1
|
Bartynski WS, Agarwal V, Trang H, Bandos AI, Rothfus WE, Tsay J, Delfyett WT, Nastasi B. Enhancing Annular Fissures and High-Intensity Zones: Pain, Internal Derangement, and Anesthetic Response at Provocation Lumbar Discography. AJNR Am J Neuroradiol 2023; 44:95-104. [PMID: 36549846 PMCID: PMC9835906 DOI: 10.3174/ajnr.a7749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE A high-intensity zone identified on preprocedural MR imaging is known to correlate with pain at provocation lumbar discography. The correlation between enhancing annular fissures and pain at provocation lumbar discography has not been comprehensively evaluated. The purpose of this study was to assess the pain response and imaging features at enhancing annular fissure nonoperated disc levels identified on preprocedural MR imaging with comparison with the high-intensity zone and nonenhancing disc levels in patients referred for provocation lumbar discography. MATERIALS AND METHODS One-hundred nonoperated discs in 44 patients were retrospectively evaluated for an enhancing annular fissure on sagittal postcontrast T1-weighted pre-discogram MR imaging. Enhancing annular fissure discs were graded on the sagittal T2-weighted sequence (Grade 4: like CSF to Grade 1: negative/barely visible) for high-intensity-zone conspicuity. High-intensity-zone detection was performed independently. In the primary assessment, enhancing annular fissure and high-intensity zones were associated with pain response at provocation lumbar discography. Additional analysis included intradiscal anesthetic response and postdiscogram CT appearance. RESULTS Thirty-nine discs demonstrated an enhancing annular fissure, with 23/39 demonstrating a high-intensity zone. The presence of a high-intensity zone predicted severe pain (concordant + nonconcordant; P = .005, sensitivity of 40%, specificity of 94%) and concordant pain (P = .007, sensitivity of 39%, specificity of 86%) at provocation lumbar discography. Enhancing annular fissures without a detected high-intensity zone were more frequently observed among severely painful (50%) and concordant (36%) discs than among discs negative for pain (9%; P = .01). This finding resulted in a substantially greater overall sensitivity of enhancing annular fissures for severe (P < .001, 64%) and concordant pain (P = .008, 61%), significantly improving the overall predictive ability of a high-intensity zone alone. A high-intensity zone went undetected in 9/11 Grade 1 disc levels with concordant pain present in 7/9. CONCLUSIONS Consideration of enhancing annular fissures on preprocedural MR imaging substantially improves the prediction of severe/concordant pain in provocation lumbar discography.
Collapse
Affiliation(s)
- W S Bartynski
- From the Department of Radiology (W.S.B., V.A., H.T., W.E.R., J.T., W.T.D., B.N.), Division of Neuroradiology, University of Pittsburgh, Presbyterian University Hospital, Pittsburgh, Pennsylvania
| | - V Agarwal
- From the Department of Radiology (W.S.B., V.A., H.T., W.E.R., J.T., W.T.D., B.N.), Division of Neuroradiology, University of Pittsburgh, Presbyterian University Hospital, Pittsburgh, Pennsylvania
| | - H Trang
- From the Department of Radiology (W.S.B., V.A., H.T., W.E.R., J.T., W.T.D., B.N.), Division of Neuroradiology, University of Pittsburgh, Presbyterian University Hospital, Pittsburgh, Pennsylvania
- Department of Radiology (H.T.), St. Clair Hospital, Pittsburgh, Pennsylvania
| | - A I Bandos
- Department of Biostatistics (A.I.B.), Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - W E Rothfus
- From the Department of Radiology (W.S.B., V.A., H.T., W.E.R., J.T., W.T.D., B.N.), Division of Neuroradiology, University of Pittsburgh, Presbyterian University Hospital, Pittsburgh, Pennsylvania
| | - J Tsay
- From the Department of Radiology (W.S.B., V.A., H.T., W.E.R., J.T., W.T.D., B.N.), Division of Neuroradiology, University of Pittsburgh, Presbyterian University Hospital, Pittsburgh, Pennsylvania
- Department of Radiology (J.T.), Cleveland Clinic, Cleveland, Ohio
| | - W T Delfyett
- From the Department of Radiology (W.S.B., V.A., H.T., W.E.R., J.T., W.T.D., B.N.), Division of Neuroradiology, University of Pittsburgh, Presbyterian University Hospital, Pittsburgh, Pennsylvania
| | - B Nastasi
- From the Department of Radiology (W.S.B., V.A., H.T., W.E.R., J.T., W.T.D., B.N.), Division of Neuroradiology, University of Pittsburgh, Presbyterian University Hospital, Pittsburgh, Pennsylvania
- Brighton Radiology Associates, PC (B.N.), Monaca, Pennsylvania
| |
Collapse
|
2
|
Xiang Q, Tao JS, Li JJ, Tian RB, Li XH. Changes in dorsal root ganglion CGRP expression in mouse pinch nerve injury model: Modulation by Somatostatin type-2 receptor. J Chem Neuroanat 2022; 121:102086. [PMID: 35257878 DOI: 10.1016/j.jchemneu.2022.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/06/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Our previous work has shown that somatostatin effectively inhibits neuropathic pain by activating its type 2 receptor (SSTR2) in the dorsal root ganglion (DRG) and spinal cord of mice. However, the underlying mechanism of this activation has not been elucidated. METHODS To explore further mechanisms, we examined pain behavior and the expression of neuropeptides such as calcitonin gene-related peptide (CGRP) in dorsal root ganglion neurons(DRGs) as well as the changes of the number of CGRP-IR DRGs in the mouse model of sciatic pinch nerve injury. RESULTS In this model, the number of medium and small DRG neurons in ipsilateral CGRP-IR was slightly increased, but not significantly, compared with sham animals at 3, 7, and 9 days after pinch nerve injury. This correlated with the behavioral readouts of hypersensitivity at the same time points. However, the magnitude of the painful behavior (Autotomy) was observed after application of SSTR2 antagonist (CYN154806, 5 mg/kg) in the injured nerve groups compared to the saline-treated injured group as well as the sham-operated group. Following pinch nerve injury, there was a significant decrease in the number of ipsilateral CGRP-IR small and medium DRG neurons in SSTR2 antagonist (anti-SSTR2)- but not saline-treated mice. These data also correlated with painful behavioral readouts where hypersensitivity was significantly increased by anti-SSTR2 but not saline treatment. DISCUSSION/CONCLUSION In all, application of the SSTR2 antagonist to the pinched sciatic nerve suppressed CGRP expression and aggravated painful behavior, suggesting that CGRP expression in DRG neurons can be an important component of the pain mechanism and an indicator of pain behavior.
Collapse
Affiliation(s)
- Qiong Xiang
- Institute of Medicine, Medical research center, Jishou University, Hunan, China
| | - Jia-Sheng Tao
- Institute of Medicine, Medical research center, Jishou University, Hunan, China
| | - Jing-Jing Li
- Institute of Medicine, Medical research center, Jishou University, Hunan, China
| | - Rong-Bo Tian
- Institute of Medicine, Medical research center, Jishou University, Hunan, China
| | - Xian-Hui Li
- Institute of Pharmaceutical Sciences, Jishou University, Hunan, China.
| |
Collapse
|
3
|
Bartynski WS, Agarwal V, Khan AS, Bandos AI. Motion Characteristics of the Functional Spinal Unit During Lumbar Disc Injection (Discography) Including Comparison Between Normal and Degenerative Levels. PAIN MEDICINE 2021; 22:1735-1742. [PMID: 33823017 DOI: 10.1093/pm/pnab121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE While provocation lumbar discography has been used to identify discs responsible for low back pain, the biomechanical effects of disc injection have received little attention. The purpose of this study was to assess the motion of the functional spinal unit including the endplate and facet/pedicle region during disc injection including comparison between normal and degenerative discs. SUBJECTS Subjects represent 91 consecutive patients referred for discography with chronic low back pain. METHODS Lateral projection vertebral motion was retrospectively analyzed at 232 levels (normal: 76 [32.8%], degenerative: 156 [67.2%]). Pre- and postinjection fluoroscopic images were size scaled, and lower endplates were superimposed on separate PowerPoint images. Upper endplate and facet/pedicle motion was separately and independently analyzed on toggled PowerPoint images, subjectively graded as prominent, intermediate, questionable/uncertain, or no motion. Disc morphology was graded using the anteroposterior/lateral postinjection disc appearance (Adams criteria). RESULTS Prominent or intermediate endplate and facet/pedicle motion was identified at most lumbar levels with substantial overall agreement (degenerative: κ = 0.93, 95% confidence intervals [CI] = 0.87-1.00; normal: κ = 0.80, 95% CI = 0.61-1.00). Degenerative levels were strongly associated with a lower degree of endplate and facet/pedicle motion compared with normal: ("prominent" motion grade: endplate: 61% [95/156] vs 89% [68/76], P < 0.001; facet/pedicle: 60% [93/156] vs 88% [67/76], P < 0.001). CONCLUSION Disc injection expands the disc space inducing endplate motion, pedicle motion, and facet translation in almost all normal and most degenerate levels. Disc injection therefore biomechanically "provokes" the entire functional spinal unit. When provoked pain is encountered during lumbar discography, contribution from the associated facet joint and myotendinous insertions should be considered.
Collapse
Affiliation(s)
| | - Vikas Agarwal
- Department of Radiology, Division of Neuroradiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Abdullah S Khan
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andriy I Bandos
- Department or Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Blasco A, Gras S, Mòdol-Caballero G, Tarabal O, Casanovas A, Piedrafita L, Barranco A, Das T, Pereira SL, Navarro X, Rueda R, Esquerda JE, Calderó J. Motoneuron deafferentation and gliosis occur in association with neuromuscular regressive changes during ageing in mice. J Cachexia Sarcopenia Muscle 2020; 11:1628-1660. [PMID: 32691534 PMCID: PMC7749545 DOI: 10.1002/jcsm.12599] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cellular mechanisms underlying the age-associated loss of muscle mass and function (sarcopenia) are poorly understood, hampering the development of effective treatment strategies. Here, we performed a detailed characterization of age-related pathophysiological changes in the mouse neuromuscular system. METHODS Young, adult, middle-aged, and old (1, 4, 14, and 24-30 months old, respectively) C57BL/6J mice were used. Motor behavioural and electrophysiological tests and histological and immunocytochemical procedures were carried out to simultaneously analyse structural, molecular, and functional age-related changes in distinct cellular components of the neuromuscular system. RESULTS Ageing was not accompanied by a significant loss of spinal motoneurons (MNs), although a proportion (~15%) of them in old mice exhibited an abnormally dark appearance. Dark MNs were also observed in adult (~9%) and young (~4%) animals, suggesting that during ageing, some MNs undergo early deleterious changes, which may not lead to MN death. Old MNs were depleted of cholinergic and glutamatergic inputs (~40% and ~45%, respectively, P < 0.01), suggestive of age-associated alterations in MN excitability. Prominent microgliosis and astrogliosis [~93% (P < 0.001) and ~100% (P < 0.0001) increase vs. adults, respectively] were found in old spinal cords, with increased density of pro-inflammatory M1 microglia and A1 astroglia (25-fold and 4-fold increase, respectively, P < 0.0001). Ageing resulted in significant reductions in the nerve conduction velocity and the compound muscle action potential amplitude (~30%, P < 0.05, vs. adults) in old distal plantar muscles. Compared with adult muscles, old muscles exhibited significantly higher numbers of both denervated and polyinnervated neuromuscular junctions, changes in fibre type composition, higher proportion of fibres showing central nuclei and lipofuscin aggregates, depletion of satellite cells, and augmented expression of different molecules related to development, plasticity, and maintenance of neuromuscular junctions, including calcitonin gene-related peptide, growth associated protein 43, agrin, fibroblast growth factor binding protein 1, and transforming growth factor-β1. Overall, these alterations occurred at varying degrees in all the muscles analysed, with no correlation between the age-related changes observed and myofiber type composition or muscle topography. CONCLUSIONS Our data provide a global view of age-associated neuromuscular changes in a mouse model of ageing and help to advance understanding of contributing pathways leading to development of sarcopenia.
Collapse
Affiliation(s)
- Alba Blasco
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Sílvia Gras
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Guillem Mòdol-Caballero
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, CIBERNED, Bellaterra, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | | | - Tapas Das
- Abbott Nutrition Research and Development, Columbus, OH, USA
| | | | - Xavier Navarro
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, CIBERNED, Bellaterra, Spain
| | - Ricardo Rueda
- Abbott Nutrition Research and Development, Granada, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
5
|
Reed WR, Little JW, Lima CR, Sorge RE, Yarar-Fisher C, Eraslan M, Hurt CP, Ness TJ, Gu JG, Martins DF, Li P. Spinal Mobilization Prevents NGF-Induced Trunk Mechanical Hyperalgesia and Attenuates Expression of CGRP. Front Neurosci 2020; 14:385. [PMID: 32425750 PMCID: PMC7204433 DOI: 10.3389/fnins.2020.00385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Low back pain (LBP) is a complex and growing global health problem in need of more effective pain management strategies. Spinal mobilization (SM) is a non-pharmacological approach recommended by most clinical guidelines for LBP, but greater utilization and treatment optimization are hampered by a lack of mechanistic knowledge underlying its hypoalgesic clinical effects. Methods Groups of female Sprague-Dawley rats received unilateral trunk (L5 vertebral level) injections (50 μl) of either vehicle (phosphate-buffer solution, PBS; VEH) or nerve growth factor (NGF; 0.8 μM) on Days 0 and 5 with or without daily L5 SM (VEH, NGF, VEH + SM, VEH + SM). Daily passive SM (10 min) was delivered by a feedback motor (1.2 Hz, 0.9N) from Days 1 to 12. Changes in pain assays were determined for mechanical and thermal reflexive behavior, exploratory behavior (open field events) and spontaneous pain behavior (rat grimace scale). On Day 12, lumbar (L1–L6) dorsal root ganglia (DRG) were harvested bilaterally and calcitonin gene-related peptide (CGRP) positive immunoreactive neurons were quantified from 3 animals (1 DRG tissue section per segmental level) per experimental group. Results NGF induced bilateral trunk (left P = 0.006, right P = 0.001) mechanical hyperalgesia and unilateral hindpaw allodynia (P = 0.006) compared to the vehicle group by Day 12. Additionally, we found for the first time that NGF animals demonstrated decreased exploratory behaviors (total distance traveled) and increased grimace scale scoring compared to the VEH group. Passive SM prevented this development of local (trunk) mechanical hyperalgesia and distant (hindpaw) allodynia, and normalized grimace scale scores. NGF increased CGRP positive immunoreactive neurons in ipsilateral lumbar DRGs compared to the VEH group ([L1]P = 0.02; [L2]P = 0.007) and SM effectively negated this increase in pain-related neuropeptide CGRP expression. Conclusion SM prevents the development of local (trunk) NGF-induced mechanical hyperalgesia and distant (hindpaw) allodynia, in part, through attenuation of CGRP expression in lumbar DRG sensory neurons. NGF decreases rat exploratory behavior and increases spontaneous pain for which passive SM acts to mitigate these pain-related behavioral changes. These initial study findings suggest that beginning daily SM soon after injury onset might act to minimize or prevent the development of LBP by reducing production of pain-related neuropeptides.
Collapse
Affiliation(s)
- William R Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States.,Rehabilitation Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joshua W Little
- Department of Surgery, Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Carla R Lima
- Rehabilitation Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert E Sorge
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mualla Eraslan
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher P Hurt
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States.,Rehabilitation Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel F Martins
- Postgraduate Program in Health Sciences, Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Brazil
| | - Peng Li
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Okada S, Saito H, Matsuura Y, Mikuzuki L, Sugawara S, Onose H, Asaka J, Ohara K, Lee J, Iinuma T, Katagiri A, Iwata K. Upregulation of calcitonin gene-related peptide, neuronal nitric oxide synthase, and phosphorylated extracellular signal-regulated kinase 1/2 in the trigeminal ganglion after bright light stimulation of the eye in rats. J Oral Sci 2019; 61:146-155. [PMID: 30918211 DOI: 10.2334/josnusd.18-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bright light stimulation of the eye activates trigeminal subnucleus caudalis (Vc) neurons in rats. Sensory information is conveyed to the Vc via the trigeminal ganglion (TG). Thus, it is likely that TG neurons respond to photic stimulation and are involved in photic hypersensitivity. However, the mechanisms underlying this process are unclear. Therefore, the hypothesis in this study is bright light stimulation enhances the excitability of TG neurons involved in photic hypersensitivity. Expressions of calcitonin gene-related peptide (CGRP) and neuronal nitric oxide synthase (nNOS) were significantly higher in TG neurons from 5 min to 12 h after photic stimulation of the eye. Phosphorylation of extracellular signal-regulated kinase1/2 (pERK1/2) was enhanced in TG neurons within 5 min after photic stimulation, while pERK1/2 immunoreactivity in satellite glial cells (SGCs) persisted for more than 12 h after the stimulus. Activation of SGCs was observed from 5 min to 2 h. Expression of CGRP, nNOS, and pERK1/2 was observed in small and medium TG neurons, and activation of SGCs and pERK1/2-immunoreactive SGCs encircling large TG neurons was accelerated after stimulation. These results suggest that upregulation of CGRP, nNOS, and pERK1/2 within the TG is involved in photic hypersensitivity.
Collapse
Affiliation(s)
- Shinji Okada
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Hiroto Saito
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Yutaka Matsuura
- Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Lou Mikuzuki
- Department of Physiology, Nihon University School of Dentistry.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University, Graduate School
| | - Shiori Sugawara
- Department of Physiology, Nihon University School of Dentistry.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University, Graduate School
| | - Hiroki Onose
- Department of Physiology, Nihon University School of Dentistry
| | - Junichi Asaka
- Department of Physiology, Nihon University School of Dentistry
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry.,Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
7
|
Mikuzuki L, Saito H, Katagiri A, Okada S, Sugawara S, Kubo A, Ohara K, Lee J, Toyofuku A, Iwata K. Phenotypic change in trigeminal ganglion neurons associated with satellite cell activation via extracellular signal-regulated kinase phosphorylation is involved in lingual neuropathic pain. Eur J Neurosci 2017; 46:2190-2202. [PMID: 28834578 DOI: 10.1111/ejn.13667] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022]
Abstract
Iatrogenic trigeminal nerve injuries remain a common and complex clinical problem. Satellite glial cell (SGC) activation, associated phosphorylation of extracellular signal-regulated kinase (ERK), and neuropeptide expression in the trigeminal ganglion (TG) are known to be involved in trigeminal neuropathic pain related to trigeminal nerve injury. However, the involvement of these molecules in orofacial neuropathic pain mechanisms is still unknown. Phosphorylation of ERK1/2 in lingual nerve crush (LNC) rats was observed in SGCs. To evaluate the role of neuron-SGC interactions under neuropathic pain, calcitonin gene-related peptide (CGRP)-immunoreactive (IR), phosphorylated ERK1/2 (pERK1/2)-IR and glial fibrillary acidic protein (GFAP)-IR cells in the TG were studied in LNC rats. The number of CGRP-IR neurons and neurons encircled with pERK1/2-IR SGCs was significantly larger in LNC rats compared with sham rats. The percentage of large-sized CGRP-IR neurons was significantly higher in LNC rats. The number of CGRP-IR neurons, neurons encircled with pERK1/2-IR SGCs, and neurons encircled with GFAP-IR SGCs was decreased following CGRP receptor blocker CGRP8-37 or mitogen-activated protein kinase/ERK kinase 1 inhibitor PD98059 administration into the TG after LNC. Reduced thresholds to mechanical and heat stimulation to the tongue in LNC rats were also significantly recovered following CGRP8-37 or PD98059 administration. The present findings suggest that CGRP released from TG neurons activates SGCs through ERK1/2 phosphorylation and TG neuronal activity is enhanced, resulting in the tongue hypersensitivity associated with lingual nerve injury. The phenotypic switching of large myelinated TG neurons expressing CGRP may account for the pathogenesis of tongue neuropathic pain.
Collapse
Affiliation(s)
- Lou Mikuzuki
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Hiroto Saito
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Shinji Okada
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Shiori Sugawara
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Akira Toyofuku
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
8
|
Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 2017; 158:543-559. [PMID: 28301400 PMCID: PMC5359791 DOI: 10.1097/j.pain.0000000000000831] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide found primarily in the C and Aδ sensory fibers arising from the dorsal root and trigeminal ganglia, as well as the central nervous system. Calcitonin gene-related peptide was found to play important roles in cardiovascular, digestive, and sensory functions. Although the vasodilatory properties of CGRP are well documented, its somatosensory function regarding modulation of neuronal sensitization and of enhanced pain has received considerable attention recently. Growing evidence indicates that CGRP plays a key role in the development of peripheral sensitization and the associated enhanced pain. Calcitonin gene-related peptide is implicated in the development of neurogenic inflammation and it is upregulated in conditions of inflammatory and neuropathic pain. It is most likely that CGRP facilitates nociceptive transmission and contributes to the development and maintenance of a sensitized, hyperresponsive state not only of the primary afferent sensory neurons but also of the second-order pain transmission neurons within the central nervous system, thus contributing to central sensitization as well. The maintenance of a sensitized neuronal condition is believed to be an important factor underlying migraine. Recent successful clinical studies have shown that blocking the function of CGRP can alleviate migraine. However, the mechanisms through which CGRP may contribute to migraine are still not fully understood. We reviewed the role of CGRP in primary afferents, the dorsal root ganglion, and in the trigeminal system as well as its role in peripheral and central sensitization and its potential contribution to pain processing and to migraine.
Collapse
|
9
|
Inflammatory pain-related traits of sensory DRG neurons innervating the hip joints. J Orthop Sci 2017; 22:325-329. [PMID: 28025021 DOI: 10.1016/j.jos.2016.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/13/2016] [Accepted: 12/04/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND Hip pain is transmitted to the dorsal horn of the spinal cord via the dorsal root ganglion (DRG), which contains two types of neurons with differential sensitivity to neurotrophic factors. If either type predominantly innervates the hip joint, it may represent a good target for hip joint pain treatment. METHODS Inflammation was induced in the left hip joint of rats (n = 10) by using complete Freund's adjuvant. Fluoro-Gold (FG) was applied to the hip joint after 7 days, and T12-L6 DRGs were double-stained for calcitonin gene-related peptide (CGRP) and isolection-IB4 1 week later. RESULTS FG-labeled neurons in the control group were distributed throughout the left DRG from T13 to L5, primarily in L2 to L4, and CGRP-positive neurons were significantly more frequent than IB4-binding neurons. In the inflammatory group, FG-labeled neurons were similarly distributed, primarily at L3 and L4, and CGRP-positive neurons were significantly more frequent than IB4-binding neurons. The percentage of CGRP-positive neurons was significantly greater in the inflammatory group (P < 0.05). CONCLUSIONS Most small neurons innervating the hip joint express CGRP. Furthermore, hip joint inflammation caused an increase in CGRP-positive neurons, but not in IB4-binding neurons. Our results suggest that CGRP-expressing nerve growth factor-dependent neurons are primarily responsible for hip joint pain and may represent therapeutic targets.
Collapse
|
10
|
Wong H, Dong XD, Cairns BE. Nerve growth factor alters the sensitivity of rat masseter muscle mechanoreceptors to NMDA receptor activation. J Neurophysiol 2014; 112:2275-82. [DOI: 10.1152/jn.00327.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intramuscular injection of nerve growth factor (NGF) into rat masseter muscle induces a local mechanical sensitization that is greater in female than in male rats. The duration of NGF-induced sensitization in male and female rats was associated with an increase in peripheral N-methyl-d-aspartate (NMDA) receptor expression by masseter muscle afferent fibers that began 3 days postinjection. Here, we investigated the functional consequences of increased NMDA expression on the response properties of masseter muscle mechanoreceptors. In vivo extracellular single-unit electrophysiological recordings of trigeminal ganglion neurons innervating the masseter muscle were performed in anesthetized rats 3 days after NGF injection (25 μg/ml, 10 μl) into the masseter muscle. Mechanical activation threshold was assessed before and after intramuscular injection of NMDA. NMDA injection induced mechanical sensitization in both sexes that was increased significantly following NGF injection in the male rats but not in the female rats. However, in female but not male rats, further examination found that preadministration of NGF induced a greater sensitization in slow Aδ-fibers (2–7 m/s) than fast Aδ-fibers (7–12 m/s). This suggests that preadministration of NGF had a different effect on slowly conducting mechanoreceptors in the female rats compared with the male rats. Although previous studies have found an association between estrogenic tone and NMDA activity, no correlation was observed between NMDA-evoked mechanical sensitization and plasma estrogen level. This study suggests NGF alters NMDA-induced mechanical sensitization in the peripheral endings of masseter mechanoreceptors in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Hayes Wong
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xu-Dong Dong
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- College of Stomatology, Tianjin Medical University, Tianjin, China; and
| | - Brian E. Cairns
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Center for Sensory Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg East, Denmark
| |
Collapse
|
11
|
Proietti L, Schirò GR, Sessa S, Scaramuzzo L. The impact of sagittal balance on low back pain in patients treated with zygoapophysial facet joint injection. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 23 Suppl 6:628-33. [PMID: 25212449 DOI: 10.1007/s00586-014-3559-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Aim of the study was to evaluate the effectiveness of facet joints injections in lumbar facet syndrome correlating clinical results to the sagittal contour of the spine. METHODS Facet joints degree degeneration was evaluated using MRI according to Fujiwara classification. Sagittal contour of the spine was evaluated according to Roussouly classification. The clinical results were evaluated with visual analog scale (VAS) at regular intervals. RESULTS Twenty-eight (70 %) of the 40 patients had clinical symptoms improvement, 12 (30 %) showed no benefit. There was a statistical significant correlation between postoperative VAS value improvement and Roussouly spine type 1 and 3 (p = 0.003). The benefit was more durable in patients with grade 2 or 3 degeneration. CONCLUSIONS Facet joints injections have a more effective diagnostic than therapeutic value. The procedure could, however, give a temporary pain relief in cases with an overload of the facet joints due to lumbar hyperlordosis.
Collapse
Affiliation(s)
- L Proietti
- Division of Spinal Surgery, Department of Orthopaedics and Traumatology, Catholic University Hospital, Largo A. Gemelli 8, 00168, Rome, Italy,
| | | | | | | |
Collapse
|
12
|
Wong H, Kang I, Dong XD, Christidis N, Ernberg M, Svensson P, Cairns B. NGF-induced mechanical sensitization of the masseter muscle is mediated through peripheral NMDA receptors. Neuroscience 2014; 269:232-44. [DOI: 10.1016/j.neuroscience.2014.03.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 01/24/2023]
|
13
|
Evaluation of pain behavior and calcitonin gene-related peptide immunoreactive sensory nerve fibers in the spinal dorsal horn after sciatic nerve compression and application of nucleus pulposus in rats. Spine (Phila Pa 1976) 2014; 39:455-62. [PMID: 24384662 DOI: 10.1097/brs.0000000000000180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Animal study. OBJECTIVE To evaluate pain behavior and neuropeptide changes in the spinal dorsal horn after sciatic nerve compression and application of nucleus pulposus (NP) in rats. SUMMARY OF BACKGROUND DATA The pathomechanisms of lumbar disc herniation pain have not been fully elucidated. Pain-associated neuropeptides, including substance P and calcitonin gene-related peptide (CGRP), are produced in dorsal root ganglion neurons and transported to spinal dorsal horn nerve terminals where they function in pain transmission. However, changes in CGRP-immunoreactive (IR) sensory nerve terminals have not been reported in models of disc herniation. This study evaluated pain-related behavior and changes in CGRP-IR terminals in the spinal dorsal horn after combined sciatic nerve compression and NP application. METHODS Five groups of rats underwent either sciatic nerve compression with NP (n = 20), application of NP only (n = 20), nerve compression only (n = 20), and sham operation with neither compression nor NP (n = 20) or no operation (controls, n = 20). Mechanical hyperalgesia was measured every second day for 3 weeks. CGRP-IR terminals in each spinal dorsal horn lamina were examined 7 and 14 days postsurgery. Pain behavior and CGRP immunoreactivity were compared among the 5 groups. RESULTS Mechanical hyperalgesia was found in the NP only, nerve compression only, and the NP with nerve compression groups (P ≤ 0.05). CGRP-IR nerve terminals in the superficial laminae (I and II) and the deep laminae (III-VI) significantly increased in the NP only, nerve compression only, and NP with nerve compression groups compared with control and sham groups (P ≤ 0.05). Significant mechanical hyperalgesia and increased CGRP-IR nerve terminals were found in the NP with nerve compression group compared with the NP only and nerve compression only groups (P ≤ 0.05). CONCLUSION Our results indicate that nerve compression plus NP application produces the most pain-related behavior. CGRP-IR nerve terminals increased in laminae I and II that transmit pain and in laminae III to VI that transmit proprioception. Findings suggest that nerve compression plus NP application induces changes in CGRP expression in the superficial and deep laminae, and these changes are partly responsible for disc herniation pain.
Collapse
|
14
|
Bowler KE, Worsley MA, Broad L, Sher E, Benschop R, Johnson K, Yates JM, Robinson PP, Boissonade FM. Evidence for anti-inflammatory and putative analgesic effects of a monoclonal antibody to calcitonin gene-related peptide. Neuroscience 2012; 228:271-82. [PMID: 23098803 DOI: 10.1016/j.neuroscience.2012.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/26/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a powerful pro-inflammatory mediator thought to play a significant role in the development of inflammation and pain. We investigated the role of CGRP in trigeminal inflammatory pain by determining the ability of a monoclonal antibody to CGRP to modify central Fos expression in response to stimulation of the inflamed ferret tooth pulp. We also assessed the effect of the antibody on pulpal inflammation. METHODS Ten adult ferrets were prepared under anaesthesia to allow stimulation of the upper and lower left canine pulps, recording from the digastric muscle and intravenous injections at subsequent experiments. In all animals, pulpal inflammation was induced by introducing human caries into a deep buccal cavity. Four days later animals were treated intravenously with either CGRP antibody (n=5) or vehicle (n=5). After a further 2 days animals were re-anaesthetised and the tooth pulps stimulated at 10 times jaw-opening reflex threshold. Brainstems and tooth pulps were processed immunohistochemically for Fos and the common leucocyte marker CD45, respectively. RESULTS Fos was expressed in ipsilateral trigeminal subnuclei caudalis (Vc) and oralis (Vo). Significantly fewer Fos-positive nuclei were present within Vc of CGRP antibody-treated animals (p=0.003 vs vehicle-treated). Mean percentage area of staining for CD45 was significantly less in antibody-treated animals (p=0.04 vs vehicle-treated). CONCLUSIONS This is the first direct evidence that sequestration of CGRP has anti-inflammatory and putative analgesic effects. Previous studies using this Fos model have demonstrated that it is able to predict clinical analgesic efficacy. Thus these data indicate that this antibody may have analgesic effects in dental pain and other types of inflammatory-mediated transmission, and suggest that this is in part due to peripheral anti-inflammatory effects.
Collapse
Affiliation(s)
- K E Bowler
- Unit of Oral & Maxillofacial Medicine & Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Damico JP, Ervolino E, Torres KR, Sabino Batagello D, Cruz-Rizzolo RJ, Aparecido Casatti C, Arruda Bauer J. Phenotypic alterations of neuropeptide Y and calcitonin gene-related peptide-containing neurons innervating the rat temporomandibular joint during carrageenan-induced arthritis. Eur J Histochem 2012; 56:e31. [PMID: 23027347 PMCID: PMC3493977 DOI: 10.4081/ejh.2012.e31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immunoreactive (NPY-IR) and CGRP- immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78±3%, 77±6% and 10±4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58±2% for superior cervical ganglion and 58±8% for stellate ganglion) and chronic (60±2% for superior cervical ganglion and 59±15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19±5% and 13±3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31±3% in normal animals to 54±2% and 49±3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation.
Collapse
Affiliation(s)
- J P Damico
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences,University of São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Bartynski WS, Rothfus WE. Peripheral disc margin shape and internal disc derangement: imaging correlation in significantly painful discs identified at provocation lumbar discography. Interv Neuroradiol 2012; 18:227-41. [PMID: 22681741 DOI: 10.1177/159101991201800217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/29/2012] [Indexed: 12/19/2022] Open
Abstract
Annular margin shape is used to characterize lumbar disc abnormality on CT/MR imaging studies. Abnormal discs also have internal derangement including annular degeneration and radial defects. The purpose of this study was to evaluate potential correlation between disc-margin shape and annular internal derangement on post-discogram CT in significantly painful discs encountered at provocation lumbar discography (PLD). Significantly painful discs were encountered at 126 levels in 86 patients (47 male, 39 female) studied by PLD where no prior surgery had been performed and response to intradiscal lidocaine after provocation resulted in either substantial/total relief or no improvement after lidocaine administration. Post-discogram CT and discogram imaging was evaluated for disc-margin characteristics (bulge/protrusion), features of disc internal derangement (radial annular defect [RD: radial tear/fissure/annular gap], annular degeneration) and presence/absence of discographic contrast leakage. In discs with focal protrusion, 50 of 63 (79%) demonstrated Grade 3 RD with 13 (21%) demonstrating severe degenerative change only. In discs with generalized-bulge-only, 48 of 63 (76%) demonstrated degenerative change only (primarily Dallas Grade 3) with 15 of 63 (24%) demonstrating a RD (Dallas Grade 3). Differences were highly statistically significant (p<0.001). Pain elimination with intra-discal lidocaine correlated with discographic contrast leakage (p<0.001). Disc-margin shape correlates with features of internal derangement in significantly painful discs encountered at PLD. Discs with focal protrusion typically demonstrate RD while generalized bulging discs typically demonstrated degenerative changes only (p<0.001). Disc-margin shape may provide an important imaging clue to the cause of chronic discogenic low back pain.
Collapse
Affiliation(s)
- W S Bartynski
- Department of Radiology, Division of Neuroradiology, Presbyterian University Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
17
|
Abstract
STUDY DESIGN Prospective study of 212 patients with groin pain but without low back pain. OBJECTIVE To evaluate discogenic groin pain without low back pain or radicular pain. SUMMARY OF BACKGROUND DATA Patients feel low back pain originating from discogenic disease. It has been reported that the rat lower lumbar discs are innervated mainly by L2 dorsal root ganglion neurons. Thus, it is possible that patients feel referred groin pain corresponding to the L2 dermatome originating from intervertebral discs; however, the referred pain has not been fully clarified in humans. METHODS We selected 5 patients with groin pain alone for investigation. The patients suffered from groin pain and showed disc degeneration only at 1 level (L4-L5 or L5-S1) on magnetic resonance imaging. Patients did not show any hip joint abnormality on radiography or magnetic resonance imaging. To prove that their groin pain originated in degenerated intervertebral discs, we evaluated changes in groin pain after infiltration of lidocaine into hip joints and examined pain provocation on discography, pain relief by anesthetic discoblock, and finally anterior lumbar interbody fusion surgery. RESULTS All patients were negative for hip joint block, positive for pain provocation on discography, and positive for pain relief by anesthetic discoblock. Furthermore, bony union was achieved 1 year after anterior interbody fusion surgery in all patients, and visual analogue scale score of groin pain was significantly improved at 1 year after surgery in all patients (P < 0.05). CONCLUSION In the current study, we diagnosed discogenic groin pain, using magnetic resonance imaging, infiltration of lidocaine into the hip joint, pain provocation on discography, pain relief by anesthetic discoblock, and lumbar surgery. It is important to consider the existence of discogenic groin pain if patients do not show low back pain.
Collapse
|
18
|
Mobarakeh JI, Torkaman-Boutorabi A, Rahimi AA, Ghasri S, Nezhad RMA, Hamzely A, Khoshkholgh Sima B, Takahashi K, Nunoki K, Yanai K. Interaction of histamine and calcitonin gene-related peptide in the formalin induced pain perception in rats. ACTA ACUST UNITED AC 2011; 32:195-201. [PMID: 21673449 DOI: 10.2220/biomedres.32.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Histamine and calcitonin gene-related peptide (CGRP) contribute to the pain perception. The aim of the present study is to clarify the interaction of histamine and CGRP in the perception of inflammatory pain. The effects of a histamine H1 receptor antagonist (pyrilamine, i.p.), an H2 receptor antagonist (ranitidine, i.p.) and a CGRP antagonist (CGRP 8-37, i.t.) on the formalininduced pain was studied in rats. Pyrilamine and ranitidine produced a dose-dependent antinociceptive response in the first and the second phases of the formalin test. A single administration of pyrilamine (1 mg/kg, i.p.), ranitidine (10 mg/kg, i.p.) or CGRP 8-37 (10 µg/µL, i.t.) had no significant effects on the pain perception in the second phase. A combination of CGRP 8-37 and pyrilamine or ranitidine at these sub-effective doses, however, showed nociceptive response in the second phase. Moreover, a histamine (i.t.)-induced hyperalgesia was completely prevented by treatment with GGRP 8-37 at this dose. Our findings have raised the possibility that the CGRP system has interaction with histamine in the perception of inflammatory pain.
Collapse
|
19
|
Liu X, He L, Dinger B, Fidone SJ. Chronic hypoxia-induced acid-sensitive ion channel expression in chemoafferent neurons contributes to chemoreceptor hypersensitivity. Am J Physiol Lung Cell Mol Physiol 2011; 301:L985-92. [PMID: 21890510 DOI: 10.1152/ajplung.00132.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previously we demonstrated that chronic hypoxia (CH) induces an inflammatory condition characterized by immune cell invasion and increased expression of inflammatory cytokines in rat carotid body. It is well established that chronic inflammatory pain induces the expression of acid-sensitive ion channels (ASIC) in primary sensory neurons, where they contribute to hyperalgesia and allodynia. The present study examines the effect of CH on ASIC expression in petrosal ganglion (PG), which contains chemoafferent neurons that innervate oxygen-sensitive type I cells in the carotid body. Five isoforms of ASIC transcript were increased ∼1.5-2.5-fold in PG following exposure of rats to 1, 3, or 7 days of hypobaric hypoxia (380 Torr). ASIC transcript was not increased in the sympathetic superior cervical ganglion (SCG). In the PG, CH also increased the expression of channel-interacting PDZ domain protein, a scaffolding protein known to enhance the surface expression and the low pH-induced current density mediated by ASIC3. Western immunoblot analysis showed that CH elevated ASIC3 protein in PG, but not in SCG or the (sensory) nodose ganglion. ASIC3 transcript was likewise elevated in PG neurons cultured in the presence of inflammatory cytokines. Increased ASIC expression was blocked in CH rats concurrently treated with the nonsteroidal anti-inflammatory drug ibuprofen (4 mg·kg(-1)·day(-1)). Electrophysiological recording of carotid sinus nerve (CSN) activity in vitro showed that the specific ASIC antagonist A-317567 (100 μM) did not significantly alter hypoxia-evoked activity in normal preparations but blocked ∼50% of the hypoxic response following CH. Likewise, a high concentration of ibuprofen, which is known to block ASIC1a, reduced hypoxia-evoked CSN activity by ∼50% in CH preparations. Our findings indicate that CH induces inflammation-dependent phenotypic adjustments in chemoafferent neurons. Following CH, ASIC are important participants in chemotransmission between type I cells and chemoafferent nerve terminals, and these proton-gated channels appear to enhance chemoreceptor sensitivity.
Collapse
Affiliation(s)
- X Liu
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, USA
| | | | | | | |
Collapse
|
20
|
Horii M, Orita S, Nagata M, Takaso M, Yamauchi K, Yamashita M, Inoue G, Eguchi Y, Ochiai N, Kishida S, Aoki Y, Ishikawa T, Arai G, Miyagi M, Kamoda H, Kuniyoshi K, Suzuki M, Nakamura J, Toyone T, Takahashi K, Ohtori S. Direct application of the tumor necrosis factor-α inhibitor, etanercept, into a punctured intervertebral disc decreases calcitonin gene-related peptide expression in rat dorsal root ganglion neurons. Spine (Phila Pa 1976) 2011; 36:E80-5. [PMID: 21057386 DOI: 10.1097/brs.0b013e3181d4be3c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN retrograde neurotracing and immunohistochemistry were used to investigate the effect of the tumor necrosis factor (TNF)-α inhibitor, etanercept, on calcitonin gene-related peptide (CGRP) expression in dorsal root ganglion (DRG) neurons innervating intervertebral discs in rats. OBJECTIVE to clarify the action of a TNF-α inhibitor on a sensory neuropeptide in DRG neurons innervating intervertebral discs. SUMMARY OF BACKGROUND DATA degeneration of lumbar intervertebral discs is a cause of low back pain. TNF-α in the intervertebral disc is a major contributor to discogenie pain. Effects of TNF-α inhibition on CGRP expression in DRG neurons were evaluated. METHODS the neurotracer FluoroGold was applied to the surfaces of L4/5 discs to label their innervating DRG neurons (n = 30). Of 30 rats, 10 were in a nonpunctured disc sham surgery control group, whereas the other 20 were in experimental groups in which intervertebral discs were punctured with a 23-gauge needle. Etanercept or saline was applied into the punctured discs (n = 10 each treatment). After 14 days of surgery, DRGs from L1 to L6 were harvested, sectioned, and immunostained for CGRP. The proportion of FluoroGold-labeled CGRP-immunoreactive DRG neurons was evaluated in all groups. RESULTS FluoroGold-labeled neurons innervating the L4/5 disc were distributed throughout L1-L6 DRGs in all groups. Of the FluoroGold-labeled neurons, the proportion of CGRP-immunoreactive neurons was 21% ± 4% in the sham surgery control group, 32% ± 7% in the puncture + saline group, and 23% ± 4% in the puncture + etanercept group. The proportion of CGRP-immunoreactive neurons was significantly greater in the puncture + saline group compared with the sham control and puncture + etanercept groups (P < 0.01). CONCLUSION in this model, CGRP was upregulated in DRG neurons innervating damaged discs. However, direct intradiscal application of etanercept immediately after disc puncture suppressed CGRP expression in DRG neurons innervating injured discs. This finding may further elucidate the mechanism for the effectiveness of etanercept in upregulation of neuropeptide in DRG neurons innervating intervertebral discs.
Collapse
Affiliation(s)
- Manato Horii
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Effectiveness of L2 spinal nerve infiltration for selective discogenic low back pain patients. J Orthop Sci 2010; 15:731-6. [PMID: 21116889 DOI: 10.1007/s00776-010-1538-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 07/21/2010] [Indexed: 02/09/2023]
Abstract
BACKGROUND It has been reported that rat L5/6 lumbar discs are innervated mainly by L2 dorsal root ganglion neurons. We previously reported that L2 spinal nerve infiltration was effective for discogenic low back pain (DLBP) patients, although the diagnosis was based only on the results of physical examination, plain films, and magnetic resonance imaging (MRI). The purpose of the current study was to evaluate L2 spinal nerve block for DLBP patients retrospectively based on MRI findings and surgical results. METHODS A total of 62 patients with only LBP and no accompanying radicular pain were investigated. Patients had only one level of disc degeneration on MRI. When pain was provoked during discography, we performed surgery at the next stage (40 patients). In all, 22 patients were excluded owing to negative discography results. Of the 40 patients, we evaluated 25 strictly selected patients suffering from DLBP. DLBP was diagnosed when the patient experienced pain relief at least 2 years after anterior lumbar interbody fusion. Fifteen patients who did not show pain relief after surgery were used for the non-DLBP group. L2 spinal nerve infiltration using 1.5 ml of lidocaine was performed in all 40 patients before surgery. The visual analogue scale (VAS) score after L2 spinal nerve infiltration was recorded, and an association of L2 spinal nerve infiltration and DLBP was explored. RESULTS Low back pain scores assessed using the VAS score, the Japanese Orthopedic Association score, and the Oswestry Disability Index score in the two groups were not significantly different. L 2 spinal nerve infiltration was effective for 27 patients but not effective for 13 patients; the VAS score after 15 min and 2 h improved in the DLBP group compared with that of the non-DLBP group (P < 0. 05). L2 spinal nerve infiltration was more effective in DLBP patients (21 patients, 84%) than in the non-DLBP group (6 patients, 40%) (P < 0.05). CONCLUSIONS In the current study, L2 spinal nerve infiltration was effective in 84% of selected DLBP patients and is thought to be a useful tool for diagnosing DLBP. However, we should take into consideration that the L2 spinal nerve infiltration was effective in 40% of non-DLBP patients as well.
Collapse
|
22
|
Hirose K, Iwakura N, Orita S, Yamashita M, Inoue G, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Nakamura J, Takaso M, Ishikawa T, Arai G, Miyagi M, Kamoda H, Aoki Y, Hiwatari R, Kakizaki J, Kunishi T, Kono M, Suzuki T, Toyone T, Takahashi K, Kuniyoshi K, Ohtori S. Evaluation of behavior and neuropeptide markers of pain in a simple, sciatic nerve-pinch pain model in rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2010; 19:1746-52. [PMID: 20490875 DOI: 10.1007/s00586-010-1428-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/27/2010] [Accepted: 04/30/2010] [Indexed: 12/18/2022]
Abstract
Pathomechanisms of injured-nerve pain have not been fully elucidated. Radicular pain and chronic constriction injury models have been established; however, producing these models is complicated. A sciatic nerve-pinch injury is easy to produce but the reliability of this model for evaluating pain behavior has not been examined. The current study evaluated pain-related behavior and change in pain markers in the dorsal root ganglion (DRG) of rats in a simple, sciatic nerve-pinch injury model. In the model, the sciatic nerve was pinched for 2 s using forceps (n = 20), but not injured in sham-operated animals (n = 20). Mechanical and thermal hyperalgesia were measured every second day for 2 weeks using von Frey filaments and a Hargreaves device. Calcitonin gene-related peptide (CGRP), activating transcription factor-3 (ATF-3), phosphorylated p38 mitogen activated protein (Map) kinase (p-p38), and nuclear factor-kappa B (NF-κB; p65) expression in L5 DRGs were examined at 4 and 7 days after surgery using immunohistochemistry. The proportion of neurons immunoreactive for these markers was compared between the two groups. Mechanical (during 8 days) and thermal hyperalgesia (during 6 days) were found in the pinch group rats, but not in the sham-operated animals (p < 0.05); however, hyperalgesia was not significant from days 10 to 14. CGRP, ATF-3, p-p38, and NF-κB expression in L5 DRGs was upregulated in the nerve-injured rats compared with the sham-operated rats (p < 0.01). Our results indicate that a simple sciatic nerve pinch produced pain-related behavior. Upregulation of the pain-marker expression in the nerve-injury model suggested it could be used as a model of pain. However, it was not considered as suitable for long-term studies.
Collapse
Affiliation(s)
- Kazutoshi Hirose
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Primary sensory neurons with dichotomizing axons projecting to the facet joint and the low back muscle in rats. J Orthop Sci 2010; 15:402-6. [PMID: 20559809 DOI: 10.1007/s00776-010-1465-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/18/2010] [Indexed: 02/09/2023]
Abstract
BACKGROUND Clinically, the origin of low back pain is unknown. The pain may originate from the lumbar muscles directly, or it may be referred pain from the spine. Dorsal root ganglion (DRG) neurons with dichotomizing axons have been reported in several species and are thought to be related to referred pain. However, these neurons, which have dichotomizing axons to the lumbar facet joints and to the lumbar muscle, have not been fully investigated. METHODS Two neurotracers - 1,1'-dioctadecyl-3,3,3',3'- tetramethyl-indocarbocyanine perchlorate (DiI) and fluorogold (FG) - were used in the present double-labeling study. DiI crystals were placed in the right L5/6 facet joint, and FG was applied to right multifidus muscles at the L5 level in 10 rats. Two weeks later, bilateral DRGs from L1 through L6 were harvested, sectioned, and observed under a fluorescence microscope. RESULTS DiI-labeled DRG neurons innervating the L5/6 facet joint (5.17% of the total DRG neurons) were distributed from L1 to L6. FG-labeled DRG neurons innervating the lower back muscle (15.9% of the total) were also distributed from L1 to L6. Double-labeled DRG neurons were found from L1 to L6. The ratio of total double-labeled/total DiI-labeled DRG neurons was 17% and that of total double-labeled/total FG-labeled DRG neurons was 7%. Approximately 17% of all DRG neurons innervating the facet joints had other axons that extended to the lower back muscle. CONCLUSIONS This finding provides a possible neuroanatomical explanation for referred low back muscle pain from the lower facet joints.
Collapse
|
24
|
Nishigami T, Osako Y, Tanaka K, Yuri K, Kawasaki M, Ikemoto T, McLaughlin M, Ishida K, Tani T, Ushida T. Changes in calcitonin gene-related peptide expression following joint immobilization in rats. Neurosci Lett 2009; 454:97-100. [PMID: 19429062 DOI: 10.1016/j.neulet.2009.02.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/28/2009] [Accepted: 02/07/2009] [Indexed: 10/21/2022]
Abstract
Long-term immobilization by casting can occasionally cause pathologic pain states in the immobilized side. The underlying neurophysiological mechanisms of immobilization-related pain are not well understood. For this reason, we specifically examined changes of calcitonin gene-related peptide (CGRP) expression in the dorsal root ganglion (DRG), spinal dorsal horn and posterior nuclei (cuneate nuclei) in a long-term immobilization model following casting for 5 weeks. A plastic cast was wrapped around the right limb from the forearm to the forepaw to keep wrist joint at 90 degrees of flexion. In this model, CGRP in immobilized (ipsilateral) side was distributed in larger DRG neurons compared with contralateral side, even though the number of CGRP-immunoreactive (CGRP-IR) neurons did not differ. Spinal laminae III-V, not laminae I-II in ipsilateral side showed significantly high CGRP expression relative to contralateral side. CGRP expression in cuneate nuclei was not significantly different between ipsilateral and contralateral sides. Long-term immobilization by casting may induce phenotypic changes in CGRP expression both in DRG and spinal deep layers, and these changes are partly responsible for pathological pain states in immobilized side.
Collapse
Affiliation(s)
- Tomohiko Nishigami
- Rehabilitation Center, Kochi Medical School Hospital, Nankoku, Japan; Nankoku Pain Research Group, Kochi Medical School, Kochi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ohtori S, Inoue G, Koshi T, Ito T, Watanabe T, Yamashita M, Yamauchi K, Suzuki M, Doya H, Moriya H, Takahashi Y, Takahashi K. Sensory innervation of lumbar vertebral bodies in rats. Spine (Phila Pa 1976) 2007; 32:1498-502. [PMID: 17572618 DOI: 10.1097/brs.0b013e318067dbf8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Using a retrograde neurotracing method with Fluoro-Gold (FG), the level at which dorsal root ganglions (DRGs) innervate the L2 and L5 vertebral bodies and the innervation pathways were investigated in rats. OBJECTIVE To clarify the levels at which DRGs innervate the lumbar vertebral bodies and to determine the pathways from the L2 and L5 vertebral bodies to DRGs. SUMMARY OF BACKGROUND DATA Elderly patients with osteoporosis sometimes experience lumbar vertebral fracture and may also feel diffuse nonlocalized pain in the back, lateral portion of the trunk, and area surrounding the iliac crest. However, the pattern of sensory innervation of vertebral bodies remains unclear. METHODS Forty female Sprague-Dawley rats were used. FG crystals were applied to the L2 (L2 vertebra group) or L5 (L5 vertebra group) vertebral bodies via an anterior approach, and numbers of labeled neurons in DRGs from T10 to L6 were counted. To determine sensory pathways, bilateral sympathectomy was performed. RESULTS In nonsympathectomy animals, FG-labeled neurons were present in DRGs from T11 through L3 in the L2 vertebra group and from T13 through L6 in the L5 vertebra group. The number of labeled neurons following sympathectomy was not significantly different in L1, L2, and L3 DRGs in the L2 vertebra group or in L3, L4, L5, and L6 DRGs in the L5 vertebra group from those in nonsympathectomy animals. In contrast, fewer labeled DRG neurons were present in sympathectomy animals at T11, T12, and T13 in the L2 vertebra group, and at T13, L1, and L2 in the L5 vertebra group than in nonsympathectomy animals (P < 0.01). CONCLUSION Sensory nerve fibers in the L2 and L5 vertebral bodies are derived from the T11-L3 and T13-L6 DRGs, respectively. Some sensory nerves from the L2 and L5 vertebral bodies enter the paravertebral sympathetic trunks and reach the DRGs at multisegmental levels. The present findings regarding multisegmental innervation to vertebral bodies may explain the diffuse pain that originates within osteoporotic vertebral fractures in elderly patients.
Collapse
Affiliation(s)
- Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ohtori S, Inoue G, Koshi T, Ito T, Yamashita M, Yamauchi K, Suzuki M, Doya H, Moriya H, Takahashi Y, Takahashi K. Characteristics of Sensory Dorsal Root Ganglia Neurons Innervating the Lumbar Vertebral Body in Rats. THE JOURNAL OF PAIN 2007; 8:483-8. [PMID: 17382597 DOI: 10.1016/j.jpain.2007.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/21/2006] [Accepted: 01/05/2007] [Indexed: 11/18/2022]
Abstract
UNLABELLED Characteristics of sensory dorsal root ganglia (DRG) neurons innervating the L5 vertebral body were investigated in rats by using a retrograde neurotransport method, lectin affinity- and immuno-histochemistry to further elucidate the causes of diffuse pain suffered by some elderly patients in their back, lateral trunk, and iliac crest, after lumbar osteoporotic vertebral fracture. We used calcitonin gene-related peptide (CGRP) as a marker of small peptide-containing neurons and the glycoprotein binding the isolectin from Griffonia simplicifolia (IB4) as a marker of small non-peptide-containing neurons. Neurons innervating the L5 vertebral bodies, retrogradely labeled with fluoro-gold (FG), were distributed throughout DRGs from T13 to L6. The proportion of CGRP-immunoreactive (IR) FG-labeled neurons was 32%. The proportion of IB4-binding FG-labeled neurons was significantly smaller, at 4%. Other neurons that were non-CGRP-IR and non-IB4-binding were mostly large neurons, and they may transmit proprioception from vertebral bodies. Most neurons transmitting pain are CGRP-IR peptide-containing neurons. They may have a more significant role in pain sensation in the vertebral bodies as peptidergic DRG neurons. PERSPECTIVE This article shows that vertebral bodies are innervated by CGRP-IR neurons. CGRP-IR neurons may play a role in pain sensation through peptidergic DRG neurons. These findings contribute to an understanding of pain associated with the vertebral body such as tumor, infection, or osteoporotic fracture.
Collapse
Affiliation(s)
- Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sakuma Y, Ohtori S, Miyagi M, Ishikawa T, Inoue G, Doya H, Koshi T, Ito T, Yamashita M, Yamauchi K, Suzuki M, Moriya H, Takahashi K. Up-regulation of p55 TNF alpha-receptor in dorsal root ganglia neurons following lumbar facet joint injury in rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2007; 16:1273-8. [PMID: 17468886 PMCID: PMC2200776 DOI: 10.1007/s00586-007-0365-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 02/06/2007] [Accepted: 03/15/2007] [Indexed: 02/07/2023]
Abstract
The rat L5/6 facet joint is multisegmentally innervated from the L1 to L6 dorsal root ganglia (DRG). Tumor necrosis factor (TNF) is a known mediator of inflammation. It has been reported that satellite cells are activated, produce TNF and surround DRG neurons innervating L5/6 facet joints after facet injury. In the current study, changes in TNF receptor (p55) expression in DRG neurons innervating the L5/6 facet joint following facet joint injury were investigated in rats using a retrograde neurotransport method followed by immunohistochemistry. Twenty rats were used for this study. Two crystals of Fluorogold (FG; neurotracer) were applied into the L5/6 facet joint. Seven days after surgery, the dorsal portion of the capsule was cut in the injured group (injured group n = 10). No injury was performed in the non-injured group (n = 10). Fourteen days after the first application of FG, bilateral DRGs from T13 to L6 levels were resected and sectioned. They were subsequently processed for p55 immunohistochemistry. The number of FG labeled neurons and number of FG labeled p55-immunoreactive (IR) neurons were counted. FG labeled DRG neurons innervating the L5/6 facet joint were distributed from ipsilateral L1 to L6 levels. Of FG labeled neurons, the ratio of DRG neurons immunoreactive for p55 in the injured group (50%) was significantly higher than that in the non-injured group (13%). The ratio of p55-IR neurons of FG labeled DRG neurons was significantly higher in total L1 and L2 DRGs than that in total L3, 4, 5 and 6 DRGs in the injured group (L1 and 2 DRG, 67%; L3, 4, 5 and 6 DRG, 37%, percentages of the total number of p55-IR neurons at L1 and L2 level or L3-6 level/the total number of FG-labeled neurons at L1 and L2 level or L3-6 level). These data suggest that up-regulation of p55 in DRG neurons may be involved in the sensory transmission from facet joint injury. Regulation of p55 in DRG neurons innervating the facet joint was different between upper DRG innervated via the paravertebral sympathetic trunks and lower DRG innervated via other direct routes.
Collapse
Affiliation(s)
- Yoshihiro Sakuma
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Masayuki Miyagi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Tetsu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Gen Inoue
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Hideo Doya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Takana Koshi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Toshinori Ito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Masaomi Yamashita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Kazuyo Yamauchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Munetaka Suzuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Hideshige Moriya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| |
Collapse
|
28
|
Ambalavanar R, Dessem D, Moutanni A, Yallampalli C, Yallampalli U, Gangula P, Bai G. Muscle inflammation induces a rapid increase in calcitonin gene-related peptide (CGRP) mRNA that temporally relates to CGRP immunoreactivity and nociceptive behavior. Neuroscience 2006; 143:875-84. [PMID: 17027165 DOI: 10.1016/j.neuroscience.2006.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 08/03/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
Recent data support an important role for calcitonin gene-related peptide (CGRP) in deep tissue nociceptive processing. Using real-time reverse transcriptase polymerase chain reaction (RT-PCR), radioimmunoassay, immunohistochemistry and behavioral testing, we studied the early time course of CGRP mRNA and protein expression as well as nociceptive behavior following muscle inflammation. A rapid and significant increase in CGRP mRNA occurred in the mandibular division (V3) of the ipsilateral trigeminal ganglion at 30 minutes, 4 and 24 h after the injection of complete Freund's adjuvant as an inflammatory agent into rat masseter muscle. No change in mRNA occurred in the ipsilateral ophthalmic and maxillary divisions (V1/V2) or in the contralateral V3. The levels of immunoreactive calcitonin gene-related peptide (iCGRP) in the ipsilateral V3 significantly increased at 1, 4 and 24 h following muscle inflammation. In contrast, no change occurred in iCGRP levels in either the ipsilateral V1/V2 or contralateral V3. When saline was injected into the masseter muscle, the levels of mRNA or iCGRP did not change in the ipsilateral V3 suggesting that the biochemical changes are specific to CFA-induced muscle inflammation. The number of muscle afferent neurons immunoreactive for CGRP was significantly reduced compared with control at 1, 4 and 24 h in the ipsilateral but not in the contralateral trigeminal ganglion following inflammation. This decrease in the ipsilateral ganglion may indicate a loss of intrasomatic CGRP as a result of increased axonal transport away from the neuronal cell body and/or release of CGRP. Behavioral testing showed a reduction in head withdrawal thresholds bilaterally from 30 min through 24 h following muscle inflammation. Thus upregulation of CGRP mRNA and iCGRP levels are temporally related to the development of inflammation and lowered pain thresholds. The present data support the hypothesis that CGRP is upregulated during deep tissue inflammation and suggest that gene transcription is involved in this upregulation.
Collapse
Affiliation(s)
- R Ambalavanar
- Department of Biomedical Sciences and Program in Neuroscience, University of Maryland, 666 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Staton PC, Wilson AW, Bountra C, Chessell IP, Day NC. Changes in dorsal root ganglion CGRP expression in a chronic inflammatory model of the rat knee joint: differential modulation by rofecoxib and paracetamol. Eur J Pain 2006; 11:283-9. [PMID: 16690336 DOI: 10.1016/j.ejpain.2006.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 03/09/2006] [Accepted: 03/27/2006] [Indexed: 01/06/2023]
Abstract
Neuropeptide-expressing small diameter sensory neurones are thought to be vital in generating inflammatory hyperalgesic responses. Within the dorsal root ganglion (DRG), both the levels of the neuropeptide calcitonin gene-related peptide (CGRP) and the numbers of CGRP-immunoreactive (CGRP-IR) DRG neurones have been shown to increase in a number of acute adjuvant-induced inflammatory pain models. The aim of this study was to look specifically at changes in numbers of CGRP-IR DRG neurones in a chronic model of inflammatory joint pain following complete Freund's adjuvant (CFA) injection into the rat knee. In this model, there were significant increases in the number of ipsilateral CGRP-IR small DRG neurones at days 1, 16 and 35 following intra-articular CFA, compared to saline-injected sham animals. This correlated with the behavioural readouts of hypersensitivity and knee joint inflammation at the same time points. There was also a significant increase in the number of ipsilateral CGRP-IR medium DRG neurones and contralateral CGRP-IR small DRG neurones at day 1. Following dosing of CFA-injected rats with rofecoxib (Vioxx) or paracetamol, there was a significant decrease in the number of ipsilateral CGRP-IR small and medium DRG neurones in rofecoxib- but not paracetamol-treated rats. These data also correlated with behavioural readouts where hypersensitivity and knee joint inflammation were significantly reduced by rofecoxib but not paracetamol treatment. In conclusion, these data show that changes in ipsilateral CGRP expression within small DRG neurones are consistent with behavioural readouts in both time course, rofecoxib and paracetamol studies in this model of chronic inflammatory pain.
Collapse
MESH Headings
- Acetaminophen/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/physiopathology
- Calcitonin Gene-Related Peptide/metabolism
- Cell Size
- Chronic Disease
- Cyclooxygenase 2 Inhibitors/pharmacology
- Disease Models, Animal
- Freund's Adjuvant
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Hyperalgesia/physiopathology
- Immunohistochemistry
- Lactones/pharmacology
- Male
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/physiopathology
- Rats
- Sulfones/pharmacology
Collapse
Affiliation(s)
- Penny C Staton
- Pain Research Department, Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Ltd., New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, United Kingdom.
| | | | | | | | | |
Collapse
|
30
|
Miyagi M, Ohtori S, Ishikawa T, Aoki Y, Ozawa T, Doya H, Saito T, Moriya H, Takahashi K. Up-regulation of TNFalpha in DRG satellite cells following lumbar facet joint injury in rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2006; 15:953-8. [PMID: 16758109 PMCID: PMC3489457 DOI: 10.1007/s00586-005-1031-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Revised: 05/31/2005] [Accepted: 08/23/2005] [Indexed: 11/24/2022]
Abstract
The rat L5/6 facet joint, from which low back pain can originate, is multisegmentally innervated from the L1 to L5 dorsal root ganglia (DRG). Sensory fibers from the L1 and L2 DRG are reported to non-segmentally innervate the paravertebral sympathetic trunks, while those from the L3 to L5 DRGs segmentally innervate the L5/6 facet joint. Tumor necrosis factor alpha (TNFalpha) is a mediator of peripheral and central nervous system inflammatory response and plays a crucial role in injury and its pathophysiology. In the current study, change in TNFalpha in sensory DRG neurons innervating the L5/6 facet joint following facet joint injury was investigated in rats using a retrograde neurotransport method and immunohistochemistry. Neurons innervating the L5/6 facet joints, retrogradely labeled with fluoro-gold (FG), were distributed throughout DRGs from L1 to L5. Most DRG FG-labeled neurons innervating L5/6 facet joints were immunoreactive (IR) for TNFalpha before and after injury. In the DRG, glial fibrillary acidic protein (GFAP)-IR satellite cells emerged and surrounded neurons innervating L5/6 facet joints after injury. These satellite cells were also immunoreactive for TNFalpha. The numbers of activated satellite cells and TNFalpha-IR satellite cells were significantly higher in L1 and L2 DRG than in L3, L4, and L5 DRG. These data suggest that up-regulation of glial TNFalpha may be involved in the pathogenesis of facet joint pain.
Collapse
Affiliation(s)
- Masayuki Miyagi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, 260-8670 Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, 260-8670 Chiba, Japan
| | - Tetsuhiro Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, 260-8670 Chiba, Japan
| | - Yasuchika Aoki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, 260-8670 Chiba, Japan
| | - Tomoyuki Ozawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, 260-8670 Chiba, Japan
| | - Hideo Doya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, 260-8670 Chiba, Japan
| | - Tomoko Saito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, 260-8670 Chiba, Japan
| | - Hideshige Moriya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, 260-8670 Chiba, Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, 260-8670 Chiba, Japan
| |
Collapse
|
31
|
Murata Y, Takahashi K, Ohtori S, Moriya H. Innervation of the sacroiliac joint in rats by calcitonin gene-related peptide-immunoreactive nerve fibers and dorsal root ganglion neurons. Clin Anat 2006; 20:82-8. [PMID: 16506235 DOI: 10.1002/ca.20277] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The sacroiliac joint (SIJ) can be a source of low back pain. Calcitonin gene-related peptide (CGRP) has been reported to play a significant role in nociceptive processing. However, the occurrence of CGRP-immunoreactive (CGRP-ir) sensory nerve fibers in the SIJ has not been fully defined. The present study investigated CGRP-ir nerve fibers supplying the SIJ. CGRP-ir nerve fibers in the vicinity of the SIJ cartilage and CGRP-ir neurons in the bilateral dorsal root ganglia (DRG) were examined immunohistochemically by administering anti-CGRP antiserum to rats. The SIJ was decalcified and cut into sections, and the CGRP-ir fibers around the SIJ cartilage were counted under microscopy. In another group, fluoro-gold (F-G), a neural tracer, was injected into the SIJ from the dorsal or ventral side with dorsal or ventral denervation. The number of F-G-labeled CGRP-ir neurons was counted in individual DRG. CGRP-ir fibers were observed more frequently in the tissues adjacent to the cranial part of the SIJ surface. In the case of dorsal denervation (ventral nerve supply), the CGRP-ir neurons composed 18.2% of the F-G-labeled neurons. In the case of ventral denervation (dorsal nerve supply), the CGRP-ir neurons composed 40.9% of the F-G-labeled neurons. There was a statistically significant difference in the number of CGRP-ir neurons between the ventral and dorsal nerve supplies to the SIJ. The cranial part of the dorsal side could be the part most associated with pain in the SIJ.
Collapse
Affiliation(s)
- Yasuaki Murata
- Department of Orthopaedic Surgery, Shimoshizu National Hospital, Chiba, Japan.
| | | | | | | |
Collapse
|
32
|
Ambalavanar R, Moritani M, Moutanni A, Gangula P, Yallampalli C, Dessem D. Deep tissue inflammation upregulates neuropeptides and evokes nociceptive behaviors which are modulated by a neuropeptide antagonist. Pain 2005; 120:53-68. [PMID: 16359792 DOI: 10.1016/j.pain.2005.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 09/30/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
Promising recent developments in the therapeutic value of neuropeptide antagonists have generated renewed importance in understanding the functional role of neuropeptides in nociception and inflammation. To explore this relationship we examined behavioral changes and primary afferent neuronal plasticity following deep tissue inflammation. One hour following craniofacial muscle inflammation ipsilateral as well as contralateral head withdrawal thresholds and ipsi- and contralateral hindpaw withdrawal thresholds were lowered and remained reduced for 28 days. Elevated levels of calcitonin gene-related peptide (CGRP) within the trigeminal ganglion temporally correlated with this mechanical allodynia. Inflammation also induced an increase in the number of CGRP and substance P (SP)-immunopositive trigeminal ganglion neurons innervating inflamed muscle but did not evoke a shift in the size distribution of peptidergic muscle afferent neurons. Trigeminal proprioceptive muscle afferent neurons situated within the brainstem in the mesencephalic trigeminal nucleus did not express CGRP or SP prior to or following inflammation. Intravenous administration of CGRP receptor antagonist (8-37) two minutes prior to adjuvant injection blocked plasma extravasation and abolished both head and hindlimb mechanical allodynia. Local injection of CGRP antagonist directly into the masseter muscle prior to CFA produced similar, but less pronounced, effects. These findings indicate that unilateral craniofacial muscle inflammation produces mechanical allodynia at distant sites and upregulates CGRP and SP in primary afferent neurons innervating deep tissues. These data further implicate CGRP and SP in deep tissue nociceptive mechanisms and suggest that peptide antagonists may have therapeutic potential for musculoskeletal pain.
Collapse
Affiliation(s)
- Ranjinidevi Ambalavanar
- Department of Biomedical Sciences, University of Maryland, Baltimore, 666 West Baltimore Street, MD 21201, USA Department of Oral Anatomy and Neurobiology, Osaka University, Osaka 565-0871, Japan Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Texas, Galveston, TX 77555, USA Department of Obstetrics and Gynecology, University of Texas, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Ishikawa T, Miyagi M, Ohtori S, Aoki Y, Ozawa T, Doya H, Saito T, Moriya H, Takahashi K. Characteristics of sensory DRG neurons innervating the lumbar facet joints in rats. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2005; 14:559-64. [PMID: 15690212 PMCID: PMC3489236 DOI: 10.1007/s00586-004-0834-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Revised: 08/24/2004] [Accepted: 09/28/2004] [Indexed: 12/24/2022]
Abstract
The rat L5/6 facet joint, from which low-back pain can originate, is multisegmentally innervated from the L1 to L5 dorsal root ganglions (DRGs). Sensory fibers from the L1 and L2 DRGs are reported to non-segmentally innervate the paravertebral sympathetic trunks, whilst those from the L3 to L5 DRGs segmentally innervate the L5/6 facet joint. In the current study, characteristics of sensory DRG neurons innervating the L5/6 facet joint were investigated in rats, using a retrograde neurotransport method, lectin affinity- and immuno-histochemistry. We used four markers: (1) calcitonin gene-related peptide (CGRP) as a marker of small peptide containing neurons, (2) the glycoprotein binding the isolectin from Griffonia simplicifolia (IB4) or (3 the purinergic P2X(3) receptor for small, non-peptide containing neurons, and (4) neurofilament 200 (NF200) for small and large myelinated fibers. IB4-binding and CGRP and P2X(3) receptor containing neurons are typically involved in pain sensation, whereas NF200 is associated with pain and proprioception. Neurons innervating the L5/6 facet joints, retrogradely-labeled with fluoro-gold (FG), were distributed throughout DRGs from L1 to L5. Of FG-labeled neurons, the ratios of NF200 immunoreactive (IR) neurons and CGRP-IR neurons were 37% and 35% respectively. The ratio of IB4-binding and P2X(3) receptor-IR neurons was 10%, significantly less than the ratio of CGRP-IR neurons to FG-labeled neurons. The ratios of IB4-binding and P2X(3) receptor-IR neurons were significantly higher, and that of CGRP-IR neurons was significantly less in L1 and L2 DRGs than those in L3, L4 or L5 DRGs. Under physiological conditions in rats, DRG neurons transmit several types of sensations, such as proprioception or nociception of the facet joint. Most neurons transmitting pain are CGRP-IR peptide-containing neurons. They may have a more significant role in pain sensation in the facets via peptidergic DRG neurons.
Collapse
Affiliation(s)
- Tetsuhiro Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Masayuki Miyagi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Yasuchika Aoki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Tomoyuki Ozawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Hideo Doya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Tomoko Saito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Hideshige Moriya
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670 Japan
| |
Collapse
|
35
|
Jiang Y, Nyengaard JR, Zhang JS, Jakobsen J. Selective loss of calcitonin gene-related Peptide-expressing primary sensory neurons of the a-cell phenotype in early experimental diabetes. Diabetes 2004; 53:2669-75. [PMID: 15448099 DOI: 10.2337/diabetes.53.10.2669] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To evaluate the possible role of neuropeptide immunoreactive primary sensory neurons on the development of nociceptive dysfunction in diabetes, the absolute numbers of immunoreactive substance P and calcitonin gene-related peptide (CGRP) dorsal root ganglion (DRG) cell bodies were estimated in diabetic and nondiabetic BALB/C (p75(+/+)) and p75 receptor knockout (p75(-/-)) mice with unilateral sciatic nerve crush. The total numbers of immunoreactive substance P A-cells, substance P B-cells, CGRP A-cells, and CGRP B-cells in L5DRG were estimated using semithick consecutive sections and the optical fractionator. After 4 weeks of streptozotocin-induced diabetes, the number of immunoreactive CGRP A-cells was reduced from 692 +/- 122 to 489 +/- 125 (P = 0.004) in p75(+/+) mice on the noncrushed side. In p75(-/-) mice, there was no such effect of diabetes on the immunoreactive CGRP A-cell number. In p75(+/+) and p75(-/-) mice, there was no effect of diabetes on the immunoreactive CGRP B-cell number, nor was there any effect of diabetes on the immunoreactive substance P B-cell number. Sciatic nerve crush was associated with a substantial loss of L5DRG B-cells in diabetic and nondiabetic p75(+/+) mice and with substantial loss of immunoreactive substance P cells in diabetic p75(+/+) mice. In diabetic and nondiabetic p75(-/-) mice, there was no crush effect on neuropeptide expression. It is concluded that experimental diabetes in the mouse is associated with loss of immunoreactive CGRP primary sensory neurons of the A-cell phenotype, that this loss could play a role for the touch-evoked nociception in the model, and that the neuronal immunoreactive CGRP abnormality possibly is mediated by activation of the p75 neurotrophin receptor.
Collapse
MESH Headings
- Animals
- Calcitonin Gene-Related Peptide/deficiency
- Calcitonin Gene-Related Peptide/genetics
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Ganglia, Spinal/pathology
- Ganglia, Spinal/physiopathology
- Male
- Mice
- Mice, Knockout
- Nerve Crush
- Neurons, Afferent/pathology
- Neurons, Afferent/physiology
- Phenotype
- Receptor, Nerve Growth Factor
- Receptors, Nerve Growth Factor/deficiency
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/physiology
- Sciatic Nerve/pathology
- Sciatic Nerve/physiopathology
Collapse
Affiliation(s)
- Yun Jiang
- Department of Neurology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
36
|
Johnson GM. The sensory and sympathetic nerve supply within the cervical spine: review of recent observations. ACTA ACUST UNITED AC 2004; 9:71-6. [PMID: 15040965 DOI: 10.1016/s1356-689x(03)00093-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Revised: 07/07/2003] [Accepted: 07/22/2003] [Indexed: 11/16/2022]
Abstract
The purpose of this review is to identify recently observed features of the sympathetic and sensory systems and their pathways which characterize cervical spine innervation and their potential relevance to the clinical pain syndromes. The results of studies examining the innervation patterns of the zygoapophysial joints serve to demonstrate that structures in the cervical spine, as in other spinal regions, are partly innervated by sensory nerves traveling along sympathetic pathways. These studies also demonstrate that the neuropeptide levels in the cell bodies located within the dorsal root ganglion of these sensory nerves fluctuate according to the physiological state of the zygoapophysial joint. Additional to the sympathetic nerves accompanying the vertebral artery, the innervation patterns of dura and posterior longitudinal ligament in the upper cervical spine are distinctive features of cervical spine innervation. The possible clinical implications of cervical innervation patterns are considered with reference to referred pain, the pain patterns associated with a dissecting vertebral artery and cervicogenic headaches.
Collapse
Affiliation(s)
- Gillian M Johnson
- Otago School of Physiotherapy, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
37
|
Ohtori S, Takahashi K, Moriya H. Existence of brain-derived neurotrophic factor and vanilloid receptor subtype 1 immunoreactive sensory DRG neurons innervating L5/6 intervertebral discs in rats. J Orthop Sci 2003; 8:84-7. [PMID: 12560892 DOI: 10.1007/s007760300014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The rat L5/6 intervertebral disc is innervated by L1 to L6 dorsal root ganglia (DRGs). T13 to L2 DRGs innervate the L5/6 intervertebral disc through paravertebral sympathetic trunks, whereas L3 to L6 DRGs directly innervate through sinuvertebral nerves on the posterior longitudinal ligament. The presence of substance P (SP)-immunoreactive (ir) and calcitonin gene-related peptide (CGRP-ir) sensory nerve fibers on the lumbar intervertebral disc has been established. SP and CGRP are markers of sensory neurons mainly involved with pain perception. The existence of SP-ir and CGRP-ir DRG neurons innervating the L5/6 intervertebral disc has been also demonstrated. Brain-derived neurotrophic factor (BDNF), which exists mainly in the small DRG neurons, plays an important neuromodulatory role in inflammatory conditions. Vanilloid receptor subtype 1 (VR1) in the DRG neurons and spinal dorsal horn is a channel that appears to confer responsiveness to heat and chemical stimuli. The presence of BDNF-ir and the VR1-ir DRG neurons innervating the L5/6 intervertebral disc has not. In this study of DRG neurons innervating the L5/6 intervertebral disc, the proportions of BDNF-ir in L1, L2, L3, L4, and L5 DRG neurons were 14%, 12%, 12%, 12%, and 13% and the proportions of VR1-ir L1, L2, L3, L4, and L5 DRG neurons were 10%, 8%, 24%, 19%, and 23%, respectively. Under physiological conditions in rats these neurons may transmit inflammatory and burning pain of the L5/6 intervertebral disc.
Collapse
Affiliation(s)
- Seiji Ohtori
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan
| | | | | |
Collapse
|
38
|
Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H. Substance P and calcitonin gene-related peptide immunoreactive sensory DRG neurons innervating the lumbar intervertebral discs in rats. Ann Anat 2002; 184:235-40. [PMID: 12056753 DOI: 10.1016/s0940-9602(02)80113-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rat L5/6 disc is innervated from T13 to L6 dorsal root ganglia (DRGs) multisegmentally. Sensory fibers from T13, L1 and L2 DRGs have been reported to innervate through the paravertebral sympathetic trunks, whereas those from L3 to L6 DRGs innervate directly through sinuvertebral nerves on the posterior longitudinal ligament (PLL). The presence of substance P (SP)- and calcitonin gene-related peptide (CGRP)-immunoreactive (ir) nerve fibers has been demonstrated in the lumbar intervertebral discs, but their percentages in DRG neurons have not been studied. Fluoro-gold (F-G) labeled neurons innervating the L5/6 disc were distributed throughout DRGs from T13 to L6 levels. Of F-G labeled neurons innervating the L5/6 disc, the percentage of SP-ir T13 to L6 DRG neurons was 30%, and that of CGRP-ir neurons was 47%. The mean cross-sectional area of the cell of SP-ir neurons was 696+/-66 microm2 (mean +/- S. E.), and that of CGRP-ir neurons was 695+/-72 microm2 (mean +/- S. E.). SP- and CGRP-ir were mainly observed in small neurons. The percentages of SP- or CGRP-ir neurons in L1 and L2 DRGs innervating the L5/6 disc were not different from those in L3, L4 or L5 DRGs. In the physiological condition in rats, DRG neurons at all levels may have the same significant role in pain sensation of the disc.
Collapse
Affiliation(s)
- Seiji Ohtori
- The Department of Orthopaedic Surgery, School of Medicine, Chiba University, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Ohtori S, Takahashi K, Moriya H. Inflammatory pain mediated by a phenotypic switch in brain-derived neurotrophic factor-immunoreactive dorsal root ganglion neurons innervating the lumbar facet joints in rats. Neurosci Lett 2002; 323:129-32. [PMID: 11950510 DOI: 10.1016/s0304-3940(02)00120-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human low back pain sometimes originates from lumbar facet joints. In human lumbar facet joint inflammation or degeneration, the referred pain is not only expanded into the low back area but also into the leg or foot. The rat L5-L6 facet joint is innervated by the L1-L5 dorsal root ganglia. The presence of brain-derived neurotrophic factor-immunoreactive dorsal root ganglion neurons innervating the L5-L6 facet joint has been confirmed, but changes in the number and distribution of these neurons caused by inflammation have not been studied. Of fluorogold-labeled neurons innervating the L5-L6 facet joint, the proportion of brain-derived neurotrophic factor-immunoreactive dorsal root ganglion neurons was 16% in the control group and 26% in the inflammatory group. The proportion of brain-derived neurotrophic factor-immunoreactive dorsal root ganglion neurons labeled by fluorogold was significantly higher in the inflammatory group than in the control group (P<0.05). The mean cross-sectional area of fluorogold-labeled brain-derived neurotrophic factor-immunoreactive cells increased from 580 to 915 microm(2) in the inflammatory group (P<0.01). Associated with inflammation in facet joints, the increase of brain-derived neurotrophic factor-immunoreactive neurons and the phenotypic switch to large neurons may induce the expansion of facet joint inflammatory pain.
Collapse
Affiliation(s)
- Seiji Ohtori
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan.
| | | | | |
Collapse
|
40
|
Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H. Brain-derived neurotrophic factor and vanilloid receptor subtype 1 immunoreactive sensory DRG neurons innervating the lumbar facet joints in rats. Auton Neurosci 2001; 94:132-5. [PMID: 11775702 DOI: 10.1016/s1566-0702(01)00343-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rat L5/6 facet joint is innervated from L1 to L6 by the dorsal root ganglia (DRG). The presence of substance P- and calcitonin gene-related peptide-immunoreactive (ir) DRG neurons innervating the L5/6 facet joint has been demonstrated. However, the presence of brain-derived neurotrophic factor (BDNF)-ir and the vanilloid receptor subtype 1 (VR1)-ir DRG neurons, which relate to inflammatory and burning pain innervating the L5/6 facet joint, has not. Fluoro-gold (FG)-labeled neurons innervating the L5/6 facet joint were distributed throughout the DRGs from T13 to L6 levels. Of the FG-labeled neurons, the proportions of BDNF-ir in L1, L2, L3, L4 and L5 DRG neurons were 9%, 15%, 21%, 17% and 20% and the proportions of VR1-ir L1, L2, L3, L4 and L5 DRG neurons were 8%, 9%, 15%, 16% and 15%, respectively.
Collapse
Affiliation(s)
- S Ohtori
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Japan.
| | | | | | | | | | | |
Collapse
|