). GLP-1 attenuates the increase in microvascular permeability induced by LPS. GLP-1 may protect the endothelium during inflammation, thus decreasing third-space fluid loss.
Collapse
Affiliation(s)
- Kristopher C Dozier
- Department of Surgery, University of California, San Francisco-East Bay, Alameda County Medical Center, Oakland, CA, USA
| | | | | | | | | | | |
Collapse
|
27
|
Irwan YY, Feng Y, Gach HM, Symanowski JT, McGregor JR, Veni G, Schabel M, Samlowski WE. Quantitative analysis of cytokine-induced vascular toxicity and vascular leak in the mouse brain. J Immunol Methods 2009; 349:45-55. [PMID: 19665029 DOI: 10.1016/j.jim.2009.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/25/2009] [Accepted: 07/28/2009] [Indexed: 11/29/2022]
Abstract
A storm of inflammatory cytokines is released during treatment with pro-inflammatory cytokines, such as interleukin-2 (IL-2), closely approximating changes initially observed during sepsis. These signals induce profound changes in neurologic function and cognition. Little is known about the mechanisms involved. We evaluated a number of experimental methods to quantify changes in brain blood vessel integrity in a well-characterized IL-2 treatment mouse model. Measurement of wet versus dry weight and direct measurement of small molecule accumulation (e.g. [(3)H]-H(2)O, sodium fluorescein) were not sensitive or reliable enough to detect small changes in mouse brain vascular permeability. Estimation of brain water content using proton density magnetic resonance imaging (MRI) measurements using a 7T mouse MRI system was sensitive to 1-2% changes in brain water content, but was difficult to reproduce in replicate experiments. Successful techniques included use of immunohistochemistry using specific endothelial markers to identify vasodilation in carefully matched regions of brain parenchyma and dynamic contrast enhanced (DCE) MRI. Both techniques indicated that IL-2 treatment induced vasodilation of the brain blood vessels. DCE MRI further showed a 2-fold increase in the brain blood vessel permeability to gadolinium in IL-2 treated mice compared to controls. Both immunohistochemistry and DCE MRI data suggested that IL-2 induced toxicity in the brain results from vasodilation of the brain blood vessels and increased microvascular permeability, resulting in perivascular edema. These experimental techniques provide us with the tools to further characterize the mechanism responsible for cytokine-induced neuropsychiatric toxicity.
Collapse
Affiliation(s)
- Yetty Y Irwan
- Section of Melanoma, Renal Cancer and Immunotherapy, Nevada Cancer Institute, Las Vegas, NV 89135, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wakamoto S, Fujihara M, Sakagawa H, Takahashi D, Niwa K, Morioka M, Sato S, Kato T, Azuma H, Ikeda H. Endothelial permeability is increased by the supernatant of peripheral blood mononuclear cells stimulated with HLA Class II antibody. Transfusion 2008; 48:2060-8. [PMID: 18564388 DOI: 10.1111/j.1537-2995.2008.01809.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The generation of inflammatory mediators from monocytes activated by HLA Class II antibodies is thought to play important roles in the etiology of nonhemolytic transfusion reactions. Increased permeability of endothelial cells contributes to the pathogenesis of rash, urticaria, angioedema, and pulmonary edema, which are symptoms of transfusion reactions. STUDY DESIGN AND METHODS We investigated whether inflammatory mediators released from monocytes upon stimulation by HLA Class II antibodies could increase endothelial permeability. Human endothelial cell monolayers were incubated with cell-free supernatants of peripheral blood mononuclear cells (PBMNCs) stimulated with HLA Class II antibody-containing plasma (anti-HLA-DR plasma), which has been implicated in severe nonhemolytic transfusion reactions. The permeability of endothelial cells to dextran was measured. RESULTS The supernatants of PBMNCs stimulated with the anti-HLA-DR plasma in corresponding antigen-antibody combinations were able to increase endothelial permeability. At least 3 hours of exposure of PBMNCs to anti-HLA-DR plasma was required to produce a supernatant that could induce a significant increase in permeability. Simultaneous addition of tumor necrosis factor alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) neutralizing antibodies to the activated PBMNC supernatant significantly reduced the increase in permeability. Treatment of the endothelial cells with an inhibitor of nuclear factor kappaB (NF-kappaB), but not inhibitors of apoptosis, significantly prevented the increase in permeability. CONCLUSION Both TNF-alpha and IL-1 beta, generated from PBMNCs by anti-HLA-DR plasma in a corresponding antigen-antibody-dependent manner, led to an increase in endothelial permeability. The activation of monocytes by the HLA-DR antibodies and the resultant inflammatory mediators could contribute to the pathogenesis of rash, urticaria, angioedema, and pulmonary edema after transfusion.
Collapse
Affiliation(s)
- Shinobu Wakamoto
- Hokkaido Red Cross Blood Center and Aiiku Hospital, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhaowei J, D'Souza MJ, Oettinger CW. Reversal of LPS induced endothelial cell TNF synthesis and increased permeability with microencapsulated antisense oligomers to NF-kappaB. J Microencapsul 2008; 24:596-607. [PMID: 17654178 DOI: 10.1080/02652040701453477] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Endothelial cells form the barrier between the circulation and interstitial space. Changes in permeability of endothelial cells allow penetration of inflammatory cells such as polymorphonuclear cells and macrophages to respond to infections and other inflammatory stimuli. Endothelial cells have also been shown to be phagocytic and produce pro-inflammatory cytokines such as TNF. It is the purpose of this study to evaluate endothelial cell phagocytosis of albumin microspheres containing antisense oligonucluetide to NF-kappaB (MASO), the effect of MASO on TNF synthesis after LPS stimulation and the effect of TNF inhibition on the permeability of endothelial cells in vitro. Results were (1) endothelial cells avidly phagocytozed albumin miocrospheres 1.0 and 1.7 microm in size, (2) phagocytosis of microspheres was potentiated by LPS, (3) TNF is synthesized by endothelial cells in cell culture with the peak concentrations occurring 4 h after stimulation with LPS, (4) MASO results in high intracellular concentration of oligomer, (5) MASO inhibits TNF synthesis to a greater extent than equivalent amounts of NF-kappaB antisense in solution and (6) the inhibition of TNF by MASO significantly decreases the permeability of albumin through endothelial cells in vitro.
Collapse
Affiliation(s)
- Jin Zhaowei
- Mercer College of Pharmacy and Health Sciences, Atlanta, GA, USA
| | | | | |
Collapse
|
30
|
Garay RP, Viens P, Bauer J, Normier G, Bardou M, Jeannin JF, Chiavaroli C. Cancer relapse under chemotherapy: why TLR2/4 receptor agonists can help. Eur J Pharmacol 2007; 563:1-17. [PMID: 17383632 DOI: 10.1016/j.ejphar.2007.02.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 01/16/2023]
Abstract
Liver or lung metastases usually relapse under chemotherapy. Such life-threatening condition urgently needs new, systemic anticancer compounds, with original and efficient mechanisms of action. In B16 melanoma mice treated with cyclophosphamide, D'Agostini et al. [D'Agostini, C., Pica, F., Febbraro, G., Grelli, S., Chiavaroli, C., Garaci, E., 2005. Antitumour effect of OM-174 and Cyclophosphamide on murine B16 melanoma in different experimental conditions. Int. Immunopharmacol. 5, 1205-1212.] recently found that OM-174, a chemically defined Toll-like receptor(TLR)2/4 agonist, reduces tumor progression and prolongs survival. Here we review 149 articles concerning molecular mechanisms of TLR2/4 agonists, alone or in combination with chemotherapy. It appears that TLR2/4 agonists induce a well controlled tumor necrosis factor-alpha (TNF-alpha) secretion, at plasma levels known to permeabilize neoangiogenic tumor vessels to the passage of cytotoxic drugs. Moreover, TLR2/4 agonists induce inducible nitric oxide synthase (iNOS) expression, and nitric oxide is able to induce apoptosis of chemotherapy-resistant tumor cell clones. Finally, TLR2/4-stimulation activates dendritic cell traffic and its associated tumor-specific, cytotoxic T-cell responses. Therefore, parenteral TLR2/4 agonists seem promising molecules to prolong survival in cancer patients who relapse under chemotherapy.
Collapse
|
31
|
Birkenmeier G, Nicklisch S, Pockelt C, Mossie A, Steger V, Gläser C, Hauschildt S, Usbeck E, Huse K, Sack U, Bauer M, Schäfer A. Polymyxin B-conjugated alpha 2-macroglobulin as an adjunctive therapy to sepsis: Modes of action and impact on lethality. J Pharmacol Exp Ther 2006; 318:762-71. [PMID: 16705081 DOI: 10.1124/jpet.106.104265] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A drug targeting both the inflammatory initiators (lipopolysaccharide; LPS) and mediators [tumor necrosis factor-alpha (TNF-alpha)] should have advantage over a "single-factor targeting strategy" in sepsis prevention trials. We have prepared conjugates of polymyxin B (PMB) and the cytokine binding protein alpha2-macroglobulin (A2M). The conjugate binds TNF-alpha as well as LPS as studied by electrophoresis and phase partitioning. Compared with free PMB, the conjugate is nontoxic to cells and does not affect the viability of human monocytes. The A2M-PMB conjugate binds to the A2M receptor (CD91/low-density lipoprotein receptor-related protein 1) with affinity similar to that of the nonmodified protein. Fluorescein isothiocyanate-labeled LPS in the presence of A2M-PMB is rapidly transported into fibroblasts for degradation via receptor-mediated endocytosis. In vitro, A2M-PMB demonstrated inhibition of LPS-induced secretion of TNF-alpha from isolated monocytes as well as in the whole blood assay. The efficacy of the drug was tested in mice after induction of acute inflammation (LPS model) and after induction of a polymicrobial sepsis by cecal ligation and puncture (CLP) model. Treatment of mice with A2M-PMB up to 250 microg/g body weight was not toxic to the animal. When the drug was administered 30 min before or 30 min after the LPS challenge, a survival rate of 90 and 70%, respectively, was obtained compared with the placebo control group (5%). A2M-PMB also protected mice after induction of polymicrobial sepsis when administered 30 min before CLP. These results support our hypothesis that A2M-PMB acts as a polyvalent drug to target different host mediators as well as sepsis inducer at the same time.
Collapse
Affiliation(s)
- Gerd Birkenmeier
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nooteboom A, Bleichrodt RP, Hendriks T. Modulation of endothelial monolayer permeability induced by plasma obtained from lipopolysaccharide-stimulated whole blood. Clin Exp Immunol 2006; 144:362-9. [PMID: 16634811 PMCID: PMC1809663 DOI: 10.1111/j.1365-2249.2006.03074.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to elucidate the time course of the permeability response of endothelial monolayers after exposure to plasma obtained from lipopolysaccharide (LPS)-treated human whole blood; to investigate the role of apoptosis in monolayer permeability, and to inhibit the permeability increase, particularly after addition of the plasma stimulus. Human umbilical vein endothelial cells (HUVEC) were cultured on semiporous membranes and the permeability for albumin was measured after exposure, according to different schedules, to LPS-conditioned plasma. Apoptotic HUVEC were measured by both flow cytometry and ELISA. A variety of agents, including antibodies against cytokines, inhibitors of NF-kappaB, and a caspase inhibitor, were added to HUVEC, either prior to or after the stimulus. A maximum increase of the permeability was achieved after 4-6 h of exposure to LPS-conditioned plasma. This response was not accompanied by an increase in the number of apoptotic HUVEC. Administration of antibodies against both Tumour Necrosis Factor-alpha (TNF-alpha) and Interleukin-1beta (IL-1beta) to HUVEC within 1 h after stimulation significantly reduced the permeability increase. Similarly, pyrollidine di-thiocarbamate (PDTC), but not N-acetylcysteine, could prevent the permeability response, and was still effective when added within 2 h after LPS-conditioned plasma. The TNF-alpha/IL-1beta signal present in LPS-conditioned plasma appears to increase endothelial permeability through intracellular pathways that very likely involve the activation of NF-kappaB. Although poststimulatory inhibition of the permeability response proves to be possible with agents such as PDTC, the window of opportunity appears very small if placed in a clinical perspective.
Collapse
Affiliation(s)
- A Nooteboom
- Department of Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | |
Collapse
|
33
|
van Eijk LT, Nooteboom A, Hendriks T, Sprong T, Netea MG, Smits P, van der Hoeven JG, Pickkers P. PLASMA OBTAINED DURING HUMAN ENDOTOXEMIA INCREASES ENDOTHELIAL ALBUMIN PERMEABILITY IN VITRO. Shock 2006; 25:358-62. [PMID: 16670637 DOI: 10.1097/01.shk.0000209527.35743.b0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To gain insight in the pathogenesis of increased vascular permeability during sepsis, we studied the effect of plasma obtained during human experimental endotoxemia on the permeability of cultured endothelial monolayers. Eight healthy subjects received an i.v. dose of 2 ng/kg Escherichia coli O:113 lipopolysaccharide (LPS). The concentration of various plasma mediators that supposedly induce vascular permeability was measured over time. Plasmas that were obtained before, and 2 and 4 h after the administration of LPS were added to human umbilical venular endothelial cells that were cultured on semipermeable membranes.The permeability of the endothelial monolayers to fluorescein isothiocyanate-labeled bovine serum albumin was determined and expressed as the relative concentration of fluorescein isothiocyanate-bovine serum albumin when compared with that measured across empty Transwell-COL (Corning Life Sciences B.V., Schiphol-Rijk, The Netherlands) membranes (i.e., without endothelial monolayers). The permeability levels were correlated with the concentrations of various mediators.Experimental endotoxemia resulted in elevated levels of tumor necrosis factor alpha, interleukin (IL) 1beta, IL-6, IL-8, IL-10, and vascular endothelial growth factor and a moderate increase of IL-12 and IFN-gamma (all P values < 0.01). Incubation of human umbilical venular endothelial cells with plasma obtained 2 and 4 h after the administration of LPS increased the relative permeability from a baseline level (median) of 17% (range, 14% - 31%) to 23% (range, 12% - 39%; P = not significant) and 28% (range, 11% - 40%; P < 0.05), respectively. Plasma levels of vascular endothelial growth factor and IL-10, but not TNF-alpha or any other mediators, significantly correlated with the increase in endothelial permeability (r = 0.47, P = 0.038; r = 0.43, P = 0.038, respectively). The data presented here demonstrate that plasmas obtained from experimental human endotoxemia increase endothelial albumin permeability in vitro. Thus, cultured human endothelial monolayers provide a model to study sepsis-associated vascular changes.
Collapse
Affiliation(s)
- Lucas T van Eijk
- Department of Intensive Care Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tsibulevsky AY, Dubovaya TK, Shchegolev AI, Sergeev AI, Bykov AV, Gadzhieva KK. The Role of the Vascular Factor in the Reorganization of Water Metabolism in Denervated Liver after Bacterial Endotoxin Poisoning. BIOL BULL+ 2005. [DOI: 10.1007/s10525-005-0147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Puhlmann M, Weinreich DM, Farma JM, Carroll NM, Turner EM, Alexander HR. Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity. J Transl Med 2005; 3:37. [PMID: 16197553 PMCID: PMC1276820 DOI: 10.1186/1479-5876-3-37] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 09/30/2005] [Indexed: 11/20/2022] Open
Abstract
IL-1beta is a pleotropic cytokine that may mediate increased procoagulant activity and permeability in endothelial tissue during inflammatory conditions. The procoagulant effects of IL-1beta are mediated through induction of tissue factor (TF) but its alterations on vascular permeability are not well characterized. We found that IL-1beta induced a rapid and dose-dependent increase in TF activity in human umbilical vein endothelial cells (ECs) under routine culture conditions. However, IL-1beta caused a rapid and marked increase in permeability across confluent EC monolayers using a two-compartment in vitro model only in the presence of factor VIII-deficient plasma that was completely abrogated by neutralizing anti-TF antibody pre-treatment. In vitro permeability was associated with loss of EC surface expression of VE-cadherin and contraction of F-actin cytoskeletal elements that resulted in EC intercellular gap formation. These data demonstrate that IL-1beta induces marked changes in permeability across activated endothelium via a TF dependent mechanism and suggest that modulation of TF activity may represent a strategy to treat various acute and chronic inflammatory conditions mediated by this cytokine.
Collapse
Affiliation(s)
- Markus Puhlmann
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - David M Weinreich
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jeffrey M Farma
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Nancy M Carroll
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Ewa M Turner
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - H Richard Alexander
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
36
|
van Eijk LTGJ, Pickkers P, Smits P, Broek WVD, Bouw MPWJM, van der Hoeven JG. Microvascular permeability during experimental human endotoxemia: an open intervention study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2005; 9:R157-64. [PMID: 15774049 PMCID: PMC1175929 DOI: 10.1186/cc3050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 12/16/2004] [Accepted: 01/10/2005] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Septic shock is associated with increased microvascular permeability. As a model for study of the pathophysiology of sepsis, endotoxin administration to humans has facilitated research into inflammation, coagulation and cardiovascular effects. The present study was undertaken to determine whether endotoxin administration to human volunteers can be used as a model to study the sepsis-associated increase in microvascular permeability. METHODS In an open intervention study conducted in a university medical centre, 16 healthy volunteers were evaluated in the research unit of the intensive care unit. Eight were administered endotoxin intravenously (2 ng/kg Escherichia coli O113) and eight served as control individuals. Microvascular permeability was assessed before and 5 hours after the administration of endotoxin (n = 8) or placebo (n = 8) by three different methods: transcapillary escape rate of I(125)-albumin; venous occlusion strain-gauge plethysmography to determine the filtration capacity; and bioelectrical impedance analysis to determine the extracellular and total body water. RESULTS Administration of endotoxin resulted in the expected increases in proinflammatory cytokines, temperature, flu-like symptoms and cardiovascular changes. All changes were significantly different from those in the control group. In the endotoxin group all microvascular permeability parameters remained unchanged from baseline: transcapillary escape rate of I(125)-albumin changed from 7.2 +/- 0.6 to 7.7 +/- 0.9%/hour; filtration capacity changed from 5.0 +/- 0.3 to 4.2 +/- 0.4 ml/min per 100 ml mmHg x 10(-3); and extracellular/total body water changed from 0.42 +/- 0.01 to 0.40 +/- 0.01 l/l (all differences not significant). CONCLUSION Although experimental human endotoxaemia is frequently used as a model to study sepsis-associated pathophysiology, an endotoxin-induced increase in microvascular permeability in vivo could not be detected using three different methods. Endotoxin administration to human volunteers is not suitable as a model in which to study changes in microvascular permeability.
Collapse
Affiliation(s)
- Lucas TGJ van Eijk
- Departments of Intensive Care Medicine and Pharmacology-Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Peter Pickkers
- Departments of Intensive Care Medicine and Pharmacology-Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Paul Smits
- Department of Pharmacology-Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Wim van den Broek
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Martijn PWJM Bouw
- Department of Intensive Care Medicine and Nijmegen UniversityCenter for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine and Nijmegen UniversityCenter for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Nooteboom A, van der Linden CJ, Hendriks T. Whole blood-mediated endothelial permeability and adhesion molecule expression: a model study into the effects of bacteria and antibiotics. J Antimicrob Chemother 2005; 55:150-6. [PMID: 15650003 DOI: 10.1093/jac/dkh526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM To investigate whether the inflammatory response of cultured endothelial cells, as induced by conditioned plasma, depends on the bacterial species or type of antibiotic used for incubation with whole blood. MATERIALS AND METHODS Blood from healthy volunteers was stimulated ex vivo with different microorganisms, and with bacteria killed with different antibiotics. The resultant plasmas were incubated on monolayers of cultured human endothelial cells, followed by measurement of their permeability to albumin and expression of E-selectin and intercellular adhesion molecule-1. RESULTS Incubation of Escherichia coli in blood yielded plasmas that induced a marked increase in endothelial permeability and E-selectin expression. The response to Bacteroides fragilis or Enterococcus faecalis was generally weaker. Similar effects were observed after incubation of whole blood with lipopolysaccharide (LPS). Much of the permeability and adhesion molecule response to E. coli remained after removal of intact microorganisms from the culture. Whereas antibiotic treatment of E. coli with imipenem or cefuroxime resulted in a divergent production of tumour necrosis factor-alpha (TNF-alpha) in blood, no significant differences between these treatments were observed with respect to the plasma-induced endothelial response. CONCLUSION Bacteria differ in their capacity to generate a whole blood-mediated increase of endothelial permeability and adhesion molecule expression; this response depends, at least in part, on the presence of soluble bacterial components, such as LPS. Whereas treatment with various antibiotics may generate varying amounts of TNF-alpha, these differences are not translated into differences in endothelial permeability or adhesion molecule expression.
Collapse
Affiliation(s)
- Arjan Nooteboom
- Department of Surgery, University Medical Centre Nijmegen, PO box 9101, 6500 HB Nijmegen.
| | | | | |
Collapse
|
38
|
Nooteboom A, van der Linden CJ, Hendriks T. Modulation of adhesion molecule expression on endothelial cells after induction by lipopolysaccharide-stimulated whole blood. Scand J Immunol 2004; 59:440-8. [PMID: 15140053 DOI: 10.1111/j.0300-9475.2004.01413.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The relative contribution of the pro-inflammatory cytokines tumour necrosis factor (TNF)-alpha and interleukin (IL)-1 beta and the lipopolysaccharide (LPS)-induced pathways that result in endothelial activation during sepsis are not fully understood. We have examined the effects of plasma obtained from LPS-treated human whole blood on the expression of E-selectin and intercellular adhesion molecule-1 (ICAM-1) on human endothelial cells. Stimulation of blood with 10 pg/ml of LPS is sufficient to produce plasma that induces E-selectin and ICAM-1 expression, while direct induction by LPS alone requires a 100-fold higher concentration. Characteristics for the plasma-induced adhesion molecule expression were similar to the LPS-induced production of TNF-alpha and IL-1 beta in blood. A complete inhibition of E-selectin and ICAM-1 expression was observed when antibodies against TNF-alpha and IL-1 beta were added to plasma prior to the incubation to endothelial cultures. Significant inhibition was even observed if antibodies were added to the cultures up until 3 h after LPS-conditioned plasma. The plasma-induced adhesion molecule response could also be prevented with inhibitors of nuclear factor (NF)-kappaB, such as pyrollidine dithiocarbamate. These findings emphasize the central role of TNF-alpha and IL-1 beta in LPS-induced endothelial activation and suggest that simultaneous neutralization of these cytokines or their common pathways may, even after the initial stimulus, prevent endothelial response during sepsis.
Collapse
Affiliation(s)
- A Nooteboom
- Department of Surgery, University Medical Center Nijmegen, Nijmegen, the Netherlands
| | | | | |
Collapse
|
39
|
Albrecht EA, Chinnaiyan AM, Varambally S, Kumar-Sinha C, Barrette TR, Sarma JV, Ward PA. C5a-induced gene expression in human umbilical vein endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:849-59. [PMID: 14982839 PMCID: PMC1613300 DOI: 10.1016/s0002-9440(10)63173-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endothelium plays a critical role in the inflammatory process. The complement activation product, C5a, is known to have proinflammatory effects on the endothelium, but the molecular mechanisms remain unclear. We have used cDNA microarray analysis to assess gene expression in human umbilical vein endothelial cells (HUVECs) that were stimulated with human C5a in vitro. Chip analyses were confirmed by reverse transcriptase-polymerase chain reaction and by Western blot analysis. Gene activation responses were remarkably similar to gene expression patterns of HUVECs stimulated with human tumor necrosis factor-alpha or bacterial lipopolysaccharide. HUVECs stimulated with C5a showed progressive increases in gene expression for cell adhesion molecules (eg, E-selectin, ICAM-1, VCAM-1), cytokines/chemokines, and related receptors (eg, VEGFC, IL-6, IL-18R). Surprisingly, HUVECs showed little evidence for up-regulation of complement-related genes. There were transient increases in gene expression associated with broad functional activities. The three agonists used also caused down-regulation of genes that regulate angiogenesis and drug metabolism. With a single exception, C5a caused little evidence of activation of complement-related genes. These studies indicate that endothelial cells respond robustly to C5a by activation of genes related to progressive expression of cell adherence molecules, and cytokines and chemokines in a manner similar to responses induced by tumor necrosis factor-alpha and lipopolysaccharide.
Collapse
Affiliation(s)
- Eric A Albrecht
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0602, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Mittermayer F, Pleiner J, Schaller G, Weltermann A, Kapiotis S, Jilma B, Wolzt M. Marked increase in vascular endothelial growth factor concentrations during Escherichia coli endotoxin-induced acute inflammation in humans. Eur J Clin Invest 2003; 33:758-61. [PMID: 12925034 DOI: 10.1046/j.1365-2362.2003.01192.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Bacterial endotoxins can induce the synthesis and release of vascular endothelial growth factor (VEGF), which may alter vascular permeability and cause vascular leakage. MATERIALS AND METHODS The effect of acute systemic inflammation on VEGF concentration was measured in healthy males after an intravenous bolus infusion of Escherichia coli endotoxin (lipopolysaccharide, LPS, 20 IU kg-1) in a double-blind, placebo-controlled parallel group study. LPS administration was followed by an infusion of lepirudin (bolus 0.1 mg kg-1, continuous infusion of 0.1 mg kg-1 h-1, n = 12) or saline (n = 12). RESULTS Plasma VEGF increased from a mean of 15.1 pg mL-1 to 74.6 pg mL-1 5 h after LPS (P < 0.003). Body temperature, pulse rate, leukcytes, prothrombin fragment 1 + 2 (F1 + 2) and lactoferrin increased and platelets decreased after LPS (P < 0.05). The LPS-induced increase in VEGF was paralleled by the neutrophil cell degranulation marker lactoferrin but not by F1 + 2, and was not affected by lepirudin, which blunted F1 + 2 formation (P < 0.05). CONCLUSIONS Inflammation-induced activation of leukcytes rather than platelets plays a role in the marked increase in VEGF, which cannot be abrogated by antithrombotic therapy.
Collapse
Affiliation(s)
- F Mittermayer
- Department of Clinical Pharmacology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
OBJECTIVE To understand the mechanism of pathologic capillary leak in the critically ill patient. DESIGN Review of normal and altered physiology of the microvasculature. Review of recent literature describing pathogenesis, mediators, and interventions influencing capillary leak and microvascular repair. SETTING In vitro and in vivo studies, the latter including animal and human subjects. MEASUREMENTS AND MAIN RESULTS Capillary leak with resultant edema develops in the critical care setting on the basis of perturbations in Starling's equation, primarily as a result of increased capillary permeability to larger molecules. This process is most likely fueled by inflammatory mediators or mechanical stress. Attempts to prevent or treat this process remain largely unsuccessful; resuscitation is more often symptomatic than therapeutic. Models of microvascular repair focus on discrete injury and may not be applicable to the recovery of capillary damage secondary to a systemic leak CONCLUSIONS Our understanding of capillary leak syndrome remains fragmented and weighted toward specific mediators contributing to the leak. The implications of extensive edema and the mechanism by which it resolves continue to be the subject of speculation rather than study.
Collapse
Affiliation(s)
- Rhonda S Fishel
- Department of Surgery, Sinai Hospital of Baltimore, MD 21215, USA
| | | | | |
Collapse
|