1
|
Ranjan AK, Gulati A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. J Clin Med 2023; 12:6653. [PMID: 37892791 PMCID: PMC10607511 DOI: 10.3390/jcm12206653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a condition that results in brain damage in newborns due to insufficient blood and oxygen supply during or after birth. HIE is a major cause of neurological disability and mortality in newborns, with over one million neonatal deaths occurring annually worldwide. The severity of brain injury and the outcome of HIE depend on several factors, including the cause of oxygen deprivation, brain maturity, regional blood flow, and maternal health conditions. HIE is classified into mild, moderate, and severe categories based on the extent of brain damage and resulting neurological issues. The pathophysiology of HIE involves different phases, including the primary phase, latent phase, secondary phase, and tertiary phase. The primary and secondary phases are characterized by episodes of energy and cell metabolism failures, increased cytotoxicity and apoptosis, and activated microglia and inflammation in the brain. A tertiary phase occurs if the brain injury persists, characterized by reduced neural plasticity and neuronal loss. Understanding the cellular and molecular aspects of the different phases of HIE is crucial for developing new interventions and therapeutics. This review aims to discuss the pathophysiology of HIE, therapeutic hypothermia (TH), the only approved therapy for HIE, ongoing developments of adjuvants for TH, and potential future drugs for HIE.
Collapse
Affiliation(s)
- Amaresh K Ranjan
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
| | - Anil Gulati
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA
- College of Pharmacy, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
2
|
Seki E, Komori T, Arai N. Expanded ischemic lesion due to herniation leads to axonal injury in a site remote to the primary lesion on autopsy brain with acute focal cerebral ischemia. Neuropathology 2023; 43:373-384. [PMID: 36855231 DOI: 10.1111/neup.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 03/02/2023]
Abstract
Cerebral ischemia may lead to axonal injury not only at the site of the primary lesion but also in a region remote to the site of insult. In this study, we investigated the effect of herniation on the development of axonal injury at a site remote to the primary lesion during the acute phase of cerebral ischemia. We obtained postmortem brains of 13 cases with acute phase of unilateral cerebral infarction in the territory of the internal carotid artery or middle cerebral artery and seven controls. We classified the brain tissues into herniation and non-herniation groups. Then we examined whether axonal and ischemic changes existed in the corpus callosum contralateral to the ischemic hemisphere and the upper pons. In the herniation group, we detected white-matter lesions by Klüver-Barrera staining, microglial loss by immunohistochemistry for ionized calcium-binding adaptor molecule 1, and axonal injury by immunohistochemistry for amyloid precursor protein. However, none of the aforementioned findings were observed in the non-herniation group. These findings suggest the existence of regional overlap in axonal and ischemic pathologies in remote regions in the presence of herniation. We concluded that herniation may play a significant role in the development of axonal and ischemic changes in the remote region. Our results suggest that axonal injury in a remote region may result from expanded ischemic lesions due to herniation.
Collapse
Affiliation(s)
- Erika Seki
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo Metropolitan Hospital Organization, Fuchu, Japan
| | - Nobutaka Arai
- Laboratory of Neuropathology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo Metropolitan Hospital Organization, Fuchu, Japan
| |
Collapse
|
3
|
Adams AA, Li Y, Kim HA, Pfister BJ. Dorsal root ganglion neurons recapitulate the traumatic axonal injury of CNS neurons in response to a rapid stretch in vitro. Front Cell Neurosci 2023; 17:1111403. [PMID: 37066078 PMCID: PMC10090399 DOI: 10.3389/fncel.2023.1111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: In vitro models of traumatic brain injury (TBI) commonly use neurons isolated from the central nervous system. Limitations with primary cortical cultures, however, can pose challenges to replicating some aspects of neuronal injury associated with closed head TBI. The known mechanisms of axonal degeneration from mechanical injury in TBI are in many ways similar to degenerative disease, ischemia, and spinal cord injury. It is therefore possible that the mechanisms that result in axonal degeneration in isolated cortical axons after in vitro stretch injury are shared with injured axons from different neuronal types. Dorsal root ganglia neurons (DRGN) are another neuronal source that may overcome some current limitations including remaining healthy in culture for long periods of time, ability to be isolated from adult sources, and myelinated in vitro. Methods: The current study sought to characterize the differential responses between cortical and DRGN axons to mechanical stretch injury associated with TBI. Using an in vitro model of traumatic axonal stretch injury, cortical and DRGN neurons were injured at a moderate (40% strain) and severe stretch (60% strain) and acute alterations in axonal morphology and calcium homeostasis were measured. Results: DRGN and cortical axons immediately form undulations in response to severe injury, experience similar elongation and recovery within 20 min after the initial injury, and had a similar pattern of degeneration over the first 24 h after injury. Additionally, both types of axons experienced comparable degrees of calcium influx after both moderate and severe injury that was prevented through pre-treatment with tetrodotoxin in cortical neurons and lidocaine in DRGNs. Similar to cortical axons, stretch injury also causes calcium activated proteolysis of sodium channel in DRGN axons that is prevented by treatment with lidocaine or protease inhibitors. Discussion: These findings suggest that DRGN axons share the early response of cortical neurons to a rapid stretch injury and the associated secondary injury mechanisms. The utility of a DRGN in vitro TBI model may allow future studies to explore TBI injury progression in myelinated and adult neurons.
Collapse
Affiliation(s)
- Alexandra A. Adams
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Biological Sciences, Rutgers University Newark, Newark, NJ, United States
| | - Ying Li
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Haesun A. Kim
- Department of Biological Sciences, Rutgers University Newark, Newark, NJ, United States
| | - Bryan J. Pfister
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Biological Sciences, Rutgers University Newark, Newark, NJ, United States
| |
Collapse
|
4
|
Lou Y, Lv Y, Li Z, Kang Y, Hou M, Fu Z, Lu L, Liu L, Cai Z, Qi Z, Jian H, Shen W, Li X, Zhou H, Feng S. Identification of Differentially Expressed Proteins in Rats with Early Subacute Spinal Cord Injury using an iTRAQ-based Quantitative Analysis. Comb Chem High Throughput Screen 2023; 26:1960-1973. [PMID: 36642874 DOI: 10.2174/1386207326666230113152622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/02/2022] [Accepted: 11/17/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Injuries to the central nervous system (CNS), such as spinal cord injury (SCI), may devastate families and society. Subacute SCI may majorly impact secondary damage during the transitional period between the acute and subacute phases. A range of CNS illnesses has been linked to changes in the level of protein expression. However, the importance of proteins during the early subacute stage of SCI remains unknown. The role of proteins in the early subacute phase of SCI has not been established yet. METHODS SCI-induced damage in rats was studied using isobaric tagging for relative and absolute protein quantification (iTRAQ) to identify proteins that differed in expression 3 days after the injury, as well as proteins that did not alter in expression. Differentially expressed proteins (DEPs) were analyzed employing Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to discover the biological processes, cell components, and molecular functions of the proteins. We also performed Gene Set Enrichment Analysis (GSEA) software BP pathway and KEGG analysis on all proteins to further identify their functions. In addition, the first 15 key nodes of a protein-protein interaction (PPI) system were found. RESULTS During the early subacute stage of SCI, we identified 176 DEPs in total between the control and damage groups, with 114 (64.77%) being up-regulated and 62 (35.23%) being downregulated. As a result of this study, we discovered the most important cellular components and molecular activities, as well as biological processes and pathways, in the early subacute phase of SCI. The top 15 high-degree core nodes were Alb, Plg, F2, Serpina1, Fgg, Apoa1, Vim, Hpx, Apoe, Agt, Ambp, Pcna, Gc, F12, and Gfap. CONCLUSION Our study could provide new views on regulating the pathogenesis of proteins in the early subacute phase after SCI, which provides a theoretical basis for exploring more effective therapeutic targets for SCI in the future.
Collapse
Affiliation(s)
- Yongfu Lou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yigang Lv
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengfan Hou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Fu
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lu Liu
- Department of Traumatic Orthopedics, Honghui Hospital, Xi'an Jiaotong University, 555 West Youyi Road, Xi'an, 710061, Shaanxi, China
| | - Zhiwei Cai
- Department of Burn and Plastic Surgery, Burns Institute, Burn & Plastic Hospital of PLA General Hospital, Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zhangyang Qi
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huan Jian
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenyuan Shen
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xueying Li
- Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
- Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
5
|
Excitatory Synaptic Transmission in Ischemic Stroke: A New Outlet for Classical Neuroprotective Strategies. Int J Mol Sci 2022; 23:ijms23169381. [PMID: 36012647 PMCID: PMC9409263 DOI: 10.3390/ijms23169381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/01/2023] Open
Abstract
Stroke is one of the leading causes of death and disability in the world, of which ischemia accounts for the majority. There is growing evidence of changes in synaptic connections and neural network functions in the brain of stroke patients. Currently, the studies on these neurobiological alterations mainly focus on the principle of glutamate excitotoxicity, and the corresponding neuroprotective strategies are limited to blocking the overactivation of ionic glutamate receptors. Nevertheless, it is disappointing that these treatments often fail because of the unspecificity and serious side effects of the tested drugs in clinical trials. Thus, in the prevention and treatment of stroke, finding and developing new targets of neuroprotective intervention is still the focus and goal of research in this field. In this review, we focus on the whole processes of glutamatergic synaptic transmission and highlight the pathological changes underlying each link to help develop potential therapeutic strategies for ischemic brain damage. These strategies include: (1) controlling the synaptic or extra-synaptic release of glutamate, (2) selectively blocking the action of the glutamate receptor NMDAR subunit, (3) increasing glutamate metabolism, and reuptake in the brain and blood, and (4) regulating the glutamate system by GABA receptors and the microbiota–gut–brain axis. Based on these latest findings, it is expected to promote a substantial understanding of the complex glutamate signal transduction mechanism, thereby providing excellent neuroprotection research direction for human ischemic stroke (IS).
Collapse
|
6
|
Herwerth M, Kenet S, Schifferer M, Winkler A, Weber M, Snaidero N, Wang M, Lohrberg M, Bennett JL, Stadelmann C, Hemmer B, Misgeld T. A new form of axonal pathology in a spinal model of neuromyelitis optica. Brain 2022; 145:1726-1742. [PMID: 35202467 PMCID: PMC9166560 DOI: 10.1093/brain/awac079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 11/14/2022] Open
Abstract
Neuromyelitis optica is a chronic neuroinflammatory disease, which primarily targets astrocytes and often results in severe axon injury of unknown mechanism. Neuromyelitis optica patients harbour autoantibodies against the astrocytic water channel protein, aquaporin-4 (AQP4-IgG), which induce complement-mediated astrocyte lysis and subsequent axon damage. Using spinal in vivo imaging in a mouse model of such astrocytopathic lesions, we explored the mechanism underlying neuromyelitis optica-related axon injury. Many axons showed a swift and morphologically distinct 'pearls-on-string' transformation also readily detectable in human neuromyelitis optica lesions, which especially affected small calibre axons independently of myelination. Functional imaging revealed that calcium homeostasis was initially preserved in this 'acute axonal beading' state, ruling out disruption of the axonal membrane, which sets this form of axon injury apart from previously described forms of traumatic and inflammatory axon damage. Morphological, pharmacological and genetic analyses showed that AQP4-IgG-induced axon injury involved osmotic stress and ionic overload, but does not appear to use canonical pathways of Wallerian-like degeneration. Subcellular analysis demonstrated remodelling of the axonal cytoskeleton in beaded axons, especially local loss of microtubules. Treatment with the microtubule stabilizer epothilone, a putative therapy approach for traumatic and degenerative axonopathies, prevented axonal beading, while destabilizing microtubules sensitized axons for beading. Our results reveal a distinct form of immune-mediated axon pathology in neuromyelitis optica that mechanistically differs from known cascades of post-traumatic and inflammatory axon loss, and suggest a new strategy for neuroprotection in neuromyelitis optica and related diseases.
Collapse
Affiliation(s)
- Marina Herwerth
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Selin Kenet
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians University, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Anne Winkler
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Melanie Weber
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Nicolas Snaidero
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Mengzhe Wang
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Melanie Lohrberg
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Jeffrey L. Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado School of Medicine, Aurora, USA
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
7
|
Axonal injury is detected by βAPP immunohistochemistry in rapid death from head injury following road traffic collision. Int J Legal Med 2022; 136:1321-1339. [PMID: 35488928 PMCID: PMC9375765 DOI: 10.1007/s00414-022-02807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022]
Abstract
The accumulation of βAPP caused by axonal injury is an active energy-dependent process thought to require blood circulation; therefore, it is closely related to the post-injury survival time. Currently, the earliest reported time at which axonal injury can be detected in post-mortem traumatic brain injury (TBI) tissue by βAPP (Beta Amyloid Precursor Protein) immunohistochemistry is 35 min. The aim of this study is to investigate whether βAPP staining for axonal injury can be detected in patients who died rapidly after TBI in road traffic collision (RTC), in a period of less than 30 min. We retrospectively studied thirty-seven patients (group 1) died very rapidly at the scene; evidenced by forensic assessment of injuries short survival, four patients died after a survival period of between 31 min and 12 h (group 2) and eight patients between 2 and 31 days (group 3). The brains were comprehensively examined and sampled at the time of the autopsy, and βAPP immunohistochemistry carried out on sections from a number of brain areas. βAPP immunoreactivity was demonstrated in 35/37 brains in group 1, albeit with a low frequency and in a variable pattern, and with more intensity and frequency in all brains of group 2 and 7/8 brains from group 3, compared with no similar βAPP immunoreactivity in the control group. The results suggest axonal injury can be detected in those who died rapidly after RTC in a period of less than 30 min, which can help in the diagnosis of severe TBI with short survival time.
Collapse
|
8
|
Ransom BR, Goldberg MP, Arai K, Baltan S. White Matter Pathophysiology. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Kahveci FO, Kahveci R, Gokce EC, Gokce A, Kısa Ü, Sargon MF, Fesli R, Sarı MF, Gürer B. Biochemical, pathological and ultrastructural investigation of whether lamotrigine has neuroprotective efficacy against spinal cord ischemia reperfusion injury. Injury 2021; 52:2803-2812. [PMID: 34391576 DOI: 10.1016/j.injury.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Lamotrigine, an anticonvulsant drug with inhibition properties of multi-ion channels, has been shown to be able to attenuates secondary neuronal damage by influencing different pathways. The aim of this study was to look into whether lamotrigine treatment could protect the spinal cord from experimental spinal cord ischemia-reperfusion injury. MATERIALS AND METHODS Thirty-two rats, eight rats per group, were randomly assigned to the sham group in which only laparotomy was performed, and to the ischemia, methylprednisolone and lamotrigine groups, where the infrarenal aorta was clamped for thirty minutes to induce spinal cord ischemia-reperfusion injury. Tissue samples belonging to spinal cords were harvested from sacrificed animals twenty-four hours after reperfusion. Tumor necrosis factor-alpha levels, interleukin-1 beta levels, nitric oxide levels, superoxide dismutase activity, catalase activity, glutathione peroxidase activity, malondialdehyde levels and caspase-3 activity were studied. Light and electron microscopic evaluations were also performed to reveal the pathological alterations. Basso, Beattie, and Bresnahan locomotor scale and the inclined-plane test was used to evaluate neurofunctional status at the beginning of the study and just before the animals were sacrificed. RESULTS Lamotrigine treatment provided significant improvement in the neurofunctional status by preventing the increase in cytokine expression, increased lipid peroxidation and oxidative stress, depletion of antioxidant enzymes activity and increased apoptosis, all of which contributing to spinal cord damage through different paths after ischemia reperfusion injury. Furthermore, lamotrigine treatment has shown improved results concerning the histopathological and ultrastructural scores and the functional tests. CONCLUSION These results proposed that lamotrigine may be a useful therapeutic agent to prevent the neuronal damage developing after spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Fatih Ozan Kahveci
- Department of Emergency Medicine, Balıkesir Atatürk City Hospital, Balıkesir, Turkey
| | - Ramazan Kahveci
- Department of Neurosurgery, Balıkesir University, Faculty of Medicine, Balıkesir, Turkey
| | - Emre Cemal Gokce
- Department of Neurosurgery, Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Ankara, Turkey
| | - Aysun Gokce
- Department of Pathology, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Üçler Kısa
- Department of Biochemistry, Kirikkale University, Faculty of Medicine, Kirikkale, Turkey
| | - Mustafa Fevzi Sargon
- Department of Anatomy, Lokman Hekim University, Faculty of Medicine, Ankara, Turkey
| | - Ramazan Fesli
- Department of Neurosurgery, Mersin VM Medical Park Hospital, Mersin, Turkey
| | - Muhammed Fatih Sarı
- Department of Neurosurgery, Balıkesir University, Faculty of Medicine, Balıkesir, Turkey
| | - Bora Gürer
- Department of Neurosurgery, İstinye University, Faculty of Medicine, Istanbul, Turkey.
| |
Collapse
|
10
|
Kahveci R, Kahveci FO, Gokce EC, Gokce A, Kısa Ü, Sargon MF, Fesli R, Gürer B. Effects of Ganoderma lucidum Polysaccharides on Different Pathways Involved in the Development of Spinal Cord Ischemia Reperfusion Injury: Biochemical, Histopathologic, and Ultrastructural Analysis in a Rat Model. World Neurosurg 2021; 150:e287-e297. [PMID: 33689849 DOI: 10.1016/j.wneu.2021.02.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Inflammation and oxidative stress are 2 important factors in the emergence of paraplegia associated with spinal cord ischemia-reperfusion injury (SCIRI) after thoracoabdominal aortic surgery. Here it is aimed to investigate the effects of Ganoderma lucidum polysaccharide (GLPS) on SCIRI. METHODS Rats were randomly selected into 4 groups of 8 animals each: sham, ischemia, methylprednisolone, and GLPS. To research the impacts of various pathways that are efficacious in formation of SCIRI, tumor necrosis factor α, interleukin 1β, nitric oxide, superoxide dismutase levels, and catalase, glutathione peroxidase activities, malondialdehyde levels, and caspase-3 activity were measured in tissues taken from the spinal cord of rats in all groups killed 24 hours after ischemia reperfusion injury. The Basso, Beattie, and Bresnahan locomotor scale and inclined plane test were used for neurologic assessment before and after SCIRI. In addition, histologic and ultrastructural analyses of tissue samples in all groups were performed. RESULTS SCIRI also caused marked increase in tissue tumor necrosis factor α, interleukin 1β, nitric oxide, malondialdehyde levels, and caspase-3 activity, because of inflammation, increased free radical generation, lipid peroxidation, and apoptosis, respectively. On the other hand, SCIRI caused significant reduction in tissue superoxide dismutase, glutathione peroxidase, and catalase activities. Pretreatment with GLPS likewise diminished the level of the spinal cord edema, inflammation, and tissue injury shown by pathologic and ultrastructural examination. Pretreatment with GLPS reversed all these biochemical changes and improved the altered neurologic status. CONCLUSIONS These outcomes propose that pretreatment with GLPS prevents progression of SCIRI by alleviating inflammation, oxidation, and apoptosis.
Collapse
Affiliation(s)
- Ramazan Kahveci
- Department of Neurosurgery, Balıkesir University, Faculty of Medicine, Balıkesir, Turkey
| | - Fatih Ozan Kahveci
- Department of Emergency Medicine, Balıkesir Atatürk City Hospital, Balıkesir, Turkey
| | - Emre Cemal Gokce
- Department of Neurosurgery, Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Ankara, Turkey
| | - Aysun Gokce
- Department of Pathology, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Üçler Kısa
- Department of Biochemistry, Kirikkale University, Faculty of Medicine, Kirikkale, Turkey
| | - Mustafa Fevzi Sargon
- Department of Anatomy, Lokman Hekim University, Faculty of Medicine, Ankara, Turkey
| | - Ramazan Fesli
- Department of Neurosurgery, Tarsus Medical Park Hospital, Mersin, Turkey
| | - Bora Gürer
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey.
| |
Collapse
|
11
|
Cui Y, Jin X, Choi JY, Kim BG. Modeling subcortical ischemic white matter injury in rodents: unmet need for a breakthrough in translational research. Neural Regen Res 2021; 16:638-642. [PMID: 33063714 PMCID: PMC8067929 DOI: 10.4103/1673-5374.295313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Subcortical ischemic white matter injury (SIWMI), pathological correlate of white matter hyperintensities or leukoaraiosis on magnetic resonance imaging, is a common cause of cognitive decline in elderly. Despite its high prevalence, it remains unknown how various components of the white matter degenerate in response to chronic ischemia.This incomplete knowledge is in part due to a lack of adequate animal model. The current review introduces various SIWMI animal models and aims to scrutinize their advantages and disadvantages primarily in regard to the pathological manifestations of white matter components. The SIWMI animal models are categorized into 1) chemically induced SIWMI models, 2) vascular occlusive SIWMI models, and 3) SIWMI models with comorbid vascular risk factors. Chemically induced models display consistent lesions in predetermined areas of the white matter, but the abrupt evolution of lesions does not appropriately reflect the progressive pathological processes in human white matter hyperintensities. Vascular occlusive SIWMI models often do not exhibit white matter lesions that are sufficiently unequivocal to be quantified. When combined with comorbid vascular risk factors (specifically hypertension), however, they can produce progressive and definitive white matter lesions including diffuse rarefaction, demyelination, loss of oligodendrocytes, and glial activation, which are by far the closest to those found in human white matter hyperintensities lesions. However, considerable surgical mortality and unpredictable natural deaths during a follow-up period would necessitate further refinements in these models. In the meantime, in vitro SIWMI models that recapitulate myelinated white matter track may be utilized to study molecular mechanisms of the ischemic white matter injury. Appropriate in vivo and in vitro SIWMI models will contribute in a complementary manner to making a breakthrough in developing effective treatment to prevent progression of white matter hyperintensities.
Collapse
Affiliation(s)
- Yuexian Cui
- Department of Brain Science, Ajou University School of Medicine; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea; Department of Neurology, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Xuelian Jin
- Department of Brain Science, Ajou University School of Medicine; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea; Department of Nephrology, Suqian First Hospital, Suqian, Jiangsu Province, China
| | - Jun Young Choi
- Department of Brain Science, Ajou University School of Medicine; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine; Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine; Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
12
|
Wasan H, Singh D, Kh R. Safinamide in neurological disorders and beyond: Evidence from preclinical and clinical studies. Brain Res Bull 2020; 168:165-177. [PMID: 33387637 DOI: 10.1016/j.brainresbull.2020.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023]
Abstract
The discovery and development of safinamide, an alpha-aminoamide, has been a valuable addition to the existing clinical management of Parkinson's disease (PD). The journey of safinamide dates back to the year 1983, when an alpha-aminoamide called milacemide showed a weak anticonvulsant activity. Milacemide was then structurally modified to give rise to safinamide, which in turn produced robust anticonvulsant activity. The underlying mechanism behind this action of safinamide is attributed to the inhibition of voltage gated calcium and sodium channels. Moreover, owing to the importance of ion channels in maintaining neuronal circuitry and neurotransmitter release, numerous studies explored the potential of safinamide in neurological diseases including PD, stroke, multiple sclerosis and neuromuscular disorders such as Duchenne muscular dystrophy and non-dystrophic myotonias. Nevertheless, evidence from multiple preclinical studies suggested a potent, selective and reversible inhibitory activity of safinamide against monoamine oxidase (MAO)-B enzyme which is responsible for degrading dopamine, a neurotransmitter primarily implicated in the pathophysiology of PD. Therefore, clinical studies were conducted to assess safety and efficacy of safinamide in PD. Indeed, results from various Phase 3 clinical trials suggested strong evidence of safinamide as an add-on therapy in controlling the exacerbation of PD. This review presents a thorough developmental history of safinamide in PD and provides comprehensive insight into plausible mechanisms via which safinamide can be explored in other neurological and muscular diseases.
Collapse
Affiliation(s)
- Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Reeta Kh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
13
|
Park D, Kim BH, Lee SE, Park JK, Cho JM, Kwon HD, Lee SY. Spinal Cord Infarction: A Single Center Experience and the Usefulness of Evoked Potential as an Early Diagnostic Tool. Front Neurol 2020; 11:563553. [PMID: 33192998 PMCID: PMC7652817 DOI: 10.3389/fneur.2020.563553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Spinal cord infarction (SCI) is a rare disease and its early diagnosis is challenging. Here, we described the clinical features and imaging findings of SCI, and assessed the results of evoked potential (EP) studies to elucidate their diagnostic role in the early stage of SCI. Methods: We retrospectively analyzed 14 patients who had spontaneous SCI. The demographic, neurological, and temporal profiles of the SCI patients were identified. We reviewed the imaging findings and assessed the changes in them over time. To review EP, central motor conduction time (CMCT) and somatosensory evoked potential (SEP) values were obtained. We also enrolled 15 patients with transverse myelitis (TM), and compared the clinical, radiological and electrophysiological features between SCI and TM patients. Results: The ages of the SCI patients ranged from 54 to 73 years. Nine patients (64.3%) showed nadir deficits within 6 h. The most common type of clinical visit was via the emergency center. Nine patients (64.3%) presented with peri-onset focal pain. The median initial modified Rankin scale score was 3. For 9 patients (64.3%), initial T2 imaging findings were negative, but subsequent diffusion weighed imaging (DWI) showed diffusion restriction. Vertebral body infarction was observed in 5 patients (35.7%). EP data were available for 10 SCI patients. All 8 patients who had their CMCT measured showed abnormalities. Among them, motor evoked potentials were not evoked in 6 patients at all. SEP was measured in 10 patients, and 9 of them showed abnormalities; one of them showed no SEP response. For 5 patients, the EP studies were done prior to DWI, and all the patients showed definite abnormalities. The abnormalities in the EP findings of the SCI patients were more profound than those of the TM patients, even though the duration from the onset to the start of the study was much shorter for SCI patients. Conclusion: SCI can be diagnosed based on typical clinical manifestations and appropriate imaging studies. Our study also indicates that immediate sensory and motor EP study can have an adjuvant diagnostic role in the hyperacute stage of SCI, and can improve the accuracy of diagnosis.
Collapse
Affiliation(s)
- Dougho Park
- Department of Rehabilitation Medicine, Pohang Stroke and Spine Hospital, Pohang-si, South Korea
| | - Byung Hee Kim
- Department of Rehabilitation Medicine, Pohang Stroke and Spine Hospital, Pohang-si, South Korea
| | - Sang Eok Lee
- Department of Rehabilitation Medicine, Pohang Stroke and Spine Hospital, Pohang-si, South Korea
| | - Ji Kang Park
- Department of Radiology, Pohang Stroke and Spine Hospital, Pohang-si, South Korea
| | - Jae Man Cho
- Department of Neurosurgery, Pohang Stroke and Spine Hospital, Pohang-si, South Korea
| | - Heum Dai Kwon
- Department of Neurosurgery, Pohang Stroke and Spine Hospital, Pohang-si, South Korea
| | - Su Yun Lee
- Department of Neurology, Pohang Stroke and Spine Hospital, Pohang-si, South Korea
| |
Collapse
|
14
|
Bashir SO, Morsy MD, El Agamy DF. Two episodes of remote ischemia preconditioning improve motor and sensory function of hind limbs after spinal cord ischemic injury. J Spinal Cord Med 2020; 43:878-887. [PMID: 30985269 PMCID: PMC7801032 DOI: 10.1080/10790268.2019.1600829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Objectives: To investigate the effect of one and two remote ischemia preconditioning episodes (1-RIPC or 2-RIPC, respectively) on neuro-protection after spinal cord ischemic injury (SCI) in rats. Design: Experimental animal study. Setting: College of Medicine, King Khalid University, Abha, KSA. Interventions: Male rats (n = 10/group) were divided into control, sham, SCIRI, 1-RIPC + SCIRI, and 2-RIPC + SCIRI. SCI was induced by aortic ligation for 45 min and each RIPC episode was induced by 3 cycles of 10 min ischemia/10 min perfusion. The two preconditioning procedures were separated by 24 h. Outcome measures: after 48 h of RIPC procedure, Tarlov's test, withdrawal from the painful stimulus and placing/stepping reflex (SPR) were used to evaluate the hind limbs neurological function. SC homogenates were used to measure various biochemical parameters. Results: Motor and sensory function of hind limbs were significantly improved and levels of MDA, AOPPs, PGE2, TNF-α, and IL-6, as well as the activity of SOD, was significantly decreased in SC tissue in either 1 or 2 episodes of RIPC intervention. Concomitantly, levels of total nitrate/nitrite and eNOS activity were significantly increased in both groups. Interestingly, except for activity of SOD, eNOS and levels of nitrate/nitrite, the improvements in all neurological biochemical endpoint were more profound in 2-RIPC + SCIRI compared with 1-RIPC + SCIRI. Conclusion: applying two preconditioning episodes of 3 cycles of 10 min ischemia/10 min perfusion, separated by 24 h, boost the neuro-protection effect of RIPC maneuver in rats after ischemic induced SCI in rats.
Collapse
Affiliation(s)
- Salah Omar Bashir
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Darwesh Morsy
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia,Department of Physiology, College of Medicine, Menoufia University, Shebeen Alkoom, Egypt,Correspondence to: Mohamed Darwesh Morsy, Department of Physiology, College of Medicine, King Khalid University, Abha61421, Saudi Arabia; Mobile Number: +966544495223; Fax: +966+966172251690; E-mail:
| | - Dalia Fathy El Agamy
- Department of Physiology, College of Medicine, Menoufia University, Shebeen Alkoom, Egypt
| |
Collapse
|
15
|
Hartnell D, Gillespie-Jones K, Ciornei C, Hollings A, Thomas A, Harrild E, Reinhardt J, Paterson DJ, Alwis D, Rajan R, Hackett MJ. Characterization of Ionic and Lipid Gradients within Corpus Callosum White Matter after Diffuse Traumatic Brain Injury in the Rat. ACS Chem Neurosci 2020; 11:248-257. [PMID: 31850738 DOI: 10.1021/acschemneuro.9b00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increased recognition of the effects of diffuse traumatic brain injury (dTBI), which can initiate yet unknown biochemical cascades, resulting in delayed secondary brain degeneration and long-term neurological sequela. There is limited availability of therapies that minimize the effect of secondary brain damage on the quality of life of people who have suffered TBI, many of which were otherwise healthy adults. Understanding the cascade of biochemical events initiated in specific brain regions in the acute phase of dTBI and how this spreads into adjacent brain structures may provide the necessary insight into drive development of improved therapies. In this study, we have used direct biochemical imaging techniques (Fourier transform infrared spectroscopic imaging) and elemental mapping (X-ray fluorescence microscopy) to characterize biochemical and elemental alterations that occur in corpus callosum white matter in the acute phase of dTBI. The results provide direct visualization of differential biochemical and ionic changes that occur in the highly vulnerable medial corpus callosum white matter relative to the less vulnerable lateral regions of the corpus callosum. Specifically, the results suggest that altered ionic gradients manifest within mechanically damaged medial corpus callosum, potentially spreading to and inducing lipid alterations to white matter structures in lateral brain regions.
Collapse
Affiliation(s)
- David Hartnell
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| | - Kate Gillespie-Jones
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia 3168
| | - Cristina Ciornei
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia 3168
| | - Ashley Hollings
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| | - Alexander Thomas
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| | - Elizabeth Harrild
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| | - Juliane Reinhardt
- Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia 3168
- Department of Chemistry and Physics, ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia 3086
| | - David J. Paterson
- Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia 3168
| | - Dasuni Alwis
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia 3168
| | - Ramesh Rajan
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia 3168
| | - Mark J. Hackett
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| |
Collapse
|
16
|
Hartnell D, Andrews W, Smith N, Jiang H, McAllum E, Rajan R, Colbourne F, Fitzgerald M, Lam V, Takechi R, Pushie MJ, Kelly ME, Hackett MJ. A Review of ex vivo Elemental Mapping Methods to Directly Image Changes in the Homeostasis of Diffusible Ions (Na +, K +, Mg 2 +, Ca 2 +, Cl -) Within Brain Tissue. Front Neurosci 2020; 13:1415. [PMID: 32038130 PMCID: PMC6987141 DOI: 10.3389/fnins.2019.01415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Diffusible ions (Na+, K+, Mg2+, Ca2+, Cl-) are vital for healthy function of all cells, especially brain cells. Unfortunately, the diffusible nature of these ions renders them difficult to study with traditional microscopy in situ within ex vivo brain tissue sections. This mini-review examines the recent progress in the field, using direct elemental mapping techniques to study ion homeostasis during normal brain physiology and pathophysiology, through measurement of ion distribution and concentration in ex vivo brain tissue sections. The mini-review examines the advantages and limitations of specific techniques: proton induced X-ray emission (PIXE), X-ray fluorescence microscopy (XFM), secondary ion mass spectrometry (SIMS), laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and the sample preparation requirements to study diffusible ions with these methods.
Collapse
Affiliation(s)
- David Hartnell
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Institute for Functional Molecules and Interfaces, Curtin University, Perth, WA, Australia
| | - Wendy Andrews
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Institute for Functional Molecules and Interfaces, Curtin University, Perth, WA, Australia
| | - Nicole Smith
- School of Molecular Sciences, Faculty of Science, University of Western Australia, Perth, WA, Australia
| | - Haibo Jiang
- School of Molecular Sciences, Faculty of Science, University of Western Australia, Perth, WA, Australia
| | - Erin McAllum
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ramesh Rajan
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Frederick Colbourne
- Department of Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AL, Canada
- Department of Psychology, Faculty of Arts, University of Alberta, Edmonton, AL, Canada
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - M. Jake Pushie
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E. Kelly
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark J. Hackett
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Curtin Institute for Functional Molecules and Interfaces, Curtin University, Perth, WA, Australia
| |
Collapse
|
17
|
Bastian C, Day J, Politano S, Quinn J, Brunet S, Baltan S. Preserving Mitochondrial Structure and Motility Promotes Recovery of White Matter After Ischemia. Neuromolecular Med 2019; 21:484-492. [PMID: 31152363 PMCID: PMC6884671 DOI: 10.1007/s12017-019-08550-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022]
Abstract
Stroke significantly affects white matter in the brain by impairing axon function, which results in clinical deficits. Axonal mitochondria are highly dynamic and are transported via microtubules in the anterograde or retrograde direction, depending upon axonal energy demands. Recently, we reported that mitochondrial division inhibitor 1 (Mdivi-1) promotes axon function recovery by preventing mitochondrial fission only when applied during ischemia. Application of Mdivi-1 after injury failed to protect axon function. Interestingly, L-NIO, which is a NOS3 inhibitor, confers post-ischemic protection to axon function by attenuating mitochondrial fission and preserving mitochondrial motility via conserving levels of the microtubular adaptor protein Miro-2. We propose that preventing mitochondrial fission protects axon function during injury, but that restoration of mitochondrial motility is more important to promote axon function recovery after injury. Thus, Miro-2 may be a therapeutic molecular target for recovery following a stroke.
Collapse
Affiliation(s)
- Chinthasagar Bastian
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Jerica Day
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Stephen Politano
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - John Quinn
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Sylvain Brunet
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA
| | - Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NC30, Cleveland, OH, 44195, USA.
| |
Collapse
|
18
|
Axonal degeneration in an in vitro model of ischemic white matter injury. Neurobiol Dis 2019; 134:104672. [PMID: 31707117 DOI: 10.1016/j.nbd.2019.104672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/18/2019] [Accepted: 11/06/2019] [Indexed: 01/15/2023] Open
Abstract
Ischemic white matter injuries underlie cognitive decline in the elderly and vascular dementia. Ischemia in the subcortical white matter is caused by chronic reduction of blood flow due to narrowing of small arterioles. However, it remains unclear how chronic ischemia leads to white matter pathology. We aimed to develop an in vitro model of ischemic white matter injury using organotypic slice cultures. Cultured cerebellar slices preserved fully myelinated white matter tracts that were amenable to chronic hypoxic insult. Prolonged hypoxia caused progressive morphological evidence of axonal degeneration with focal constrictions and swellings. In contrast, myelin sheaths and oligodendrocytes exhibited remarkable resilience to hypoxia. The cytoskeletal degradation of axons was accompanied by mitochondrial shortening and lysosomal activation. Multiple pharmacological manipulations revealed that the AMPA glutamate receptor, calpain proteolysis, and lysosomal proteases were independently implicated in hypoxia-induced axonal degeneration in our model. Thus, our in vitro model would be a novel experimental system to explore molecular mechanisms of ischemic white matter injury. Furthermore, we verified that the in vitro assay could be successfully utilized to screen for molecules that can ameliorate hypoxia/ischemia-induced axonal degeneration.
Collapse
|
19
|
The Neuroprotective Effects of Melatonin: Possible Role in the Pathophysiology of Neuropsychiatric Disease. Brain Sci 2019; 9:brainsci9100285. [PMID: 31640239 PMCID: PMC6826722 DOI: 10.3390/brainsci9100285] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/17/2022] Open
Abstract
Melatonin is a hormone that is secreted by the pineal gland. To date, melatonin is known to regulate the sleep cycle by controlling the circadian rhythm. However, recent advances in neuroscience and molecular biology have led to the discovery of new actions and effects of melatonin. In recent studies, melatonin was shown to have antioxidant activity and, possibly, to affect the development of Alzheimer's disease (AD). In addition, melatonin has neuroprotective effects and affects neuroplasticity, thus indicating potential antidepressant properties. In the present review, the new functions of melatonin are summarized and a therapeutic target for the development of new drugs based on the mechanism of action of melatonin is proposed.
Collapse
|
20
|
Liu Q, Radwanski R, Babadjouni R, Patel A, Hodis DM, Baumbacher P, Zhao Z, Zlokovic B, Mack WJ. Experimental chronic cerebral hypoperfusion results in decreased pericyte coverage and increased blood-brain barrier permeability in the corpus callosum. J Cereb Blood Flow Metab 2019; 39:240-250. [PMID: 29192539 PMCID: PMC6365610 DOI: 10.1177/0271678x17743670] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Murine chronic cerebral hypoperfusion (CCH) results in white matter (WM) injury and behavioral deficits. Pericytes influence blood-brain barrier (BBB) integrity and cerebral blood flow. Under hypoxic conditions, pericytes detach from perivascular locations increasing vessel permeability and neuronal injury. This study characterizes the time course of BBB dysfunction and pericyte coverage following murine experimental CCH secondary to bilateral carotid artery stenosis (BCAS). Mice underwent BCAS or sham operation. On post-procedure days 1, 3, 7 and 30, corpus callosum BBB permeability was characterized using Evans blue (EB) extravasation and IgG staining and pericyte coverage/count was calculated. The BCAS cohort demonstrated increased EB extravasation on postoperative days 1 ( p = 0.003) 3 ( p = 0.002), and 7 ( p = 0.001) when compared to sham mice. Further, EB extravasation was significantly greater ( p = 0.05) at day 3 than at day 30 in BCAS mice. BCAS mice demonstrated a nadir in pericyte coverage and count on post-operative day 3 ( p < 0.05, compared to day 7, day 30 and sham). Decreased pericyte coverage/count and increased BBB permeability are most pronounced on postoperative day 3 following murine CCH. This precedes any notable WM injury or behavioral deficits.
Collapse
Affiliation(s)
- Qinghai Liu
- 1 Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan Radwanski
- 1 Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robin Babadjouni
- 1 Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arati Patel
- 1 Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Drew M Hodis
- 1 Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peter Baumbacher
- 1 Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhen Zhao
- 1 Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav Zlokovic
- 1 Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - William J Mack
- 1 Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,2 Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Filipp ME, Travis BJ, Henry SS, Idzikowski EC, Magnuson SA, Loh MY, Hellenbrand DJ, Hanna AS. Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regen Res 2019; 14:7-19. [PMID: 30531063 PMCID: PMC6263009 DOI: 10.4103/1673-5374.243694] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rats have been the primary model to study the process and underlying mechanisms of recovery after spinal cord injury. Two weeks after a severe spinal cord contusion, rats can regain weight-bearing abilities without therapeutic interventions, as assessed by the Basso, Beattie and Bresnahan locomotor scale. However, many human patients suffer from permanent loss of motor function following spinal cord injury. While rats are the most understood animal model, major differences in sensorimotor pathways between quadrupeds and bipeds need to be considered. Understanding the major differences between the sensorimotor pathways of rats, non-human primates, and humans is a start to improving targets for treatments of human spinal cord injury. This review will discuss the neuroplasticity of the brain and spinal cord after spinal cord injury in rats, non-human primates, and humans. A brief overview of emerging interventions to induce plasticity in humans with spinal cord injury will also be discussed.
Collapse
Affiliation(s)
- Mallory E Filipp
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Travis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Stefanie S Henry
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Emma C Idzikowski
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Sarah A Magnuson
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Megan Yf Loh
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Amgad S Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
22
|
Zuidema JM, Gilbert RJ, Gottipati MK. Biomaterial Approaches to Modulate Reactive Astroglial Response. Cells Tissues Organs 2018; 205:372-395. [PMID: 30517922 PMCID: PMC6397084 DOI: 10.1159/000494667] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022] Open
Abstract
Over several decades, biomaterial scientists have developed materials to spur axonal regeneration and limit secondary injury and tested these materials within preclinical animal models. Rarely, though, are astrocytes examined comprehensively when biomaterials are placed into the injury site. Astrocytes support neuronal function in the central nervous system. Following an injury, astrocytes undergo reactive gliosis and create a glial scar. The astrocytic glial scar forms a dense barrier which restricts the extension of regenerating axons through the injury site. However, there are several beneficial effects of the glial scar, including helping to reform the blood-brain barrier, limiting the extent of secondary injury, and supporting the health of regenerating axons near the injury site. This review provides a brief introduction to the role of astrocytes in the spinal cord, discusses astrocyte phenotypic changes that occur following injury, and highlights studies that explored astrocyte changes in response to biomaterials tested within in vitro or in vivo environments. Overall, we suggest that in order to improve biomaterial designs for spinal cord injury applications, investigators should more thoroughly consider the astrocyte response to such designs.
Collapse
Affiliation(s)
- Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA,
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA,
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA,
| |
Collapse
|
23
|
De la Vega L, Karmirian K, Willerth SM. Engineering Neural Tissue from Human Pluripotent Stem Cells Using Novel Small Molecule Releasing Microspheres. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Laura De la Vega
- Department of Mechanical EngineeringDivision of Medical SciencesUniversity of Victoria 3800 Finnerty Road Victoria BC V8P 5C2 Canada
| | - Karina Karmirian
- Biomedical Sciences InstituteFederal University of Rio de Janeiro Av. Pedro Calmon, 550 Rio de Janeiro RJ 21941‐901 Brazil
| | - Stephanie Michelle Willerth
- Department of Mechanical EngineeringDivision of Medical SciencesUniversity of Victoria 3800 Finnerty Road Victoria BC V8P 5C2 Canada
| |
Collapse
|
24
|
Alghamdi BS. The neuroprotective role of melatonin in neurological disorders. J Neurosci Res 2018; 96:1136-1149. [PMID: 29498103 PMCID: PMC6001545 DOI: 10.1002/jnr.24220] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Melatonin is a neurohormone secreted from the pineal gland and has a wide-ranging regulatory and neuroprotective role. It has been reported that melatonin level is disturbed in some neurological conditions such as stroke, Alzheimer's disease, and Parkinson's disease, which indicates its involvement in the pathophysiology of these diseases. Its properties qualify it to be a promising potential therapeutic neuroprotective agent, with no side effects, for some neurological disorders. This review discusses and localizes the effect of melatonin in the pathophysiology of some diseases.
Collapse
Affiliation(s)
- B. S. Alghamdi
- Department of Physiology, Faculty of MedicineKing Abdulaziz UniversityJeddahKSA
- Neuroscience Unit, Faculty of MedicineKing Abdulaziz UniversityJeddahKSA
| |
Collapse
|
25
|
Topographical distribution of perioperative cerebral infarction associated with transcatheter aortic valve implantation. Am Heart J 2018; 197:113-123. [PMID: 29447771 DOI: 10.1016/j.ahj.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/03/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Transcatheter aortic valve implantation (TAVI) is associated with a high incidence of cerebrovascular injury. As these injuries are thought to be primarily embolic, neuroprotection strategies have focused on embolic protection devices. However, the topographical distribution of cerebral emboli and how this impacts on the effectiveness of these devices have not been thoroughly assessed. Here, we evaluated the anatomical characteristics of magnetic resonance imaging (MRI)-defined cerebral ischemic lesions occurring secondary to TAVI to enhance our understanding of the distribution of cardioembolic phenomena. METHODS Forty patients undergoing transfemoral TAVI with an Edwards SAPIEN-XT valve under general anesthesia were enrolled prospectively in this observational study. Participants underwent brain MRI preprocedure, and 3 ± 1 days and 6 ± 1 months postprocedure. RESULTS Mean ± SD participant age was 82 ± 7 years. Patients had an intermediate to high surgical risk, with a mean Society of Thoracic Surgeons score of 6.3 ± 3.5 and EuroSCORE of 18.1 ± 10.6. Post-TAVI, there were no clinically apparent cerebrovascular events, but MRI assessments identified 83 new lesions across 19 of 31 (61%) participants, with a median ± interquartile range number and volume of 1 ± 2.8 lesions and 20 ± 190 μL per patient. By volume, 80% of the infarcts were cortical, 90% in the posterior circulation and 81% in the right hemisphere. CONCLUSIONS The distribution of lesions that we detected suggests that cortical gray matter, the posterior circulation, and the right hemisphere are all particularly vulnerable to perioperative cerebrovascular injury. This finding has implications for the use of intraoperative cerebral embolic protection devices, particularly those that leave the left subclavian and, therefore, left vertebral artery unprotected.
Collapse
|
26
|
Yu Y, Zhang K, Zhang L, Zong H, Meng L, Han R. Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults. Cochrane Database Syst Rev 2018; 1:CD010947. [PMID: 29341066 PMCID: PMC6491319 DOI: 10.1002/14651858.cd010947.pub2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Various techniques have been employed for the early detection of perioperative cerebral ischaemia and hypoxia. Cerebral near-infrared spectroscopy (NIRS) is increasingly used in this clinical scenario to monitor brain oxygenation. However, it is unknown whether perioperative cerebral NIRS monitoring and the subsequent treatment strategies are of benefit to patients. OBJECTIVES To assess the effects of perioperative cerebral NIRS monitoring and corresponding treatment strategies in adults and children, compared with blinded or no cerebral oxygenation monitoring, or cerebral oxygenation monitoring based on non-NIRS technologies, on the detection of cerebral oxygen desaturation events (CDEs), neurological outcomes, non-neurological outcomes and socioeconomic impact (including cost of hospitalization and length of hospital stay). SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 12), Embase (1974 to 20 December 2016) and MEDLINE (PubMed) (1975 to 20 December 2016). We also searched the World Health Organization (WHO) International Clinical Trials Registry Platform for ongoing studies on 20 December 2016. We updated this search in November 2017, but these results have not yet been incorporated in the review. We imposed no language restriction. SELECTION CRITERIA We included all relevant randomized controlled trials (RCTs) dealing with the use of cerebral NIRS in the perioperative setting (during the operation and within 72 hours after the operation), including the operating room, the postanaesthesia care unit and the intensive care unit. DATA COLLECTION AND ANALYSIS Two authors independently selected studies, assessed risk of bias and extracted data. For binary outcomes, we calculated the risk ratio (RR) and its 95% confidence interval (CI). For continuous data, we estimated the mean difference (MD) between groups and its 95% CI. As we expected clinical and methodological heterogeneity between studies, we employed a random-effects model for analyses and we examined the data for heterogeneity (I2 statistic). We created a 'Summary of findings' table using GRADEpro. MAIN RESULTS We included 15 studies in the review, comprising a total of 1822 adult participants. There are 12 studies awaiting classification, and eight ongoing studies.None of the 15 included studies considered the paediatric population. Four studies were conducted in the abdominal and orthopaedic surgery setting (lumbar spine, or knee and hip replacement), one study in the carotid endarterectomy setting, and the remaining 10 studies in the aortic or cardiac surgery setting. The main sources of bias in the included studies related to potential conflict of interest from industry sponsorship, unclear blinding status or missing participant data.Two studies with 312 participants considered postoperative neurological injury, however no pooled effect estimate could be calculated due to discordant direction of effect between studies (low-quality evidence). One study (N = 126) in participants undergoing major abdominal surgery reported that 4/66 participants experienced neurological injury with blinded monitoring versus 0/56 in the active monitoring group. A second study (N = 195) in participants having coronary artery bypass surgery reported that 1/96 participants experienced neurological injury in the blinded monitoring group compared with 4/94 participants in the active monitoring group.We are uncertain whether active cerebral NIRS monitoring has an important effect on the risk of postoperative stroke because of the low number of events and wide confidence interval (RR 0.25, 95% CI 0.03 to 2.20; 2 studies, 240 participants; low-quality evidence).We are uncertain whether active cerebral NIRS monitoring has an important effect on postoperative delirium because of the wide confidence interval (RR 0.63, 95% CI 0.27 to 1.45; 1 study, 190 participants; low-quality evidence).Two studies with 126 participants showed that active cerebral NIRS monitoring may reduce the incidence of mild postoperative cognitive dysfunction (POCD) as defined by the original studies at one week after surgery (RR 0.53, 95% CI 0.30 to 0.95, I2 = 49%, low-quality evidence).Based on six studies with 962 participants, there was moderate-quality evidence that active cerebral oxygenation monitoring probably does not decrease the occurrence of POCD (decline in cognitive function) at one week after surgery (RR 0.62, 95% CI 0.37 to 1.04, I2 = 80%). The different type of monitoring equipment in one study could potentially be the cause of the heterogeneity.We are uncertain whether active cerebral NIRS monitoring has an important effect on intraoperative mortality or postoperative mortality because of the low number of events and wide confidence interval (RR 0.63, 95% CI 0.08 to 5.03, I2= 0%; 3 studies, 390 participants; low-quality evidence). There was no evidence to determine whether routine use of NIRS-based cerebral oxygenation monitoring causes adverse effects. AUTHORS' CONCLUSIONS The effects of perioperative active cerebral NIRS monitoring of brain oxygenation in adults for reducing the occurrence of short-term, mild POCD are uncertain due to the low quality of the evidence. There is uncertainty as to whether active cerebral NIRS monitoring has an important effect on postoperative stroke, delirium or death because of the low number of events and wide confidence intervals. The conclusions of this review may change when the eight ongoing studies are published and the 12 studies awaiting assessment are classified. More RCTs performed in the paediatric population and high-risk patients undergoing non-cardiac surgery (e.g. neurosurgery, carotid endarterectomy and other surgery) are needed.
Collapse
Affiliation(s)
- Yun Yu
- Beijing Tiantan Hospital, Capital Medical UniversityDepartment of AnesthesiologyNo.6 Tiantan XiliBeijingChina100050
| | - Kaiying Zhang
- Beijing Tiantan Hospital, Capital Medical UniversityDepartment of AnesthesiologyNo.6 Tiantan XiliBeijingChina100050
| | - Ling Zhang
- School of Public Health, Capital Medical UniversityDepartment of Epidemiology and Health StatisticsNo. 129 Mail Box, No. 10 Xitoutiao, YouanmenwaiBeijingChina100069
| | - Huantao Zong
- Beijing Tiantan Hospital, Capital Medical UniversityDepartment of UrologyNo.6 Tiantan XiliBeijingChina100050
| | - Lingzhong Meng
- Yale University School of MedicineDepartment of AnesthesiologyNew HavenConnecticutUSA
| | - Ruquan Han
- Beijing Tiantan Hospital, Capital Medical UniversityDepartment of AnesthesiologyNo.6 Tiantan XiliBeijingChina100050
| | | |
Collapse
|
27
|
Jurick SM, Bangen KJ, Evangelista ND, Sanderson-Cimino M, Delano-Wood L, Jak AJ. Advanced neuroimaging to quantify myelin in vivo: Application to mild TBI. Brain Inj 2018; 30:1452-1457. [PMID: 27834545 DOI: 10.1080/02699052.2016.1219064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Difficulty providing accurate diagnosis and prognosis, especially after mild forms of traumatic brain injury (TBI), has increased efforts to detect changes in white matter microstructure using advanced neuroimaging techniques. Although methods such as diffusion tensor imaging (DTI) have greatly increased knowledge of white matter changes resulting from TBI, several shortcomings limit the utility of these techniques particularly when applied to populations with mild TBI (mTBI) history. In vivo imaging of myelin may be particularly well suited to detect changes in white matter microstructure resulting from mTBI. REVIEW This manuscript will briefly review the animal and histological data supporting the important role of myelin following TBI, contributions and shortcomings of the use of diffusion tensor imaging (DTI) in mild TBI and the utility of multi-component relaxometry (MCR) techniques as a method for improved visualizing of white matter microstructural integrity in myelin. CONCLUSION The use of MCR-based techniques has potential as a clinical and research tool to assess and track changes in myelin as well as the common behavioural changes such as slowed processing speed following TBI.
Collapse
Affiliation(s)
- S M Jurick
- a San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology , San Diego , CA , USA.,b Veterans Medical Research Foundation , San Diego , CA , USA
| | - K J Bangen
- c Department of Psychiatry , University of California San Diego , San Diego , CA , USA.,d Research Service
| | - N D Evangelista
- b Veterans Medical Research Foundation , San Diego , CA , USA.,d Research Service
| | | | - L Delano-Wood
- b Veterans Medical Research Foundation , San Diego , CA , USA.,c Department of Psychiatry , University of California San Diego , San Diego , CA , USA.,d Research Service.,e Psychology Service, VA San Diego Healthcare System , San Diego , CA , USA
| | - A J Jak
- b Veterans Medical Research Foundation , San Diego , CA , USA.,c Department of Psychiatry , University of California San Diego , San Diego , CA , USA.,d Research Service.,e Psychology Service, VA San Diego Healthcare System , San Diego , CA , USA
| |
Collapse
|
28
|
Gerkau NJ, Rakers C, Petzold GC, Rose CR. Differential effects of energy deprivation on intracellular sodium homeostasis in neurons and astrocytes. J Neurosci Res 2017; 95:2275-2285. [PMID: 28150887 DOI: 10.1002/jnr.23995] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022]
Abstract
The maintenance of a low intracellular sodium concentration by the Na+ /K+ -ATPase (NKA) is critical for brain function. In both neurons and glial cells, NKA activity is required to counteract changes in the sodium gradient due to opening of voltage- and ligand-gated channels and/or activation of sodium-dependent secondary active transporters. Because NKA consumes about 50% of cellular ATP, sodium homeostasis is strictly dependent on an intact cellular energy metabolism. Despite the high energetic costs of electrical signaling, neurons do not contain significant energy stores themselves, but rely on a close metabolic interaction with surrounding astrocytes. A disruption of energy supply as observed during focal ischemia causes a rapid drop in ATP in both neurons and astrocytes. There is accumulating evidence that dysregulation of intracellular sodium is an inherent consequence of a reduction in cellular ATP, triggering secondary failure of extra- and intracellular homeostasis of other ions -in particular potassium, calcium, and protons- and thereby promoting excitotoxicity. The characteristics, cellular mechanisms and direct consequences of harmful sodium influx, however, differ between neurons and astrocytes. Moreover, recent work has shown that an intact astrocyte metabolism and sodium homeostasis are critical to maintain the sodium homeostasis of surrounding neurons as well as their capacity to recover from imposed sodium influx. Understanding the mechanisms of sodium increases upon metabolic failure and the differential responses of neurons and glial cells as well as their metabolic interactions will be critical to fully unravel the events causing cellular malfunction, failure and cell death following energy depletion. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
29
|
Park SB, Kiernan MC, Vucic S. Axonal Excitability in Amyotrophic Lateral Sclerosis : Axonal Excitability in ALS. Neurotherapeutics 2017; 14:78-90. [PMID: 27878516 PMCID: PMC5233634 DOI: 10.1007/s13311-016-0492-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Axonal excitability testing provides in vivo assessment of axonal ion channel function and membrane potential. Excitability techniques have provided insights into the pathophysiological mechanisms underlying the development of neurodegeneration and clinical features of amyotrophic lateral sclerosis (ALS) and related neuromuscular disorders. Specifically, abnormalities of Na+ and K+ conductances contribute to development of membrane hyperexcitability in ALS, thereby leading to symptom generation of muscle cramps and fasciculations, in addition to promoting a neurodegenerative cascade via Ca2+-mediated processes. Modulation of axonal ion channel function in ALS has resulted in significant symptomatic improvement that has been accompanied by stabilization of axonal excitability parameters. Separately, axonal ion channel dysfunction evolves with disease progression and correlates with survival, thereby serving as a potential therapeutic biomarker in ALS. The present review provides an overview of axonal excitability techniques and the physiological mechanisms underlying membrane excitability, with a focus on the role of axonal ion channel dysfunction in motor neuron disease and related neuromuscular diseases.
Collapse
Affiliation(s)
- Susanna B Park
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | | | - Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
30
|
Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG, Chopp M. Secondary Release of Exosomes From Astrocytes Contributes to the Increase in Neural Plasticity and Improvement of Functional Recovery After Stroke in Rats Treated With Exosomes Harvested From MicroRNA 133b-Overexpressing Multipotent Mesenchymal Stromal Cells. Cell Transplant 2016; 26:243-257. [PMID: 27677799 DOI: 10.3727/096368916x693031] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that multipotent mesenchymal stromal cells (MSCs) that overexpress microRNA 133b (miR-133b) significantly improve functional recovery in rats subjected to middle cerebral artery occlusion (MCAO) compared with naive MSCs and that exosomes generated from naive MSCs mediate the therapeutic benefits of MSC therapy for stroke. Here we investigated whether exosomes isolated from miR-133b-overexpressing MSCs (Ex-miR-133b+) exert amplified therapeutic effects. Rats subjected to 2 h of MCAO were intra-arterially injected with Ex-miR-133b+, exosomes from MSCs infected by blank vector (Ex-Con), or phosphate-buffered saline (PBS) and were sacrificed 28 days after MCAO. Compared with the PBS treatment, both exosome treatment groups exhibited significant improvement of functional recovery. Ex-miR-133b+ treatment significantly increased functional improvement and neurite remodeling/brain plasticity in the ischemic boundary area compared with the Ex-Con treatment. Treatment with Ex-miR-133b+ also significantly increased brain exosome content compared with Ex-Con treatment. To elucidate mechanisms underlying the enhanced therapeutic effects of Ex-miR-133b+, astrocytes cultured under oxygen- and glucose-deprived (OGD) conditions were incubated with exosomes harvested from naive MSCs (Ex-Naive), miR-133b downregulated MSCs (Ex-miR-133b-), and Ex-miR-133b+. Compared with the Ex-Naive treatment, Ex-miR-133b+ significantly increased exosomes released by OGD astrocytes, whereas Ex-miR-133b- significantly decreased the release. Also, exosomes harvested from OGD astrocytes treated with Ex-miR-133b+ significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons compared with the exosomes from OGD astrocytes subjected to Ex-Con. Our data suggest that exosomes harvested from miR-133b-overexpressing MSCs improve neural plasticity and functional recovery after stroke with a contribution from a stimulated secondary release of neurite-promoting exosomes from astrocytes.
Collapse
|
31
|
Castejón OJ. Ultrastructural Pathology of Oligodendroglial Cells in Traumatic and Hydrocephalic Human Brain Edema: A Review. Ultrastruct Pathol 2016; 39:359-68. [PMID: 26548433 DOI: 10.3109/01913123.2012.750408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Oligodendroglial cell changes in human traumatic brain injuries and hydrocephalus have been reviewed and compared with experimental brain edema. Resting unreactive oligodendrocytes, reactive oligodendrocytes, anoxic-ischemic oligodendrocytes, hyperthrophic phagocytic oligodendrocytes, and apoptotic oligodendrocytes are found. Anoxic-ischemic oligodendrocytes exhibit enlargement of endoplasmic reticulum, Golgi complex, and enlargement and disassembly of nuclear envelope. They appear in contact with degenerated myelinated axons. Hypertrophic phagocytic oligodendrocytes engulf degenerated myelinated axons exerting myelinolytic effects. A continuum oncotic and apoptotic cell death type leading to necrosis is observed. The vasogenic and cytotoxic components of brain edema are discussed in relation to oligodendroglial cell changes and reactivity.
Collapse
Affiliation(s)
- Orlando J Castejón
- a Biological Research Institute "Drs. Orlando Castejón and Haydée Viloria de Castejón," School of Medicine, Universidad del Zulia , Maracaibo , Venezuela
| |
Collapse
|
32
|
Catapano JS, John Hawryluk GW, Whetstone W, Saigal R, Ferguson A, Talbott J, Bresnahan J, Dhall S, Pan J, Beattie M, Manley G. Higher Mean Arterial Pressure Values Correlate with Neurologic Improvement in Patients with Initially Complete Spinal Cord Injuries. World Neurosurg 2016; 96:72-79. [PMID: 27565460 DOI: 10.1016/j.wneu.2016.08.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) guidelines recommend to maintain mean arterial pressures (MAPs) above 85 mm Hg for 7 days following SCI to minimize spinal cord ischemia. Some physicians doubt that patients with initially complete injuries benefit. OBJECTIVE To assess the relationship between MAP augmentation and neurologic improvement in SCI patients stratified by initial American Spinal Injury Association Impairment Scale (AIS) score. METHODS High-frequency MAP values of acute SCI patients admitted over a 6-year period were recorded, and values were correlated with degree of neurologic recovery in an analysis stratified by postresuscitation AIS score. RESULTS Sixty-two patients with SCI were analyzed. Thirty-three patients were determined to have complete injuries, and of those 11 improved at least 1 AIS grade by discharge. The average MAP of initially AIS A patients who improved versus those who did not was significantly higher (96.6 ± 0.07 mm Hg vs. 94.4 ± 0.06 mm Hg, respectively; P < 0.001), and the proportion of MAP values <85 mm Hg was significantly lower (13.5% vs. 25.6%, respectively; P < 0.001). A positive correlation between MAP values and outcome was also observed in AIS B and C patients but was not observed in patients who were initially AIS D. CONCLUSION A positive correlation was observed between MAP values and neurologic recovery in AIS A, B, and C patients but not AIS D patients. These data raise the possibility that patients with an initially complete SCI may derive greater benefit from MAP augmentation than patients with initial AIS D injuries.
Collapse
Affiliation(s)
| | - Gregory William John Hawryluk
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA; Brain and Spinal Cord Injury Center, University of California, San Francisco, California, USA; Department of Neurosurgery, University of California, San Francisco, California, USA.
| | - William Whetstone
- Department of Emergency Medicine, University of California, San Francisco, California, USA
| | - Rajiv Saigal
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | - Adam Ferguson
- Brain and Spinal Cord Injury Center, University of California, San Francisco, California, USA; Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Jason Talbott
- Department of Radiology, University of California, San Francisco, California, USA
| | - Jacqueline Bresnahan
- Brain and Spinal Cord Injury Center, University of California, San Francisco, California, USA; Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Sanjay Dhall
- Brain and Spinal Cord Injury Center, University of California, San Francisco, California, USA; Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Jonathan Pan
- Department of Anaesthesia, University of California, San Francisco, California, USA
| | - Michael Beattie
- Brain and Spinal Cord Injury Center, University of California, San Francisco, California, USA; Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Geoffrey Manley
- Brain and Spinal Cord Injury Center, University of California, San Francisco, California, USA; Department of Neurosurgery, University of California, San Francisco, California, USA
| |
Collapse
|
33
|
Toloue Pouya V, Hashemy SI, Shoeibi A, Nosrati Tirkani A, Tavallaie S, Zahedi Avval F, Soukhtanloo M, Mashkani BA, Hamidi Alamdari D. Serum Pro-Oxidant-Antioxidant Balance, Advanced Oxidized Protein Products (AOPP) and Protein Carbonyl in Patients With Stroke. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2016. [DOI: 10.17795/rijm38203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
34
|
Lange S. Peptidylarginine Deiminases as Drug Targets in Neonatal Hypoxic-Ischemic Encephalopathy. Front Neurol 2016; 7:22. [PMID: 26941709 PMCID: PMC4761975 DOI: 10.3389/fneur.2016.00022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/09/2016] [Indexed: 12/17/2022] Open
Abstract
Oxygen deprivation and infection are major causes of perinatal brain injury leading to cerebral palsy and other neurological disabilities. The identification of novel key factors mediating white and gray matter damage are crucial to allow better understanding of the specific contribution of different cell types to the injury processes and pathways for clinical intervention. Recent studies in the Rice-Vannucci mouse model of neonatal hypoxic ischemia (HI) have highlighted novel roles for calcium-regulated peptidylarginine deiminases (PADs) and demonstrated neuroprotective effects of pharmacological PAD inhibition following HI and synergistic infection mimicked by lipopolysaccharide stimulation.
Collapse
Affiliation(s)
- Sigrun Lange
- Department of Pharmacology, UCL School of Pharmacy, London, UK; Department of Biomedical Sciences, University of Westminster, London, UK
| |
Collapse
|
35
|
Ransom BR, Goldberg MP, Arai K, Baltan S. White Matter Pathophysiology. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Flint JJ, Menon K, Hansen B, Forder J, Blackband SJ. A Microperfusion and In-Bore Oxygenator System Designed for Magnetic Resonance Microscopy Studies on Living Tissue Explants. Sci Rep 2015; 5:18095. [PMID: 26666980 PMCID: PMC4678305 DOI: 10.1038/srep18095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/06/2015] [Indexed: 01/09/2023] Open
Abstract
Spectrometers now offer the field strengths necessary to visualize mammalian cells but were not designed to accommodate imaging of live tissues. As such, spectrometers pose significant challenges—the most evident of which are spatial limitations—to conducting experiments in living tissue. This limitation becomes problematic upon trying to employ commercial perfusion equipment which is bulky and—being designed almost exclusively for light microscopy or electrophysiology studies—seldom includes MR-compatibility as a design criterion. To overcome problems exclusive to ultra-high magnetic field environments with limited spatial access, we have designed microperfusion and in-bore oxygenation systems capable of interfacing with Bruker’s series of micro surface-coils. These devices are designed for supporting cellular resolution imaging in MR studies of excised, living tissue. The combined system allows for precise control of both dissolved gas and pH levels in the perfusate thus demonstrating applicability for a wide range of tissue types. Its compactness, linear architecture, and MR-compatible material content are key design features intended to provide a versatile hardware interface compatible with any NMR spectrometer. Such attributes will ensure the microperfusion rig’s continued utility as it may be used with a multitude of contemporary NMR systems in addition to those which are currently in development.
Collapse
Affiliation(s)
- Jeremy J Flint
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America.,McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Kannan Menon
- McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America.,Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Brian Hansen
- Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - John Forder
- Department of Radiology, University of Florida, Gainesville, Florida, United States of America
| | - Stephen J Blackband
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America.,McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America.,National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
37
|
Hawryluk G, Whetstone W, Saigal R, Ferguson A, Talbott J, Bresnahan J, Dhall S, Pan J, Beattie M, Manley G. Mean Arterial Blood Pressure Correlates with Neurological Recovery after Human Spinal Cord Injury: Analysis of High Frequency Physiologic Data. J Neurotrauma 2015; 32:1958-67. [PMID: 25669633 DOI: 10.1089/neu.2014.3778] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Current guidelines for the care of patients with acute spinal cord injuries (SCIs) recommend maintaining mean arterial pressure (MAP) values of 85-90 mm Hg for 7 days after an acute SCI however, little evidence supports this recommendation. We sought to better inform the relationship between MAP values and neurological recovery. A computer system automatically collected and stored q1 min physiological data from intensive care unit monitors on patients with SCI over a 6-year period. Data for 100 patients with acute SCI were collected. 74 of these patients had American Spinal Injury Association Impairment Scale (AIS) grades determined by physical examination on admission and at time of hospital discharge. Average MAP values as well as the proportion of MAP values below thresholds were explored for values from 120 mm Hg to 40 mm Hg in 1 mm Hg increments; the relationship between these measures and outcome was explored at various time points up to 30 days from the time of injury. A total of 994,875 q1 min arterial line blood pressure measurements were recorded for the included patients amid 1,688,194 min of recorded intensive care observations. A large proportion of measures were below 85 mm Hg despite generally acceptable average MAP values. Higher average MAP values correlated with improved recovery in the first 2-3 days after SCI while the proportion of MAP values below the accepted threshold of 85 mm Hg seemed a stronger correlate, decreasing in strength over the first 5-7 days after injury. This study provides strong evidence supporting a correlation between MAP values and neurological recovery. It does not, however, provide evidence of a causal relationship. Duration of hypotension may be more important than average MAP. It provides support for the notion of MAP thresholds in SCI recovery, and the highest MAP values correlated with the greatest degree of neurological recovery. The results are concordant with current guidelines in suggesting that MAP thresholds >85 mm Hg may be appropriate after acute SCI.
Collapse
Affiliation(s)
- Gregory Hawryluk
- 1 Department of Neurosurgery, University of Utah , Salt Lake City, Utah.,3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - William Whetstone
- 2 Department of Emergency Medicine, University of California , San Francisco, San Francisco, California
| | - Rajiv Saigal
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Adam Ferguson
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Jason Talbott
- 5 Department of Radiology, University of California , San Francisco, San Francisco, California
| | - Jacqueline Bresnahan
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Sanjay Dhall
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Jonathan Pan
- 6 Department of Anaesthesia, University of California , San Francisco, San Francisco, California
| | - Michael Beattie
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Geoffrey Manley
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| |
Collapse
|
38
|
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci 2015; 8:35. [PMID: 26283909 PMCID: PMC4515562 DOI: 10.3389/fnmol.2015.00035] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/06/2015] [Indexed: 12/28/2022] Open
Abstract
Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribute to the replacement of oligodendrocytes, however, the extent and quality of endogenous remyelination is suboptimal. Emerging evidence indicates that optimal remyelination is restricted by multiple factors including (i) low levels of factors that promote oligodendrogenesis; (ii) cell death among newly generated oligodendrocytes, (iii) inhibitory factors in the post-injury milieu that impede remyelination, and (iv) deficient expression of key growth factors essential for proper re-construction of a highly organized myelin sheath. Considering these challenges, over the past several years, a number of cell-based strategies have been developed to optimize remyelination therapeutically. Outcomes of these basic and preclinical discoveries are promising and signify the importance of remyelination as a mechanism for improving functions in CNS injuries. In this review, we provide an overview on: (1) the precise organization of myelinated axons and the reciprocal axo-myelin interactions that warrant properly balanced physiological activities within the CNS; (2) underlying cause of demyelination and the structural and functional consequences of demyelination in axons following injury and disease; (3) the endogenous mechanisms of oligodendrocyte replacement; (4) the modulatory role of reactive astrocytes and inflammatory cells in remyelination; and (5) the current status of cell-based therapies for promoting remyelination. Careful elucidation of the cellular and molecular mechanisms of demyelination in the pathologic CNS is a key to better understanding the impact of remyelination for CNS repair.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg MB, Canada
| | - Scott M Dyck
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg MB, Canada
| |
Collapse
|
39
|
The role of autophagy and lipolysis in survival of astrocytes under nutrient deprivation. Neurosci Lett 2015; 595:128-33. [PMID: 25888813 DOI: 10.1016/j.neulet.2015.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/03/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
Abstract
Astrocytes can survive nutrient deprivation (ND) for days. However, the pro-survival strategy of astrocytes under such a metabolic challenge is still not clear. In the present study, we examined the effects of inhibition of two potential steps in energy acquisition during ND: autophagy (using chloroquine) and lipolysis (using orlistat). The inhibition of autophagy did not show significant effects on cell viability until 8-9h of ND. From that point onwards, the number of dead cells gradually increased, reaching ∼60% between 10 and 12h of ND. In addition, early inhibition of autophagy made astrocytes more vulnerable to the latter ND. The inhibition of lipolysis decreased the viability of cells exposed to ND, but this appeared much later compared to the inhibition of autophagy. The application of orlistat prevented ND-related hyperpolarization of the mitochondrial membrane, and mitochondria became swollen. This study clearly shows that autophagy and lipolysis are essential for the survival of astrocytes under ND conditions, which might be related to their role as neuron-supporting cells.
Collapse
|
40
|
Taurine attenuates hippocampal and corpus callosum damage, and enhances neurological recovery after closed head injury in rats. Neuroscience 2015; 291:331-40. [DOI: 10.1016/j.neuroscience.2014.09.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/02/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
|
41
|
Chambers TW, Daly TP, Hockley A, Brown AM. Contribution of glycogen in supporting axon conduction in the peripheral and central nervous systems: the role of lactate. Front Neurosci 2014; 8:378. [PMID: 25505379 PMCID: PMC4243571 DOI: 10.3389/fnins.2014.00378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/05/2014] [Indexed: 11/25/2022] Open
Abstract
The role of glycogen in the central nervous system is intimately linked with the glycolytic pathway. Glycogen is synthesized from glucose, the primary substrate for glycolysis, and degraded to glucose-6-phosphate. The metabolic cost of shunting glucose via glycogen exceeds that of simple phosphorylation of glucose to glucose-6-phosphate by hexokinase; thus, there must be a metabolic advantage in utilizing this shunt pathway. The dogmatic view of glycogen as a storage depot persists, based on initial descriptions of glycogen supporting neural function in the face of aglycemia. The variable latency to conduction failure, dependent upon tissue glycogen levels, provided convincing evidence of the role played by glycogen in supporting neural function. Glycogen is located predominantly in astrocytes in the central nervous system, thus for glycogen to benefit neural elements, intercellular metabolic communication must exist in the form of astrocyte to neuron substrate transfer. Experimental evidence supports a model where glycogen is metabolized to lactate in astrocytes, with cellular expression of monocarboxylate transporters and enzymes appropriately located for lactate shuttling between astrocytes and neural elements, where lactate acts as a substrate for oxidative metabolism. Biosensor recordings have demonstrated a significant steady concentration of lactate present on the periphery of both central white matter and peripheral nerve under unstimulated baseline conditions, indicating continuous cellular efflux of lactate to the interstitium. The existence of this lactate pool argues we must reexamine the "on demand" shuttling of lactate between cellular elements, and suggests continuous lactate efflux surplus to immediate neural requirements.
Collapse
Affiliation(s)
- Tom W. Chambers
- School of Life Sciences, Queen's Medical Centre, University of NottinghamNottingham, UK
| | - Timothy P. Daly
- School of Life Sciences, Queen's Medical Centre, University of NottinghamNottingham, UK
| | - Adam Hockley
- School of Life Sciences, Queen's Medical Centre, University of NottinghamNottingham, UK
| | - Angus M. Brown
- School of Life Sciences, Queen's Medical Centre, University of NottinghamNottingham, UK
- Department of Neurology, University of WashingtonSeattle, WA, USA
| |
Collapse
|
42
|
Goncharenko K, Eftekharpour E, Velumian AA, Carlen PL, Fehlings MG. Changes in gap junction expression and function following ischemic injury of spinal cord white matter. J Neurophysiol 2014; 112:2067-75. [PMID: 25080569 DOI: 10.1152/jn.00037.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gap junctions are widely present in spinal cord white matter; however, their role in modulating the dynamics of axonal dysfunction remains largely unexplored. We hypothesized that inhibition of gap junctions reduces the loss of axonal function during oxygen and glucose deprivation (OGD). The functional role of gap junctions was assessed by electrophysiological recordings of compound action potentials (CAPs) in Wistar rat spinal cord slices with the sucrose gap technique. The in vitro slices were subjected to 30-min OGD. Gap junction connexin (Cx) mRNA expression was determined by qPCR and normalized to β-actin. A 30-min OGD resulted in reduction of CAPs to 14.8 ± 4.6% of their pre-OGD amplitude (n = 5). In the presence of gap junction blockers carbenoxolone (Cbx; 100 μM) and 1-octanol (Oct; 300 μM), the CAP reduction in OGD was to only 35.7 ± 5.7% of pre-OGD amplitude in Cbx (n = 9) and to 37.4 ± 8.9% of pre-OGD amplitude in Oct (n = 10). Both drugs also noticeably prolonged the half-decline time of CAP amplitudes in OGD from 6.0 min in no-drug conditions to 9.6 min in the presence of Cbx and to 7.7 min in the presence of Oct, suggesting that blocking gap junctions reduces conduction loss during OGD. With application of Cbx and Oct in the setting of OGD, expression of Cx30 and Cx43 mRNA was downregulated. Our data provide new insights into the role of gap junctions in white matter ischemia and reveal the necessity of a cautious approach in determining detrimental or beneficial effects of gap junction blockade in white matter ischemia.
Collapse
Affiliation(s)
- Karina Goncharenko
- Division of Neurosurgery and Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada; Departments of Physiology and
| | - Eftekhar Eftekharpour
- Division of Neurosurgery and Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander A Velumian
- Division of Neurosurgery and Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada; Departments of Physiology and Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Peter L Carlen
- Division of Neurosurgery and Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada; Departments of Physiology and
| | - Michael G Fehlings
- Division of Neurosurgery and Division of Genetics and Development, Toronto Western Research Institute, Krembil Neuroscience Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada; Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Volman V, Ng LJ. Primary paranode demyelination modulates slowly developing axonal depolarization in a model of axonal injury. J Comput Neurosci 2014; 37:439-57. [PMID: 24986633 DOI: 10.1007/s10827-014-0515-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 01/12/2023]
Abstract
Neurological sequelae of mild traumatic brain injury are associated with the damage to white matter myelinated axons. In vitro models of axonal injury suggest that the progression to pathological ruin is initiated by the mechanical damage to tetrodotoxin-sensitive voltage-gated sodium channels that breaches the ion balance through alteration in kinetic properties of these channels. In myelinated axons, sodium channels are concentrated at nodes of Ranvier, making these sites vulnerable to mechanical injury. Nodal damage can also be inflicted by injury-induced partial demyelination of paranode/juxtaparanode compartments that flank the nodes and contain high density of voltage-gated potassium channels. Demyelination-induced potassium deregulation can further aggravate axonal damage; however, the role of paranode/juxtaparanode demyelination in immediate impairment of axonal function, and its contribution to the development of axonal depolarization remain elusive. A biophysically realistic computational model of myelinated axon that incorporates ion exchange mechanisms and nodal/paranodal/juxtaparanodal organization was developed and used to study the impact of injury-induced demyelination on axonal signal transmission. Injured axons showed alterations in signal propagation that were consistent with the experimental findings and with the notion of reduced axonal excitability immediately post trauma. Injury-induced demyelination strongly modulated the rate of axonal depolarization, suggesting that trauma-induced damage to paranode myelin can affect axonal transition to degradation. Results of these studies clarify the contribution of paranode demyelination to immediate post trauma alterations in axonal function and suggest that partial paranode demyelination should be considered as another "injury parameter" that is likely to determine the stability of axonal function.
Collapse
Affiliation(s)
- Vladislav Volman
- L-3 Applied Technologies/Simulation, Engineering, & Testing, 10770 Wateridge Circle, Suite 200, San Diego, CA, 92121, USA,
| | | |
Collapse
|
44
|
Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK, Tetzlaff W. Remyelination after spinal cord injury: Is it a target for repair? Prog Neurobiol 2014; 117:54-72. [DOI: 10.1016/j.pneurobio.2014.02.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 12/12/2022]
|
45
|
Lange S, Rocha-Ferreira E, Thei L, Mawjee P, Bennett K, Thompson PR, Subramanian V, Nicholas AP, Peebles D, Hristova M, Raivich G. Peptidylarginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. J Neurochem 2014; 130:555-62. [PMID: 24762056 PMCID: PMC4185393 DOI: 10.1111/jnc.12744] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/07/2014] [Accepted: 04/22/2014] [Indexed: 11/29/2022]
Abstract
Neonatal hypoxic ischaemic (HI) injury frequently causes neural impairment in surviving infants. Our knowledge of the underlying molecular mechanisms is still limited. Protein deimination is a post-translational modification caused by Ca+2-regulated peptidylarginine deiminases (PADs), a group of five isozymes that display tissue-specific expression and different preference for target proteins. Protein deimination results in altered protein conformation and function of target proteins, and is associated with neurodegenerative diseases, gene regulation and autoimmunity. In this study, we used the neonatal HI and HI/infection [lipopolysaccharide (LPS) stimulation] murine models to investigate changes in protein deimination. Brains showed increases in deiminated proteins, cell death, activated microglia and neuronal loss in affected brain areas at 48 h after hypoxic ischaemic insult. Upon treatment with the pan-PAD inhibitor Cl-amidine, a significant reduction was seen in microglial activation, cell death and infarct size compared with control saline or LPS-treated animals. Deimination of histone 3, a target protein of the PAD4 isozyme, was increased in hippocampus and cortex specifically upon LPS stimulation and markedly reduced following Cl-amidine treatment. Here, we demonstrate a novel role for PAD enzymes in neural impairment in neonatal HI Encephalopathy, highlighting their role as promising new candidates for drug-directed intervention in neurotrauma. Hypoxic Ischaemic Insult (HI) results in activation of peptidylarginine deiminases (PADs) because of calcium dysregulation. Target proteins undergo irreversible changes of protein bound arginine to citrulline, resulting in protein misfolding. Infection in synergy with HI causes up-regulation of TNFα, nuclear translocation of PAD4 and change in gene regulation as a result of histone deimination. Pharmacological PAD inhibition significantly reduced HI brain damage.
Collapse
Affiliation(s)
- Sigrun Lange
- UCL Institute for Women's Health, Maternal & Fetal Medicine, Perinatal Brain Repair Group, London, UK; UCL School of Pharmacy, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cognat E, Cleophax S, Domenga-Denier V, Joutel A. Early white matter changes in CADASIL: evidence of segmental intramyelinic oedema in a pre-clinical mouse model. Acta Neuropathol Commun 2014; 2:49. [PMID: 24886907 PMCID: PMC4035092 DOI: 10.1186/2051-5960-2-49] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 01/28/2023] Open
Abstract
Introduction Small vessel disease (SVD) of the brain is a leading cause of age- and hypertension-related cognitive decline and disability. Cerebral white matter changes are a consistent manifestation of SVD on neuroimaging, progressing silently for many years before becoming clinically evident. The pathogenesis of these changes remains poorly understood, despite their importance. In particular, their pathological correlate at early stages remains largely undefined. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), caused by dominant mutations of the NOTCH3 receptor, is regarded as a paradigm for the most common form of sporadic SVD. In this study, we used immunohistochemistry, confocal microscopy and electron microscopy, together with qualitative and quantitative analyses to assess oligodendroglial, axon and myelin damage in TgPAC-Notch3R169C mice, a model of preclinical CADASIL. Results The principal cerebral white matter changes in TgPAC-Notch3R169C mice are microvacuoles (≤1 μm diameter) in the myelin sheaths associated with focal myelin degradation and occurring in the absence of oligodendrocyte loss. Half the damaged myelin sheaths still contain an apparently intact axon. Clearance of myelin debris appears inefficient, as demonstrated by the significant but mild microglial reaction, with occasional myelin debris either contacted or internalized by microglial cells. Conclusion Our findings suggest that segmental intramyelinic oedema is an early, conspicuous white matter change in CADASIL. Brain white matter intramyelinic oedema is consistently found in patients and mouse models with compromised ion and water homeostasis. These data provide a starting point for novel mechanistic studies to investigate the pathogenesis of SVD-related white matter changes. Electronic supplementary material The online version of this article (doi:10.1186/2051-5960-2-49) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Yu Y, Zhang K, Zhang L, Zong H, Meng L, Han R. Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults. Hippokratia 2014. [DOI: 10.1002/14651858.cd010947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yun Yu
- Beijing Tiantan Hospital, Capital Medical University; Department of Anesthesiology; No.6 Tiantan Xili Beijing China 100050
| | - Kaiying Zhang
- Beijing Tiantan Hospital, Capital Medical University; Department of Anesthesiology; No.6 Tiantan Xili Beijing China 100050
| | - Ling Zhang
- School of Public Health, Capital Medical University; Department of Epidemiology and Biostatistics; No. 129 Mail Box, No. 10 Xitoutiao, Youanmenwai Beijing China 100069
| | - Huantao Zong
- Beijing Tiantan Hospital, Capital Medical University; Department of Urology; No.6 Tiantan Xili Beijing China 100050
| | - Lingzhong Meng
- University of California San Francisco; Department of Anesthesia and Perioperative Care; 521 Parnassus Avenue, Room C-450 San Francisco California USA 94143
| | - Ruquan Han
- Beijing Tiantan Hospital, Capital Medical University; Department of Anesthesiology; No.6 Tiantan Xili Beijing China 100050
| |
Collapse
|
48
|
Liang X, Tang Y, Duan L, Cheng S, Luo L, Cao X, Tu B. Adverse effect of sub-chronic exposure to benzo(a)pyrene and protective effect of butylated hydroxyanisole on learning and memory ability in male Sprague-Dawley rat. J Toxicol Sci 2014; 39:739-48. [DOI: 10.2131/jts.39.739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xiao Liang
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Yan Tang
- Department of Occupational and Environmental Medicine, School of Public Health, Luzhou Medical College
| | - Li Duan
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Shuqun Cheng
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Long Luo
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Xianqing Cao
- Experiment center, School of Public Health, Chongqing Medical University
| | - Baijie Tu
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| |
Collapse
|
49
|
Oligogenesis and oligodendrocyte progenitor maturation vary in different brain regions and partially correlate with local angiogenesis after ischemic stroke. Transl Stroke Res 2013; 2:366-75. [PMID: 22022343 DOI: 10.1007/s12975-011-0078-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oligogenesis plays an important role in functional recovery after ischemic stroke. We tested the hypothesis that oligogenesis and the maturation of oligodendrocyte progenitor cells (OPCs) vary in different brain regions using a rat transient middle cerebral artery occlusion (tMCAO) model. Compared to Day 1, olig2(+) OPCs and oligodendrocytes (OLGs) increased in the peri-infarct basal ganglia (BG) 7 (44%) and 14 (61%) days after 2 hours of MCAO; OPCs (PDGFRα(+)) and OLGs (CC1(+)) increased in this region 14 days after tMCAO by 139% and 126%, respectively. Although the olig2(+) cells and OLGs did not increase significantly in the peri-infarct cortex (CTX), the OPCs increased in this region by 95% at Day 14 vs. Day 1 after tMCAO. The numbers of OPCs and OLGs remained low after an initial reduction at Day 1 in the peri-infarct corpus callosum (CC). Correlation analyses showed that the numbers of olig2(+) cells (r=0.73, P=0.03) and OLGs (r=0.74, P=0.02) correlated with local vessel density; however, the number of OPCs did not correlate with vessel density (r=0.43, P=0.24). Our data show that oligogenesis and the maturation of OPCs differ in various brain regions and the difference in regional angiogenic response is one of the potential reasons.
Collapse
|
50
|
Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2013; 114:25-57. [PMID: 24269804 DOI: 10.1016/j.pneurobio.2013.11.002] [Citation(s) in RCA: 546] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of individuals each year. Over the past decades an enormous progress has been made in our understanding of the molecular and cellular events generated by SCI, providing insights into crucial mechanisms that contribute to tissue damage and regenerative failure of injured neurons. Current treatment options for SCI include the use of high dose methylprednisolone, surgical interventions to stabilize and decompress the spinal cord, and rehabilitative care. Nonetheless, SCI is still a harmful condition for which there is yet no cure. Cellular, molecular, rehabilitative training and combinatorial therapies have shown promising results in animal models. Nevertheless, work remains to be done to ascertain whether any of these therapies can safely improve patient's condition after human SCI. This review provides an extensive overview of SCI research, as well as its clinical component. It starts covering areas from physiology and anatomy of the spinal cord, neuropathology of the SCI, current clinical options, neuronal plasticity after SCI, animal models and techniques to assess recovery, focusing the subsequent discussion on a variety of promising neuroprotective, cell-based and combinatorial therapeutic approaches that have recently moved, or are close, to clinical testing.
Collapse
Affiliation(s)
- Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|