1
|
Yepes MF, Hoffer ME, Chiossone JA, Soejima N, King CS, Rajguru SM. Noninvasive Targeted Temperature Management of the Inner Ear: Numerical Simulations and Experimental Measurements in a Human Cadaver Model. Otol Neurotol 2025:00129492-990000000-00751. [PMID: 40014301 DOI: 10.1097/mao.0000000000004476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
HYPOTHESIS Mild therapeutic hypothermia (MTH) could be delivered to the human inner ear using a localized, noninvasive approach to achieve protective temperature reductions without systemic side effects. BACKGROUND MTH has demonstrated protective effects in the cochlea following injuries such as device implantation, ototoxicity, and noise overexposure. It targets key cellular mechanisms, including proinflammatory pathways, oxidative stress, pyroptosis, and apoptosis. However, systemic and invasive methods for MTH carry risks and are less practical for broader clinical applications. Developing a localized, noninvasive approach could offer a safer, more accessible solution for hearing preservation after cochlear injury. METHODS Cadaveric middle and inner ear structures, maintained near physiological conditions, were used to test a custom-designed cooling gel pack (ReBound) placed externally on the temporal bone. Temperature changes were recorded over 60 or 30 minutes. To complement experimental findings, three-dimensional geometrical models were created from imaging data, and finite element heat transfer analysis simulated temperature changes across inner ear structures. RESULTS With external gel pack application, inner ear temperatures dropped by 2.9°C within 30 minutes and 4.6°C within 60 minutes. Cooling persisted for 10 minutes post-device removal. Numerical modeling corroborated these findings, indicating average temperature reductions of 2°C to 4°C. Biological sex differences were observed in cooling efficiency and overall temperature drop. CONCLUSION This study demonstrates that localized, noninvasive MTH can effectively reduce inner ear temperatures to therapeutically relevant levels. These findings support a promising, clinically translatable approach for protecting cochlear structure and function after injury, with minimal systemic risks.
Collapse
Affiliation(s)
| | - Michael E Hoffer
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | - Juan Armando Chiossone
- Department of Otolaryngology, University of Miami-Miller School of Medicine, Miami, Florida
| | | | | | | |
Collapse
|
2
|
Davis JA, Grau JW. Protecting the injured central nervous system: Do anesthesia or hypothermia ameliorate secondary injury? Exp Neurol 2023; 363:114349. [PMID: 36775099 DOI: 10.1016/j.expneurol.2023.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Traumatic injury to the central nervous system (CNS) and stroke initiate a cascade of processes that expand the area of tissue loss. The current review considers recent studies demonstrating that the induction of an anesthetic state or cooling the affected tissue (hypothermia) soon after injury can have a therapeutic effect. We first provide an overview of the neurobiological processes that fuel tissue loss after traumatic brain injury (TBI), spinal cord injury (SCI) and stroke. We then examine the rehabilitative effectiveness of therapeutic anesthesia across a variety of drug categories through a systematic review of papers in the PubMed database. We also review the therapeutic benefits hypothermia, another treatment that quells neural activity. We conclude by considering factors related to the safety, efficacy and timing of treatment, as well as the mechanisms of action. Clinical implications are also discussed.
Collapse
Affiliation(s)
- Jacob A Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Sangaletti R, Tamames I, Yahn SL, Choi JS, Lee JK, King C, Rajguru SM. Mild therapeutic hypothermia protects against inflammatory and proapoptotic processes in the rat model of cochlear implant trauma. Hear Res 2023; 428:108680. [PMID: 36586170 PMCID: PMC9840707 DOI: 10.1016/j.heares.2022.108680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mild therapeutic hypothermia (MTH) has been demonstrated to prevent residual hearing loss from surgical trauma associated with cochlear implant (CI) insertion. Here, we aimed to characterize the mechanisms of MTH-induced hearing preservation in CI in a well-established preclinical rodent model. APPROACH Rats were divided into four experimental conditions: MTH-treated and implanted cochleae, cochleae implanted under normothermic conditions, MTH only cochleae and un-operated cochleae (controls). Auditory brainstem responses (ABRs) were recorded at different time points (up to 84 days) to confirm long-term protection and safety of MTH locally applied to the cochlea for 20 min before and after implantation. Transcriptome sequencing profiling was performed on cochleae harvested 24 h post CI and MTH treatment to investigate the potential beneficial effects and underlying active gene expression pathways targeted by the temperature management. RESULTS MTH treatment preserved residual hearing up to 3 months following CI when compared to the normothermic CI group. In addition, MTH applied locally to the cochleae using our surgical approach was safe and did not affect hearing in the long-term. Results of RNA sequencing analysis highlight positive modulation of signaling pathways and gene expression associated with an activation of cellular inflammatory and immune responses against the mechanical damage caused by electrode insertion. SIGNIFICANCE These data suggest that multiple and possibly independent molecular pathways play a role in the protection of residual hearing provided by MTH against the trauma of cochlear implantation.
Collapse
Affiliation(s)
- Rachele Sangaletti
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA
| | - Ilmar Tamames
- Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA
| | - Stephanie Lynn Yahn
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - James Seungyeon Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | | | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Siwicka-Gieroba D, Robba C, Gołacki J, Badenes R, Dabrowski W. Cerebral Oxygen Delivery and Consumption in Brain-Injured Patients. J Pers Med 2022; 12:1763. [PMID: 36573716 PMCID: PMC9698645 DOI: 10.3390/jpm12111763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/30/2022] Open
Abstract
Organism survival depends on oxygen delivery and utilization to maintain the balance of energy and toxic oxidants production. This regulation is crucial to the brain, especially after acute injuries. Secondary insults after brain damage may include impaired cerebral metabolism, ischemia, intracranial hypertension and oxygen concentration disturbances such as hypoxia or hyperoxia. Recent data highlight the important role of clinical protocols in improving oxygen delivery and resulting in lower mortality in brain-injured patients. Clinical protocols guide the rules for oxygen supplementation based on physiological processes such as elevation of oxygen supply (by mean arterial pressure (MAP) and intracranial pressure (ICP) modulation, cerebral vasoreactivity, oxygen capacity) and reduction of oxygen demand (by pharmacological sedation and coma or hypothermia). The aim of this review is to discuss oxygen metabolism in the brain under different conditions.
Collapse
Affiliation(s)
- Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Chiara Robba
- Department of Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Jakub Gołacki
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University in Lublin, 20-954 Lublin, Poland
| |
Collapse
|
5
|
Inflammatory Predictors of Prognosis in Patients with Traumatic Cerebral Haemorrhage: Retrospective Study. J Clin Med 2022; 11:jcm11030705. [PMID: 35160155 PMCID: PMC8837134 DOI: 10.3390/jcm11030705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 01/04/2023] Open
Abstract
We aimed to evaluate the relationship between neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), lymphocyte to monocyte ratio (LMR), systemic inflammation index (SII), and Glasgow Coma Scale (GCS) score in patients with traumatic intracerebral haemorrhage (TICH). We retrospectively investigated 95 patients with TICH hospitalised at the Neurosurgery Department in Zielona Gora from January 2017 to March 2021. Routine blood tests were performed 5 h after injury. NRL and SII were significantly higher in patients with GCS ≤ 8 than patients with GCS > 8 and exceeded reference values in 95% of patients. GCS was inversely correlated with NLR and SII. Receiver operating characteristic (ROC) analysis confirmed the value of NLR and SII regarding GCS score; Area Under the Curve (AUC) 0.748, 95% Confidence Interval (CI) 0.615–0.880. An optimised NLR cut-off value of 0.154 was identified with a sensitivity of 0.90 and specificity of 0.56. The value of SII regarding GCS was confirmed with ROC curves; AUC 0.816, 95% CI 0.696–0.935. An optimised NLR cut-off value of 0.118 was identified with a sensitivity of 0.95 and specificity of 0.57. NLR and SII are significantly related to GCS scores and are promising predictors of clinical prognosis in TICH patients.
Collapse
|
6
|
Marini CP, McNelis J, Petrone P. Multimodality Monitoring and Goal-Directed Therapy for the Treatment of Patients with Severe Traumatic Brain Injury: A Review for the General and Trauma Surgeon. Curr Probl Surg 2021; 59:101070. [DOI: 10.1016/j.cpsurg.2021.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
|
7
|
Marini CP, McNelis J, Petrone P. In Brief. Curr Probl Surg 2021. [DOI: 10.1016/j.cpsurg.2021.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Sharma AA, Nenert R, Mueller C, Maudsley AA, Younger JW, Szaflarski JP. Repeatability and Reproducibility of in-vivo Brain Temperature Measurements. Front Hum Neurosci 2020; 14:598435. [PMID: 33424566 PMCID: PMC7785722 DOI: 10.3389/fnhum.2020.598435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Magnetic resonance spectroscopic imaging (MRSI) is a neuroimaging technique that may be useful for non-invasive mapping of brain temperature (i.e., thermometry) over a large brain volume. To date, intra-subject reproducibility of MRSI-based brain temperature (MRSI-t) has not been investigated. The objective of this repeated measures MRSI-t study was to establish intra-subject reproducibility and repeatability of brain temperature, as well as typical brain temperature range. Methods: Healthy participants aged 23-46 years (N = 18; 7 females) were scanned at two time points ~12-weeks apart. Volumetric MRSI data were processed by reconstructing metabolite and water images using parametric spectral analysis. Brain temperature was derived using the frequency difference between water and creatine (TCRE) for 47 regions of interest (ROIs) delineated by the modified Automated Anatomical Labeling (AAL) atlas. Reproducibility was measured using the coefficient of variation for repeated measures (COVrep), and repeatability was determined using the standard error of measurement (SEM). For each region, the upper and lower bounds of Minimal Detectable Change (MDC) were established to characterize the typical range of TCRE values. Results: The mean global brain temperature over all subjects was 37.2°C with spatial variations across ROIs. There was a significant main effect for time [F (1, 1,591) = 37.0, p < 0.0001] and for brain region [F (46, 1,591) = 2.66, p < 0.0001]. The time*brain region interaction was not significant [F (46, 1,591) = 0.80, p = 0.83]. Participants' TCRE was stable for each ROI across both time points, with ROIs' COVrep ranging from 0.81 to 3.08% (mean COVrep = 1.92%); majority of ROIs had a COVrep <2.0%. Conclusions: Brain temperature measurements were highly consistent between both time points, indicating high reproducibility and repeatability of MRSI-t. MRSI-t may be a promising diagnostic, prognostic, and therapeutic tool for non-invasively monitoring brain temperature changes in health and disease. However, further studies of healthy participants with larger sample size(s) and numerous repeated acquisitions are imperative for establishing a reference range of typical brain TCRE, as well as the threshold above which TCRE is likely pathological.
Collapse
Affiliation(s)
- Ayushe A. Sharma
- Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, United States
| | - Rodolphe Nenert
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, United States
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Christina Mueller
- Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Andrew A. Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jarred W. Younger
- Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| | - Jerzy P. Szaflarski
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, United States
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
- Department of Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
9
|
Lewis SR, Baker PE, Andrews PJ, Cheng A, Deol K, Hammond N, Saxena M. Interventions to reduce body temperature to 35 ⁰C to 37 ⁰C in adults and children with traumatic brain injury. Cochrane Database Syst Rev 2020; 10:CD006811. [PMID: 33126293 PMCID: PMC8094748 DOI: 10.1002/14651858.cd006811.pub4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of death and disability, with an estimated 5.5 million people experiencing severe TBI worldwide every year. Observational clinical studies of people with TBI suggest an association between raised body temperature and unfavourable outcome, although this relationship is inconsistent. Additionally, preclinical models suggest that reducing temperature to 35 °C to 37.5 °C improves biochemical and histopathological outcomes compared to reducing temperature to a lower threshold of 33 °C to 35 °C. It is unknown whether reducing body temperature to 35 °C to 37.5 °C in people admitted to hospital with TBI is beneficial, has no effect, or causes harm. This is an update of a review last published in 2014. OBJECTIVES To assess the effects of pharmacological interventions or physical interventions given with the intention of reducing body temperature to 35 °C to 37.5 °C in adults and children admitted to hospital after TBI. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Web of Science, and PubMed on 28 November 2019. We searched clinical trials registers, grey literature and references lists of reviews, and we carried out forward citation searches of included studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) with participants of any age admitted to hospital following TBI. We included interventions that aimed to reduce body temperature to 35 °C to 37.5 °C: these included pharmacological interventions (such as paracetamol, or non-steroidal anti-inflammatory drugs), or physical interventions (such as surface cooling devices, bedside fans, or cooled intravenous fluids). Eligible comparators were placebo or usual care. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data, and assessed risks of bias. We assessed the certainty of the evidence with GRADE. MAIN RESULTS We included one RCT with 41 participants. This study recruited adult participants admitted to two intensive care units in Australia, and evaluated a pharmacological intervention. Researchers gave participants 1 g paracetamol or a placebo intravenously at four-hourly intervals for 72 hours. We could not be certain whether intravenous paracetamol influenced mortality at 28 days (risk ratio 2.86, 95% confidence interval 0.32 to 25.24). We judged the evidence for this outcome to be very low certainty, meaning we have very little confidence in this effect estimate, and the true result may be substantially different to this effect. We downgraded the certainty for imprecision (because the evidence was from a single study with very few participants), and study limitations (because we noted a high risk of selective reporting bias). This study was otherwise at low risk of bias. The included study did not report the primary outcome for this review, which was the number of people with a poor outcome at the end of follow-up (defined as death or dependency, as measured on a scale such as the Glasgow Outcome Score), or any of our secondary outcomes, which included the number of people with further intracranial haemorrhage, extracranial haemorrhage, abnormal intracranial pressure, or pneumonia or other serious infections. The only other completed trial that we found was of a physical intervention that compared advanced fever control (using a surface cooling device) versus conventional fever control in 12 participants. The trial was published as an abstract only, with insufficient details to allow inclusion, so we have added this to the 'studies awaiting classification' section, pending further information from the study authors or publication of the full study report. We identified four ongoing studies that will contribute evidence to future updates of the review if they measure relevant outcomes and, in studies with a mixed population, report data separately for participants with TBI. AUTHORS' CONCLUSIONS One small study contributed very low-certainty evidence for mortality to this review. The uncertainty is largely driven by limited research into reduction of body temperature to 35 °C to 37.5 °C in people with TBI. Further research that evaluates pharmacological or physical interventions, or both, may increase certainty in this field. We propose that future updates of the review, and ongoing and future research in this field, incorporate outcomes that are important to the people receiving the interventions, including side effects of any pharmacological agent (e.g. nausea or vomiting), and discomfort caused by physical therapies.
Collapse
Affiliation(s)
- Sharon R Lewis
- Lancaster Patient Safety Research Unit, Royal Lancaster Infirmary, Lancaster, UK
| | - Philip E Baker
- Academic Centre, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Peter Jd Andrews
- Intensive Care & Pain Medicine, University of Edinburgh, Lead Clinician, Critical Care Services, Western General Hospital, LUHD, Edinburgh, UK
| | - Andrew Cheng
- Intensive Care Unit, St George Hospital, Sydney, Australia
| | - Kiran Deol
- Intensive Care Unit, St George Hospital, Sydney, Australia
| | - Naomi Hammond
- Critical Care and Trauma Division, The George Institute for Global Health, Sydney, Australia
| | - Manoj Saxena
- Intensive Care Unit, St George Hospital, Sydney, Australia
| |
Collapse
|
10
|
Gallagher MJ, Hogg FRA, Kearney S, Kopp MA, Blex C, Serdani L, Sherwood O, Schwab JM, Zoumprouli A, Papadopoulos MC, Saadoun S. Effects of local hypothermia-rewarming on physiology, metabolism and inflammation of acutely injured human spinal cord. Sci Rep 2020; 10:8125. [PMID: 32415143 PMCID: PMC7229228 DOI: 10.1038/s41598-020-64944-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
In five patients with acute, severe thoracic traumatic spinal cord injuries (TSCIs), American spinal injuries association Impairment Scale (AIS) grades A-C, we induced cord hypothermia (33 °C) then rewarming (37 °C). A pressure probe and a microdialysis catheter were placed intradurally at the injury site to monitor intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), tissue metabolism and inflammation. Cord hypothermia-rewarming, applied to awake patients, did not cause discomfort or neurological deterioration. Cooling did not affect cord physiology (ISP, SCPP), but markedly altered cord metabolism (increased glucose, lactate, lactate/pyruvate ratio (LPR), glutamate; decreased glycerol) and markedly reduced cord inflammation (reduced IL1β, IL8, MCP, MIP1α, MIP1β). Compared with pre-cooling baseline, rewarming was associated with significantly worse cord physiology (increased ICP, decreased SCPP), cord metabolism (increased lactate, LPR; decreased glucose, glycerol) and cord inflammation (increased IL1β, IL8, IL4, IL10, MCP, MIP1α). The study was terminated because three patients developed delayed wound infections. At 18-months, two patients improved and three stayed the same. We conclude that, after TSCI, hypothermia is potentially beneficial by reducing cord inflammation, though after rewarming these benefits are lost due to increases in cord swelling, ischemia and inflammation. We thus urge caution when using hypothermia-rewarming therapeutically in TSCI.
Collapse
Affiliation(s)
- Mathew J Gallagher
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Florence R A Hogg
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Siobhan Kearney
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Marcel A Kopp
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health, QUEST-Center for Transforming Biomedical Research, Berlin, Germany
| | - Christian Blex
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Leonarda Serdani
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Oliver Sherwood
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Jan M Schwab
- Clinical and Experimental Spinal Cord Injury Research (Neuroparaplegiology), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Belford Center for Spinal Cord Injury, Departments of Neurology, Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA
| | - Argyro Zoumprouli
- Neuro-Anaesthesia and Neuro-Intensive Care Unit, St. George's Hospital, London, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - Samira Saadoun
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK.
| |
Collapse
|
11
|
Dugan EA, Bennett C, Tamames I, Dietrich WD, King CS, Prasad A, Rajguru SM. Therapeutic hypothermia reduces cortical inflammation associated with utah array implants. J Neural Eng 2020; 17:026035. [PMID: 32240985 DOI: 10.1088/1741-2552/ab85d2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Neuroprosthetics hold tremendous promise to restore function through brain-computer interfaced devices. However, clinical applications of implantable microelectrodes remain limited given the challenges of maintaining neuronal signals for extended periods of time and with multiple biological mechanisms negatively affecting electrode performance. Acute and chronic inflammation, oxidative stress, and blood brain barrier disruption contribute to inconsistent electrode performance. We hypothesized that therapeutic hypothermia (TH) applied at the microelectrode insertion site will positively modulate both inflammatory and apoptotic pathways, promoting neuroprotection and improved performance in the long-term. APPROACH A custom device and thermoelectric system were designed to deliver controlled TH locally to the cortical implant site at the time of microelectrode array insertion and immediately following surgery. The TH paradigm was derived from in vivo cortical temperature measurements and finite element modeling of temperature distribution profiles in the cortex. Male Sprague-Dawley rats were implanted with non-functional Utah microelectrodes arrays (UMEA) consisting of 4 × 4 grid of 1.5 mm long parylene-coated silicon shanks. In one group, TH was applied to the implant site for two hours following the UMEA implantation, while the other group was implanted under normothermic conditions without treatment. At 48 h, 72 h, 7 d and 14 d post-implantation, mRNA expression levels for genes associated with inflammation and apoptosis were compared between normothermic and hypothermia-treated groups. MAIN RESULTS The custom system delivered controlled TH to the cortical implant site and the numerical models confirmed that the temperature decrease was confined locally. Furthermore, a one-time application of TH post UMEA insertion significantly reduced the acute inflammatory response with a reduction in the expression of inflammatory regulating cytokines and chemokines. SIGNIFICANCE This work provides evidence that acutely applied hypothermia is effective in significantly reducing acute inflammation post intracortical electrode implantation.
Collapse
Affiliation(s)
- Elizabeth A Dugan
- Department of Biomedical Engineering, University of Miami, FL, United States of America
| | | | | | | | | | | | | |
Collapse
|
12
|
Singh J, Barrett J, Sangaletti R, Dietrich WD, Rajguru SM. Additive Protective Effects of Delayed Mild Therapeutic Hypothermia and Antioxidants on PC12 Cells Exposed to Oxidative Stress. Ther Hypothermia Temp Manag 2020; 11:77-87. [PMID: 32302519 DOI: 10.1089/ther.2019.0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mild therapeutic hypothermia is protective against several cellular stresses, but the mechanisms underlying this protection are not completely resolved. In the present study, we used an in vitro model to investigate whether therapeutic hypothermia at 33°C applied following a peroxide-induced oxidative stress would protect PC12 cells. A 1-hour exposure to tert-butyl peroxide increased cell death measured 24 hours later. This cell death was dose-dependent in the range of 100-1000 μM tert-butyl peroxide with ∼50% cell death observed at 24 hours from 500 μM peroxide exposure. Cell survival/death was measured with an alamarBlue viability assay, and propidium iodide/Hoechst imaging for counts of living and dead cells. Therapeutic hypothermia at 33°C applied for 2 hours postperoxide exposure significantly increased cell survival measured 24 hours postperoxide-induced stress. This protection was present even when delayed hypothermia, 15 minutes after the peroxide washout, was applied. Addition of any of the three FDA-approved antioxidants (Tempol, EUK134, Edaravone at 100 μM) in combination with hypothermia improved cell survival. With the therapeutic hypothermia treatment, a significant downregulation of caspases-3 and -8 and tumor necrosis factor-α was observed at 3 and 24 hours poststress. Consistent with this, a cell-permeable pan-caspase inhibitor Z-VAD-FMK applied in combination with hypothermia significantly increased cell survival. Overall, these results suggest that the antioxidants quenching of reactive oxygen species likely works with hypothermia to reduce mitochondrial damage and/or apoptotic mechanisms. Further studies are required to confirm and extend these results to other cell types, including neuronal cells, and other forms of oxidative stress as well as to optimize the critical parameters of hypothermia treatment such as target temperature and duration.
Collapse
Affiliation(s)
- Jayanti Singh
- Department of Otolaryngology, University of Miami, Miami, Florida, USA
| | - John Barrett
- Department of Physiology and Biophysics, University of Miami, Miami, Florida, USA
| | | | - W Dalton Dietrich
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA.,Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, Florida, USA.,Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| |
Collapse
|
13
|
Abstract
We review state-of-the-art monitoring techniques for acute, severe traumatic spinal cord injury (TSCI) to facilitate targeted perfusion of the injured cord rather than applying universal mean arterial pressure targets. Key concepts are discussed such as intraspinal pressure and spinal cord perfusion pressure (SCPP) at the injury site, respectively, analogous to intracranial pressure and cerebral perfusion pressure for traumatic brain injury. The concept of spinal cord autoregulation is introduced and quantified using spinal pressure reactivity index (sPRx), which is analogous to pressure reactivity index for traumatic brain injury. The U-shaped relationship between sPRx and SCPP defines the optimum SCPP as the SCPP that minimizes sPRx (i.e., maximizes autoregulation), and suggests that not only ischemia but also hyperemia at the injury site may be detrimental. The observation that optimum SCPP varies between patients and temporally in each patient supports individualized management. We discuss multimodality monitoring, which revealed strong correlations between SCPP and injury site metabolism (tissue glucose, lactate, pyruvate, glutamate, glycerol), monitored by surface microdialysis. Evidence is presented that the dura is a major, but unappreciated, cause of spinal cord compression after TSCI; we thus propose expansion duroplasty as a novel treatment. Monitoring spinal cord blood flow at the injury site has revealed novel phenomena, e.g., 3 distinct blood flow patterns, local steal, and diastolic ischemia. We conclude that monitoring from the injured spinal cord in the intensive care unit is a safe technique that appears to enable optimized and individualized spinal cord perfusion.
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, St. George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, St. George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| |
Collapse
|
14
|
Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol 2019; 137:731-755. [PMID: 30535946 DOI: 10.1007/s00401-018-1944-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 12/18/2022]
Abstract
This review recounts the definitions and research evidence supporting the multifaceted roles of neuroinflammation in the injured brain following trauma. We summarise the literature fluctuating from the protective and detrimental properties that cytokines, leukocytes and glial cells play in the acute and chronic stages of TBI, including the intrinsic factors that influence cytokine responses and microglial functions relative to genetics, sex, and age. We elaborate on the pros and cons that cytokines, chemokines, and microglia play in brain repair, specifically neurogenesis, and how such conflicting roles may be harnessed therapeutically to sustain the survival of new neurons. With a brief review of the clinical and experimental findings demonstrating early and chronic inflammation impacts on outcomes, we focus on the clinical conditions that may be amplified by neuroinflammation, ranging from acute seizures to chronic epilepsy, neuroendocrine dysfunction, dementia, depression, post-traumatic stress disorder and chronic traumatic encephalopathy. Finally, we provide an overview of the therapeutic agents that have been tested to reduce inflammation-driven secondary pathological cascades and speculate the future promise of alternative drugs.
Collapse
Affiliation(s)
- Maria Cristina Morganti-Kossmann
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Australian New Zealand Intensive Care Research Centre, Melbourne, VIC, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Sarah C Hellewell
- Sydney Translational Imaging Laboratory, Charles Perkins Centre, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Nicole Bye
- Department of Pharmacy, College of Health and Medicine, University of Tasmania, Sandy Bay, TAS, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
15
|
Early low-anticoagulant desulfated heparin after traumatic brain injury: Reduced brain edema and leukocyte mobilization is associated with improved watermaze learning ability weeks after injury. J Trauma Acute Care Surg 2019; 84:727-735. [PMID: 29373460 DOI: 10.1097/ta.0000000000001819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Unfractionated heparin administered immediately after traumatic brain injury (TBI) reduces brain leukocyte (LEU) accumulation, and enhances early cognitive recovery, but may increase bleeding after injury. It is unknown how non-anticoagulant heparins, such as 2,3-O desulfated heparin (ODSH), impact post-TBI cerebral inflammation and long-term recovery. We hypothesized that ODSH after TBI reduces LEU-mediated brain inflammation and improves long-term neurologic recovery. METHODS CD1 male mice (n = 66) underwent either TBI (controlled cortical impact [CCI]) or sham craniotomy. 2,3-O desulfated heparin (25 mg/kg [25ODSH] or 50 mg/kg [50ODSH]) or saline was administered for 48 hours after TBI in 46 animals. At 48 hours, intravital microscopy visualized rolling LEUs and fluorescent albumin leakage in the pial circulation, and the Garcia Neurologic Test assessed neurologic function. Brain edema (wet/dry ratio) was evaluated post mortem. In a separate group of animals (n = 20), learning/memory ability (% time swimming in the Probe platform quadrant) was assessed by the Morris Water Maze 17 days after TBI. Analysis of variance with Bonferroni correction determined significance (p < 0.05). RESULTS Compared with CCI (LEU rolling: 32.3 ± 13.7 LEUs/100 μm per minute, cerebrovascular albumin leakage: 57.4 ± 5.6%), both ODSH doses reduced post-TBI pial LEU rolling (25ODSH: 18.5 ± 9.2 LEUs/100 μm per minute, p = 0.036; 50ODSH: 7.8 ± 3.9 LEUs/100 μm per minute, p < 0.001) and cerebrovascular albumin leakage (25ODSH: 37.9 ± 11.7%, p = 0.001, 50ODSH: 32.3 ± 8.7%, p < 0.001). 50ODSH also reduced injured cerebral hemisphere edema (77.7 ± 0.4%) vs. CCI (78.7 ± 0.4 %, p = 0.003). Compared with CCI, both ODSH doses improved Garcia Neurologic Test at 48 hours. Learning/memory ability (% time swimming in target quadrant) was lowest in CCI (5.9 ± 6.4%) and significantly improved in the 25ODSH group (27.5 ± 8.2%, p = 0.025). CONCLUSION 2,3-O desulfated heparin after TBI reduces cerebral LEU recruitment, microvascular permeability and edema. 2,3-O desulfated heparin may also improve acute neurologic recovery leading to improved learning/memory ability weeks after injury.
Collapse
|
16
|
Blood Culture Collection in Patients with Acute Kidney Injury Receiving Renal Replacement Therapy: An Observational Study. Anaesth Intensive Care 2019; 40:813-9. [DOI: 10.1177/0310057x1204000509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Bazan NG. Docosanoids and elovanoids from omega-3 fatty acids are pro-homeostatic modulators of inflammatory responses, cell damage and neuroprotection. Mol Aspects Med 2018; 64:18-33. [PMID: 30244005 DOI: 10.1016/j.mam.2018.09.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
The functional significance of the selective enrichment of the omega-3 essential fatty acid docosahexaenoic acid (DHA; 22C and 6 double bonds) in cellular membrane phospholipids of the nervous system is being clarified by defining its specific roles on membrane protein function and by the uncovering of the bioactive mediators, docosanoids and elovanoids (ELVs). Here, we describe the preferential uptake and DHA metabolism in photoreceptors and brain as well as the significance of the Adiponectin receptor 1 in DHA retention and photoreceptor cell (PRC) survival. We now know that this integral membrane protein is engaged in DHA retention as a necessary event for the function of PRCs and retinal pigment epithelial (RPE) cells. We present an overview of how a) NPD1 selectively mediates preconditioning rescue of RPE and PR cells; b) NPD1 restores aberrant neuronal networks in experimental epileptogenesis; c) the decreased ability to biosynthesize NPD1 in memory hippocampal areas of early stages of Alzheimer's disease takes place; d) NPD1 protection of dopaminergic circuits in an in vitro model using neurotoxins; and e) bioactivity elicited by DHA and NPD1 activate a neuroprotective gene-expression program that includes the expression of Bcl-2 family members affected by Aβ42, DHA, or NPD1. In addition, we highlight ELOVL4 (ELOngation of Very Long chain fatty acids-4), specifically the neurological and ophthalmological consequences of its mutations, and their role in providing precursors for the biosynthesis of ELVs. Then we outline evidence of ELVs ability to protect RPE cells, which sustain PRC integrity. In the last section, we present a summary of the protective bioactivity of docosanoids and ELVs in experimental ischemic stroke. The identification of early mechanisms of neural cell survival mediated by DHA-synthesized ELVs and docosanoids contributes to the understanding of cell function, pro-homeostatic cellular modulation, inflammatory responses, and innate immunity, opening avenues for prevention and therapeutic applications in neurotrauma, stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA.
| |
Collapse
|
18
|
Leung LY, Cardiff K, Yang X, Srambical Wilfred B, Gilsdorf J, Shear D. Selective Brain Cooling Reduces Motor Deficits Induced by Combined Traumatic Brain Injury, Hypoxemia and Hemorrhagic Shock. Front Neurol 2018; 9:612. [PMID: 30123177 PMCID: PMC6085442 DOI: 10.3389/fneur.2018.00612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Selective brain cooling (SBC) can potentially maximize the neuroprotective benefits of hypothermia for traumatic brain injury (TBI) patients without the complications of whole body cooling. We have previously developed a method that involved extraluminal cooling of common carotid arteries, and demonstrated the feasibility, safety and efficacy for treating isolated TBI in rats. The present study evaluated the neuroprotective effects of 4-h SBC in a rat model of penetrating ballistic-like brain injury (PBBI) combined with hypoxemic and hypotensive insults (polytrauma). Rats were randomly assigned into two groups: PBBI+polytrauma without SBC (PHH) and PBBI+polytrauma with SBC treatment (PHH+SBC). All animals received unilateral PBBI, followed by 30-min hypoxemia (fraction of inspired oxygen = 0.1) and then 30-min hemorrhagic hypotension (mean arterial pressure = 40 mmHg). Fluid resuscitation was given immediately following hypotension. SBC was initiated 15 min after fluid resuscitation and brain temperature was maintained at 32-33°C (core temperature at ~36.5°C) for 4 h under isoflurane anesthesia. The PHH group received the same procedures minus the cooling. At 7, 10, and 21 days post-injury, motor function was assessed using the rotarod task. Cognitive function was assessed using the Morris water maze at 13-17 days post-injury. At 21 days post-injury, blood samples were collected and the animals were transcardially perfused for subsequent histological analyses. SBC transiently augmented cardiovascular function, as indicated by the increase in mean arterial pressure and heart rate during cooling. Significant improvement in motor functions were detected in SBC-treated polytrauma animals at 7, 10, and 21 days post-injury compared to the control group (p < 0.05). However, no significant beneficial effects were detected on cognitive measures following SBC treatment in the polytrauma animals. In addition, the blood serum and plasma levels of cytokines interleukin-1 and -10 were comparable between the two groups. Histological results also did not reveal any between-group differences in subacute neurodegeneration and astrocyte/ microglial activation. In summary, 4-h SBC delivered through extraluminal cooling of the common carotid arteries effectively ameliorated motor deficits induced by PBBI and polytrauma. Improving cognitive function or mitigating subacute neurodegeneration and neuroinflammation might require a different cooling regimen such as extended cooling, a slow rewarming period and a lower temperature.
Collapse
Affiliation(s)
- Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Katherine Cardiff
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Xiaofang Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard Srambical Wilfred
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
19
|
Truettner JS, Bramlett HM, Dietrich WD. Hyperthermia and Mild Traumatic Brain Injury: Effects on Inflammation and the Cerebral Vasculature. J Neurotrauma 2018; 35:940-952. [PMID: 29108477 DOI: 10.1089/neu.2017.5303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mild traumatic brain injury (mTBI) or concussion represents the majority of brain trauma in the United States. The pathophysiology of mTBI is complex and may include both focal and diffuse injury patterns. In addition to altered circuit dysfunction and traumatic axonal injury (TAI), chronic neuroinflammation has also been implicated in the pathophysiology of mTBI. Recently, our laboratory has reported the detrimental effects of mild hyperthermic mTBI in terms of worsening histopathological and behavioral outcomes. To clarify the role of temperature-sensitive neuroinflammatory processes on these consequences, we evaluated the effects of elevated brain temperature (39°C) on altered microglia/macrophage phenotype patterns after mTBI, changes in leukocyte recruitment, and TAI. Sprague-Dawley male rats underwent mild parasagittal fluid-percussion injury under normothermic (37°C) or hyperthermic (39°C) conditions. Cortical and hippocampal regions were analyzed using several cellular and molecular outcome measures. At 24 h, the ratio of iNOS-positive (M1 type phenotype) to arginase-positive (M2 type phenotype) cells after hyperthermic mTBI showed an increase compared with normothermia by flow cytometry. Inflammatory response gene arrays also demonstrated a significant increase in several classes of pro-inflammatory genes with hyperthermia treatment over normothermia. The injury-induced expression of chemokine ligand 2 (Ccl2) and alpha-2-macroglobulin were also increased with hyperthermic mTBI. With western blot analysis, an increase in CD18 and intercellular cell adhesion molecule-1 (ICAM-1) with hyperthermia and a significant increase in Iba1 reactive microglia are reported in the cerebral cortex. Together, these results demonstrate significant differences in the cellular and molecular consequences of raised brain temperature at the time of mTBI. The observed polarization toward a M1-phenotype with mild hyperthermia would be expected to augment chronic inflammatory cascades, sustained functional deficits, and increased vulnerability to secondary insults. Mild elevations in brain temperature may contribute to the more severe and longer lasting consequences of mTBI or concussion reported in some patients.
Collapse
Affiliation(s)
- Jessie S Truettner
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
20
|
Dietrich WD, Bramlett HM. Therapeutic hypothermia and targeted temperature management for traumatic brain injury: Experimental and clinical experience. Brain Circ 2017; 3:186-198. [PMID: 30276324 PMCID: PMC6057704 DOI: 10.4103/bc.bc_28_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a worldwide medical problem, and currently, there are few therapeutic interventions that can protect the brain and improve functional outcomes in patients. Over the last several decades, experimental studies have investigated the pathophysiology of TBI and tested various pharmacological treatment interventions targeting specific mechanisms of secondary damage. Although many preclinical treatment studies have been encouraging, there remains a lack of successful translation to the clinic and no therapeutic treatments have shown benefit in phase 3 multicenter trials. Therapeutic hypothermia and targeted temperature management protocols over the last several decades have demonstrated successful reduction of secondary injury mechanisms and, in some selective cases, improved outcomes in specific TBI patient populations. However, the benefits of therapeutic hypothermia have not been demonstrated in multicenter randomized trials to significantly improve neurological outcomes. Although the exact reasons underlying the inability to translate therapeutic hypothermia into a larger clinical population are unknown, this failure may reflect the suboptimal use of this potentially powerful therapeutic in potentially treatable severe trauma patients. It is known that multiple factors including patient recruitment, clinical treatment variables, and cooling methodologies are all important in yielding beneficial effects. High-quality multicenter randomized controlled trials that incorporate these factors are required to maximize the benefits of this experimental therapy. This article therefore summarizes several factors that are important in enhancing the beneficial effects of therapeutic hypothermia in TBI. The current failures of hypothermic TBI clinical trials in terms of clinical protocol design, patient section, and other considerations are discussed and future directions are emphasized.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
21
|
Atkins CM, Bramlett HM, Dietrich WD. Is temperature an important variable in recovery after mild traumatic brain injury? F1000Res 2017; 6:2031. [PMID: 29188026 PMCID: PMC5698917 DOI: 10.12688/f1000research.12025.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 12/03/2022] Open
Abstract
With nearly 42 million mild traumatic brain injuries (mTBIs) occurring worldwide every year, understanding the factors that may adversely influence recovery after mTBI is important for developing guidelines in mTBI management. Extensive clinical evidence exists documenting the detrimental effects of elevated temperature levels on recovery after moderate to severe TBI. However, whether elevated temperature alters recovery after mTBI or concussion is an active area of investigation. Individuals engaged in exercise and competitive sports regularly experience body and brain temperature increases to hyperthermic levels and these temperature increases are prolonged in hot and humid ambient environments. Thus, there is a strong potential for hyperthermia to alter recovery after mTBI in a subset of individuals at risk for mTBI. Preclinical mTBI studies have found that elevating brain temperature to 39°C before mTBI significantly increases neuronal death within the cortex and hippocampus and also worsens cognitive deficits. This review summarizes the pathology and behavioral problems of mTBI that are exacerbated by hyperthermia and discusses whether hyperthermia is a variable that should be considered after concussion and mTBI. Finally, underlying pathophysiological mechanisms responsible for hyperthermia-induced altered responses to mTBI and potential gender considerations are discussed.
Collapse
Affiliation(s)
- Coleen M Atkins
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Lois Pope LIFE Center, 1095 NW 14th Terrace (R-48), Miami, FL, 33136-1060, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Lois Pope LIFE Center, 1095 NW 14th Terrace (R-48), Miami, FL, 33136-1060, USA
| | - W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Lois Pope LIFE Center, 1095 NW 14th Terrace (R-48), Miami, FL, 33136-1060, USA
| |
Collapse
|
22
|
Early heparin administration after traumatic brain injury: Prolonged cognitive recovery associated with reduced cerebral edema and neutrophil sequestration. J Trauma Acute Care Surg 2017; 83:406-412. [PMID: 28538627 DOI: 10.1097/ta.0000000000001590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Early administration of unfractionated heparin (UFH) after traumatic brain injury (TBI) reduces early in vivo circulating leukocytes (LEUs) in peri-injury penumbral brain tissue, enhancing cognitive recovery 2 days after injury. It remains unclear how long this effect lasts and if this is related to persistently accumulating LEUs in penumbral brain tissue. We hypothesized that UFH reduces LEU brain tissue sequestration resulting in prolonged cognitive recovery. METHODS CD1 male mice underwent either TBI by controlled cortical impact (CCI) or sham craniotomy. Unfractionated heparin (75 or 225 U/kg) or vehicle was repeatedly administered after TBI. Neurologic function (Garcia Neurological Test [maximum score = 18]) and body weight loss ratios were evaluated at 24 hours to 96 hours after TBI. Brain and lung wet-to-dry ratios, hemoglobin levels, and brain LEU sequestration (Ly6G immunohistochemistry) were evaluated 96 hours postmortem. Analysis of variance with Bonferroni correction determined significance (p < 0.05). RESULTS Compared with untreated CCI animals (24 hours, 14.7 ± 1.0; 48 hours, 15.5 ± 0.7; 72 hours, 15.0 ± 0.8; 96 hours, 16.5 ± 0.9), UFH75 (24 hours, 16.0 ± 1.0, p < 0.01; 48 hours, 16.5 ± 0.7, p < 0.05; 72 hours, 17.1 ± 0.6, p < 0.01; 96 hours, 17.4 ± 0.7, p < 0.05) increased cognitive recovery throughout the entire observation period after TBI. At 48 hours, UFH225 significantly worsened body weight loss (10.2 ± 4.7%) as compared with uninjured animals (5.5 ± 2.9%, p < 0.05). Both UFH75 (60.8 ± 40.9 PMNs per high-power field [HPF], p < 0.05) and UFH225 (36.0 ± 17.6 PMNs/HPF, p < 0.01) significantly decreased brain neutrophil sequestration found in untreated CCI animals (124.2 ± 44.1 PMNs/HPF) 96 hours after TBI. Compared with untreated CCI animals (78.8 ± 0.8%), UFH75 (77.3 ± 0.6%, p = 0.04) reduced cerebral edema to uninjured levels (77.4 ± 0.6%, p = 0.04 vs. CCI). Only UFH225 (10.6 ± 1.2 g/dL) resulted in lower hemoglobin than in uninjured animals (13.0 ± 1.2 g/dL, p < 0.05). CONCLUSIONS Heparin after TBI reduces tissue LEU sequestration and edema in injured brain for up to 4 days. This is associated with persistent improved cognitive recovery, but only when low-dose UFH is given. Early administration of UFH following TBI may blunt LEU-related cerebral swelling and slow progression of secondary brain injury.
Collapse
|
23
|
Urquieta E, Varon J, Lin PH. Reversal of Spinal Cord Ischemia Following Endovascular Thoracic Aortic Aneurysm Repair With Hyperbaric Oxygen and Therapeutic Hypothermia. Vasc Endovascular Surg 2017; 51:517-520. [PMID: 28820047 DOI: 10.1177/1538574417725238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Neurological adverse events with spinal cord ischemia (SCI) remain one of the most feared complications in patients undergoing thoracic endovascular aortic repair (TEVAR). These patients can develop irreversible paraplegia with lifelong consequences with physical and psychological agony. CASE PRESENTATION We herein present a patient who developed SCI with bilateral lower leg paraplegia on the third postoperative day following TEVAR. Spinal catheter was inserted for spinal fluid drainage. A hyperbaric oxygen therapy was initiated for 90 minutes for 2 days, which was followed by therapeutic hypothermia for 24 hours with a target temperature of 33°C. The patient exhibited significant neurological recovery following these treatments, and he ultimately regained full neurological function without spinal deficit. DISCUSSION This represents the first reported case of full neurological recovery of a patient who developed complete SCI following TEVAR procedure. The neurological recovery was due in part to immediate therapeutic hypothermia and hyperbaric oxygen therapy which reversed the spinal ischemia.
Collapse
Affiliation(s)
- Emmanuel Urquieta
- 1 Division of Aerospace Medicine, Department of Internal Medicine, Wright State University, Dayton, OH, USA
| | - Joseph Varon
- 2 Division of Critical Care Medicine, Department of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.,3 The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,4 University General Hospital, Houston, TX, USA
| | - Peter H Lin
- 5 Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.,6 University Vascular Associates, Los Angeles, CA, USA
| |
Collapse
|
24
|
Establishment of an ideal time window model in hypothermic-targeted temperature management after traumatic brain injury in rats. Brain Res 2017. [PMID: 28629741 DOI: 10.1016/j.brainres.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although hypothermic-targeted temperature management (HTTM) holds great potential for the treatment of traumatic brain injury (TBI), translation of the efficacy of hypothermia from animal models to TBI patientshas no entire consistency. This study aimed to find an ideal time window model in experimental rats which was more in accordance with clinical practice through the delayed HTTM intervention. Sprague-Dawley rats were subjected to unilateral cortical contusion injury and received therapeutic hypothermia at 15mins, 2 h, 4 h respectively after TBI. The neurological function was evaluated with the modified neurological severity score and Morris water maze test. The brain edema and morphological changes were measured with the water content and H&E staining. Brain sections were immunostained with antibodies against DCX (a neuroblast marker) and GFAP (an astrocyte marker). The apoptosis levels in the ipsilateral hippocampi and cortex were examined with antibodies against the apoptotic proteins Bcl-2, Bax, and cleaved caspase-3 by the immunofluorescence and western blotting. The results indicated that each hypothermia therapy group could improve neurobehavioral and cognitive function, alleviate brain edema and reduce inflammation. Furthermore, we observed that therapeutic hypothermia increased DCX expression, decreased GFAP expression, upregulated Bcl-2 expression and downregulated Bax and cleaved Caspase-3 expression. The above results suggested that HTTM at 2h or even at 4h post-injury revealed beneficial brain protection similarly, despite the best effect at 15min post-injury. These findings may provide relatively ideal time window models, further making the following experimental results more credible and persuasive.
Collapse
|
25
|
Szczygielski J, Müller A, Mautes AE, Sippl C, Glameanu C, Schwerdtfeger K, Steudel WI, Oertel J. Selective Brain Hypothermia Mitigates Brain Damage and Improves Neurological Outcome after Post-Traumatic Decompressive Craniectomy in Mice. J Neurotrauma 2017; 34:1623-1635. [PMID: 27799012 DOI: 10.1089/neu.2016.4615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypothermia and decompressive craniectomy (DC) have been considered as treatment for traumatic brain injury. The present study investigates whether selective brain hypothermia added to craniectomy could improve neurological outcome after brain trauma. Male CD-1 mice were assigned into the following groups: sham; DC; closed head injury (CHI); CHI followed by craniectomy (CHI+DC); and CHI+DC followed by focal hypothermia (CHI+DC+H). At 24 h post-trauma, animals were subjected to Neurological Severity Score (NSS) test and Beam Balance Score test. At the same time point, magnetic resonance imaging using a 9.4 Tesla scanner and subsequent volumetric evaluation of edema and contusion were performed. Thereafter, the animals were sacrificed and subjected to histopathological analysis. According to NSS, there was a significant impairment among all the groups subjected to trauma. Animals with both trauma and craniectomy performed significantly worse than animals with craniectomy alone. This deleterious effect disappeared when additional hypothermia was applied. BBS was significantly worse in the CHI and CHI+DC groups, but not in the CHI+DC+H group, compared to the sham animals. Edema and contusion volumes were significantly increased in CHI+DC animals, but not in the CHI+DC+H group, compared to the DC group. Histopathological analysis showed that neuronal loss and contusional blossoming could be attenuated by application of selective brain hypothermia. Selective brain cooling applied post-trauma and craniectomy improved neurological function and reduced structural damage and may be therefore an alternative to complication-burdened systemic hypothermia. Clinical studies are recommended in order to explore the potential of this treatment.
Collapse
Affiliation(s)
- Jacek Szczygielski
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Andreas Müller
- 2 Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Angelika E Mautes
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Christoph Sippl
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Cosmin Glameanu
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Karsten Schwerdtfeger
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Wolf-Ingo Steudel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Joachim Oertel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| |
Collapse
|
26
|
Nyanzu M, Siaw-Debrah F, Ni H, Xu Z, Wang H, Lin X, Zhuge Q, Huang L. Improving on Laboratory Traumatic Brain Injury Models to Achieve Better Results. Int J Med Sci 2017; 14:494-505. [PMID: 28539826 PMCID: PMC5441042 DOI: 10.7150/ijms.18075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 11/30/2022] Open
Abstract
Experimental modeling of traumatic brain injury (TBI) in animals has identified several potential means and interventions that might have beneficial applications for treating traumatic brain injury clinically. Several of these interventions have been applied and tried with humans that are at different phases of testing (completed, prematurely terminated and others in progress). The promising results achieved in the laboratory with animal models have not been replicated with human trails as expected. This review will highlight some insights and significance attained via laboratory animal modeling of TBI as well as factors that require incorporation into the experimental studies that could help in translating results from laboratory to the bedside. Major progress has been made due to laboratory studies; in explaining the mechanisms as well as pathophysiological features of brain damage after TBI. Attempts to intervene in the cascade of events occurring after TBI all rely heavily on the knowledge from basic laboratory investigations. In looking to discover treatment, this review will endeavor to sight and state some central discrepancies between laboratory models and clinical scenarios.
Collapse
Affiliation(s)
- Mark Nyanzu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Felix Siaw-Debrah
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haoqi Ni
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhu Xu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hua Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lijie Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.,Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
27
|
Algarra NN, Sharma D. Perioperative Management of Traumatic Brain Injury. CURRENT ANESTHESIOLOGY REPORTS 2016. [DOI: 10.1007/s40140-016-0170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Abstract
Sports-related concussion also referred to in the literature as mild traumatic brain injury remains a popular area of study for physicians, neurologists, neuropsychologists, neuroimaging, athletic trainers, and researchers across the other areas of brain sciences. Treatment for concussion is an emerging area of focus with investigators seeking to improve outcomes and protect patients from the deleterious short-term and long-term consequences which have been extensively studied and identified. Broadly, current treatment strategies for athletes recovering from concussion have remained largely unchanged since early 2000s. Knowledge of the complex pathophysiology surrounding injury should improve or advance our ability to identify processes which may serve as targets for therapeutic intervention. Clinicians working with athletes recovering from sports-related concussion should have an advanced understanding of the injury cascade and also be aware of the current efforts within the research to treat concussion. In addition, how clinicians use the word "treatment" should be carefully defined and promoted so the patient is aware of the level of intervention and what stage of recovery or healing is being affected by a specific intervention. The purpose of this review is to bring together efforts across disciplines of brain science into 1 platform where clinicians can assimilate this information before making best practices decisions regarding the treatment of patients and athletes under their care.
Collapse
|
29
|
Honeybul S. Reconsidering the role of hypothermia in management of severe traumatic brain injury. J Clin Neurosci 2016; 28:12-5. [DOI: 10.1016/j.jocn.2016.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 01/04/2016] [Indexed: 11/25/2022]
|
30
|
Abstract
Hypothermia, along with acidosis and coagulopathy, is part of the lethal triad that worsen the prognosis of severe trauma patients. While accidental hypothermia is easy to identify by a simple measurement, it is no less pernicious if it is not detected or treated in the initial phase of patient care. It is a multifactorial process and is a factor of mortality in severe trauma cases. The consequences of hypothermia are many: it modifies myocardial contractions and may induce arrhythmias; it contributes to trauma-induced coagulopathy; from an immunological point of view, it diminishes inflammatory response and increases the chance of pneumonia in the patient; it inhibits the elimination of anaesthetic drugs and can complicate the calculation of dosing requirements; and it leads to an over-estimation of coagulation factor activities. This review will detail the pathophysiological consequences of hypothermia, as well as the most recent principle recommendations in dealing with it.
Collapse
Affiliation(s)
- Fanny Vardon
- Équipe d'accueil « Modélisation de l'agression tissulaire et nociceptive », Toulouse University Teaching Hospital, Université Toulouse III Paul-Sabatier, Hôpital Pierre-Paul-Riquet, CHU de Toulouse, place du Dr-Baylac, 31059 Toulouse cedex 09, France
| | - Ségolène Mrozek
- Équipe d'accueil « Modélisation de l'agression tissulaire et nociceptive », Toulouse University Teaching Hospital, Université Toulouse III Paul-Sabatier, Hôpital Pierre-Paul-Riquet, CHU de Toulouse, place du Dr-Baylac, 31059 Toulouse cedex 09, France
| | - Thomas Geeraerts
- Équipe d'accueil « Modélisation de l'agression tissulaire et nociceptive », Toulouse University Teaching Hospital, Université Toulouse III Paul-Sabatier, Hôpital Pierre-Paul-Riquet, CHU de Toulouse, place du Dr-Baylac, 31059 Toulouse cedex 09, France.
| | - Olivier Fourcade
- Équipe d'accueil « Modélisation de l'agression tissulaire et nociceptive », Toulouse University Teaching Hospital, Université Toulouse III Paul-Sabatier, Hôpital Pierre-Paul-Riquet, CHU de Toulouse, place du Dr-Baylac, 31059 Toulouse cedex 09, France
| |
Collapse
|
31
|
Kinoshita K. Traumatic brain injury: pathophysiology for neurocritical care. J Intensive Care 2016; 4:29. [PMID: 27123305 PMCID: PMC4847183 DOI: 10.1186/s40560-016-0138-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022] Open
Abstract
Severe cases of traumatic brain injury (TBI) require neurocritical care, the goal being to stabilize hemodynamics and systemic oxygenation to prevent secondary brain injury. It is reported that approximately 45 % of dysoxygenation episodes during critical care have both extracranial and intracranial causes, such as intracranial hypertension and brain edema. For this reason, neurocritical care is incomplete if it only focuses on prevention of increased intracranial pressure (ICP) or decreased cerebral perfusion pressure (CPP). Arterial hypotension is a major risk factor for secondary brain injury, but hypertension with a loss of autoregulation response or excess hyperventilation to reduce ICP can also result in a critical condition in the brain and is associated with a poor outcome after TBI. Moreover, brain injury itself stimulates systemic inflammation, leading to increased permeability of the blood–brain barrier, exacerbated by secondary brain injury and resulting in increased ICP. Indeed, systemic inflammatory response syndrome after TBI reflects the extent of tissue damage at onset and predicts further tissue disruption, producing a worsening clinical condition and ultimately a poor outcome. Elevation of blood catecholamine levels after severe brain damage has been reported to contribute to the regulation of the cytokine network, but this phenomenon is a systemic protective response against systemic insults. Catecholamines are directly involved in the regulation of cytokines, and elevated levels appear to influence the immune system during stress. Medical complications are the leading cause of late morbidity and mortality in many types of brain damage. Neurocritical care after severe TBI has therefore been refined to focus not only on secondary brain injury but also on systemic organ damage after excitation of sympathetic nerves following a stress reaction.
Collapse
Affiliation(s)
- Kosaku Kinoshita
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kamimachi, Itabashi-ku, Tokyo, 173-8610 Japan
| |
Collapse
|
32
|
Dietrich WD, Bramlett HM. Therapeutic hypothermia and targeted temperature management in traumatic brain injury: Clinical challenges for successful translation. Brain Res 2015; 1640:94-103. [PMID: 26746342 DOI: 10.1016/j.brainres.2015.12.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022]
Abstract
The use of therapeutic hypothermia (TH) and targeted temperature management (TTM) for severe traumatic brain injury (TBI) has been tested in a variety of preclinical and clinical situations. Early preclinical studies showed that mild reductions in brain temperature after moderate to severe TBI improved histopathological outcomes and reduced neurological deficits. Investigative studies have also reported that reductions in post-traumatic temperature attenuated multiple secondary injury mechanisms including excitotoxicity, free radical generation, apoptotic cell death, and inflammation. In addition, while elevations in post-traumatic temperature heightened secondary injury mechanisms, the successful implementation of TTM strategies in injured patients to reduce fever burden appear to be beneficial. While TH has been successfully tested in a number of single institutional clinical TBI studies, larger randomized multicenter trials have failed to demonstrate the benefits of therapeutic hypothermia. The use of TH and TTM for treating TBI continues to evolve and a number of factors including patient selection and the timing of the TH appear to be critical in successful trial design. Based on available data, it is apparent that TH and TTM strategies for treating severely injured patients is an important therapeutic consideration that requires more basic and clinical research. Current research involves the evaluation of alternative cooling strategies including pharmacologically-induced hypothermia and the combination of TH or TTM approaches with more selective neuroprotective or reparative treatments. This manuscript summarizes the preclinical and clinical literature emphasizing the importance of brain temperature in modifying secondary injury mechanisms and in improving traumatic outcomes in severely injured patients. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States.
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
33
|
Bramlett HM, Dietrich WD. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. J Neurotrauma 2014; 32:1834-48. [PMID: 25158206 DOI: 10.1089/neu.2014.3352] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant clinical problem with few therapeutic interventions successfully translated to the clinic. Increased importance on the progressive, long-term consequences of TBI have been emphasized, both in the experimental and clinical literature. Thus, there is a need for a better understanding of the chronic consequences of TBI, with the ultimate goal of developing novel therapeutic interventions to treat the devastating consequences of brain injury. In models of mild, moderate, and severe TBI, histopathological and behavioral studies have emphasized the progressive nature of the initial traumatic insult and the involvement of multiple pathophysiological mechanisms, including sustained injury cascades leading to prolonged motor and cognitive deficits. Recently, the increased incidence in age-dependent neurodegenerative diseases in this patient population has also been emphasized. Pathomechanisms felt to be active in the acute and long-term consequences of TBI include excitotoxicity, apoptosis, inflammatory events, seizures, demyelination, white matter pathology, as well as decreased neurogenesis. The current article will review many of these pathophysiological mechanisms that may be important targets for limiting the chronic consequences of TBI.
Collapse
Affiliation(s)
- Helen M Bramlett
- The Miami Project to Cure Paralysis/Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis/Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
34
|
Zygun DA, Doig CJ, Auer RN, Laupland KB, Sutherland GR. Progress in Clinical Neurosciences: Therapeutic Hypothermia in Severe Traumatic Brain Injury. Can J Neurol Sci 2014; 30:307-13. [PMID: 14672261 DOI: 10.1017/s0317167100003000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Severe traumatic brain injury (sTBI) is a relatively common problem with few therapies proven effective. Despite its use for over 50 years, therapeutic hypothermia has not gained widespread acceptance in the treatment of sTBI due to conflicting results from clinical trials. This review will summarize the current evidence from animal, mechanistic and clinical studies supporting the use of therapeutic hypothermia. In addition, issues of rewarming and optimal temperature will be discussed. Finally, the future of hypothermia in sTBI will be addressed.
Collapse
Affiliation(s)
- David A Zygun
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
35
|
Titus DJ, Furones C, Atkins CM, Dietrich WD. Emergence of cognitive deficits after mild traumatic brain injury due to hyperthermia. Exp Neurol 2014; 263:254-62. [PMID: 25447938 DOI: 10.1016/j.expneurol.2014.10.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 02/04/2023]
Abstract
Mild elevations in core temperature can occur in individuals involved in strenuous activities that are risky for potentially sustaining a mild traumatic brain injury (mTBI) or concussion. Recently, we have discovered that mild elevations in brain temperature can significantly aggravate the histopathological consequences of mTBI. However, whether this exacerbation of brain pathology translates into behavioral deficits is unknown. Therefore, we investigated the behavioral consequences of elevating brain temperature to mildly hyperthermic levels prior to mTBI. Adult male Sprague Dawley rats underwent mild fluid-percussion brain injury or sham surgery while normothermic (37 °C) or hyperthermic (39 °C) and were allowed to recover for 7 days. Animals were then assessed for cognition using the water maze and cue and contextual fear conditioning. We found that mTBI alone at normothermia had no effect on long-term cognitive measures whereas mTBI animals that were hyperthermic for 15 min prior to and for 4h after brain injury were significantly impaired on long-term retention for both the water maze and fear conditioning. In contrast, hyperthermic mTBI animals cooled within 15 min to normothermia demonstrated no significant long-term cognitive deficits. Mild TBI irrespective of temperature manipulations resulted in significant short-term working memory deficits. Cortical atrophy and contusions were detected in all mTBI treatment groups and contusion volume was significantly less in hyperthermic mTBI animals that were cooled as compared to hyperthermic mTBI animals that remained hyperthermic. These results indicate that brain temperature is an important variable for mTBI outcome and that mildly elevated temperatures at the time of injury result in persistent cognitive deficits. Importantly, cooling to normothermia after mTBI prevents the development of long-term cognitive deficits caused by hyperthermia. Reducing temperature to normothermic levels soon after mTBI represents a rational approach to potentially mitigate the long-term consequences of mTBI.
Collapse
Affiliation(s)
- David J Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Concepcion Furones
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
36
|
|
37
|
Saxena M, Andrews PJD, Cheng A, Deol K, Hammond N. Modest cooling therapies (35ºC to 37.5ºC) for traumatic brain injury. Cochrane Database Syst Rev 2014; 2014:CD006811. [PMID: 25135381 PMCID: PMC7389311 DOI: 10.1002/14651858.cd006811.pub3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Animal models of traumatic brain injury suggest that induced normothermia (36.5 or 37 ºC), compared to induced hyperthermia (39 ºC), improves histopathological and neurobehavioural outcomes. Observational clinical studies of patients with TBI suggest an association between raised body temperature and unfavourable outcome, although this relationship is inconsistent. OBJECTIVES To assess the effects of modest cooling therapies (defined as any drug or physical therapy aimed at maintaining body temperature between 35 ºC and 37.5 ºC) when applied to patients in the first week after traumatic brain injury. SEARCH METHODS The most recent search was run on 23(rd) September 2013. We searched the Cochrane Injuries Group's Specialised Register, The Cochrane Library (CENTRAL), MEDLINE (OvidSP), Embase (OvidSP), ISI WOS: SCI-EXPANDED (1970) & CPCI-S (1990), PubMed and trials registries together with reference checking. SELECTION CRITERIA All completed randomised, controlled and placebo-controlled trials published or unpublished, where modest cooling therapies were applied in the first week after traumatic brain injury. DATA COLLECTION AND ANALYSIS Two authors independently applied the selection criteria to relevant trials. MAIN RESULTS We were unable to find any randomised controlled trials of modest cooling therapies after traumatic brain injury. AUTHORS' CONCLUSIONS In order to further explore the preliminary findings provided by animal models and observational clinical studies that suggests there may be a beneficial effect of modest cooling for TBI, randomised trials designed to explore the effect of these interventions on patient-centred outcomes are needed.
Collapse
Affiliation(s)
- Manoj Saxena
- St George HospitalIntensive Care UnitGray StKogarahSydneyNSWAustralia2217
| | - Peter JD Andrews
- Lead Clinician, Critical Care Services, Western General Hospital, LUHDIntensive Care & Pain Medicine, University of EdinburghEdinburghUK
| | - Andrew Cheng
- St George HospitalIntensive Care UnitGray StKogarahSydneyNSWAustralia2217
| | - Kiran Deol
- St George HospitalIntensive Care UnitGray StKogarahSydneyNSWAustralia2217
| | - Naomi Hammond
- The George Institute for Global HealthCritical Care and Trauma DivisionLevel 7, 341 George StSydneyNSWAustralia2000
| | | |
Collapse
|
38
|
Wang HC, Sun CF, Chen H, Chen MS, Shen G, Ma YB, Wang BD. Where are we in the modelling of traumatic brain injury? Models complicated by secondary brain insults. Brain Inj 2014; 28:1491-503. [PMID: 25111457 DOI: 10.3109/02699052.2014.943288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hong-Cai Wang
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Cheng-Feng Sun
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Hai Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Mao-Song Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Gang Shen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Yan-Bin Ma
- Department of Neurosurgery, NO.3 People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
ShanghaiPR China
| | - Bo-Ding Wang
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| |
Collapse
|
39
|
Chatzipanteli K, Vitarbo E, Alonso OF, Bramlett HM, Dietrich WD. Temporal profile of cerebrospinal fluid, plasma, and brain interleukin-6 after normothermic fluid-percussion brain injury: effect of secondary hypoxia. Ther Hypothermia Temp Manag 2014; 2:167-75. [PMID: 23667780 DOI: 10.1089/ther.2012.0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that may play multiple roles in the pathogenesis of traumatic brain injury (TBI). The present study determined time-dependent changes in IL-6 concentrations in vulnerable brain regions, cerebrospinal fluid (CSF) samples, and plasma after normothermic TBI. Because secondary insults are common in head injured patients, we also assessed the consequences of a post-traumatic secondary hypoxic insult on this pleiotropic cytokine. Male Sprague-Dawley rats were intubated, anesthetized, and underwent a moderate parasagittal fluid-percussion brain injury (1.8-2.1 atm, 37°C) followed by either 30 minutes of normoxic or hypoxic (pO₂ = 30-40 mmHg) gas levels. Rats were sacrificed 3, 6, or 24 hours after TBI or shamoperated procedures. Brain samples, including the ipsilateral cerebral cortex and hippocampus were dissected and analyzed. Plasma and CSF samples were collected at similar times and stored at -80°C until analysis. IL-6 levels were significantly increased ( p < 0.05) at 3, 6, and 24 hours in the cerebral cortex and at 6 hours in the hippocampus after TBI. IL-6 levels in the TBI normoxic group for both structures returned to control levels by 24 hours. Plasma levels of IL-6 were elevated at all time points, while CSF levels were high at 3 and 6 hours, but normalized by 24 hours. Post-traumatic hypoxia led to significantly elevated ( p < 0.05) IL-6 protein levels in the cerebral cortex at 24 hours compared to sham-operated controls. These findings demonstrate that moderate TBI leads to an early increase in IL-6 brain, plasma, and CSF protein levels. Secondary post-traumatic hypoxia, a common secondary injury mechanism, led to prolonged elevations in plasma IL-6 levels that may participate in the pathophysiology of this complicated TBI model.
Collapse
|
40
|
Cocchi MN, Boone MD, Giberson B, Giberson T, Farrell E, Salciccioli JD, Talmor D, Williams D, Donnino MW. Fever after rewarming: incidence of pyrexia in postcardiac arrest patients who have undergone mild therapeutic hypothermia. J Intensive Care Med 2013; 29:365-9. [PMID: 23783999 DOI: 10.1177/0885066613491932] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Induction of mild therapeutic hypothermia (TH; temperature 32-34°C) has become standard of care in many hospitals for comatose survivors of cardiac arrest. Pyrexia, or fever, is known to be detrimental in patients with neurologic injuries such as stroke or trauma. The incidence of pyrexia in the postrewarming phase of TH is unknown. We attempted to determine the incidence of fever after TH and hypothesized that those patients who were febrile after rewarming would have worse clinical outcomes than those who maintained normothermia in the postrewarming period. METHODS Retrospective data analysis of survivors of out-of-hospital cardiac arrest (OHCA) over a period of 29 months (December 2007 to April 2010). INCLUSION CRITERIA OHCA, age >18, return of spontaneous circulation, and treatment with TH. EXCLUSION CRITERIA traumatic arrest and pregnancy. Data collected included age, sex, neurologic outcome, mortality, and whether the patient developed fever (temperature > 100.4°F, 38°C) within 24 hours after being fully rewarmed to a normal core body temperature after TH. We used simple descriptive statistics and Fisher exact test to report our findings. RESULTS A total of 149 patients were identified; of these, 82 (55%) underwent TH. The mean age of the TH cohort was 66 years, and 28 (31%) were female. In all, 54 patients survived for >24 hours after rewarming and were included in the analysis. Among the analyzed cohort, 28 (52%) of 54 developed fever within 24 hours after being rewarmed. Outcome measures included in-hospital mortality as well as neurologic outcome as defined by a dichotomized Cerebral Performance Category (CPC) score. When comparing neurologic outcomes between the groups, 16 (57%) of 28 in the postrewarming fever group had a poor outcome (CPC score 3-5), while 15 (58%) of 26 in the no-fever group had a favorable outcome (P = .62). In the fever group, 15 (52%) of 28 died, while in the no-fever group, 14 (54%) of 26 died (P = .62). CONCLUSION Among a cohort of patients who underwent mild TH after OHCA, more than half of these patients developed pyrexia in the first 24 hours after rewarming. Although there were no significant differences in outcomes between febrile and nonfebrile patients identified in this study, these findings should be further evaluated in a larger cohort. Future investigations may be needed to determine whether postrewarming temperature management will improve the outcomes in this population.
Collapse
Affiliation(s)
- Michael N Cocchi
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA Department of Anesthesia Critical Care, Division of Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Myles D Boone
- Department of Anesthesia Critical Care, Division of Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brandon Giberson
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tyler Giberson
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Emily Farrell
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Justin D Salciccioli
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel Talmor
- Department of Anesthesia Critical Care, Division of Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Donna Williams
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael W Donnino
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA Department of Medicine, Division of Pulmonary Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
41
|
Griesbach GS, Tio DL, Nair S, Hovda DA. Temperature and heart rate responses to exercise following mild traumatic brain injury. J Neurotrauma 2013; 30:281-91. [PMID: 23009619 DOI: 10.1089/neu.2012.2616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously reported that mild fluid percussion injury (FPI) is associated with a heightening of the hypothalamic-pituitary-adrenal axis response during the first post-injury weeks. This is the same time period when rehabilitative exercise has been strongly suggested to be ineffective. Here, we explored whether cardiac and temperature autonomic function may also be compromised during this early post-injury period. Following an FPI or sham injury, rats were exercised with forced (fRW) or voluntary (vRW) running wheels on post-injury days 0-4 and 7-11. Results indicated that overall activity levels were decreased and circadian rhythm was affected after FPI. Autonomic disruptions became evident when exercise was introduced, and these disruptions were dependent upon the characteristics of exercise. Elevations in heart rate (HR) and core body temperature (CBT) were observed as a response to vRW and fRW. FPI animals had more pronounced increases in HR as a result of vRW. Likewise, increases in HR were observed with fRW in all animals. A strong stress response has recently been associated with fRW exercise. FPI rats exposed to fRW were more responsive to experimental manipulations and had higher a CBT after the FRW session. The results suggest that subacute exercise, particularly if linked to a strong stress response, may be counterproductive. Here we show that cardiac and temperature autonomic function are compromised during the subacute period following a mild TBI.
Collapse
Affiliation(s)
- Grace S Griesbach
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7039, USA.
| | | | | | | |
Collapse
|
42
|
Brain temperature: physiology and pathophysiology after brain injury. Anesthesiol Res Pract 2012; 2012:989487. [PMID: 23326261 PMCID: PMC3541556 DOI: 10.1155/2012/989487] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/09/2012] [Accepted: 12/12/2012] [Indexed: 12/02/2022] Open
Abstract
The regulation of brain temperature is largely dependent on the metabolic activity of brain tissue and remains complex. In intensive care clinical practice, the continuous monitoring of core temperature in patients with brain injury is currently highly recommended. After major brain injury, brain temperature is often higher than and can vary independently of systemic temperature. It has been shown that in cases of brain injury, the brain is extremely sensitive and vulnerable to small variations in temperature. The prevention of fever has been proposed as a therapeutic tool to limit neuronal injury. However, temperature control after traumatic brain injury, subarachnoid hemorrhage, or stroke can be challenging. Furthermore, fever may also have beneficial effects, especially in cases involving infections. While therapeutic hypothermia has shown beneficial effects in animal models, its use is still debated in clinical practice. This paper aims to describe the physiology and pathophysiology of changes in brain temperature after brain injury and to study the effects of controlling brain temperature after such injury.
Collapse
|
43
|
Rizzo JA, Burgess P, Cartie RJ, Prasad BM. Moderate systemic hypothermia decreases burn depth progression. Burns 2012; 39:436-44. [PMID: 23149435 DOI: 10.1016/j.burns.2012.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Therapeutic hypothermia has been proposed to be beneficial in an array of human pathologies including cardiac arrest, stroke, traumatic brain and spinal cord injury, and hemorrhagic shock. Burn depth progression is multifactorial but inflammation plays a large role. Because hypothermia is known to reduce inflammation, we hypothesized that moderate hypothermia will decrease burn depth progression. METHODS We used a second-degree 15% total body surface area thermal injury model in rats. Burn depth was assessed by histology of biopsy sections. Moderate hypothermia in the range of 31-33°C was applied for 4h immediately after burn and in a delayed fashion, starting 2h after burn. In order to gain insight into the beneficial effects of hypothermia, we analyzed global gene expression in the burned skin. RESULTS Immediate hypothermia decreased burn depth progression at 6h post injury, and this protective effect was sustained for at least 24h. Burn depth was 18% lower in rats subjected to immediate hypothermia compared to control rats at both 6 and 24h post injury. Rats in the delayed hypothermia group did not show any significant decrease in burn depth at 6h, but had 23% lower burn depth than controls at 24h. Increased expression of several skin-protective genes such as CCL4, CCL6 and CXCL13 and decreased expression of tissue remodeling genes such as matrix metalloprotease-9 were discovered in the skin biopsy samples of rats subjected to immediate hypothermia. CONCLUSIONS Systemic hypothermia decreases burn depth progression in a rodent model and up-regulation of skin-protective genes and down-regulation of detrimental tissue remodeling genes by hypothermia may contribute to its beneficial effects.
Collapse
Affiliation(s)
- Julie A Rizzo
- Dwight David Eisenhower Army Medical Center, Ft. Gordon, GA 30905, USA.
| | | | | | | |
Collapse
|
44
|
Sakurai A, Atkins CM, Alonso OF, Bramlett HM, Dietrich WD. Mild hyperthermia worsens the neuropathological damage associated with mild traumatic brain injury in rats. J Neurotrauma 2012; 29:313-21. [PMID: 22026555 DOI: 10.1089/neu.2011.2152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of slight variations in brain temperature on the pathophysiological consequences of acute brain injury have been extensively described in models of moderate and severe traumatic brain injury (TBI). In contrast, limited information is available regarding the potential consequences of temperature elevations on outcome following mild TBI (mTBI) or concussions. One potential confounding variable with mTBI is the presence of elevated body temperature that occurs in the civilian or military populations due to hot environments combined with exercise or other forms of physical exertion. We therefore determined the histopathological effects of pre- and post-traumatic hyperthermia (39°C) on mTBI. Adult male Sprague-Dawley rats were divided into 3 groups: pre/post-traumatic hyperthermia, post-traumatic hyperthermia alone for 2 h, and normothermia (37°C). The pre/post-hyperthermia group was treated with hyperthermia starting 15 min before mild parasagittal fluid-percussion brain injury (1.4-1.6 atm), with the temperature elevation extending for 2 h after trauma. At 72 h after mTBI, the rats were perfusion-fixed for quantitative histopathological evaluation. Contusion areas and volumes were significantly larger in the pre/post-hyperthermia treatment group compared to the post-hyperthermia and normothermic groups. In addition, pre/post-traumatic hyperthermia caused the most severe loss of NeuN-positive cells in the dentate hilus compared to normothermia. These neuropathological results demonstrate that relatively mild elevations in temperature associated with peri-traumatic events may affect the long-term functional consequences of mTBI. Because individuals exhibiting mildly elevated core temperatures may be predisposed to aggravated brain damage after mTBI or concussion, precautions should be introduced to target this important physiological variable.
Collapse
Affiliation(s)
- Atsushi Sakurai
- The Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Traumatic brain injury (TBI) activates the NALP1/NLRP1 inflammasome, which is an important component of the early innate inflammatory response to injury. We investigated the influence of therapeutic hypothermia on inflammasome activation after TBI. Adult male Sprague-Dawley rats were subjected to moderate fluid percussion brain injury. Temperature manipulation (33°C or 37°C) was initiated 30 minutes after TBI and maintained for 4 hours. At 4 or 24 hours after TBI, traumatized cortex and hippocampus were prepared for immunoblot or immunohistochemical analysis. In the normothermic groups, caspase-1, caspase-11 and expression of the purinergic receptor P2X7 increased at 24 hours after TBI. Posttraumatic hypothermia lead to decreased expression of these proteins at 24 hours compared with normothermic levels. Immunocytochemical studies showed that posttraumatic hypothermia also decreased caspase-1 staining in cerebral cortical neurons compared with normothermic TBI. Cultured cortical neurons subjected to stretch injury demonstrated significant secretion of caspase-1 into the culture medium and caspase-3 activation, both results reduced by hypothermic treatment. Posttraumatic hypothermia decreases inflammasome signaling in neurons and reduces the innate immune response to TBI at 24 hours after injury. Therapeutic hypothermia may protect the injured central nervous system by targeting the detrimental consequences of the innate immune response to injury.
Collapse
|
46
|
Corry JJ. Use of hypothermia in the intensive care unit. World J Crit Care Med 2012; 1:106-22. [PMID: 24701408 PMCID: PMC3953868 DOI: 10.5492/wjccm.v1.i4.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/25/2012] [Accepted: 07/12/2012] [Indexed: 02/06/2023] Open
Abstract
Used for over 3600 years, hypothermia, or targeted temperature management (TTM), remains an ill defined medical therapy. Currently, the strongest evidence for TTM in adults are for out-of-hospital ventricular tachycardia/ventricular fibrillation cardiac arrest, intracerebral pressure control, and normothermia in the neurocritical care population. Even in these disease processes, a number of questions exist. Data on disease specific therapeutic markers, therapeutic depth and duration, and prognostication are limited. Despite ample experimental data, clinical evidence for stroke, refractory status epilepticus, hepatic encephalopathy, and intensive care unit is only at the safety and proof-of-concept stage. This review explores the deleterious nature of fever, the theoretical role of TTM in the critically ill, and summarizes the clinical evidence for TTM in adults.
Collapse
Affiliation(s)
- Jesse J Corry
- Jesse J Corry, Department of Neurology, Marshfield Clinic, Marshfield, WI 54449-5777, United States
| |
Collapse
|
47
|
Sakurai A, Kinoshita K, Furukawa M, Noda A, Yamaguchi J, Kogawa R, Tanjoh K. Implication for long-term hypothermia on degradation of interleukin-8 mRNA in endothelial cells stimulated with lipopolysaccharides. Ther Hypothermia Temp Manag 2012; 2:67-72. [PMID: 23667775 PMCID: PMC3621332 DOI: 10.1089/ther.2012.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This experimental study investigated the effects of long-term hypothermia on the production of interleukin (IL)-8 protein and its mRNA expression in endothelial cells stimulated by lipopolysaccharides (LPS). Human umbilical vein endothelial cells were separated into a non-cooling group (N group: 37°C) and a cooling group (C group: 30°C). These groups were incubated with LPS (1 μg/mL) for 0, 2, 6, 24, 48, 72, and 96 hours. Production of the IL-8 protein secreted into the supernatant and mRNA expression in the cells were measured using enzyme-linked immunoabsorbent assay (ELISA) and real-time reverse transcription polymerase chain reaction (RT-PCR) analysis. To evaluate mRNA stability, both groups were incubated with actinomycin D at 6 hours after incubation with LPS for 24 hours. The degradation ratio was calculated by comparing the total expression of mRNA at 6 hours versus 0 hours. The protein levels in the C group were significantly lower than the N group between 6 and 96 hours. The mRNA expression in the C group was also significantly lower than in the N group up to 48 hours, but at 72 hours it was significantly higher than N group. IL-8 mRNA was less degraded in the C group compared to the N group. Under long-term hypothermia, IL-8 protein production was suppressed, while IL-8 mRNA was stabilized after LPS treatment. The potential of IL-8 to produce an inflammatory response in endothelial cells may persist even during long-term hypothermia.
Collapse
|
48
|
Yao C, Wei G, Lu XCM, Yang W, Tortella FC, Dave JR. Selective brain cooling in rats ameliorates intracerebral hemorrhage and edema caused by penetrating brain injury: possible involvement of heme oxygenase-1 expression. J Neurotrauma 2012; 28:1237-45. [PMID: 21463155 DOI: 10.1089/neu.2010.1678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain edema formation associated with trauma-induced intracerebral hemorrhage (ICH) is a clinical complication with high mortality. Studies have shown that heme oxygenase-1 (HO-1) plays an important role in ICH-induced brain edema. In order to understand the role of HO-1 in the protective effect of selective brain cooling (SBC), we investigated the time course of HO-1 changes following penetrating ballistic-like brain injury (PBBI) in rats. Samples were collected from injured and control animals at 6, 24, 48, and 72 h, and 7 days post-injury to evaluate HO-1 expression, heme concentration, brain water content, and immunohistochemistry (IHC). Following a 10% frontal PBBI, HO-1 mRNA and protein was increased at all time points studied, reaching maximum expression levels at 24-48 h post-injury. An increase in the heme concentration and the development of brain edema coincided with the upregulation of HO-1 mRNA and protein during the 7-day post-injury period. SBC significantly decreased PBBI-induced heme concentration, attenuated HO-1 upregulation, and concomitantly reduced brain water content. These results suggest that the neuroprotective effects of SBC may be partially mediated by reducing the heme accumulation, which reduced injury-mediated upregulation of HO-1, and in turn ameliorated edema formation. Collectively, these results suggest a potential value of HO-1 as a diagnostic and/or therapeutic biomarker in hemorrhagic brain injury.
Collapse
Affiliation(s)
- Changping Yao
- Department of Applied Neurobiology, Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research, 503 Robert Grant AvenueSilver Spring, MD 20910, USA
| | | | | | | | | | | |
Collapse
|
49
|
Fischer M, Lackner P, Beer R, Helbok R, Klien S, Ulmer H, Pfausler B, Schmutzhard E, Broessner G. Keep the brain cool--endovascular cooling in patients with severe traumatic brain injury: a case series study. Neurosurgery 2012; 68:867-73; discussion 873. [PMID: 21221030 DOI: 10.1227/neu.0b013e318208f5fb] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND As brain temperature is reported to be extensively higher than core body temperature in traumatic brain injury (TBI) patients, posttraumatic hyperthermia is of particular relevance in the injured brain. OBJECTIVE To study the influence of prophylactic normothermia on brain temperature and the temperature gradient between brain and core body in patients with severe TBI using an intravascular cooling system and to assess the relationship between brain temperature and intracranial pressure (ICP) under endovascular temperature control. METHODS Prospective case series study conducted in the neurologic intensive care unit of a tertiary care university hospital. Seven patients with severe TBI with a Glasgow Coma Scale score of 8 or less were consecutively enrolled. Prophylactic normothermia, defined as a target temperature of 36.5°C, was maintained using an intravascular cooling system. Simultaneous measurements of brain and urinary bladder temperature and ICP were taken over a 72-hour period. RESULTS The mean bladder temperature in normothermic patients was 36.3 ± 0.4°C, and the mean brain temperature was determined as 36.4 ± 0.5°C. The mean temperature difference between brain and bladder was 0.1°C. We found a significant direct correlation between brain and bladder temperature (r = 0.95). In 52.4% of all measurements, brain temperature was higher than core body temperature. The mean ICP was 18 ± 8 mm Hg. CONCLUSION Intravascular temperature management stabilizes both brain and body core temperature; prophylactic normothermia reduces the otherwise extreme increase of intracerebral temperature in patients with severe TBI. The intravascular cooling management proved to be an efficacious and feasible method to control brain temperature and to avoid hyperthermia in the injured brain. We could not find a statistically significant correlation between brain temperature and ICP.
Collapse
Affiliation(s)
- Marlene Fischer
- Department of Neurology, Neurologic Intensive Care Unit, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Facts and fiction: the impact of hypothermia on molecular mechanisms following major challenge. Mediators Inflamm 2012; 2012:762840. [PMID: 22481864 PMCID: PMC3316953 DOI: 10.1155/2012/762840] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/02/2012] [Indexed: 01/02/2023] Open
Abstract
Numerous multiple trauma and surgical patients suffer from accidental hypothermia. While induced hypothermia is commonly used in elective cardiac surgery due to its protective effects, accidental hypothermia is associated with increased posttraumatic complications and even mortality in severely injured patients. This paper focuses on protective molecular mechanisms of hypothermia on apoptosis and the posttraumatic immune response. Although information regarding severe trauma is limited, there is evidence that induced hypothermia may have beneficial effects on the posttraumatic immune response as well as apoptosis in animal studies and certain clinical situations. However, more profound knowledge of mechanisms is necessary before randomized clinical trials in trauma patients can be initiated.
Collapse
|