1
|
Gomes MLNP, Krijnen PAJ, Middelkoop E, Niessen HWM, Boekema BKHL. Fetal Skin Wound Healing: Key Extracellular Matrix Components and Regulators in Scarless Healing. J Invest Dermatol 2025; 145:280-302. [PMID: 39152955 DOI: 10.1016/j.jid.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/19/2024]
Abstract
Fetal skin at early gestational stage is able to regenerate and heal rapidly after wounding. The exact mechanisms and molecular pathways involved in this process are however still largely unknown. The numerous differences in the skin of the early fetus versus skin in later developmental stages might provide clues for the mechanisms of scarless healing. This review summarizes the differences between mammalian fetal skin and the skin at later developmental phases in healthy and wounded conditions, focusing on extracellular matrix components, which are crucial factors in the microenvironment that direct cells and tissue functions and hence the wound healing process.
Collapse
Affiliation(s)
- Madalena Lopes Natário Pinto Gomes
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands; Department of Cardio-thoracic Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Bouke K H L Boekema
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands.
| |
Collapse
|
2
|
Xiang H, Ding P, Qian J, Lu E, Sun Y, Lee S, Zhao Z, Sun Z, Zhao Z. Exosomes derived from minor salivary gland mesenchymal stem cells: a promising novel exosome exhibiting pro-angiogenic and wound healing effects similar to those of adipose-derived stem cell exosomes. Stem Cell Res Ther 2024; 15:462. [PMID: 39627883 PMCID: PMC11616330 DOI: 10.1186/s13287-024-04069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUNDS Minor salivary gland mesenchymal stem cells (MSGMSCs) can be easily extracted and have a broad range of sources. Applying exosomes to wounds is a highly promising method for promoting wound healing. Exosomes derived from different stem cell types have been proven to enhance wound healing, with adipose-derived stem cell (ADSC)-derived exosomes being the most extensively researched. Considering that MSGMSCs have advantages such as easier extraction compared to ADSCs, MSGMSCs should also be a very promising type of stem cell in exosome therapy. However, whether MSGMSC-derived exosomes (MSGMSC-exos) can promote wound healing and how they compare to ADSC-derived exosomes (ADSC-exos) in the wound healing process remain unclear. MATERIALS The effects of MSGMSC-exos and ADSC-exos on angiogenesis in wound healing were investigated in vitro using CCK-8, scratch assays, and tube formation assays. Subsequently, the promotion of wound healing by MSGMSC-exos and ADSC-exos was evaluated in vivo using a full-thickness wound defect model in mice. Immunohistochemistry was used to verify the effects of MSGMSC-exos and ADSC-exos on promoting collagen deposition, angiogenesis, and cell proliferation in the wound. Immunofluorescence staining was performed to investigate the role of MSGMSC-exos and ADSC-exos in modulating the inflammatory response in the wound. Furthermore, proteomic sequencing was conducted to investigate the functional similarities and differences between the proteomes of MSGMSC-exos and ADSC-exos, with key protein contents verified by ELISA. RESULTS MSGMSC-exos exhibited similar effects as ADSC-exos in promoting the migration, proliferation, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro, with a comparable dose-dependent effect. In vivo experiments confirmed that MSGMSC-exos have similar wound healing-promoting functions as ADSC-exos. MSGMSC-exos promoted the neovascularization and maturation of blood vessels in vivo at a level comparable to ADSC-exos. Despite MSGMSC-exos showing less collagen deposition than ADSC-exos, they exhibited stronger anti-scar formation and anti-inflammatory effects. Proteomic analysis revealed that the proteins promoting wound healing in both MSGMSC-exos and ADSC-exos were relatively conserved, with ITGB1 identified as a critical protein for angiogenesis. Further differential analysis revealed that the functions specifically enriched in MSGMSC-exos and ADSC-exos reflected the functions of their source tissue. CONCLUSIONS Our study confirms that MSGMSC-exos exhibit highly similar wound healing and angiogenesis-promoting functions compared to ADSC-exos, and the proteins involved in promoting wound healing in both are relatively conserved. Moreover, MSGMSC-exos show stronger anti-scar formation and anti-inflammatory effects than ADSC-exos. This suggests that MSGMSCs are a promising stem cell source with broad applications in wound healing treatment.
Collapse
Affiliation(s)
- Haibo Xiang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Jiaying Qian
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Enhang Lu
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yimou Sun
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Seyeon Lee
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Zhenkun Zhao
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhixuan Sun
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
3
|
Pritchard MT, McCracken JM. Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar? Curr Drug Targets 2016; 16:1332-46. [PMID: 26302807 DOI: 10.2174/1389450116666150825111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
The liver is unique in that it is able to regenerate. This regeneration occurs without formation of a scar in the case of non-iterative hepatic injury. However, when the liver is exposed to chronic liver injury, the purely regenerative process fails and excessive extracellular matrix proteins are deposited in place of normal liver parenchyma. While much has been discovered in the past three decades, insights into fibrotic mechanisms have not yet lead to effective therapies; liver transplant remains the only cure for advanced liver disease. In an effort to broaden the collection of possible therapeutic targets, this review will compare and contrast the liver wound healing response to that found in two types of wound healing: scarless wound healing of fetal skin and oral mucosa and scar-forming wound healing found in adult skin. This review will examine wound healing in the liver and the skin in relation to the role of humoral and cellular factors, as well as the extracellular matrix, in this process. While several therapeutic targets are similar between fibrotic liver and adult skin wound healing, others are unique and represent novel areas for hepatic anti-fibrotic research. In particular, investigations into the role of hyaluronan in liver fibrosis and fibrosis resolution are warranted.
Collapse
Affiliation(s)
- Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66161, USA.
| | | |
Collapse
|
4
|
Stephens EH, Nguyen TC, Blazejewski JG, Vekilov DP, Connell JP, Itoh A, Ingels NB, Miller DC, Grande-Allen KJ. Extracellular matrix remodeling in wound healing of critical size defects in the mitral valve leaflet. Heart Vessels 2016; 31:1186-95. [PMID: 26563105 PMCID: PMC10578972 DOI: 10.1007/s00380-015-0768-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
The details of valvular leaflet healing following valvuloplasty and leaflet perforation from endocarditis are poorly understood. In this study, the synthesis and turnover of valvular extracellular matrix due to healing of a critical sized wound was investigated. Twenty-nine sheep were randomized to either CTRL (n = 11) or HOLE (n = 18), in which a 2.8-4.8 mm diameter hole was punched in the posterior mitral leaflet. After 12 weeks, posterior leaflets were harvested and histologically stained to localize extracellular matrix components. Immunohistochemistry was also performed to assess matrix components and markers of matrix turnover. A semi-quantitative grading scale was used to quantify differences between HOLE and CTRL. After 12 weeks, the hole diameter was reduced by 71.3 ± 1.4 % (p < 0.001). Areas of remodeling surrounding the hole contained more activated cells, greater expression of proteoglycans, and markers of matrix turnover (prolyl 4-hydroxylase, metalloproteases, and lysyl oxidase, each p ≤ 0.025), along with fibrin accumulation. Two distinct remodeling regions were evident surrounding the hole, one directly bordering the hole rich in versican and hyaluronan and a second adjacent region with abundant collagen and elastic fiber turnover. The remodeling also caused reduced delineation between valve layers (p = 0.002), more diffuse staining of matrix components and markers of matrix turnover (p < 0.001), and disruption of the collagenous fibrosa. In conclusion, acute valve injury elicited distinct, heterogeneous alterations in valvular matrix composition and structure, resulting in partial wound closure. Because these changes could also affect leaflet mechanics and valve function, it will be important to determine their impact on healing wounds.
Collapse
Affiliation(s)
- Elizabeth H Stephens
- Department of Bioengineering, Rice University, PO Box 1892, MS142, Houston, TX, 77251-1892, USA
- Department of Cardiothoracic Surgery, Columbia University School of Medicine, New York, NY, USA
| | - Tom C Nguyen
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Cardiothoracic and Vascular Surgery, University of Texas Health Science Center, Houston, TX, USA
| | - Jack G Blazejewski
- Department of Bioengineering, Rice University, PO Box 1892, MS142, Houston, TX, 77251-1892, USA
| | - Dragoslava P Vekilov
- Department of Bioengineering, Rice University, PO Box 1892, MS142, Houston, TX, 77251-1892, USA
| | - Jennifer P Connell
- Department of Bioengineering, Rice University, PO Box 1892, MS142, Houston, TX, 77251-1892, USA
| | - Akinobu Itoh
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Neil B Ingels
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Laboratory of Cardiovascular Physiology and Biophysics, Palo Alto Medical Foundation, Palo Alto, CA, USA
| | - D Craig Miller
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - K Jane Grande-Allen
- Department of Bioengineering, Rice University, PO Box 1892, MS142, Houston, TX, 77251-1892, USA.
| |
Collapse
|
5
|
Brant JO, Lopez MC, Baker HV, Barbazuk WB, Maden M. A Comparative Analysis of Gene Expression Profiles during Skin Regeneration in Mus and Acomys. PLoS One 2015; 10:e0142931. [PMID: 26606282 PMCID: PMC4659537 DOI: 10.1371/journal.pone.0142931] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 12/29/2022] Open
Abstract
The African spiny mouse (Acomys spp.) can heal full thickness excisional skin wounds in a scar-free manner with regeneration of all dermal components including hair and associated structures. Comparing Acomys scar-free healing from Mus scarring identifies gene expression differences that discriminate these processes. We have performed an extensive comparison of gene expression profiles in response to 8mm full-thickness excisional wounds at days 3, 5, 7 and 14 post-wounding between Acomys and Mus to characterize differences in wound healing, and identify mechanisms involved in scar-free healing. We also identify similarities with scar-free healing observed in fetal wounds. While wounding in Mus elicits a strong inflammatory response, wounding in Acomys produces a moderated immune response and little to no increase in expression for most cytokines and chemokines assayed. We also identified differences in the ECM profiles of the Acomys wounds, which appear to have a collagen profile more similar to fetal wounds, with larger increases in expression of collagen types III and V. In contrast, Mus wounds have very high levels of collagen XII. This data suggests that an overall lack of induction of cytokines and chemokines, coupled with an ECM profile more similar to fetal wounds, may underlie scar-free wound healing in Acomys skin. These data identify candidate genes for further testing in order to elucidate the causal mechanisms of scar-free healing.
Collapse
Affiliation(s)
- Jason Orr Brant
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Maria-Cecilia Lopez
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Henry V. Baker
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - W. Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Malcolm Maden
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
6
|
Kular JK, Basu S, Sharma RI. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng 2014; 5:2041731414557112. [PMID: 25610589 PMCID: PMC4883592 DOI: 10.1177/2041731414557112] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/28/2014] [Indexed: 12/23/2022] Open
Abstract
The extracellular matrix is a structural support network made up of diverse proteins, sugars and other components. It influences a wide number of cellular processes including migration, wound healing and differentiation, all of which is of particular interest to researchers in the field of tissue engineering. Understanding the composition and structure of the extracellular matrix will aid in exploring the ways the extracellular matrix can be utilised in tissue engineering applications especially as a scaffold. This review summarises the current knowledge of the composition, structure and functions of the extracellular matrix and introduces the effect of ageing on extracellular matrix remodelling and its contribution to cellular functions. Additionally, the current analytical technologies to study the extracellular matrix and extracellular matrix–related cellular processes are also reviewed.
Collapse
Affiliation(s)
- Jaspreet K Kular
- Department of Chemical Engineering, University of Bath, Bath, UK ; Centre for Regenerative Medicine, University of Bath, Bath, UK
| | - Shouvik Basu
- Department of Chemical Engineering, University of Bath, Bath, UK
| | - Ram I Sharma
- Department of Chemical Engineering, University of Bath, Bath, UK ; Centre for Regenerative Medicine, University of Bath, Bath, UK ; Centre for Sustainable Chemical Technologies, University of Bath, Bath, UK
| |
Collapse
|
7
|
Keightley MC, Wang CH, Pazhakh V, Lieschke GJ. Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. Int J Biochem Cell Biol 2014; 56:92-106. [DOI: 10.1016/j.biocel.2014.07.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/18/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
|
8
|
The effects of platelet-rich clot releasate on the expression of MMP-1 and type I collagen in human adult dermal fibroblasts: PRP is a stronger MMP-1 stimulator. Mol Biol Rep 2013; 41:3-8. [PMID: 24293148 DOI: 10.1007/s11033-013-2718-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 09/14/2013] [Indexed: 02/02/2023]
Abstract
Platelet-rich plasma is widely used in acute and chronic ulcers due to its capacity to enhance the wound healing process. Fibroblasts are believed to be the most important cells in the production and remodeling of the extracellular matrix (ECM). Matrix metalloproteinase (MMP)-1 is the proteolytic enzyme of collagen I, and has a key role in collagen remodeling during wound healing. Whether or not platelet-rich clot releasate (PRCR) is able to effectively modulate the ECM, and the effect of PRCR on the expression of type I collagen and MMP-1 in human dermal fibroblasts was evaluated. Specifically, human adult dermal fibroblasts were incubated in PRCR-containing solutions for 24 and 48 h, after which the levels of collagen and MMP-1 were quantified by reverse transcription PCR at the transcriptional level, and ELISA and immunoblot analyses at the post-transcriptional level. PRCR markedly up-regulated the expression of MMP-1 and type I collagen in fibroblasts incubated in 20 % PRCR solutions for 48 h. These findings suggest that increased MMP-1 expression after PRCR treatment enable remodeling the ECM.
Collapse
|
9
|
Rolfe KJ, Grobbelaar AO. A review of fetal scarless healing. ISRN DERMATOLOGY 2012; 2012:698034. [PMID: 22675640 PMCID: PMC3362931 DOI: 10.5402/2012/698034] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/13/2012] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process involving a number of processes. Fetal regeneration has been shown to have a number of differences compared to scar-forming healing. This review discusses the number of differences identified in fetal regeneration. Understanding these differences may result in new therapeutic targets which may reduce or even prevent scarring in adult healing.
Collapse
Affiliation(s)
- K J Rolfe
- Institute for Plastic Surgery Research and Education, The Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK
| | | |
Collapse
|
10
|
Abstract
The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Faslpr /J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Faslpr /J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Gawronska-Kozak B. Scarless skin wound healing in FOXN1 deficient (nude) mice is associated with distinctive matrix metalloproteinase expression. Matrix Biol 2011; 30:290-300. [PMID: 21539913 DOI: 10.1016/j.matbio.2011.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 12/19/2022]
Abstract
Similar to mammalian fetuses FOXN1 deficient (nude) mice are able to restore the structure and integrity of injured skin in a scarless healing process by mechanisms independent of the genetic background. Matrix metalloproteinases (MMPs) are required for regular skin wound healing and the distinctive pattern of their expression has been implicated to promote scarless healing. In this study, we analyzed the temporal and spatial expression patterns of these molecules during the incisional skin wounds in adult nude mice. Macroscopic and histological analyses of skin wounds revealed an accelerated wound healing process, minimal granulation tissue formation and markedly diminished scarring in nude mice. Quantitative RT-PCR (Mmp-2, -3, -8, -9, -10, -12, -13, -14 and Timp-1, -2, -3), Western blots (MMP-13) and gelatin zymography (MMP-9) revealed that MMP-9 and MMP-13 showed a unique, bimodal pattern of up-regulation during the early and late phases of wound healing in nude mice. Immunohistochemically MMP-9 and MMP-13 were generally detected in epidermis during the early phase and in dermis during the late (remodeling) phase. Consistent with these in vivo observations, dermal fibroblasts cultured from nude mice expressed higher levels of types I and III collagen, MMP-9 and MMP-13 mRNA levels and higher MMP enzyme activity than wild type controls. Collectively, these finding suggest that the bimodal pattern of MMP-9 and MMP-13 expression during skin repair process in nude mice could be a major component of their ability for scarless healing.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Regenerative Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
12
|
Abstract
Pressure ulcers represent a significant health issue and cost for the growing number of elderly and debilitated patients. The plastic surgeon, as part of the wound care team, has the ultimate responsibility of forming a plan to allow for the eventual closure of the wound. This plan should start with breaking the cycle and eliminating the risk factors that led to the development of the wound. Simultaneously, the surgeon should order an MRI and erythrocyte sedimentation rate and take a bone biopsy to diagnose the extent of the wound and the bacteria present. If more than 10(5) bacteria are present, surgical debridement should be performed, followed by 6 weeks of intravenous antibiotics. Once the bacterial load has been lessened, a 6-week course of Regranex should be applied. Finally, after the wound bed has been prepared adequately, definitive surgical closure should be planned and performed.
Collapse
Affiliation(s)
- Benjamin Levi
- Division of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
13
|
Buss A, Pech K, Kakulas BA, Martin D, Schoenen J, Noth J, Brook GA. Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury. BMC Neurol 2007; 7:17. [PMID: 17594482 PMCID: PMC1914362 DOI: 10.1186/1471-2377-7-17] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 06/26/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of extracellular endopeptidases that degrade the extracellular matrix and other extracellular proteins. Studies in experimental animals demonstrate that MMPs play a number of roles in the detrimental as well as in the beneficial events after spinal cord injury (SCI). In the present correlative investigation, the expression pattern of several MMPs and their inhibitors has been investigated in the human spinal cord. METHODS An immunohistochemical investigation in post mortem samples of control and lesioned human spinal cords was performed. All patients with traumatic SCI had been clinically diagnosed as having "complete" injuries and presented lesions of the maceration type. RESULTS In the unlesioned human spinal cord, MMP and TIMP immunoreactivity was scarce. After traumatic SCI, a lesion-induced bi-phasic pattern of raised MMP-1 levels could be found with an early up-regulation in macrophages within the lesion epicentre and a later induction in peri-lesional activated astrocytes. There was an early and brief induction of MMP-2 at the lesion core in macrophages. MMP-9 and -12 expression peaked at 24 days after injury and both molecules were mostly expressed in macrophages at the lesion epicentre. Whereas MMP-9 levels rose progressively from 1 week to 3 weeks, there was an isolated peak of MMP-12 expression at 24 days. The post-traumatic distribution of the MMP inhibitors TIMP-1, -2 and -3 was limited. Only occasional TIMP immuno-positive macrophages could be detected at short survival times. The only clear induction was detected for TIMP-3 at survival times of 8 months and 1 year in peri-lesional activated astrocytes. CONCLUSION The involvement of MMP-1, -2, -9 and -12 has been demonstrated in the post-traumatic events after human SCI. With an expression pattern corresponding largely to prior experimental studies, they were mainly expressed during the first weeks after injury and were most likely involved in the destructive inflammatory events of protein breakdown and phagocytosis carried out by infiltrating neutrophils and macrophages, as well as being involved in enhanced permeability of the blood spinal cord barrier. Similar to animal investigations, the strong induction of MMPs was not accompanied by an expression of their inhibitors, allowing these proteins to exert their effects in the lesioned spinal cord.
Collapse
Affiliation(s)
- Armin Buss
- Department of Neurology, Aachen University Hospital, Aachen, Germany
| | - Katrin Pech
- Department of Neurology, Aachen University Hospital, Aachen, Germany
| | - Byron A Kakulas
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, Australia
| | - Didier Martin
- Department of Neurosurgery, Sart Tilman Hospital, University of Liège, Liège, Belgium
| | - Jean Schoenen
- Departments of Neurology and Neuropathology, University of Liège, Liège, Belgium
| | - Johannes Noth
- Department of Neurology, Aachen University Hospital, Aachen, Germany
| | - Gary A Brook
- Department of Neurology, Aachen University Hospital, Aachen, Germany
- Department of Neuropathology, Aachen University Hospital, Aachen, Germany
| |
Collapse
|
14
|
Lansdown ABG, Mirastschijski U, Stubbs N, Scanlon E, Agren MS. Zinc in wound healing: theoretical, experimental, and clinical aspects. Wound Repair Regen 2007; 15:2-16. [PMID: 17244314 DOI: 10.1111/j.1524-475x.2006.00179.x] [Citation(s) in RCA: 379] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zinc is an essential trace element in the human body and its importance in health and disease is appreciated. It serves as a cofactor in numerous transcription factors and enzyme systems including zinc-dependent matrix metalloproteinases that augment autodebridement and keratinocyte migration during wound repair. Zinc confers resistance to epithelial apoptosis through cytoprotection against reactive oxygen species and bacterial toxins possibly through antioxidant activity of the cysteine-rich metallothioneins. Zinc deficiency of hereditary or dietary cause can lead to pathological changes and delayed wound healing. Oral zinc supplementation may be beneficial in treating zinc-deficient leg ulcer patients, but its therapeutic place in surgical patients needs further clarification. Topical administration of zinc appears to be superior to oral therapy due to its action in reducing superinfections and necrotic material via enhanced local defense systems and collagenolytic activity, and the sustained release of zinc ions that stimulates epithelialization of wounds in normozincemic individuals. Zinc oxide in paste bandages (Unna boot) protects and soothes inflamed peri-ulcer skin. Zinc is transported through the skin from these formulations, although the systemic effects seem insignificant. We present here the first comprehensive account of zinc in wound management in relation to current concepts of wound bed preparation and the wound-healing cascade. This review article suggests that topical zinc therapy is underappreciated even though clinical evidence emphasizes its importance in autodebridement, anti-infective action, and promotion of epithelialization.
Collapse
Affiliation(s)
- Alan B G Lansdown
- Imperial College Faculty of Medicine, Division of Investigative Sciences, Charing Cross Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Changes in matrix metalloproteinase 2 activities in amniochorions during premature rupture of membranes. ACTA ACUST UNITED AC 2007; 13:592-7. [PMID: 17178348 DOI: 10.1016/j.jsgi.2006.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Increased proteolytic activities of matrix metalloproteinases (MMPs) such as MMP-3 and MMP-9 are associated with premature rupture of membranes at term. However, it is unclear whether MMP-2 is involved in the premature rupture of membranes. In this study, to elucidate the role of MMP-2, we evaluated the activity of MMP-2 and also the expression of pro-MMP-2, membrane type 1 (MT1)-MMP and tissue inhibitor of metalloproteinase (TIMP)-1 in premature rupture of membranes. METHODS Amniochorions were prepared from 29 subjects with no labor (cesarean section; CS, n = 10), labor (normal delivery; ND, n = 10), and labor during premature rupture of membranes (PROM, n = 9). MMP-2 activity was spectrophotometrically assayed by measuring the digestion of an MMP-2-specific substrate. The levels of pro-MMP-2, MT1-MMP and TIMP-1 were determined by Western immunoblotting. RESULTS The activity of MMP-2 in PROM was significantly higher than that in CS and ND (P <.05). In addition, the levels of MT1-MMP, an activator of MMP-2, were higher in PROM than in CS and ND. In contrast, the level of TIMP-1, an inhibitor of MMP-2 was substantially lower in PROM than CS and ND. Moreover, the levels of pro-MMP-2 were increased more significantly in PROM and ND than in CS (P <.05). CONCLUSION Our results suggest that the increased expression of pro-MMP-2 and MT1-MMP and decreased expression of TIMP-1 may result in the increased activity of MMP-2, which is involved in the degradation of extracellular matrix (ECM) of fetal membrane, thereby inducing the premature rupture of membranes at term.
Collapse
|
16
|
Stoff A, Rivera AA, Mathis JM, Moore ST, Banerjee NS, Everts M, Espinosa-de-los-Monteros A, Novak Z, Vasconez LO, Broker TR, Richter DF, Feldman D, Siegal GP, Stoff-Khalili MA, Curiel DT. Effect of adenoviral mediated overexpression of fibromodulin on human dermal fibroblasts and scar formation in full-thickness incisional wounds. J Mol Med (Berl) 2007; 85:481-96. [PMID: 17219096 DOI: 10.1007/s00109-006-0148-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 06/17/2006] [Accepted: 09/28/2006] [Indexed: 12/19/2022]
Abstract
Fibromodulin, a member of the small leucine-rich proteoglycan family, has been recently suggested as a biologically significant mediator of fetal scarless repair. To assess the role of fibromodulin in the tissue remodeling, we constructed an adenoviral vector expressing human fibromodulin cDNA. We evaluated the effect of adenovirus-mediated overexpression of fibromodulin in vitro on transforming growth factors and metalloproteinases in fibroblasts and in vivo on full-thickness incisional wounds in a rabbit model. In vitro, we found that Ad-Fibromodulin induced a decrease of expression of TGF-beta(1) and TGF-beta(2) precursor proteins, but an increase in expression of TGF-beta(3) precursor protein and TGF-beta type II receptor. In addition, fibromodulin overexpression resulted in decreased MMP-1 and MMP-3 protein secretion but increased MMP-2, TIMP-1, and TIMP-2 secretion, whereas MMP-9 and MMP-13 were not influenced by fibromodulin overexpression. In vivo evaluation by histopathology and tensile strength demonstrated that Ad-Fibromodulin administration could ameliorate wound healing in incisional wounds. In conclusion, although the mechanism of scar formation in adult wounds remains incompletely understood, we found that fibromodulin overexpression improves wound healing in vivo, suggesting that fibromodulin may be a key mediator in reduced scarring.
Collapse
Affiliation(s)
- Alexander Stoff
- Division of Human Gene Therapy, Gene Therapy Center, University of Alabama at Birmingham, 901 19th Street South, BMR2 502, Birmingham, AL, 35294-2172, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Manuel JA, Gawronska-Kozak B. Matrix metalloproteinase 9 (MMP-9) is upregulated during scarless wound healing in athymic nude mice. Matrix Biol 2006; 25:505-14. [PMID: 17010584 DOI: 10.1016/j.matbio.2006.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 11/20/2022]
Abstract
Cutaneous wound healing is associated with migratory and remodeling events that require the action of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). Differences in their expressions were observed during scar-forming and scar-free skin wound healing. We previously found that athymic nude mice are exceptional among mature mammals in their ability to heal injured skin scarlessly. The present study was undertaken to determine whether the modulation of MMP-2 and MMP-9 expression during scarless healing in nude mice was different from scar-forming animals. Full thickness skin wounds were made into the back of nude, wild-type controls (C57BL/6J), immunodeficient SCID and Rag, thymectomized neonates and adults, and cyclosporin A treated mice. Post-injured skin tissues were harvested at Day 7 and 24 after injury. Quantitative RT-PCR, Western blot, gelatin zymography and immunohistochemical assays were performed. Our results show that MMP-2 protein was high but similarly expressed in all post-injured animals on Day 7 after injury. Late phase (Day 24) of wound repair was characterized by a decrease in mRNA and protein expression and a decrease in gelatinolytic activity of MMP-2 in all post-injured samples. On the contrary, high (p < 0.001) levels of mRNA expression, prominent pro-and active forms of MMP-9 and cells immunopositive for MMP-9 were present exclusively in the post-injured tissues from nude mice on Day 24 after wounding. This data suggest that MMP-9 expression in the remodeling phase of wound healing in nude mice could be a major component of their ability for scar-free healing.
Collapse
Affiliation(s)
- Jessica A Manuel
- Regenerative Biology Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | |
Collapse
|
18
|
Fong KD, Trindade MC, Wang Z, Nacamuli RP, Pham H, Fang TD, Song HM, Smith RL, Longaker MT, Chang J. Microarray analysis of mechanical shear effects on flexor tendon cells. Plast Reconstr Surg 2006; 116:1393-404; discussion 1405-6. [PMID: 16217485 DOI: 10.1097/01.prs.0000182345.86453.4f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Adhesion formation after flexor tendon repair remains a clinical problem. Early postoperative motion after tendon repair has been demonstrated to reduce adhesion formation while increasing tendon strength. The authors hypothesized that during mobilization, tendon cells experience mechanical shear forces that alter their biology in a fashion that reduces scar formation but also activates key genes involved in tendon healing. METHODS To test this hypothesis, primary intrinsic tenocyte cultures were established from flexor tendons of 20 Sprague-Dawley rats and sheared at 50 rpm (0.41 Pa) using a cone viscometer for 6 and 12 hours. Total RNA was harvested and compared with time-matched unsheared controls using cDNA microarrays and Northern blot analysis. RESULTS Microarray analysis demonstrated that mechanical shear stress induced an overall "antifibrotic" expression pattern with decreased transcription of collagen type I and collagen type III. Shear stress down-regulated profibrotic molecules in the platelet-derived growth factor, insulin-like growth factor, and fibroblast growth factor signaling pathways. In addition, shear stress induced an overall decrease in transforming growth factor (TGF)-beta signaling pathway molecules with down-regulation of TGF-beta2, TGF-beta3, TGF-RI, and TGF-RII expression. Moreover, sheared tendon cells increased expression of matrix metalloproteinases and decreased expression of tissue inhibitors of metalloproteinase, an expression pattern consistent with an antifibrotic increase in extracellular matrix degradation. However, the authors also found up-regulation of genes implicated in tendon healing, specifically, vascular endothelial growth factor-A and several bone morphogenetic proteins. Interestingly, the known mechanoresponsive gene, TGF-beta1, also implicated in tendon healing, was differentially up-regulated by shear stress. Northern blot validation of our results for TGF-beta1, TGF-beta2, TGF-beta3, and collagen type I demonstrated direct correlation with the authors' microarray data. CONCLUSIONS The authors demonstrate an overall antifibrotic expression pattern in response to shear stress in tendon cells that may provide insight into the mechanisms by which early mobilization decreases adhesion formation without impaired tendon healing.
Collapse
Affiliation(s)
- Kenton D Fong
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xue M, Le NTV, Jackson CJ. Targeting matrix metalloproteases to improve cutaneous wound healing. Expert Opin Ther Targets 2006; 10:143-55. [PMID: 16441234 DOI: 10.1517/14728222.10.1.143] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Wound repair is a physiological event in which tissue injury initiates a repair process leading to restoration of structure and function of the tissue. Cutaneous wound repair can be divided into a series of overlapping phases including formation of fibrin clot, inflammatory response, granulation tissue formation incorporating re-epithelialisation and angiogenesis and finally, matrix formation and remodelling. Matrix metalloproteases (MMPs) are a family of neutral proteases that play a vital role throughout the entire wound healing process. They regulate inflammation, degrade the extracellular matrix (ECM) to facilitate the migration of cells and remodel the new ECM. However, excessive MMP activity contributes to the development of chronic wounds. Selective control of MMP activity may prove to be a valuable therapeutic approach to promote healing of chronic ulcers. Recent evidence indicates that the anticoagulant, activated protein C may be useful in the treatment of non-healing wounds by preventing excessive protease activity through inhibition of inflammation and selectively increasing MMP-2 activity to enhance angiogenesis and re-epithelialisation.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory Level 1, Royal North Shore Hospital, The University of Sydney, St Leonards, NSW, 2065, Australia
| | | | | |
Collapse
|
20
|
A comparative study of collagenase complex and new homogeneous collagenase preparations for scar treatment. J Drug Deliv Sci Technol 2006. [DOI: 10.1016/s1773-2247(06)50052-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Affiliation(s)
- Abelardo Medina
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, 8440-112 Street, Edmonton, Alberta, Canada T6G 2B7
| | | | | | | |
Collapse
|
22
|
Jackson CJ, Xue M, Thompson P, Davey RA, Whitmont K, Smith S, Buisson-Legendre N, Sztynda T, Furphy LJ, Cooper A, Sambrook P, March L. Activated protein C prevents inflammation yet stimulates angiogenesis to promote cutaneous wound healing. Wound Repair Regen 2005; 13:284-94. [PMID: 15953048 DOI: 10.1111/j.1067-1927.2005.00130311.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activated protein C (APC) is a serine protease that plays a central role in physiological anticoagulation, and has more recently been shown to be a potent anti-inflammatory mediator. Using cultured human cells, we show here that APC up-regulates the angiogenic promoters matrix metalloproteinase-2 in skin fibroblasts and umbilical vein endothelial cells, vascular endothelial growth factor in keratinocytes and fibroblasts, and monocyte chemoattractant protein-1 in fibroblasts. In the chick embryo chorioallantoic membrane assay, APC promoted the granulation/remodeling phases of wound healing by markedly stimulating angiogenesis as well as promoting reepithelialization. In a full-thickness rat skin-healing model, a single topical application of APC enhanced wound healing compared to saline control. APC-treated wounds had markedly more blood vessels on day 7 and a significantly lower infiltration of neutrophils at days 4 and 7. The broad spectrum matrix metallo-proteinase, GM6001, prevented the ability of APC to promote wound healing. In summary, our results show that APC promotes cutaneous wound healing via a complex mechanism involving stimulation of angiogenesis and inhibition of inflammation. These unique properties of APC make it an attractive therapeutic agent to promote the healing of chronic wounds.
Collapse
Affiliation(s)
- Christopher J Jackson
- The Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Brown AL, Brook-Allred TT, Waddell JE, White J, Werkmeister JA, Ramshaw JAM, Bagli DJ, Woodhouse KA. Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle-urothelial cell interactions. Biomaterials 2005; 26:529-43. [PMID: 15276361 DOI: 10.1016/j.biomaterials.2004.02.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 02/16/2004] [Indexed: 12/18/2022]
Abstract
The objective of this study was to evaluate the ability of bladder acellular matrix (BAM) to support the individual and combined growth of primary porcine bladder smooth muscle (SMC) and urothelial (UEC) cells. An in vitro co-culture system was devised to evaluate the effect of UEC on (i) SMC-mediated contraction of BAM discs, and (ii) SMC invasiveness into BAM. Cells were seeded onto BAM discs under 4 different culture conditions. Constructs were incubated for 1, 7, 14 and 28 days. Samples were then harvested for evaluation of matrix contraction. Immunohistochemistry (IHC) was utilized to examine cellular organization within the samples and conditioned media supernatants analyzed for net gelatinase activity. BAM contraction was significantly increased with co-culture. The same side co-culture configuration lead to a greater reduction in surface area than opposite side co-culture. IHC revealed enhanced SMC infiltration into BAM when co-culture was utilized. A significant increase in net gelatinase activity was also observed with the co-culture configuration. Enhanced infiltration and contractile ability of bladder SMCs with UEC co-culture may, in part, be due to an increase in gelatinase activity. The influence of bladder UECs on SMC behaviour in vitro indicates that BAM may contain some key inductive factors that serve to promote important bladder cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Allison L Brown
- Department of Chemical Engineering and Applied Chemistry and the Institute for Biomaterials and Biomedical Engineering, University of Toronto, 200 College Street, Toronto, Ont., Canada M5S 3E5
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Heber-Katz E, Leferovich J, Bedelbaeva K, Gourevitch D, Clark L. The scarless heart and the MRL mouse. Philos Trans R Soc Lond B Biol Sci 2004; 359:785-93. [PMID: 15293806 PMCID: PMC1693365 DOI: 10.1098/rstb.2004.1468] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The ability to regenerate tissues and limbs in its most robust form is seen in many non-mammalian species. The serendipitous discovery that the MRL mouse has a profound capacity for regeneration in some ways rivalling the classic newt and axolotl species raises the possibility that humans, too, may have an innate regenerative ability. The adult MRL mouse regrows cartilage, skin, hair follicles and myocardium with near perfect fidelity and without scarring. This is seen in the ability to close through-and-through ear holes, which are generally used for lifelong identification of mice, and the anatomic and functional recovery of myocardium after a severe cryo-injury. We present histological, biochemical and genetic data indicating that the enhanced breakdown of scar-like tissue may be an underlying factor in the MRL regenerative response. Studies as to the source of the cells in the regenerating MRL tissue are discussed. Such studies appear to support multiple mechanisms for cell replacement.
Collapse
Affiliation(s)
- Ellen Heber-Katz
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
25
|
Xue M, Thompson P, Kelso I, Jackson C. Activated protein C stimulates proliferation, migration and wound closure, inhibits apoptosis and upregulates MMP-2 activity in cultured human keratinocytes. Exp Cell Res 2004; 299:119-27. [PMID: 15302579 DOI: 10.1016/j.yexcr.2004.05.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 05/14/2004] [Indexed: 11/30/2022]
Abstract
Activated protein C (APC) is a physiological serine protease that regulates blood clotting and inflammation. Keratinocytes are a major cell type of human skin and play a fundamental role in normal skin metabolism and cutaneous wound healing. In this study, we investigated the regulatory role of APC on the function of human primary cultured keratinocytes. In an in vitro wounding assay, APC accelerated wound closure which was due jointly to increased cell proliferation and migration. APC attenuated calcium-induced cell death via prevention of cell apoptosis, as indicated by a decrease in both active caspase-3 and morphologically apoptotic cells. APC dramatically enhanced the expression and activation of MMP-2 by keratinocytes, whilst having no effect on MMP-9. GM6001, a broad spectrum MMP inhibitor, abolished cell migration in a dose-dependent manner and delayed in vitro wound healing. APC also significantly increased the production of IL-6 and IL-8 and suppressed calcium- and LPS-stimulated NF-kappaB activity. These results demonstrate a central role for APC in promoting cell proliferation and migration, preventing apoptosis and increasing MMP-2 activity in cultured keratinocytes. This regulatory activity implicates APC as having potential to promote re-epithelialisation during wound healing.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| | | | | | | |
Collapse
|
26
|
Hildebrand KA, Frank CB, Hart DA. Gene intervention in ligament and tendon: current status, challenges, future directions. Gene Ther 2004; 11:368-78. [PMID: 14724683 DOI: 10.1038/sj.gt.3302198] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ligament and tendon injuries are common clinical problems. Healing of these tissues occurs, but their properties do not return to normal. This predisposes to recurrent injuries, instability and arthritis, loss of motion and weakness. Gene therapy offers a novel approach to the repair of ligaments and tendons. Introduction of genes into ligaments and tendons using vectors has been successful. Marker genes and therapeutic genes have been introduced into both tissues with evidence of corresponding functional alterations. In addition, gene transfer has been used to manipulate the healing environment, opening the possibility of gene transfer to investigate ligament and tendon development and homeostasis, in addition to using this technology therapeutically. Several factors modulate the 'success' of gene transfer in these tissues.
Collapse
Affiliation(s)
- K A Hildebrand
- McCaig Centre for Joint Injury and Arthritis Research, University of Calgary, Calgary, AB, Canada
| | | | | |
Collapse
|
27
|
Sakaki H, Matsumiya T, Kusumi A, Imaizumi T, Satoh H, Yoshida H, Satoh K, Kimura H. Interleukin-1beta induces matrix metalloproteinase-1 expression in cultured human gingival fibroblasts: role of cyclooxygenase-2 and prostaglandin E2. Oral Dis 2004; 10:87-93. [PMID: 14996278 DOI: 10.1046/j.1354-523x.2003.00982.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Matrix metalloproteinases (MMPs) degrade extracellular matrices and are responsible for excessive connective tissue breakdown in inflammatory disorders. We investigated the mechanism of MMP-1 expression in human gingival fibroblasts in response to the stimulation with interleukin-1beta (IL-1beta), and the role of inducible-type cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in the regulation of MMP-1 expression. MATERIALS AND METHODS We stimulated cultured human gingival fibroblasts with r(h)IL-1beta, and examined the expression of MMP-1 mRNA and protein by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The effect of indomethacin, dexamethasone, or cycloheximide (CHX) on the IL-1beta-induced expression of MMP-1 was examined. The expression of MMP-1 in gingival fibroblasts stimulated with PGE2 was also examined. RESULTS IL-1beta stimulated the expressions of mRNA and protein for MMP-1, in cultured fibroblasts, in time- and concentration-dependent manners. Pretreatment of the cells with indomethacin or dexamethasone inhibited the IL-1beta-induced MMP-1 expression. CHX, a protein synthesis inhibitor, also suppressed the MMP-1 expression. IL-1beta also induced COX-2 expression in gingival fibroblasts, and PGE2, a major COX-2 product, was found to enhance MMP-1 expression. CONCLUSION The IL-1beta-induced MMP-1 expression in gingival fibroblasts may be mediated, at least in part, by COX-2 and its product PGE2.
Collapse
Affiliation(s)
- H Sakaki
- Department of Dentistry and Oral Surgery, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Li WY, Chong SSN, Huang EY, Tuan TL. Plasminogen activator/plasmin system: a major player in wound healing? Wound Repair Regen 2003; 11:239-47. [PMID: 12846910 DOI: 10.1046/j.1524-475x.2003.11402.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The role of the plasminogen activator/plasmin system in fibrinolysis has been well established. Indeed, clinicians worldwide have successfully utilized recombinant tissue-type plasminogen activator as first-line treatment of acute myocardial infarction for almost 2 decades. Outside the field of cardiology, there has been increasing excitement regarding the possible contribution of this system in many other important biological processes, including cell adhesion, cell migration, cell-cell signaling, tumor invasion and metastasis, ovulation, and wound healing. In this review, we present evidence in the current literature that the plasminogen activator/plasmin system does have a role in wound healing, looking at both normal and abnormal healing. Furthermore, the invaluable insights provided by numerous transgenic animal experiments are summarized.
Collapse
Affiliation(s)
- Wai-Yee Li
- Department of Surgery, Childrens Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Early in gestation, fetal wounds are capable of healing scarlessly. Scarless healing in the fetus is characterized by regeneration of an organized dermis with normal appendages and by a relative lack of inflammation. Although there is a transition period between scarless and scar-forming repair, scarless healing also depends on wound size and the organ involved. The ability to heal scarlessly, furthermore, appears to be intrinsic to fetal skin. Unique characteristics of fetal fibroblasts, inflammatory cells, extra-cellular matrix, cytokine profile, and developmental gene regulation may be responsible for the scarless phenotype of early gestation fetal wounds. With the current knowledge, only minimal success has been achieved with the topical application of neutralizing antibodies, antisense oligonucleotides, and growth factors to improve wound-healing outcomes. Thus, further investigation into the mechanisms underlying scarless repair is crucial in order to devise more effective therapies for scar reduction and the treatment of cirrhosis, scleroderma, and other diseases of excessive fibrosis.
Collapse
Affiliation(s)
- Catherine Dang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, Los Angeles, CHS 73-060, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|