1
|
Petersen OH, Gerasimenko JV, Gerasimenko OV, Gryshchenko O, Peng S. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol Rev 2021; 101:1691-1744. [PMID: 33949875 DOI: 10.1152/physrev.00003.2021] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This review deals with the roles of calcium ions and ATP in the control of the normal functions of the different cell types in the exocrine pancreas as well as the roles of these molecules in the pathophysiology of acute pancreatitis. Repetitive rises in the local cytosolic calcium ion concentration in the apical part of the acinar cells not only activate exocytosis but also, via an increase in the intramitochondrial calcium ion concentration, stimulate the ATP formation that is needed to fuel the energy-requiring secretion process. However, intracellular calcium overload, resulting in a global sustained elevation of the cytosolic calcium ion concentration, has the opposite effect of decreasing mitochondrial ATP production, and this initiates processes that lead to necrosis. In the last few years it has become possible to image calcium signaling events simultaneously in acinar, stellate, and immune cells in intact lobules of the exocrine pancreas. This has disclosed processes by which these cells interact with each other, particularly in relation to the initiation and development of acute pancreatitis. By unraveling the molecular mechanisms underlying this disease, several promising therapeutic intervention sites have been identified. This provides hope that we may soon be able to effectively treat this often fatal disease.
Collapse
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | - Shuang Peng
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Sadaeng W, Márta K, Mátrai P, Hegyi P, Tóth B, Németh B, Czumbel LM, Sang-Ngoen T, Gyöngyi Z, Varga G, Révész P, Szanyi I, Karádi K, Gerber G. γ-Aminobutyric Acid and Derivatives Reduce the Incidence of Acute Pain after Herpes Zoster - A Systematic Review and Meta-analysis. Curr Pharm Des 2020; 26:3026-3038. [PMID: 32503401 PMCID: PMC8388064 DOI: 10.2174/1381612826666200605120242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022]
Abstract
Herpes zoster (HZ) causes considerable pain and distress, and γ-Aminobutyric acid (GABA) and its derivatives are assumed to control this, but the available data are inconsistent. This meta-analysis and systematic review aimed to assess the effectiveness of GABA derivatives in the prevention of acute herpetic pain. The metaanalysis was conducted following the PRISMA guidelines using PICO format, registered in PROSPERO number CRD42018095758. PubMed, Web of Science, Ovid, Scopus, and EMBASE databases were searched. Records were included if they were randomized controlled trials of patients undergoing HZ infection, investigating the effect of GABA derivatives versus placebo in the treatment of HZ pain. Eligible trials were evaluated for the risk of bias. Then data were extracted and analysed. The number of patients with observed presence of pain after treatment was used to calculate odds ratio in a random effect model with the DerSimonian-Laird estimator. The I2 statistic was analysed for heterogeneity. The potential risk of bias was measured using Egger's regression test. The meta-analysis included three randomized controlled trials with a total of 297 patients. The incidence of acute HZ pain events for GABA group was significantly lower compared to placebo group,18/148 vs 44/149, respectively (OR = 0.36; 95% CI = 0.14 to 0.93; Z = 2.11; P = 0.035), Egger's test yielded P = 0.308. In conclusion, the present meta-analysis demonstrates that GABA derivatives reduce the incidence of acute herpetic pain. However, additional, well-designed randomized clinical trials are needed to determine their dose- and time-dependency regarding this symptom.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gábor Varga
- Address correspondence to this author at the Department of Oral Biology, Faculty of Dentistry, Semmelweis University, Nagyvárad tér 4, Budapest 1089, Hungary; Tel: +36-1-210-4415; Fax: +36-1-210-4421;, E-mail:
| | | | | | | | | |
Collapse
|
3
|
Racz R, Nagy A, Rakonczay Z, Dunavari EK, Gerber G, Varga G. Defense Mechanisms Against Acid Exposure by Dental Enamel Formation, Saliva and Pancreatic Juice Production. Curr Pharm Des 2019; 24:2012-2022. [PMID: 29769002 PMCID: PMC6225347 DOI: 10.2174/1381612824666180515125654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/30/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
The pancreas, the salivary glands and the dental enamel producing ameloblasts have marked developmental, structural and functional similarities. One of the most striking similarities is their bicarbonate-rich secretory product, serving acid neutralization. An important difference between them is that while pancreatic juice and saliva are delivered into a lumen where they can be collected and analyzed, ameloblasts produce locally precipitating hydroxyapatite which cannot be easily studied. Interestingly, the ion and protein secretion by the pancreas, the salivary glands, and maturation ameloblasts are all two-step processes, of course with significant differences too. As they all have to defend against acid exposure by producing extremely large quantities of bicarbonate, the failure of this function leads to deteriorating consequences. The aim of the present review is to describe and characterize the defense mechanisms of the pancreas, the salivary glands and enamel-producing ameloblasts against acid exposure and to compare their functional capabilities to do this by producing bicarbonate.
Collapse
Affiliation(s)
- Robert Racz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Akos Nagy
- Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Zoltan Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Erika Katalin Dunavari
- Department of Dentistry, Oral and Maxillofacial Surgery, University of Pecs, Pecs, Hungary
| | - Gabor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gabor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Fang WJ, Wang CJ, He Y, Zhou YL, Peng XD, Liu SK. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol Sin 2018; 39:59-73. [PMID: 28770830 DOI: 10.1038/aps.2017.50] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Recent evidence shows that resveratrol (RSV) may ameliorate high-glucose-induced cardiac oxidative stress, mitochondrial dysfunction and myocardial fibrosis in diabetes. However, the mechanisms by which RSV regulates mitochondrial function in diabetic cardiomyopathy have not been fully elucidated. Mitochondrial dysfunction contributes to cardiac dysfunction in diabetic patients, which is associated with dysregulation of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). In this study we examined whether resveratrol alleviated cardiac dysfunction in diabetes by improving mitochondrial function via SIRT1-mediated PGC-1α deacetylation. T2DM was induced in rats by a high-fat diet combined with STZ injection. Diabetic rats were orally administered RSV (50 mg·kg-1·d-1) for 16 weeks. RSV administration significantly attenuated diabetes-induced cardiac dysfunction and hypertrophy evidenced by increasing ejection fraction (EF%), fraction shortening (FS%), ratio of early diastolic peak velocity (E velocity) and late diastolic peak velocity (A velocity) of the LV inflow (E/A ratio) and reducing expression levels of pro-hypertrophic markers ANP, BNP and β-MHC. Furthermore, manganese superoxide dismutase (SOD) activity, ATP content, mitochondrial DNA copy number, mitochondrial membrane potential and the expression of nuclear respiration factor (NRF) were all significantly increased in diabetic hearts by RSV administration, whereas the levels of malondialdehvde (MDA) and uncoupling protein 2 (UCP2) were significantly decreased. Moreover, RSV administration significantly activated SIRT1 expression and increased PGC-1α deacetylation. H9c2 cells cultured in a high glucose (HG, 30 mmol/L) condition were used for further analyzing the role of SIRT1/PGC-1α pathway in RSV regulation of mitochondrial function. RSV (20 μmol/L) caused similar beneficial effects in HG-treated H9c2 cells in vitro as in diabetic rats, but these protective effects were abolished by addition of a SIRT1 inhibitor sirtinol (25 μmol/L) or by SIRT1 siRNA transfection. In H9c2 cells, RSV-induced PGC-1α deacetylation was dependent on SIRT1, which was also abolished by a SIRT1 inhibitor and SIRT1 siRNA transfection. Our results demonstrate that resveratrol attenuates cardiac injury in diabetic rats through regulation of mitochondrial function, which is mediated partly through SIRT1 activation and increased PGC-1α deacetylation.
Collapse
|
5
|
Varga G, DenBesten P, Rácz R, Zsembery Á. Importance of bicarbonate transport in pH control during amelogenesis - need for functional studies. Oral Dis 2017; 24:879-890. [PMID: 28834043 DOI: 10.1111/odi.12738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 12/27/2022]
Abstract
Dental enamel, the hardest mammalian tissue, is produced by ameloblasts. Ameloblasts show many similarities to other transporting epithelia although their secretory product, the enamel matrix, is quite different. Ameloblasts direct the formation of hydroxyapatite crystals, which liberate large quantities of protons that then need to be buffered to allow mineralization to proceed. Buffering requires a tight pH regulation and secretion of bicarbonate by ameloblasts. Many investigations have used immunohistochemical and knockout studies to determine the effects of these genes on enamel formation, but up till recently very little functional data were available for mineral ion transport. To address this, we developed a novel 2D in vitro model using HAT-7 ameloblast cells. HAT-7 cells can be polarized and develop functional tight junctions. Furthermore, they are able to accumulate bicarbonate ions from the basolateral to the apical fluid spaces. We propose that in the future, the HAT-7 2D system along with similar cellular models will be useful to functionally model ion transport processes during amelogenesis. Additionally, we also suggest that similar approaches will allow a better understanding of the regulation of the cycling process in maturation-stage ameloblasts, and the pH sensory mechanisms, which are required to develop sound, healthy enamel.
Collapse
Affiliation(s)
- G Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - P DenBesten
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - R Rácz
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Á Zsembery
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
ATP release, generation and hydrolysis in exocrine pancreatic duct cells. Purinergic Signal 2015; 11:533-50. [PMID: 26431833 DOI: 10.1007/s11302-015-9472-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/14/2015] [Indexed: 12/24/2022] Open
Abstract
Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels, and corresponding transcripts were expressed in duct cells. Direct stimulation of intracellular Ca(2+) and cAMP signalling and ethanol application had negligible effects on ATP release. The released ATP was sequentially dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting adenylate kinase (AK1) and nucleoside diphosphate kinase (NDPK) enzymes (NME1, 2), which contribute to metabolism and regeneration of extracellular ATP and other nucleotides (ADP, uridine diphosphate (UDP) and uridine triphosphate (UTP)). In conclusion, we illustrate a complex regulation of extracellular purine homeostasis in a pancreatic duct cell model involving: ATP release by several mechanisms and subsequent nucleotide breakdown and ATP regeneration via counteracting nucleotide-inactivating and nucleotide-phosphorylating ecto-enzymes. We suggest that extracellular ATP homeostasis in pancreatic ducts may be important in pancreas physiology and potentially in pancreas pathophysiology.
Collapse
|
7
|
Protective Effect of Sevoflurane Postconditioning against Cardiac Ischemia/Reperfusion Injury via Ameliorating Mitochondrial Impairment, Oxidative Stress and Rescuing Autophagic Clearance. PLoS One 2015; 10:e0134666. [PMID: 26263161 PMCID: PMC4532466 DOI: 10.1371/journal.pone.0134666] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 07/13/2015] [Indexed: 01/29/2023] Open
Abstract
Background and Purpose Myocardial infarction leads to heart failure. Autophagy is excessively activated in myocardial ischemia/reperfusion (I/R) in rats. The aim of this study is to investigate whether the protection of sevoflurane postconditioning (SPC) in myocardial I/R is through restored impaired autophagic flux. Methods Except for the sham control (SHAM) group, each rat underwent 30 min occlusion of the left anterior descending coronary (LAD) followed by 2 h reperfusion. Cardiac infarction was determined by 2,3,5-triphenyltetrazolium chloride triazole (TTC) staining. Cardiac function was examined by hemodynamics and echocardiography. The activation of autophagy was evaluated by autophagosome accumulation, LC3 conversion and p62 degradation. Potential molecular mechanisms were investigated by immunoblotting, real-time PCR and immunofluorescence staining. Results SPC improved the hemodynamic parameters, cardiac dysfunction, histopathological and ultrastructural damages, and decreased myocardial infarction size after myocardial I/R injury (P < 0.05 vs. I/R group). Compared with the cases in I/R group, myocardial ATP and NAD+ content, mitochondrial function related genes and proteins, and the expressions of SOD2 and HO-1 were increased, while the expressions of ROS and Vimentin were decreased in the SPC group (P < 0.05 vs. I/R group). SPC significantly activated Akt/mTOR signaling, and inhibited the formation of Vps34/Beclin1 complex via increasing expression of Bcl2 protein (P < 0.05 vs. I/R group). SPC suppressed elevated expressions of LC3 II/I ratio, Beclin1, Atg5 and Atg7 in I/R rat, which indicated that SPC inhibited over-activation of autophagy, and promoted autophagosome clearance. Meanwhile, SPC significantly suppressed the decline of Opa1 and increases of Drp1 and Parkin induced by I/R injury (P < 0.05 vs. I/R group). Moreover, SPC maintained the contents of ATP by reducing impaired mitochondria. Conclusion SPC protects rat hearts against I/R injury via ameliorating mitochondrial impairment, oxidative stress and rescuing autophagic clearance.
Collapse
|
8
|
Zhang J, Wang C, Yu S, Luo Z, Chen Y, Liu Q, Hua F, Xu G, Yu P. Sevoflurane postconditioning protects rat hearts against ischemia-reperfusion injury via the activation of PI3K/AKT/mTOR signaling. Sci Rep 2014; 4:7317. [PMID: 25471136 PMCID: PMC4255182 DOI: 10.1038/srep07317] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/17/2014] [Indexed: 12/28/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway plays a key role in myocardial ischemia-reperfusion (I/R) injury. Mammalian target of rapamycin (mTOR), a downstream target of PI3K/AKT signaling, is necessary and sufficient to protect the heart from I/R injury. Inhaled anesthetic sevoflurane is widely used in cardiac surgeries because its induction and recovery are faster and smoother than other inhaled anesthetics. Sevoflurane proved capable of inducing postconditioning effects in the myocardium. However, the underlying molecular mechanisms for sevoflurane-induced postconditioning (SPC) were largely unclear. In the present study, we demonstrated that SPC protects myocardium from I/R injury with narrowed cardiac infarct focus, increased ATP content, and decreased cardiomyocyte apoptosis, which are mainly due to the activation of PI3K/AKT/mTOR signaling and the protection of mitochondrial energy metabolism. Application of dactolisib (BEZ235), a PI3K/mTOR dual inhibitor, abolishes the up-regulation of pho-AKT, pho-GSK, pho-mTOR, and pho-p70s6k induced by SPC, hence abrogating the anti-apoptotic effect of sevoflurane and reducing SPC-mediated protection of heart from I/R injury. As such, this study proved that PI3K/AKT/mTOR pathway plays an important role in SPC induced cardiac protection against I/R injury.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Chen Wang
- Department of Anesthesiology, the Second Affiliate Hospital of Soochow University, Suzhou, 215000, China
| | - Shuchun Yu
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhenzhong Luo
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Yong Chen
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Qin Liu
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Guohai Xu
- Department of Anesthesiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| | - Peng Yu
- Department of Cardiology, the Second Affiliate Hospital of Nanchang University, Nanchang, 330000, China
| |
Collapse
|
9
|
Xie H, Zhang J, Zhu J, Liu LX, Rebecchi M, Hu SM, Wang C. Sevoflurane post-conditioning protects isolated rat hearts against ischemia-reperfusion injury via activation of the ERK1/2 pathway. Acta Pharmacol Sin 2014; 35:1504-13. [PMID: 25345742 DOI: 10.1038/aps.2014.78] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/29/2014] [Indexed: 01/08/2023]
Abstract
AIM To investigate the role of extracellular signal-regulated kinases (ERKs) in sevoflurane post-conditioning induced cardioprotection in vitro. METHODS Isolated rat hearts were subjected to 30 min ischemia followed by 120 min reperfusion (I/R). Sevoflurane post-conditioning was carried out by administration of O2-enriched gas mixture with 3% sevoflurane (SEVO) for 15 min from the onset of reperfusion. Cardiac functions, myocardial infarct size, myocardial ATP and NAD(+) contents, mitochondrial ultrastructure, and anti-apototic and anti-oncosis protein levels were measured. RESULTS Sevoflurane post-conditioning significantly improved the heart function, decreased infarct size and mitochondria damage, and increased myocardial ATP and NAD(+) content in the I/R hearts. Furthermore, sevoflurane post-conditioning significantly increased the levels of p-ERK and p-p70S6K, decreased the levels of porimin, caspase-8, cleaved caspase-3, and cytosolic cytochrome c in the I/R hearts. Co-administration of the ERK1/2 inhibitor PD98059 (20 μmol/L) abolished the sevoflurane-induced protective effects against myocardial I/R. CONCLUSION Sevoflurane post-conditioning protects isolated rat hearts against myocardial I/R injury and inhibits cell oncosis and apoptosis via activation of the ERK1/2 pathway.
Collapse
|
10
|
The Exocrine Pancreas: The Acinar-Ductal Tango in Physiology and Pathophysiology. Rev Physiol Biochem Pharmacol 2013; 165:1-30. [DOI: 10.1007/112_2013_14] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8:437-502. [PMID: 22555564 PMCID: PMC3360096 DOI: 10.1007/s11302-012-9309-4] [Citation(s) in RCA: 789] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Biologicum, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
12
|
Abstract
Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming evidence for the role of purinergic signalling in the pathophysiology of the pancreas, and the new challenge is to understand how it is integrated with other pathological processes.
Collapse
Affiliation(s)
- G Burnstock
- University College Medical School, Autonomic Neuroscience Centre, Rowland Hill Street, London NW3 2PF, UK.
| | | |
Collapse
|
13
|
Novak I, Jans IM, Wohlfahrt L. Effect of P2X(7) receptor knockout on exocrine secretion of pancreas, salivary glands and lacrimal glands. J Physiol 2010; 588:3615-27. [PMID: 20643770 DOI: 10.1113/jphysiol.2010.190017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The purinergic P2X(7) receptors are expressed in different cell types where they have varied functions, including regulation of cell survival. The P2X(7) receptors are also expressed in exocrine glands, but their integrated role in secretion is unclear. The aim of our study was to determine whether the P2X(7) receptors affect fluid secretion in pancreas, salivary glands and tear glands. We monitored gland secretions in in vivo preparations of wild-type and P2X(7)(-/-) (Pfizer) mice stimulated with pilocarpine. In cell preparations from pancreas, parotid and lacrimal glands we measured ATP release and intracellular Ca(2+) activity using Fura-2. The data showed that pancreatic secretion and salivary secretions were reduced in P2X(7)(-/-) mice, and in contrast, tear secretion was increased in P2X(7)(-/-) mice. The secretory phenotype was also dependent on the sex of the animal, such that males were more dependent on the P2X(7) receptor expression. ATP release in all cell preparations could be elicited by carbachol and other agonists, and this was independent of the P2X(7) receptor expression. ATP and carbachol increased intracellular Ca(2+) activity, but responses depended on the gland type, presence of the P2X(7) receptor and the sex of the animal. Together, these results demonstrate that cholinergic stimulation leads to release of ATP that can via P2X(7) receptors up-regulate pancreatic and salivary secretion but down-regulate tear secretion. Our data also indicate that there is an interaction between purinergic and cholinergic receptor signalling and that function of the P2X(7) receptor is suppressed in females. We conclude that the P2X(7) receptors are important in short-term physiological regulation of exocrine gland secretion.
Collapse
Affiliation(s)
- Ivana Novak
- Department of Biology, August Krogh Building, Universitetsparken 13, University of Copenhagen, DK 2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
14
|
Mitofusin-2 protects against cold stress-induced cell injury in HEK293 cells. Biochem Biophys Res Commun 2010; 397:270-6. [PMID: 20580691 DOI: 10.1016/j.bbrc.2010.05.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 11/20/2022]
Abstract
Mitochondrial impairment is hypothesized to contribute to cell injury during cold stress. Mitochondria fission and fusion are closely related in the function of the mitochondria, but the precise mechanisms whereby these processes regulate cell injury during cold stress remain to be determined. HEK293 cells were cultured in a cold environment (4.0+/-0.1 degrees C) for 2, 4, 8, or 12h. Western blot analyses showed that these cells expressed decreased fission-related protein Drp1 and increased fusion-related protein Mfn2 at 4h; meanwhile, electron microscopy analysis revealed large and long mitochondrial morphology within these cells, indicating increased mitochondrial fusion. With silencing of Mfn2 but not of Mfn1 by siRNA promoted cold-stress-induced cell death with decreased ATP production in HEK293 cells. Our results show that increased expression of Mfn2 and mitochondrial fusion are important for mitochondrial function as well as cell survival during cold stress. These findings have important implications for understanding the mechanisms of mitochondrial fusion and fission in cold-stress-induced cell injury.
Collapse
|
15
|
Defatted bovine colostrum-supplemented diet around weaning improves exocrine pancreatic secretion by means of volume, digestive enzymes, and antibacterial activity. Pancreas 2009; 38:303-8. [PMID: 19136910 DOI: 10.1097/mpa.0b013e318192eb83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Exocrine pancreatic secretion contributes to limit pathogenic bacteria-associated diarrhea. Bovine colostrum, used in the treatment of diarrhea, reduces symptoms originating from gut pathogenic bacteria overgrowth. We hypothesized that bovine colostrum may stimulate the exocrine pancreatic secretion. METHODS Eighteen piglets fitted with 2 permanent catheters (for pancreatic juice collection and reintroduction) were allocated to 1 of the following 2 dietary treatments for 5 days: a control diet or a diet supplemented with defatted bovine colostrum. Pancreatic juice was collected daily, and digestive enzyme activities and antibacterial activity were determined. RESULTS The prandial pancreatic juice outflow, the basal and prandial lipase output, and the basal secretion of the antibacterial activity were, respectively, 60% (P = 0.08), 154% (P = 0.08), 92% (P = 0.06), and 72% (P < 0.05) higher in piglets fed a diet supplemented with defatted bovine colostrum. CONCLUSIONS With defatted bovine colostrum, the increased antibacterial activity secretion against Escherichia coli may limit pathogenic bacteria overgrowth of the gut and reduce diarrheal episodes. The role of secretin in the increased pancreatic juice flow and lipase secretion was considered.
Collapse
|
16
|
Pancreatic duct secretion: experimental methods, ion transport mechanisms and regulation. J Physiol Biochem 2008; 64:243-57. [PMID: 19244938 DOI: 10.1007/bf03178846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Novak I. Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signal 2007; 4:237-53. [PMID: 18368520 DOI: 10.1007/s11302-007-9087-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 11/06/2007] [Indexed: 11/28/2022] Open
Abstract
The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In beta cells, stimulation of P2Y(1) receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y(1) receptors, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y(2), P2Y(4), P2Y(11), P2X(4) and P2X(7) receptors could regulate secretion, primarily by affecting Cl(-) and K(+) channels and intracellular Ca(2+) signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases.
Collapse
Affiliation(s)
- I Novak
- Department of Biosciences, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Ø, Denmark,
| |
Collapse
|
18
|
Kittel A, Sperlágh B, Pelletier J, Sévigny J, Kirley TL. Transient changes in the localization and activity of ecto-nucleotidases in rat hippocampus following lipopolysaccharide treatment. Int J Dev Neurosci 2007; 25:275-82. [PMID: 17576046 PMCID: PMC5239665 DOI: 10.1016/j.ijdevneu.2007.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 05/09/2007] [Accepted: 05/09/2007] [Indexed: 11/30/2022] Open
Abstract
The concentrations of extracellularly released nucleotides are controlled by metabolism via ecto-nucleotidases, but the precise physiological roles of the ecto-nucleoside triphosphate diphosphohydrolases in the modulation of purinergic receptor signalling are still unclear. Bacterial endotoxin lipopolysaccharide (LPS) treatment (administered intraperitoneally, 2 mg/kg body weight) of rats resulted in no significant changes in the overall ecto-nucleotidase activities of the hippocampus, however, LPS treatment did cause transient changes in the morphology of endothelial cells and pericytes and in the localization pattern of ecto-ATPase activity in rat hippocampus. The transient decrease in NTPDase1 (ecto-nucleoside triphosphate diphosphohydrolase1) activity, located on the luminal side of the endothelial cells, was balanced by increases in ecto-nucleotidase activities in pericytes and at other sites, consistent with an unchanged overall ecto-ATPase activity of the hippocampus. Since the transient loss of NTPDase1 activity was not accompanied by a loss of NTPDase1 protein, we hypothesize that LPS caused transient alterations in the lipid membranes, since NTPDase1 activity is known to be sensitive to changes in membrane structure via its transmembrane domains. After 2-3 days, the LPS-induced changes in cell morphology and ecto-nucleotidase localization disappeared. We conclude that a low dose of LPS causes transient changes in the localization pattern of ecto-nucleotidases in endothelial cells and pericytes, which, coupled with the observed cellular morphological changes, may indicate modified cellular signalling in the hippocampus.
Collapse
Affiliation(s)
- Agnes Kittel
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
19
|
Szucs A, Demeter I, Burghardt B, Ovári G, Case RM, Steward MC, Varga G. Vectorial bicarbonate transport by Capan-1 cells: a model for human pancreatic ductal secretion. Cell Physiol Biochem 2007; 18:253-64. [PMID: 17167230 DOI: 10.1159/000097672] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2006] [Indexed: 11/19/2022] Open
Abstract
Human pancreatic ducts secrete a bicarbonate-rich fluid but our knowledge of the secretory process is based mainly on studies of animal models. Our aim was to determine whether the HCO(3)(-) transport mechanisms in a human ductal cell line are similar to those previously identified in guinea-pig pancreatic ducts. Intracellular pH was measured by microfluorometry in Capan-1 cell monolayers grown on permeable filters and loaded with BCECF. Epithelial polarization was assessed by immunolocalization of occludin. Expression of mRNA for key electrolyte transporters and receptors was evaluated by RT-PCR. Capan-1 cells grown on permeable supports formed confluent, polarized monolayers with well developed tight junctions. The recovery of pH(i) from an acid load, induced by a short NH(4)(+) pulse, was mediated by Na(+)-dependent transporters located exclusively at the basolateral membrane. One was independent of HCO(3)(-) and blocked by EIPA (probably NHE1) while the other was HCO(3)(-)-dependent and blocked by H(2)DIDS (probably pNBC1). Changes in pH(i) following blockade of basolateral HCO(3)(-) accumulation confirmed that the cells achieve vectorial HCO(3)(-) secretion. Dose-dependent increases in HCO(3)(-) secretion were observed in response to stimulation of both secretin and VPAC receptors. ATP and UTP applied to the apical membrane stimulated HCO(3)(-) secretion but were inhibitory when applied to the basolateral membrane. HCO(3)(-) secretion in guinea-pig ducts and Capan-1 cell monolayers share many common features, suggesting that the latter is an excellent model for studies of human pancreatic HCO(3)(-) secretion.
Collapse
Affiliation(s)
- Akos Szucs
- Molecular Oral Biology Research Group, Department of Oral Biology, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
20
|
Yegutkin GG, Samburski SS, Jalkanen S, Novak I. ATP-consuming and ATP-generating enzymes secreted by pancreas. J Biol Chem 2006; 281:29441-7. [PMID: 16885159 DOI: 10.1074/jbc.m602480200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pancreatic acini release ATP in response to various stimuli, including cholecystokinin octapeptide (CCK-8), as we show in the present study. There were indications that pancreatic juice also contains enzymes that could hydrolyze ATP during its passage through the ductal system. The aim of this study was to determine which ATP-degrading and possibly ATP-generating enzymes were present in pancreatic secretion. For this purpose, pancreatic juice was collected from anesthetized rats stimulated with infusion of CCK-8. Purine-converting activities in juice samples were assayed by TLC using either [gamma-(32)P]ATP or (14)C/(3)H-labeled and unlabeled nucleotides as appropriate substrates. Data show that the juice contains the enzyme ecto-nucleoside triphosphate diphosphohydrolase that can hydrolyze both [(14)C]ATP and [(3)H]ADP about equally well, i.e. CD39. Reverse-phase high-performance liquid chromatography analysis additionally shows that this enzyme has broad substrate specificity toward other nucleotides, UTP, UDP, ITP, and IDP. In addition, secretion contains ecto-5'-nucleotidase, CD73, further converting [(3)H]AMP to adenosine. Along with highly active hydrolytic enzymes, there were also ATP-generating enzymes in pancreatic juice, adenylate kinase, and NDP kinase, capable of sequentially phosphorylating AMP via ADP to ATP. Activities of nonspecific phosphatases, nucleotide pyrophosphatase/phosphodiesterases, and adenosine deaminase were negligible. Taken together, CCK-8 stimulation of pancreas causes release of both ATP-consuming and ATP-generating enzymes into pancreatic juice. This newly discovered richness of secreted enzymes underscores the importance of purine signaling between acini and pancreatic ducts lumen and implies regulation of the purine-converting enzymes release.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory and Department of Medical Microbiology, Turku University and National Public Health Institute, FIN-2050 Turku, Finland
| | | | | | | |
Collapse
|
21
|
Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2006; 2:409-30. [PMID: 18404480 PMCID: PMC2254478 DOI: 10.1007/s11302-006-9003-5] [Citation(s) in RCA: 726] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/23/2006] [Indexed: 12/17/2022] Open
Abstract
Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases.
Collapse
Affiliation(s)
- Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts USA
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, Québec Canada
| | - Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| |
Collapse
|
22
|
Abstract
During my lifetime in pancreatic research, rat and mouse have largely replaced dog and cat in experimental studies. However, as this review clearly demonstrates, the anatomy, physiology and molecular cell biology of the rat pancreas (and also probably the mouse pancreas) differ substantially from those in humans. Indeed, they differ more in rat/mouse than any other common laboratory species. These differences may be irrelevant if one is using the pancreas as a generic model in which to study, say, acinar cell exocytosis or signalling. But if one is interested in more specific aspects of human pancreatic function, especially ductal function, in health and disease, in my opinion the simple answer to the question posed by the title of this article is no: other species are more appropriate.
Collapse
Affiliation(s)
- R Maynard Case
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
23
|
Fu ZL, Feng YB, Xu HX, Zhang XP, Shi CZ, Gu X. Role of norepinephrine in development of short-term myocardial hibernation. Acta Pharmacol Sin 2006; 27:158-64. [PMID: 16412264 DOI: 10.1111/j.1745-7254.2006.00245.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To investigate the role of norepinephrine in the development of short-term myocardial hibernation. METHODS Hearts were removed from rats and set up as isometrically beating or short-term hibernation models. The hearts were perfused with modified Krebs-Henseleit buffer under a controlled perfusion pressure. The myocardial ultrastructure was examined, and the content of ATP, phosphocreatine, and glycogen in myocardium, the extent of myocyte apoptosis, and the amount of Bcl-2 and Bax products were determined after 120-min ischemia assessed by TUNEL and immunocytochemistry. RESULTS There was no significant difference between the reserpinized hearts and the NS control group with respect to heart function, myocardial ultrastructure, ATP, phosphocreatine, or glycogen content, myocyte apoptosis, or amount of Bax or Bcl-2 products. However, relative to the normal saline group, in the norepinephrine-treated hearts, heart function, and myocardial ultrastructure deteriorated significantly, apoptosis and amount of Bax product increased significantly, and the ATP, phosphocreatine, and glycogen content decreased significantly, as did the amount of Bcl-2 product. CONCLUSION Myocardial norepinephrine does not contribute to the development of short-term hibernation, but that exogenous NE can induce progressive decreases in coronary flow and cardiac performance, which might result from the increases in apoptosis and necrosis. Norepinephrine may be an important factor in the deterioration of myocardial structure and function during hibernation, and that anti-adrenergic treatment may be helpful for the development and sustainment of short-term myocardial hibernation.
Collapse
Affiliation(s)
- Zuo-lin Fu
- The Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Investigations into the neural and hormonal control of pancreatic exocrine function have led to many exciting discoveries over the past year. This review seeks to identify those articles that further our understanding into the complex relation of the varying factors regulating pancreatic secretion. RECENT FINDINGS Major findings include the new insights into the regulation of the pancreas through receptor-mediated mechanisms, investigations of pancreatic exocytosis, impairment of pancreatic exocrine function by insulin deficiency, the effects of surgical interventions for the treatment of chronic pancreatitis on pancreatic exocrine function, how exocrine function is altered by the cause of acute pancreatitis, and clinical observations relating to management of pancreatic disease and investigations of pancreatic function testing. SUMMARY Over the past year, substantial new information has been published on the neurohormonal control of pancreatic exocrine function. These data provide insights into the physiology and pathophysiology of pancreatic secretion and diseases of exocrine insufficiency.
Collapse
Affiliation(s)
- Marc D Noble
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
25
|
Abstract
OBJECTIVES The current studies used the technique of microphysiometry to directly determine the effects of stimulators and inhibitors of pancreatic duct secretion on acid efflux from isolated pancreatic ducts. METHODS Main and interlobular ducts were isolated from guinea pig pancreata by collagenase digestion and manual selection. Segments were placed in the chambers of a microphysiometer, which uses a silicon chip-based, light-addressable potentiometric sensor to determine the proton concentration in the superfusing solution. Isolated ducts were superfused with a low buffer capacity Ringer's solution at 37 degrees C and the extracellular acidification rate (EAR) was determined by computer-directed protocols. RESULTS A survey of potential agonists demonstrated that both secretin and the cholinomimetic, carbachol, dramatically increased EAR, with EC50 of 3 nmol/L and 0.6 mumol/L, respectively. The changes in EAR induced by both secretagogues were rapid, peaking within 4-6 minutes, and then declining to a level below the peak but above basal EAR. The enhanced EAR was maintained for at least 30 minutes in the presence of either secretagogue. More modest increases in EAR were evoked by bombesin, substance P, and vasoactive intestinal peptide (VIP). Cholecystokinin and isoproterenol caused no significant change in pancreatic duct EAR. A combination of amiloride and bafilomycin A1, inhibitors, respectively, of Na/H exchange and of vacuolar type H-ATPase activity, caused a dramatic drop in EAR but did not fully inhibit the increase in EAR elicited by carbachol, suggesting that other mechanisms may contribute to agonist-stimulated EAR of pancreatic ducts. CONCLUSIONS Thus, the results support the use of microphysiometry as a tool to study pancreatic duct physiology and in particular a method to measure acid efflux from the serosal surface.
Collapse
Affiliation(s)
- Seth R Hootman
- Department of Physiology, Michigan State University, East Lansing 48824-3320, USA
| | | | | |
Collapse
|