1
|
Fukutome A, Sakamoto T, Asawa Y, Riu D, Kawakami H, Hoshi K, Hikita A. Establishment of a mouse organ culture model of fetal cleft lip for the evaluation of adipose-derived stem cell therapy. Regen Ther 2025; 28:41-50. [PMID: 39687332 PMCID: PMC11647479 DOI: 10.1016/j.reth.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Cleft lip and cleft palate are congenital disorders resulting from abnormal facial development. Current treatments require multiple surgeries, which have risks of scar formation and facial deformities. Recently, fetal treatments utilizing "scarless healing" have gained attention, as early intervention shows potential to suppress scarring. In the field of regenerative medicine, mesenchymal stem cell therapies using cell sheets have advanced, by which promotion of tissue repair is expected. However, researches for fetal treatment using small animal models of cleft lip are challenging due to the high fetal mortality caused by surgical invasiveness. Although organ culture methods may offer an alternative approach, no organ culture system for fetal cleft lip research has been reported. Methods In this study, a cleft lip was surgically created on the upper left side lip of E15.5 mouse fetuses. These fetuses were cultured for four days using an organ culture system. Histological evaluation was performed to evaluate cell density, tissue morphology, and epithelialization. Additionally, adipose-derived stem cell (ADSC) sheets were transplanted two days after cleft lip creation to evaluate their effect on tissue repair. Results The histological analysis showed that cell density and tissue morphology were stably maintained in the four-day culture period. Epithelialization of the incision site was observed two days after surgery, confirming the completion of cleft formation. In the ADSC-transplanted group, epithelialization of the cleft site was observed, which indicates that the stem cell sheets contributed to tissue repair. Conclusion This research demonstrates the successful development of a cleft lip organ culture model and highlights the potential of ADSC sheets in promoting tissue repair. These findings provide a foundation for future regenerative medicine strategies in fetal cleft lip therapy.
Collapse
Affiliation(s)
- Ayane Fukutome
- Department of Oral and Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoaki Sakamoto
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yukiyo Asawa
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Dan Riu
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroshi Kawakami
- Division of Dentistry and Oral Surgery, Mitsui Memorial Hospital, 1 Kanda Izumicho, Chiyoda-ku, Tokyo 101-8643, Japan
| | - Kazuto Hoshi
- Department of Oral and Maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
2
|
Chen S, Xiong Y, Yang F, Hu Y, Feng J, Zhou F, Liu Z, Liu H, Liu X, Zhao J, Zhang Z, Chen L. Approaches to scarless burn wound healing: application of 3D printed skin substitutes with dual properties of anti-infection and balancing wound hydration levels. EBioMedicine 2024; 106:105258. [PMID: 39068733 PMCID: PMC11332815 DOI: 10.1016/j.ebiom.2024.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Severe burn wounds face two primary challenges: dysregulated cellular impairment functions following infection and an unbalanced wound hydration microenvironment leading to excessive inflammation and collagen deposition. These results in hypertrophic scar contraction, causing significant deformity and disability in survivors. METHODS A three-dimensional (3D) printed double-layer hydrogel (DLH) was designed and fabricated to address the problem of scar formation after burn injury. DLH was developed using methacrylated silk fibroin (SFMA) and gelatin methacryloyl (GelMA) for the upper layer, and GelMA and hyaluronic acid methacryloyl (HAMA) for the lower layer. To combat infection, copper-epigallocatechin gallate (Cu-EGCG) was incorporated into the lower layer bioink, collectively referred to as DLS. To balance wound hydration levels, HaCaT cells were additionally encapsulated in the upper layer, designed as DLS/c. FINDINGS DLH demonstrated suitable porosity, appropriate mechanical properties, and excellent biocompatibility. DLS exhibited potent antimicrobial properties, exerted anti-inflammatory effects by regulating macrophage polarisation, and may enhance angiogenesis through the HIF-1α/VEGF pathway. In the DLS/c group, animal studies showed significant improvements in epidermal formation, barrier function, and epidermal hydration, accompanied by reduced inflammation. In addition, Masson's trichrome and Sirius red staining revealed that the structure and ratio of dermal collagen in DLS/c resembled that of normal skin, indicating considerable potential for scarless wound healing. INTERPRETATION This biomimetic matrix shows promise in addressing the challenges of burn wounds and aiming for scarless repair, with benefits such as anti-infection, epidermal hydration, biological induction, and optimised topological properties. FUNDING Shown in Acknowledgements.
Collapse
Affiliation(s)
- Shuying Chen
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yahui Xiong
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Yang
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanke Hu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinghao Feng
- Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Fei Zhou
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhonghua Liu
- South China Agricultural University, Guangzhou 510642, China
| | - Hengdeng Liu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaogang Liu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingling Zhao
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| | - Lei Chen
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Urban L, Čoma M, Lacina L, Szabo P, Sabová J, Urban T, Šuca H, Lukačín Š, Zajíček R, Smetana K, Gál P. Heterogeneous response to TGF-β1/3 isoforms in fibroblasts of different origins: implications for wound healing and tumorigenesis. Histochem Cell Biol 2023; 160:541-554. [PMID: 37707642 DOI: 10.1007/s00418-023-02221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 09/15/2023]
Abstract
Identification of therapeutic targets for treating fibrotic diseases and cancer remains challenging. Our study aimed to investigate the effects of TGF-β1 and TGF-β3 on myofibroblast differentiation and extracellular matrix deposition in different types of fibroblasts, including normal/dermal, cancer-associated, and scar-derived fibroblasts. When comparing the phenotype and signaling pathways activation we observed extreme heterogeneity of studied markers across different fibroblast populations, even within those isolated from the same tissue. Specifically, the presence of myofibroblast and deposition of extracellular matrix were dependent on the origin of the fibroblasts and the type of treatment they received (TGF-β1 vs. TGF-β3). In parallel, we detected activation of canonical signaling (pSMAD2/3) across all studied fibroblasts, albeit to various extents. Treatment with TGF-β1 and TGF-β3 resulted in the activation of canonical and several non-canonical pathways, including AKT, ERK, and ROCK. Among studied cells, cancer-associated fibroblasts displayed the most heterogenic response to TGF-β1/3 treatments. In general, TGF-β1 demonstrated a more potent activation of signaling pathways compared to TGF-β3, whereas TGF-β3 exhibited rather an inhibitory effect in keloid- and hypertrophic scar-derived fibroblasts suggesting its clinical potential for scar treatment. In summary, our study has implications for comprehending the role of TGF-β signaling in fibroblast biology, fibrotic diseases, and cancer. Future research should focus on unraveling the mechanisms beyond differential fibroblast responses to TGF-β isomers considering inherent fibroblast heterogeneity.
Collapse
Affiliation(s)
- Lukáš Urban
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Ondavská, 040 11, Košice, Slovak Republic
| | - Matúš Čoma
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Ondavská, 040 11, Košice, Slovak Republic
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 2, 128 00, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
- Department Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 128 08, Prague, Czech Republic
| | - Pavol Szabo
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 2, 128 00, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Jana Sabová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic
| | - Tomáš Urban
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic
| | - Hubert Šuca
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic
| | - Štefan Lukačín
- Department of Heart Surgery, East-Slovak Institute of Cardiovascular Diseases Inc, 040 11, Košice, Slovak Republic
| | - Robert Zajíček
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 2, 128 00, Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic.
| | - Peter Gál
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 040 11, Košice, Slovak Republic.
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Ondavská, 040 11, Košice, Slovak Republic.
- Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, 100 00, Prague, Czech Republic.
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, 832 32, Bratislava, Slovak Republic.
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, 040 01, Košice, Slovak Republic.
| |
Collapse
|
4
|
Popescu I, Constantin M, Solcan G, Ichim DL, Rata DM, Horodincu L, Solcan C. Composite Hydrogels with Embedded Silver Nanoparticles and Ibuprofen as Wound Dressing. Gels 2023; 9:654. [PMID: 37623109 PMCID: PMC10454181 DOI: 10.3390/gels9080654] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The wound healing process is often slowed down as a result of complications from bacterial infections and inflammatory reactions. Therefore, it is necessary to develop dressings with fast antibacterial and anti-inflammatory activity that shorten the wound healing period by promoting cell migration and proliferation. Chitosan (CS)-based hydrogels have been widely studied for their antibacterial and wound healing capabilities. Herein, we developed a composite hydrogel based on CS and PVA embedding silver nanoparticles (AgNPs) with antibacterial properties and ibuprofen (Ib) as an anti-inflammatory agent. The hydrogel prepared by double physical cross-linking, with oxalic acid and by freeze-thawing, loaded with 0.225 wt.% AgNPs and 0.264 wt.% Ib, displayed good mechanical properties (compressive modulus = 132 kPa), a high swelling degree and sustained drug delivery (in simulated skin conditions). Moreover, the hydrogel showed strong antibacterial activity against S. aureus and K. pneumoniae due to the embedded AgNPs. In vivo, this hydrogel accelerated the wound regeneration process through the enhanced expression of TNF alpha IP8, by activating downstream cascades and supporting the healing process of inflammation; Cox2, which enhances the migration and proliferation of cells involved in re-epithelization and angiogenesis; MHCII, which promotes immune cooperation between local cells, eliminating dead tissue and controlling infection; the intense expression of Col I as a major marker in the tissue granulation process; and αSMA, which marks the presence of myofibroblasts involved in wound closure and indicates ongoing re-epithelization. The results reveal the potential healing effect of CS/PVA/AgNPs/Ib hydrogels and suggest their potential use as wound dressings.
Collapse
Affiliation(s)
- Irina Popescu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.P.); (M.C.)
| | - Marieta Constantin
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.P.); (M.C.)
| | - Gheorghe Solcan
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania; (G.S.); (L.H.)
| | - Daniela Luminita Ichim
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.L.I.); (D.M.R.)
| | - Delia Mihaela Rata
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.L.I.); (D.M.R.)
| | - Loredana Horodincu
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania; (G.S.); (L.H.)
| | - Carmen Solcan
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania; (G.S.); (L.H.)
| |
Collapse
|
5
|
Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298:101530. [PMID: 34953859 PMCID: PMC8784641 DOI: 10.1016/j.jbc.2021.101530] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Various forms of fibrosis, comprising tissue thickening and scarring, are involved in 40% of deaths across the world. Since the discovery of scarless functional healing in fetuses prior to a certain stage of development, scientists have attempted to replicate scarless wound healing in adults with little success. While the extracellular matrix (ECM), fibroblasts, and inflammatory mediators have been historically investigated as separate branches of biology, it has become increasingly necessary to consider them as parts of a complex and tightly regulated system that becomes dysregulated in fibrosis. With this new paradigm, revisiting fetal scarless wound healing provides a unique opportunity to better understand how this highly regulated system operates mechanistically. In the following review, we navigate the four stages of wound healing (hemostasis, inflammation, repair, and remodeling) against the backdrop of adult versus fetal wound healing, while also exploring the relationships between the ECM, effector cells, and signaling molecules. We conclude by singling out recent findings that offer promising leads to alter the dynamics between the ECM, fibroblasts, and inflammation to promote scarless healing. One factor that promises to be significant is fibroblast heterogeneity and how certain fibroblast subpopulations might be predisposed to scarless healing. Altogether, reconsidering fetal wound healing by examining the interplay of the various factors contributing to fibrosis provides new research directions that will hopefully help us better understand and address fibroproliferative diseases, such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis.
Collapse
Affiliation(s)
- Leandro Moretti
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jack Stalfort
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas Harrison Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
6
|
Xue M, Zhao R, March L, Jackson C. Dermal Fibroblast Heterogeneity and Its Contribution to the Skin Repair and Regeneration. Adv Wound Care (New Rochelle) 2022; 11:87-107. [PMID: 33607934 DOI: 10.1089/wound.2020.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Dermal fibroblasts are the major cell type in the skin's dermal layer. These cells originate from distinct locations of the embryo and reside in unique niches in the dermis. Different dermal fibroblasts exhibit distinct roles in skin development, homeostasis, and wound healing. Therefore, these cells are becoming attractive candidates for cell-based therapies in wound healing. Recent Advances: Human skin dermis comprises multiple fibroblast subtypes, including papillary, reticular, and hair follicle-associated fibroblasts, and myofibroblasts after wounding. Recent studies reveal that these cells play distinct roles in wound healing and contribute to diverse healing outcomes, including nonhealing chronic wound or excessive scar formation, such as hypertrophic scars (HTS) and keloids, with papillary fibroblasts having antiscarring and reticular fibroblast scar-forming properties. Critical Issues: The identities and functions of dermal fibroblast subpopulations in many respects remain unknown. In this review, we summarize the current understanding of dermal fibroblast heterogeneity, including their defined cell markers and dermal niches, dynamic changes, and contributions to skin wound healing, with the emphasis on scarless healing, healing with excessive scars (HTS and keloids), chronic wounds, and the potential application of this heterogeneity for developing cell-based therapies that allow wounds to heal faster with less scarring. Future Directions: Heterogeneous dermal fibroblast populations and their functions are poorly characterized. Refining and advancing our understanding of dermal fibroblast heterogeneity and their participation in skin homeostasis and wound healing may create potential therapeutic applications for nonhealing chronic wounds or wounds that heal with excessive scarring.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ruilong Zhao
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
7
|
Baysal I, Ozcelikay G, Yabanoglu-Ciftci S, Ucar BI, Gencer A, Arica-Yegin B. Nanoparticles and Nanostructured Films with TGF-β3: Preparation, Characterization, and Efficacy. AAPS PharmSciTech 2021; 22:213. [PMID: 34378118 DOI: 10.1208/s12249-021-02097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
TGF-β3 has been reported to have a strong therapeutic efficacy in wound healing when externally administered, but TGF-β3's active form is rapidly metabolized and removed from the body. Therefore, a drug delivery system that can provide a new non-toxic and an effective treatment that could be locally applied and also be able to protect the stability of the protein and provide controlled release is required. The aim of the study is to prepare and characterize nanoparticles and nanostructured films with TGF-β3 and to evaluate in vitro cytotoxicity of the loaded nanoparticles. PCL-based films containing TGF-β3 or TGF-β3-loaded PLGA nanoparticles were prepared with non-toxic modified solvent displacement method. The particle size and protein loading efficiency of TGF-β3-loaded PLGA nanoparticles were 204.9 ± 10.3 nm and 42.42 ± 2.03%, respectively. In vitro release studies of TGF-β3-loaded PLGA nanoparticle formulations revealed that the protein was completely released from the nanoparticles at the end of 24 h. In vitro release profile of film formulation containing TGF-β3-loaded nanoparticles was similar. TGF-β3 released from nanoparticles do not have a significant effect on proliferation of HepG2 cells demonstrating their biocompatibility. Additionally, prepared films were tested with in vivo wound healing mouse model and showed to heal significantly faster and with improved scarring. PCL films loaded with TGF-β3 or TGF-β3 nanoparticles prepared in this study may be an effective treatment approach for wound healing therapy after injury.
Collapse
|
8
|
Kemaloğlu CA, Özyazgan İ, Gönen ZB. Immediate fat and nanofat-enriched fat grafting in breast reduction for scar management. J Plast Surg Hand Surg 2020; 55:173-180. [PMID: 33315503 DOI: 10.1080/2000656x.2020.1856678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Reduction mammoplasty can be successful but surgical scars may continue to be a most undesirable and unavoidable outcome. Various medical and non-invasive methods are available to minimize scar formation but as yet no methods have been discovered to eliminate them. We hypothesize that immediate fat and nanofat-enriched fat graft transfer may improve the scar quality and optimize results. MATERIALS AND METHODS This prospective study comprised 45 superomedial pedicle wise-pattern breast reduction patients divided into three groups of 15 in a randomized fashion. The control group had no additional injections whereas the other two groups received injections of fat and nanofat-enriched fat grafts immediately under their surgery scars, respectively. Surgical scar formation was evaluated at six months and scars were scored using the Vancouver scar scale and a visual analogue scale. RESULTS Fat and nanofat-enriched fat graft-injected groups scored significantly better on all items of the Vancouver scar scale, except for scar height, compared to the control group (p < 0.05). Visual analogue scores were significantly lower in the fat and nanofat-enriched fat graft-injected groups compared to the control group (p < 0.05). CONCLUSIONS In breast reduction patients, simultaneous fat and nanofat-enriched fat grafting appears to be a safe and promising strategy for scar management.
Collapse
Affiliation(s)
- Cemal Alper Kemaloğlu
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - İrfan Özyazgan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
9
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|
10
|
Zoumalan CI, Tadayon SC, Roostaeian J, Rossi AM, Gabriel A. Safety and Efficacy of a Scar Cream Consisting of Highly Selective Growth Factors Within a Silicone Cream Matrix: A Double-Blinded, Randomized, Multicenter Study. Aesthet Surg J 2019; 39:319-330. [PMID: 30084900 DOI: 10.1093/asj/sjy185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Several growth factors and hyaluronic acid are implicated in fetal scarless healing. Whether these factors can be applied to an adult scar to improve scar characteristics is unknown. OBJECTIVES This study compared the efficacy and safety of SKN2017B, a proprietary topical cream consisting of selective synthetic recombinant human growth factors and hyaluronic acid in a silicone base containing a specifically formulated silicone cream for postsurgical scar treatment. METHODS In this prospective, randomized, controlled, double-blinded study, unilateral or bilateral facial or truncal scars in adult surgical patients were randomly treated with SKN2017B or silicone cream. Study investigators, study patients, and 2 independent reviewers assessed improvement in scar characteristics after 4 and 12 weeks of treatment. RESULTS Forty-nine bilateral and 12 unilateral scars in 45 patients were treated with SKN2017B or silicone. At 12 weeks, investigators rated 74% of scars treated with SKN2017B as showing overall improvement vs 54% of silicone-treated scars, a 73% relative improvement with SKN2017B (P < 0.0001). Patients rated a moderate-to-significant improvement in 85% of SKN2017B-treated scars vs 51% of silicone-treated scars, a 67% relative improvement with SKN2017B (P < 0.001). Independent reviewers rated 87% of scars treated with SKN2017B to be better overall vs 1% of scars treated with silicone (P < 0.0001). There were no tolerability issues or adverse reactions with either cream. CONCLUSIONS SKN2017B consists of highly selective growth factors within a silicone cream matrix and is well tolerated and effective for surgical scar management. LEVEL OF EVIDENCE: 1
Collapse
Affiliation(s)
| | | | - Jason Roostaeian
- Department of Plastic Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Anthony M Rossi
- Dermatology Service, Memorial Sloan Kettering Center, New York, NY
| | - Allen Gabriel
- Department of Plastic Surgery, Loma Linda University Medical Center, Loma Linda, CA
| |
Collapse
|
11
|
Hu MS, Borrelli MR, Hong WX, Malhotra S, Cheung ATM, Ransom RC, Rennert RC, Morrison SD, Lorenz HP, Longaker MT. Embryonic skin development and repair. Organogenesis 2018; 14:46-63. [PMID: 29420124 PMCID: PMC6150059 DOI: 10.1080/15476278.2017.1421882] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022] Open
Abstract
Fetal cutaneous wounds have the unique ability to completely regenerate wounded skin and heal without scarring. However, adult cutaneous wounds heal via a fibroproliferative response which results in the formation of a scar. Understanding the mechanism(s) of scarless wound healing leads to enormous clinical potential in facilitating an environment conducive to scarless healing in adult cutaneous wounds. This article reviews the embryonic development of the skin and outlines the structural and functional differences in adult and fetal wound healing phenotypes. A review of current developments made towards applying this clinical knowledge to promote scarless healing in adult wounds is addressed.
Collapse
Affiliation(s)
- Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Mimi R. Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Wan Xing Hong
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Samir Malhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Alexander T. M. Cheung
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Ryan C. Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Robert C. Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Shane D. Morrison
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - H. Peter Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
12
|
Thulabandu V, Chen D, Atit RP. Dermal fibroblast in cutaneous development and healing. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29244903 DOI: 10.1002/wdev.307] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 01/09/2023]
Abstract
The skin is the largest organ of the body and is composed of two layers: the overlying epidermis and the underlying dermis. The dermal fibroblasts originate from distinct locations of the embryo and contain the positional identity and patterning information in the skin. The dermal fibroblast progenitors differentiate into various cell types that are fated to perform specific functions such as hair follicle initiation and scar formation during wound healing. Recent studies have revealed the heterogeneity and plasticity of dermal fibroblasts within skin, which has implications for skin disease and tissue engineering. The objective of this review is to frame our current understanding and provide new insights on the origin and differentiation of dermal fibroblasts and their function during cutaneous development and healing. WIREs Dev Biol 2018, 7:e307. doi: 10.1002/wdev.307 This article is categorized under: Birth Defects > Organ Anomalies Signaling Pathways > Cell Fate Signaling Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Venkata Thulabandu
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Demeng Chen
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
13
|
Yu G, Li Y, Ye L, Wang X, Zhang J, Dong Z, Jiang D. Exogenous peripheral blood mononuclear cells affect the healing process of deep‑degree burns. Mol Med Rep 2017; 16:8110-8122. [PMID: 28990101 PMCID: PMC5779898 DOI: 10.3892/mmr.2017.7672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
The regenerative repair of deep-degree (second degree) burned skin remains a notable challenge in the treatment of burn injury, despite improvements being made with regards to treatment modality and the emergence of novel therapies. Fetal skin constitutes an attractive target for investigating scarless healing of burned skin. To investigate the inflammatory response during scarless healing of burned fetal skin, the present study developed a nude mouse model, which was implanted with normal human fetal skin and burned fetal skin. Subsequently, human peripheral blood mononuclear cells (PBMCs) were used to treat the nude mouse model carrying the burned fetal skin. The expression levels of matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinases (TIMP)-1 were investigated during this process. In the present study, fetal skin was subcutaneously implanted into the nude mice to establish the murine model. Hematoxylin and eosin staining was used to detect alterations in the skin during the development of fetal skin and during the healing process of deep-degree burned fetal skin. The expression levels of MMP-9 and TIMP-1 were determined using immunochemical staining, and their staining intensity was evaluated by mean optical density. The results demonstrated that fetal skin subcutaneously implanted into the dorsal skin flap of nude mice developed similarly to the normal growth process in the womb. In addition, the scarless healing process was clearly observed in the mice carrying the burned fetal skin. A total of 2 weeks was required to complete scarless healing. Following treatment with PBMCs, the burned fetal skin generated inflammatory factors and enhanced the inflammatory response, which consequently resulted in a reduction in the speed of healing and in the formation of scars. Therefore, exogenous PBMCs may alter the lowered immune response environment, which is required for scarless healing, resulting in scar formation. In conclusion, the present study indicated that the involvement of inflammatory cells is important during the healing process of deep-degree burned skin, and MMP-9 and TIMP-1 may serve important roles in the process of scar formation.
Collapse
Affiliation(s)
- Guanying Yu
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yaonan Li
- Department of Emergency, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lan Ye
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xinglei Wang
- Department of Emergency, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jixun Zhang
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhengxue Dong
- Department of Burns and Plastic Surgery, The Chinese People's Liberation Army 148 Hospital, Zibo, Shandong 255300, P.R. China
| | - Duyin Jiang
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
14
|
Bioinductive Scaffolds—Powerhouses of Skeletal Muscle Tissue Engineering. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Zhou H, You C, Wang X, Jin R, Wu P, Li Q, Han C. The progress and challenges for dermal regeneration in tissue engineering. J Biomed Mater Res A 2017; 105:1208-1218. [PMID: 28063210 DOI: 10.1002/jbm.a.35996] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Hanlei Zhou
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Chuangang You
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Xingang Wang
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Ronghua Jin
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Pan Wu
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Qiong Li
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| | - Chunmao Han
- Department of Burns; 2nd Affiliated Hospital of Zhejiang University, College of Medicine; Hangzhou 310009 China
| |
Collapse
|
16
|
Liu K, Gao Z, Zhou G, Zhang W, Wu X, Liu W. Characterization of Smad3 knockout mouse derived skin cells. In Vitro Cell Dev Biol Anim 2017; 53:458-466. [PMID: 28130754 DOI: 10.1007/s11626-016-0127-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
TGF-β plays an important role in skin wound healing process, in which Smad3 acts as a signaling molecule. Smad3 knockout mice exhibit enhanced wound healing and less inflammatory process, but the intrinsic properties of the mouse derived skin cells are generally unexplored. The purpose of this study is to characterize the biological behavior of skin cells derived from Smad3 knockout mice and thus to define the mechanism of this particular wound healing process. Keratinocytes and dermal fibroblasts were harvested from the skin of Smad3 knockout (Smad3 KO) and wild-type (WT) mice and in vitro cultured for one and two passages for various experiments. The results showed that KO mouse serum contained significantly higher levels of TGF-β1 and lower level of IL-6 and IL-10 than WT mouse serum (p < 0.05), which were also supported by the same findings of more TGF-β1 and less IL-6 and IL-10 in the supernatant of cultured KO dermal fibroblasts than those of WT cells (p < 0.05). At gene levels, IL-6, IL-10, and TGF-β1 were significantly less expressed in KO fibroblasts than in WT fibroblasts (p < 0.05). In addition, KO dermal fibroblasts also exhibited stronger migration and proliferation potentials than WT fibroblasts (p < 0.05). Moreover, both KO fibroblasts and keratinocytes showed higher colony-forming efficiency than WT counterparts with significant difference (p < 0.05). These findings indicate that both systemic factors and intrinsic properties of skin cells contribute to enhanced wound healing and less inflammatory reaction observed in Smad3 knock-out mice.
Collapse
Affiliation(s)
- Ke Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China.,Department of Dermatology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China
| | - Xiaoli Wu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China.
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, 639 Zhi Zao Ju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
17
|
Wang X, Cao P, Liu J, Du P, Wang Z, Chen W, Liu C, Wu Y. 5-Aminolaevulinic Acid-Based Photodynamic Therapy Restrains Pathological Hyperplasia of Fibroblasts. Med Sci Monit 2017; 23:46-56. [PMID: 28052053 PMCID: PMC5228760 DOI: 10.12659/msm.898221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background This study aimed to explore whether 5-aminolaevulinic acid-based photodynamic therapy (ALA-PDT) restrains pathological hyperplasia of fibroblasts from hyperplastic scar tissues, and to investigate the potential mechanism. Material/Methods We used MTT assay, flow cytometry, and terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) to examine the effects of ALA-PDT on proliferation, cell cycle, and apoptosis of fibroblasts isolated from hyperplastic scar tissues. The growth-promoting effect of fibroblasts on vascular endothelial cells was measured by cell co-culture. Real-time PCR and Western blot analysis were performed to detect the expression levels of transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA), Collagen I, Collagen III, vascular endothelial growth factor-A (VEGFA), and basic fibroblast growth factor (bFGF). Results ALA-PDT inhibited proliferation delayed cell cycle progress, promoted apoptosis of fibroblasts, and suppressed its growth-promoting effect on vascular endothelial cells, and decreased expression of TGF-β1, α-SMA, Collagen I, Collagen III, VEGFA, and bFGF. Conclusions ALA-PDT effectively restrained pathological hyperplasia of fibroblasts from hyperplastic scar tissues, which may provide a research basis for clinical therapy of hyperplastic scars.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Ping Cao
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Jian Liu
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunming, Kunming, Yunnan, China (mainland)
| | - Peng Du
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Zhiqiong Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Wei Chen
- Department of Genetics, Kunming University of Science and Technology, Kunming, Yunnan, China (mainland)
| | - Chang Liu
- Department of Clinical Medicine, Kunming University of Traditional Chinese Medicine, Kunming, China (mainland)
| | - Yifei Wu
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
18
|
Pritchard MT, McCracken JM. Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar? Curr Drug Targets 2016; 16:1332-46. [PMID: 26302807 DOI: 10.2174/1389450116666150825111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
The liver is unique in that it is able to regenerate. This regeneration occurs without formation of a scar in the case of non-iterative hepatic injury. However, when the liver is exposed to chronic liver injury, the purely regenerative process fails and excessive extracellular matrix proteins are deposited in place of normal liver parenchyma. While much has been discovered in the past three decades, insights into fibrotic mechanisms have not yet lead to effective therapies; liver transplant remains the only cure for advanced liver disease. In an effort to broaden the collection of possible therapeutic targets, this review will compare and contrast the liver wound healing response to that found in two types of wound healing: scarless wound healing of fetal skin and oral mucosa and scar-forming wound healing found in adult skin. This review will examine wound healing in the liver and the skin in relation to the role of humoral and cellular factors, as well as the extracellular matrix, in this process. While several therapeutic targets are similar between fibrotic liver and adult skin wound healing, others are unique and represent novel areas for hepatic anti-fibrotic research. In particular, investigations into the role of hyaluronan in liver fibrosis and fibrosis resolution are warranted.
Collapse
Affiliation(s)
- Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66161, USA.
| | | |
Collapse
|
19
|
Wang X, Gao Z, Wu X, Zhang W, Zhou G, Liu W. Inhibitory effect of TGF-β peptide antagonist on the fibrotic phenotype of human hypertrophic scar fibroblasts. PHARMACEUTICAL BIOLOGY 2016; 54:1189-1197. [PMID: 26135051 DOI: 10.3109/13880209.2015.1059862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT TGF-β plays a central role in hypertrophic scar (HS) formation and development. OBJECTIVE This study investigated the role of a TGF-β antagonist peptide in inhibiting fibrotic behavior of human HS-derived fibroblasts (HSFs). MATERIALS AND METHODS HSFs were seeded at a density of 3.1 × 10(4)/cm(2) and were subjected to treatment of peptide antagonist (30 μM) or TGF-β receptor inhibitor LY2109761 (10 μM) or without treatment followed by the analyses of quantitative PCR, Elisa, in vitro wounding and fibroblast-populated collagen lattice (FPCL) assays. RESULTS qPCR and Elisa analyses showed that the peptide could, respectively, reduce the gene (at 48 h) and protein (at 72 h) expression levels of collagen I (86 ± 4.8%; 56.6 ± 7.3%), collagen III (73 ± 10.7%; 43.7 ± 7.2%), fibronectin (90 ± 8.9%; 21.1 ± 2.8%), and TGF-β1 (85 ± 9.3%; 25.0 ± 9.4%) as opposed to the non-treated group (p < 0.05), as the LY2109761 group similarly did. Cell proliferation was also significantly inhibited at day 5 (CCK-8 assay) by both peptide and LY2109761 treatments compared with the non-treated group (p < 0.05). The peptide also significantly inhibited cell migration as opposed to blank control at 24 h (43 ± 6.7% versus 60 ± 2.1%, p < 0.05) and at 48 h (63.9 ± 3.1% versus 95 ± 4.1%, p < 0.05). Similar to LY2109761, the peptide antagonist significantly reduced HS FPCL contraction compared with the non-treated group with significant differences in surface area at 48 h (0.71 ± 0.06 cm(2) versus 0.51 ± 0.06 cm(2), p < 0.05) and at 72 h (0.65 ± 0.02 cm(2) versus 0.42 ± 0.01 cm(2), p < 0.05). CONCLUSION The TGF-β antagonist peptide may serve as an important drug for HS prevention and reduction given the obvious benefits of good biosafety, low cost, and easy manufacture and delivery.
Collapse
Affiliation(s)
- Xiuxia Wang
- a Department of Plastic and Reconstructive Surgery , Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China and
| | - Zhen Gao
- a Department of Plastic and Reconstructive Surgery , Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China and
| | - Xiaoli Wu
- a Department of Plastic and Reconstructive Surgery , Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China and
| | - Wenjie Zhang
- a Department of Plastic and Reconstructive Surgery , Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China and
- b National Tissue Engineering Center of China , Shanghai , PR China
| | - Guangdong Zhou
- a Department of Plastic and Reconstructive Surgery , Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China and
- b National Tissue Engineering Center of China , Shanghai , PR China
| | - Wei Liu
- a Department of Plastic and Reconstructive Surgery , Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , PR China and
- b National Tissue Engineering Center of China , Shanghai , PR China
| |
Collapse
|
20
|
Hortensius RA, Harley BA. Naturally derived biomaterials for addressing inflammation in tissue regeneration. Exp Biol Med (Maywood) 2016; 241:1015-24. [PMID: 27190254 DOI: 10.1177/1535370216648022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tissue regeneration strategies have traditionally relied on designing biomaterials that closely mimic features of the native extracellular matrix (ECM) as a means to potentially promote site-specific cellular behaviors. However, inflammation, while a necessary component of wound healing, can alter processes associated with successful tissue regeneration following an initial injury. These processes can be further magnified by the implantation of a biomaterial within the wound site. In addition to designing biomaterials to satisfy biocompatibility concerns as well as to replicate elements of the composition, structure, and mechanics of native tissue, we propose that ECM analogs should also include features that modulate the inflammatory response. Indeed, strategies that enhance, reduce, or even change the temporal phenotype of inflammatory processes have unique potential as future pro-regenerative analogs. Here, we review derivatives of three natural materials with intrinsic anti-inflammatory properties and discuss their potential to address the challenges of inflammation in tissue engineering and chronic wounds.
Collapse
Affiliation(s)
| | - Brendan Ac Harley
- Department of Chemical and Biological Engineering, University of Illinois, Urbana, IL 61801, USA Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
21
|
TGF-beta-induced early gene-1 overexpression promotes oxidative stress protection and actin cytoskeleton rearrangement in human skin fibroblasts. Biochim Biophys Acta Gen Subj 2016; 1860:1071-8. [PMID: 26922828 DOI: 10.1016/j.bbagen.2016.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/31/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. METHODS We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). RESULTS TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. CONCLUSION TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. GENERAL SIGNIFICANCE This study enlightens the role of TIEG-1 role in skin biology.
Collapse
|
22
|
Mahmood U, O'Donoghue K. Microchimeric fetal cells play a role in maternal wound healing after pregnancy. CHIMERISM 2015; 5:40-52. [PMID: 24717775 DOI: 10.4161/chim.28746] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fetal cells persist in mothers for decades after delivery: in a phenomenon called fetal microchimerism. While persistent fetal cells were first implicated in autoimmune disease, parallel studies in animal and human pregnancy now suggest that microchimeric fetal cells play a role in the response to tissue injury. The aim of this study was to investigate the impact of fetal microchimeric cells in the adult wound, using caesarean section (CS) as a model of wound healing in pregnancy. XY-FISH (fluorescence in situ hybridization) and immunostaining was used in multiple tissue sections from CS skin biopsies from 70 women, to locate, quantitate and characterize microchimeric male presumed-fetal cells. Y-FISH and Nested PCR was used to confirm XY-FISH results. XY-FISH demonstrated the presence of isolated 0-9 male fetal cells per section in the epidermis of the healed CS scars from only those women who had their first male child by CS. Both Y-FISH and Y-PCR confirmed the presence of fetal cells in CS scars. Combined FISH and immunostaining showed all male fetal cells present were keratinocytes, as they expressed cytokeratin, and were almost exclusively located in epidermis. Microchimeric fetal cells also expressed Collagen I, III, and TGF-β3 in healed maternal scars. Identification of male-presumed fetal cells in healed maternal CS scars after pregnancy suggests that, possibly in response to signals produced by maternal skin injury at CS, fetal cells migrate to the site of damage to become involved in maternal tissue repair, or proliferate locally.
Collapse
Affiliation(s)
- Uzma Mahmood
- Anu Research Centre; Department of Obstetrics and Gynaecology; University College Cork; Cork University Maternity Hospital; Cork, Ireland
| | - Keelin O'Donoghue
- Anu Research Centre; Department of Obstetrics and Gynaecology; University College Cork; Cork University Maternity Hospital; Cork, Ireland
| |
Collapse
|
23
|
Walraven M, Beelen RHJ, Ulrich MMW. Transforming growth factor-β (TGF-β) signaling in healthy human fetal skin: a descriptive study. J Dermatol Sci 2015; 78:117-24. [PMID: 25795202 DOI: 10.1016/j.jdermsci.2015.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND TGF-β plays an important role in growth and development but is also involved in scarring and fibrosis. Differences for this growth factor are known between scarless fetal wound healing and adult wound healing. Nonetheless, most of the data in this area are from animal studies or in vitro studies and, thus, information about the human situation is incomplete and scarce. OBJECTIVE The aim of this study was to compare the canonical TGF-β signaling in unwounded human fetal and adult skin. METHODS Q-PCR, immunohistochemistry, Western Blot and Luminex assays were used to determine gene expression, protein levels and protein localization of components of this pathway in healthy skin. RESULTS All components of the canonical TGF-β pathway were present in unwounded fetal skin. Compared to adult skin, fetal skin had differential concentrations of the TGF-β isoforms, had high levels of phosphorylated receptor-Smads, especially in the epidermis, and had low expression of several fibrosis-associated target genes. Further, the results indicated that the processes of receptor endocytosis might also differ between fetal and adult skin. CONCLUSION This descriptive study showed that there are differences in gene expression, protein concentrations and protein localization for most components of the canonical TGF-β pathway between fetal and adult skin. The findings of this study can be a starting point for further research into the role of TGF-β signaling in scarless healing.
Collapse
Affiliation(s)
- M Walraven
- Dept. of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| | - R H J Beelen
- Dept. of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - M M W Ulrich
- Dept. of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands; Association of Dutch Burn Centres, Beverwijk, The Netherlands
| |
Collapse
|
24
|
Choi Y, Cox C, Lally K, Li Y. The strategy and method in modulating finger regeneration. Regen Med 2015; 9:231-42. [PMID: 24750063 DOI: 10.2217/rme.13.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tip of the human finger can regenerate if the amputation is distal to the nail bed, usually in young children. Studies in regeneration of rodent digits have shown that regeneration occurs if the amputation is distal to the mid-third phalanx for certain ages. The digit contains many different components, such as muscle, tendon, bone, skin, nerves and blood vessels, which must all be regrown in the proper location in order to restore functionality. The mechanism behind the complex healing/regeneration processes is still under investigation; however, improvements in injured finger regeneration have been gradually developing in animal models over the past few years. This review discusses a few strategies and methods to possibly enhance digit regeneration beyond current natural limits, focusing on aspects including scarless wound healing, cell-based treatments, tissue engineering and electrical stimulation.
Collapse
Affiliation(s)
- Yohan Choi
- Children's Regenerative Medicine, Department of Pediatric Surgery, University of Texas Medical School at Houston, TX 77030, USA
| | | | | | | |
Collapse
|
25
|
Liu K, Gao Z, Wu X, Zhou G, Zhang WJ, Yang X, Liu W. Knocking out Smad3 favors allogeneic mouse fetal skin development in adult wounds. Wound Repair Regen 2014; 22:265-71. [PMID: 24635177 DOI: 10.1111/wrr.12143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/12/2013] [Indexed: 01/26/2023]
Abstract
Fetal skin development represents a process of the interaction between skin progenitor cells and their unique extracellular matrix niche, which is also important for the mechanism study of skin progenitor cell differentiation and fetal scarless wound healing. Thus, a change in the niche environment, such as altered expression levels of growth factors or cytokines, may also change the outcome of fetal skin development. This study tested the hypothesis that deletion of mouse Smad3 creates a favorable environment for fetal skin development in adult wounds. Fetal skin of green fluorescent protein mouse (C57BL/B6) of gestational day 16.5 was respectively transplanted to the wound beds of wild-type (WT), heterozygous (HT), and homologous (KO) Smad3 deletion mice (C57BL/B6 × 129SV). The results showed that green fluorescent protein fetal mouse skin after its transplantation developed much better into hair follicle containing skin in KO or HT wound beds than in WT wound beds with significant differences in the number of follicles per mm(2) among the three groups at 1, 2, and 3 weeks posttransplantation (p < 0.05). In addition, less fibrosis was observed in KO wounds than in HT and WT wounds with significant difference in the wound bed thickness among the three groups at 3 weeks posttransplantation (p < 0.05). Interestingly, there was a delayed graft rejection in the KO group when compared with the HT and WT groups. In conclusion, deletion of Smad3 in a wound bed creates a better environment for skin progenitor cell differentiation and fetal skin development. Translation of such a concept to the creation of a wound environment that is favorable for adult stem cell differentiation and skin appendage formation may become an important strategy for the regeneration of wounded skin.
Collapse
Affiliation(s)
- Ke Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Research Institute of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Vocal Fold Fibroblast Response to Growth Factor Treatment is Age Dependent: Results From an In Vitro Study. J Voice 2014; 28:420-3. [DOI: 10.1016/j.jvoice.2013.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/11/2013] [Indexed: 11/22/2022]
|
27
|
Zgheib C, Xu J, Liechty KW. Targeting Inflammatory Cytokines and Extracellular Matrix Composition to Promote Wound Regeneration. Adv Wound Care (New Rochelle) 2014; 3:344-355. [PMID: 24757589 DOI: 10.1089/wound.2013.0456] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/21/2013] [Indexed: 11/13/2022] Open
Abstract
Significance: Delayed wound healing is one of the most challenging complications of several diseases, including diabetes. There is a vast interest in finding efficient treatments that promote scarless wound healing. The ability of the fetus to regenerate skin wounds after injury has generated much interest in the fetus as a model of regeneration. In this review, we evaluate the role and differential regulation of inflammation, extracellular matrix (ECM) composition, and mechanical stress in determining wound phenotype after injury. Recent Advances: Comparisons between postnatal and fetal wounds have revealed many differences in the healing process. Fetal skin wound healing is characterized by a reduced inflammatory response, an ECM rich in type III collagen and high-molecular-weight hyaluronic acid (HMW-HA), and minimal mechanical stress. In contrast, adult wounds have a sustained inflammatory response, an ECM with increased type I collagen, and low-molecular-weight (LMW-HA) and are subject to significant mechanical load. Critical Issues: The differential regulation of these processes in the fetus compared with the adult plays a critical role in promoting regeneration in the fetus while resulting in scar formation in the adult. Future Directions: Understanding the significance of inflammation and biomechanical forces in wound healing may help in designing therapeutic strategies for the management of chronic nonhealing wounds.
Collapse
Affiliation(s)
- Carlos Zgheib
- Department of Surgery, Nemours Children's Hospital, Orlando, Florida
| | - Junwang Xu
- Department of Surgery, Nemours Children's Hospital, Orlando, Florida
| | | |
Collapse
|
28
|
Walraven M, Gouverneur M, Middelkoop E, Beelen RHJ, Ulrich MMW. Altered TGF-β signaling in fetal fibroblasts: what is known about the underlying mechanisms? Wound Repair Regen 2013; 22:3-13. [PMID: 24134669 DOI: 10.1111/wrr.12098] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/25/2013] [Indexed: 02/01/2023]
Abstract
Scarless wound healing is a unique and intrinsic capacity of the fetal skin that is not fully understood. Further insight into the underlying mechanisms of fetal wound healing may lead to new therapeutic approaches promoting adult scarless wound healing. Differences between fetal and adult wound healing are found in the extracellular matrix, the inflammatory reaction and the levels of growth factors present in the wound. This review focuses specifically on transforming growth factor β (TGF-β), as this growth factor is prominently involved in wound healing and fibroblast-to-myofibroblast differentiation. Although fetal fibroblasts do respond to TGF-β, they lack a proliferative and a contractile response and display short-lived myofibroblast differentiation, autocrine response, and collagen up-regulation in comparison with adult fibroblasts. Curiously, prolonged TGF-β activation is associated with fibrosis, and therefore, this short-lived response in fetal fibroblasts might contribute to scarless healing. This review gives an overview of the current knowledge on TGF-β signaling and the intracellular TGF-β signaling pathway in fetal fibroblasts. Furthermore, this review also describes the various components that regulate the cellular TGF-β response and hypothesizes about the possible roles these components might play in the altered response of fetal fibroblasts to TGF-β.
Collapse
Affiliation(s)
- Mariëlle Walraven
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands; Association of Dutch Burn Centers, Beverwijk, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Kathju S, Gallo PH, Satish L. Scarless integumentary wound healing in the mammalian fetus: molecular basis and therapeutic implications. ACTA ACUST UNITED AC 2013; 96:223-36. [PMID: 23109318 DOI: 10.1002/bdrc.21015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adult mammals respond to injury of their skin/integument by forming scar tissue. Scar is useful in rapidly sealing an injured area, but can also lead to significant morbidity. Mammals in fetal life retain the ability to heal integumentary wounds regeneratively, without scar. The critical molecular mechanisms governing this remarkable phenomenon have been a subject of great interest, in the hopes that these could be dissected and recapitulated in the healing adult wound, with the goal of inducing scarless healing in injured patients. Multiple lines of investigation spanning decades have implicated a number of factors in distinguishing scarless from fibrotic wound healing, including most prominently transforming growth factor-β and interleukin-10, among others. Therapeutic interventions to try to mitigate scarring in adult wounds have been developed out of these studies, and have reached the level of clinical trials in humans, although as yet no FDA-approved treatment exists. More recent expressomic studies have revealed many more genes that are differentially expressed in scarlessly healing fetal wounds compared with adult, and microRNAs have also been identified as participating in the fetal wound healing response. These represent an even greater range of potential therapeutics (or targets for therapy) to translate the promise of scarless fetal wound healing to the injured adult patient.
Collapse
Affiliation(s)
- Sandeep Kathju
- Department of Surgery, Division of Plastic Surgery, University of Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
30
|
Wulff BC, Yu L, Parent AE, Wilgus TA. Novel differences in the expression of inflammation-associated genes between mid- and late-gestational dermal fibroblasts. Wound Repair Regen 2012; 21:103-12. [PMID: 23126606 DOI: 10.1111/j.1524-475x.2012.00860.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/21/2012] [Indexed: 01/11/2023]
Abstract
While cutaneous wounds of late-gestational fetuses and on through adulthood result in scar formation, wounds incurred early in gestation have been shown to heal scarlessly. Unique properties of fetal fibroblasts are believed to mediate this scarless healing process. In this study, microarray analysis was used to identify differences in the gene expression profiles of cultured fibroblasts from embryonic day 15 (E15; midgestation) and embryonic day 18 (E18; late-gestation) skin. Sixty-two genes were differentially expressed and 12 of those genes are associated with inflammation, a process that correlates with scar formation in fetal wounds. One of the differentially expressed inflammatory genes was cyclooxygenase-1 (COX-1). COX-1 was more highly expressed in E18 fibroblasts than in E15 fibroblasts, and these differences were confirmed at the gene and protein level. Differences in COX-1 protein expression were also observed in fetal skin by immunohistochemical and immunofluorescence staining. The baseline differences in gene expression found in mid- and late-gestational fetal fibroblasts suggest that developmental alterations in fibroblasts could be involved in the transition from scarless to fibrotic fetal wound healing. Furthermore, baseline differences in the expression of inflammatory genes by fibroblasts in E15 and E18 skin may contribute to inflammation and scar formation late in gestation.
Collapse
Affiliation(s)
- Brian C Wulff
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
31
|
Lee YS, Wysocki A, Warburton D, Tuan TL. Wound healing in development. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2012; 96:213-22. [PMID: 23109317 PMCID: PMC3678537 DOI: 10.1002/bdrc.21017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wound healing is the inherent ability of an organism to protect itself against injuries. Cumulative evidence indicates that the healing process patterns in part embryonic morphogenesis and may result in either organ regeneration or scarring, phenomena that are developmental stage- or age-dependent. Skin is the largest organ. Its morphogenesis and repair mechanisms have been studied extensively due not only to its anatomical location, which allows easy access and observation, but also to its captivating structure and vital function. Thus, this review will focus on using skin as a model organ to illustrate new insights into the mechanisms of wound healing that are developmentally regulated in mammals, with special emphasis on the role of the Wnt signaling pathway and its crosstalk with TGF-β signaling. Relevant information from studies of other organs is discussed where it applies, and the clinical impact from such knowledge and emerging concepts on regenerative medicine are discussed in perspective.
Collapse
Affiliation(s)
- Yun-Shain Lee
- Developmetal Biology, Regenerative Medicine, and Surgery Program, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California
| | - Annette Wysocki
- School of Nursing, University of Massachusetts Amherst, Amherst, Massachusetts
| | - David Warburton
- Developmetal Biology, Regenerative Medicine, and Surgery Program, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California
- Deparment of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Tai-Lan Tuan
- Developmetal Biology, Regenerative Medicine, and Surgery Program, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California
- Deparment of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
32
|
Pitiyage GN, Lim KP, Gemenitzidis E, Teh MT, Waseem A, Prime SS, Tilakaratne WM, Fortune F, Parkinson EK. Increased secretion of tissue inhibitors of metalloproteinases 1 and 2 (TIMPs -1 and -2) in fibroblasts are early indictors of oral sub-mucous fibrosis and ageing. J Oral Pathol Med 2012; 41:454-62. [DOI: 10.1111/j.1600-0714.2012.01129.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Agha R, Ogawa R, Pietramaggiori G, Orgill DP. A Review of the Role of Mechanical Forces in Cutaneous Wound Healing. J Surg Res 2011; 171:700-8. [DOI: 10.1016/j.jss.2011.07.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/17/2011] [Accepted: 07/07/2011] [Indexed: 12/14/2022]
|
34
|
|
35
|
Kim HM, Galatz LM, Das R, Havlioglu N, Rothermich SY, Thomopoulos S. The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res 2011; 52:87-98. [PMID: 20615095 DOI: 10.3109/03008207.2010.483026] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to examine the role of two of the three transforming growth factor beta (TGF-β) isoforms at the healing tendon-to-bone insertion. The supraspinatus tendons of 64 rats were transected at their bony insertions and repaired to the humeral head. One shoulder of each rat received an osmotic pump for sustained delivery of the following factors at the repair site: (1) TGF-β1 and neutralizing antibodies to TGF-β2 and 3 (TGF-β1 group), (2) TGF-β3 and neutralizing antibodies to TGF-β1 and 2 (TGF-β3 group), (3) neutralizing antibodies to TGF-β1, 2, and 3 (anti-TGF-β group), and (4) saline (saline group). The contralateral shoulders received saline to serve as paired controls. The repairs were evaluated at multiple time points postmortem using histology-based assays and biomechanical testing. Treated shoulders in the TGF-β1 group showed increased type III collagen production compared to the paired control shoulders, indicative of a scar-mediated response. There was a trend toward reduced mechanical properties in the TGF-β1 group, but these changes did not reach statistical significance. The anti-TGF-β group showed no difference in tissue volume, but significantly inferior mechanical properties, compared to the paired control shoulders. The TGF-β3 group did not show any differences compared to the paired control shoulders. Although TGF-β isoforms play important roles in tendon-to-bone development and healing, application of exogenous TGF-β isoforms and neutralizing antibodies to the subacromial space using osmotic pumps did not improve supraspinatus tendon-to-bone healing.
Collapse
Affiliation(s)
- H Mike Kim
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Wound healing is a complex biological process that affects multiple tissue types. Wounds in the oral cavity are particularly challenging given the variety of tissue types that exist in close proximity to one another. The goal of regenerative medicine is to facilitate the rapid replacement of lost or damaged tissue with tissue that is functional, and physiologically similar to what previously existed. This review provides a general overview of wound healing and regenerative medicine, focusing specifically on how recent advances in the fields of stem cell biology, tissue engineering, and oral disease could translate into improved clinical outcomes.
Collapse
Affiliation(s)
- A Nauta
- Hagey Laboratory for Pediatric and Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
37
|
Differential expression of growth differentiation factor-9 in keloids. Burns 2010; 36:1289-95. [DOI: 10.1016/j.burns.2010.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/09/2010] [Accepted: 02/19/2010] [Indexed: 11/21/2022]
|
38
|
Scar-Improving Efficacy of Avotermin Administered into the Wound Margins of Skin Incisions as Evaluated by a Randomized, Double-Blind, Placebo-Controlled, Phase II Clinical Trial. Plast Reconstr Surg 2010; 126:1604-1615. [DOI: 10.1097/prs.0b013e3181ef8e66] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Abstract
Fetal wound healing occurs rapidly and without scar formation early in gestation. Studying the mechanisms of scarless repair can lead to novel scar-preventive approaches. In fetal wounds, collagen is deposited early and is fine and reticular with less cross-linking. Several important differences of fetal vs. postgestational wound-healing response have been determined, such as the presence of less inflammation, higher hyaluronic acid concentration and a greater ratio of collagen type III to type I. Compared with typical wounds, there are also altered ratios of signaling molecules, such as higher ratios of transforming growth factor (TGF)-β3 to TGF-β1 and -β2, and matrix metalloproteinases to tissue inhibitors of metalloproteinases. Furthermore, fetal fibroblasts do not exhibit TGF-β1-induced collagen production compared with their mature counterparts. Patterning genes (homeobox genes) involved in organogenesis are more active in the fetal period and are believed to be the "first domino" in the fetal cutaneous wound repair regulatory cascade. The recommended scar-preventive agents, such as Scarguard MD®, silicone gel and sheet, Seprafilm® Bioresorbable Membrane, topical hyaluronan, onion extract, oral tamoxifen and 585-nm pulsed dye laser are reviewed in this study. Despite the lack of supporting evidence, there is a widespread false presumption that the acceleration of healing with the widely assumed scar-preventive commercial agents is associated with decreased scar formation. Humans are erroneously inclined to make a negative correlation between the healing rate and the degree of scar formation, while such a correlation does not exist in reality. Despite the importance of scar prevention, no FDA-approved therapy for this purpose is available in the 21st century, which reflects the important challenges, such as the presence of redundant pathways, that these approaches are facing.
Collapse
Affiliation(s)
- Mohammad Reza Namazi
- Stem Cell and Transgenic Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
40
|
Abstract
SUMMARY Scar formation is a major medical problem that can have devastating consequences for patients. The adverse physiological and psychological effects of scars are broad, and there are currently no reliable treatments to prevent scarring. In contrast to adult wounds, early gestation fetal skin wounds repair rapidly and in the absence of scar formation. Despite extensive investigation, the exact mechanisms of scarless fetal wound healing remain largely unknown. For some time, it has been known that significant differences exist among the extracellular matrix, inflammatory response, cellular mediators, and gene expression profiles of fetal and postnatal wounds. These differences may have important implications in scarless wound repair.
Collapse
Affiliation(s)
- Barrett J Larson
- Stanford, Calif. From the Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine
| | | | | |
Collapse
|
41
|
Zhao CG, He XJ, Lu B, Li HP, Kang AJ. Increased expression of collagens, transforming growth factor-beta1, and -beta3 in gluteal muscle contracture. BMC Musculoskelet Disord 2010; 11:15. [PMID: 20100316 PMCID: PMC2828420 DOI: 10.1186/1471-2474-11-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 01/25/2010] [Indexed: 01/11/2023] Open
Abstract
Backgroud Gluteal muscle contracture (GMC) is a multi-factor human chronic fibrotic disease of the gluteal muscle. Fibrotic tissue is characterized by excessive accumulation of collagen in the muscle's extracellular matrix. Transforming growth factor (TGF)-β1 and -β2 are thought to play an important role in fibrogenesis, while TGF-β3 is believed to have an anti-fibrotic function. We hypothesize that the expression of collagen and TGF-βs would be up-regulated in GMC patients. Methods The expression of collagen type I, type III and TGF-βs were studied in 23 fibrotic samples and 23 normal/control samples in GMC patients using immunohistochemistry, reverse transcription and polymerase chain reaction (RT-PCR) and western bolt analysis. Results Compared to the unaffected adjacent muscle, increased expression of TGF-β1 and -β3 was associated with deposition of collagen type I and type III in the fibrotic muscle of the GMC patients at the mRNA level. Strong up-regulation of these proteins in fibrotic muscle was confirmed by immunohistochemical staining and western blot analysis. TGF-β2 was not up-regulated in relation to GMC. Conclusion This study confirmed our hypothesis that collagen types I, III, TGF-β1 and TGF-β3 were up-regulated in biopsy specimens obtained from patients with GMC. Complex interaction of TGF-β1 with profibrotic function and TGF-β3 with antifibrotic function may increase synthesis of collagens and thereby significantly contribute to the process of gluteal muscle scarring in patients with GMC.
Collapse
Affiliation(s)
- Chen-Guang Zhao
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Medical College, Xi'an JiaoTong University, Xi'an, Shaanxi, PR China
| | | | | | | | | |
Collapse
|
42
|
Abstract
The developing fetus has the ability to heal wounds by regenerating normal epidermis and dermis with restoration of the extracellular matrix (ECM) architecture, strength, and function. In contrast, adult wounds heal with fibrosis and scar. Scar tissue remains weaker than normal skin with an altered ECM composition. Despite extensive investigation, the mechanism of fetal wound healing remains largely unknown. We do know that early in gestation, fetal skin is developing at a rapid pace and the ECM is a loose network facilitating cellular migration. Wounding in this unique environment triggers a complex cascade of tightly controlled events culminating in a scarless wound phenotype of fine reticular collagen and abundant hyaluronic acid. Comparison between postnatal and fetal wound healing has revealed differences in inflammatory response, cellular mediators, cytokines, growth factors, and ECM modulators. Investigation into cell signaling pathways and transcription factors has demonstrated differences in secondary messenger phosphorylation patterns and homeobox gene expression. Further research may reveal novel genes essential to scarless repair that can be manipulated in the adult wound and thus ameliorate scar.
Collapse
Affiliation(s)
- Edward P Buchanan
- Division Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|
43
|
Gambichler T, Birkner L, Stücker M, Othlinghaus N, Altmeyer P, Kreuter A. Up-regulation of transforming growth factor-beta3 and extracellular matrix proteins in acquired reactive perforating collagenosis. J Am Acad Dermatol 2009; 60:463-9. [PMID: 19231643 DOI: 10.1016/j.jaad.2008.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/28/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Acquired reactive perforating collagenosis (ARPC) is an uncommon itchy dermatosis of unknown etiology. OBJECTIVES We aimed to study clinical features of ARPC and to characterize the expression profiles of proteins which are involved in extracellular matrix remodeling and wound repair. METHODS Seventeen patients with ARPC were included in the study. Immunohistochemical analyses were performed for CD34, factor VIIIa, vascular endothelial growth factor, matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase-1 (TIMP-1), transforming growth factor-beta3 (TGF-beta3), Smad-3, and Smad-7. RESULTS Twelve patients (70.6%) had diabetes mellitus with disease duration of 14.6 +/- 13.1 years (mean +/- standard deviation). In all patients, chronic kidney disease was evident; two patients were receiving hemodialysis. Preexisting scabies infection was observed in 7 patients (41.2%). CD34 staining was significantly stronger in vessels of perilesional than those of lesional skin (P = .024). TGF-beta3, MMP-1, and TIMP-1 immunoreactivity was significantly stronger in lesional skin as compared with perilesional skin (P = .016, P = .0065, and P = .035, respectively). Although Smad-3 and Smad-7 immunoreactivity did not significantly differ in lesional and perilesional skin, there was a significant correlation between the protein expression of TGF-beta3 and Smad-3 (r = 0.56; P = .02), Smad-7 (r = 0.64; P = .006), and TIMP-1 (r = 0.56; P = .018) expression. LIMITATIONS We did not perform polymerase chain reaction studies on mRNA expression. CONCLUSIONS Our clinical data indicate that ARPC is etiopathogenetically linked to chronic kidney disease. Overexpression of TGF-beta3 and extracellular matrix proteins may represent antecedent tissue repair and therefore may be considered a significant event in the resolution of ARPC lesions.
Collapse
Affiliation(s)
- Thilo Gambichler
- Department of Dermatology, Ruhr-University of Bochum, Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Eslami A, Gallant-Behm CL, Hart DA, Wiebe C, Honardoust D, Gardner H, Häkkinen L, Larjava HS. Expression of integrin alphavbeta6 and TGF-beta in scarless vs scar-forming wound healing. J Histochem Cytochem 2009; 57:543-57. [PMID: 19223298 DOI: 10.1369/jhc.2009.952572] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oral mucosal wounds heal with reduced scar formation compared with skin. The epithelial integrin alphavbeta6 is induced during wound healing, and it can activate fibrogenic transforming growth factor beta1 (TGF-beta1) and anti-fibrogenic TGF-beta3 that play key roles in scar formation. In this study, expression of beta6 integrin and members of the TGF-beta pathway were studied in experimental wounds of human gingiva and both gingiva and skin of red Duroc pigs using real-time PCR, gene microarrays, and immunostaining. Similar to human wounds, the expression of beta6 integrin was induced in the pig wounds 7 days after wounding and remained upregulated >49 days. The alphavbeta6 integrin was colocalized with both TGF-beta isoforms in the wound epithelium. Significantly higher expression levels of beta6 integrin and TGF-beta1 were observed in the pig gingival wounds compared with skin. Early gingival wounds also expressed higher levels of TGF-beta3 compared with skin. The spatio-temporal colocalization of alphavbeta6 integrin with TGF-beta1 and TGF-beta3 in the wound epithelium suggests that alphavbeta6 integrin may activate both isoforms during wound healing. Prolonged expression of alphavbeta6 integrin along with TGF-beta3 in the gingival wound epithelium may be important in protection of gingiva from scar formation.
Collapse
Affiliation(s)
- Ameneh Eslami
- Laboratory of Periodontal Biology, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wagner W, Wehrmann M. Differential cytokine activity and morphology during wound healing in the neonatal and adult rat skin. J Cell Mol Med 2008; 11:1342-51. [PMID: 18205704 PMCID: PMC4401296 DOI: 10.1111/j.1582-4934.2007.00037.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Wound-healing mechanisms change during transition from prenatal to postnatal stage. Cytokines are known to play a key role in this process. The current study investigated the differential cytokine activity and healing morphology during healing of incisional skin wounds in rats of the ages neonatal (p0), 3 days old (p3) and adult, after six different healing times (2 hrs to 30 days). All seven tested cytokines (Transforming Growth Factor (TGF) α, TGFβ1, −β2 and −β3, IGF 1, Platelet Derived Growth Factor A (PDGF A), basic Fibroblast Growth Factor (bFGF) exhibited higher expression in the adult wounds than at the ages p0 and p3. Expression typically peaked between 12 hrs and 3 days post-wounding, and was not detectable any more at days 10 and 30. The neonate specimen showed more rapid re-epithelialization, far less inflammation and scarring, and larger restitution of original tissue architecture than their adult counterparts, resembling a prenatal healing pattern. The results may encourage the use of neonatal rat skin as a wound-healing model for further studies, instead of the more complicated prenatal animal models. Secondly, the data may recommend inhibition of PDGF A, basic FGF or TGF-β1 as therapeutic targets in efforts to optimize wound healing in the adult organism.
Collapse
Affiliation(s)
- W Wagner
- Department of Otorhinolaryngology, University of Tübingen, Tübingen, Germany.
| | | |
Collapse
|
46
|
Butler PD, Longaker MT, Yang GP. Current Progress in Keloid Research and Treatment. J Am Coll Surg 2008; 206:731-41. [DOI: 10.1016/j.jamcollsurg.2007.12.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 11/02/2007] [Accepted: 12/03/2007] [Indexed: 02/02/2023]
|
47
|
A Basic Fibroblast Growth Factor Improves Lower Extremity Wound Healing With a Porcine-Derived Skin Substitute. ACTA ACUST UNITED AC 2008; 64:809-15. [DOI: 10.1097/ta.0b013e31802c8247] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Wu X, Gao Z, Song N, Chua C, Deng D, Cao Y, Liu W. Creating thick linear scar by inserting a gelatin sponge into rat excisional wounds. Wound Repair Regen 2007; 15:595-606. [PMID: 17650105 DOI: 10.1111/j.1524-475x.2007.00256.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rat incisional wound is an important model for wound scarring research, but it is also difficult to mimic thick human incisional scarring. We hypothesized that such a thick linear scarring can be generated by inserting a gelatin sponge into a rat excisional wound. The results demonstrated that the new wound model could generate 11 times wider wound width (at day 7) and 4-5 times wider scar width (at days 14, 21, and 60), respectively, than the widths of incisional wounds (p<0.05) in adult Sprague-Dawley rats. The thick linear scar created was grossly apparent in contrast to the grossly unobvious scar of the incisional wound, and a regular linear shape could be achieved with a similar scar width along the wound. The mechanism study revealed several factors that might contribute to the enhanced scarring, including delayed wound healing, enhanced inflammation, increased expression of fibrotic factors, and abnormal wound remodeling due to the insertion of the gelatin sponge. These results indicate that the new wound model of thick linear scar might be valuable for clinically relevant study of scar manipulation. Moreover, this model may serve as a tool for studying gene-mediated tissue regeneration during wound repair using inserted gelatin sponge as a gene carrier.
Collapse
Affiliation(s)
- Xiaoli Wu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Colwell AS, Yun R, Krummel TM, Longaker MT, Lorenz HP. Keratinocytes modulate fetal and postnatal fibroblast transforming growth factor-beta and Smad expression in co-culture. Plast Reconstr Surg 2007; 119:1440-1445. [PMID: 17415238 DOI: 10.1097/01.prs.0000256049.53562.39] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The mechanism of fetal scarless wound repair is poorly understood but is thought to involve unique characteristics and behavior patterns of the fetal dermal fibroblast. The authors hypothesized that keratinocytes may differentially modulate expression of key growth factors expressed during wound healing in fetal and postnatal fibroblasts. METHODS Murine E17 fetal (n = 12 animals) and newborn (n = 8 animals) fibroblasts were grown in isolation and co-culture with newborn keratinocytes (n = 12 animals). Quantitative real-time polymerase chain reaction was performed for transforming growth factor (TGF)-beta isoform, receptor, and signaling molecule (Smad) gene expression in each group under both conditions. RESULTS At baseline, fetal fibroblasts have 1.8-fold greater TGF-beta3 expression than postnatal fibroblasts (p < 0.01). Keratinocytes induce a further increase of TGF-beta3 expression (p < 0.01) but decreased TGF-beta1, TGF-beta2, TGF-beta receptor (R)-I, and TGF-betaR-II expression in fetal fibroblasts. Keratinocytes also induce an increase in TGF-beta3 (p < 0.01) and a decrease TGF-beta2, TGF-betaR-I, and TGF-betaR-II expression in postnatal fibroblasts; however, TGF-beta1 expression is unchanged. Fetal fibroblasts have lower baseline expression of Smad3 and Smad4 than postnatal fibroblasts (p < 0.05). Keratinocytes decrease Smad3 and increase Smad7 expression in both fetal and postnatal fibroblasts (p < 0.01). In contrast, keratinocytes decrease Smad2 only in fetal fibroblasts (p < 0.05). CONCLUSIONS Keratinocytes have an overall antifibrotic influence on both fetal and postnatal fibroblasts in co-culture conditions. These data further characterize intrinsic differences between fetal and postnatal fibroblasts.
Collapse
Affiliation(s)
- Amy S Colwell
- Stanford, Calif. From the Department of Surgery, Division of Plastic Surgery, Children's Surgical Research Program, Tissue Regeneration Laboratory
| | | | | | | | | |
Collapse
|
50
|
Colwell AS, Faudoa R, Krummel TM, Longaker MT, Lorenz HP. Transforming Growth Factor-??, Smad, and Collagen Expression Patterns in Fetal and Adult Keratinocytes. Plast Reconstr Surg 2007; 119:852-7. [PMID: 17312487 DOI: 10.1097/01.prs.0000255541.39993.66] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The transforming growth factor (TGF)-beta family regulates cellular proliferation, differentiation, and migration. To better define the influence of keratinocyte-derived TGF-beta during development and repair, the authors examined the TGF-beta isoform, receptor, signal messenger Smad, and collagen type I expression in fetal and postnatal keratinocytes. METHODS Sprague-Dawley rat keratinocytes were isolated in primary culture from fetal E17 (n = 6), newborn (n = 4), and 6-week-old adults (n = 4). Under serum-free conditions, quantitative polymerase chain reaction was performed for TGF-beta1, TGF-beta2, and TGF-beta3 ligands; TGF-beta receptor 1 (RI) and TGF-beta receptor 2 (RII); Smad4 and Smad7; and collagen type I expression. RESULTS Total TGF-beta isoform expression increased 1.7-fold from E17 to newborn (p < 0.05) and adult (p < 0.01) ages. TGF-beta1 expression was 25-fold greater than TGF-beta2 and 10-fold greater than TGF-beta3 in fetal keratinocytes (p < 0.01 for each). The expression of TGF-beta1 was fivefold greater compared with TGF-beta2 and TGF-beta3 in newborn and adult keratinocytes (p < 0.01). TGF-beta-RI expression increased more than twofold (p < 0.01), whereas TGF-beta-RII expression increased by 25 percent (p < 0.01) from E17 to adult age. Smad4 increased more than twofold (p < 0.01), whereas Smad7 did not change appreciably. Collagen type I expression increased over 100-fold from E17 to adult (p < 0.005). CONCLUSIONS The TGF-beta system and collagen type I have increased expression with increasing gestational age in keratinocytes. This suggests an increased profibrotic TGF-beta response and collagen type I production in keratinocytes during skin differentiation at ages associated with scarring.
Collapse
Affiliation(s)
- Amy S Colwell
- Department of Surgery, Division of Plastic Surgery, Children's Surgical Research Program, Tissue Regeneration Laboratory, Stanford University, Stanford, CA 94305-5148, USA
| | | | | | | | | |
Collapse
|