1
|
Khan H, Girdharry NR, Massin SZ, Abu-Raisi M, Saposnik G, Mamdani M, Qadura M. Current Prognostic Biomarkers for Peripheral Arterial Disease: A Comprehensive Systematic Review of the Literature. Metabolites 2025; 15:224. [PMID: 40278353 PMCID: PMC12029480 DOI: 10.3390/metabo15040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Peripheral arterial disease (PAD) is a chronic atherosclerotic disease characterized by atheromatous plaque buildup within arteries of the lower limbs. It can lead to claudication, skin ulcerations, and, in severe cases, chronic limb-threatening ischemia, requiring amputation. There are several plasma protein biomarkers that have been suggested as prognostic markers for adverse events, including major adverse cardiovascular and limb events. However, the clinical benefit and ability to clinically adapt these biomarkers remains uncertain due to inconsistent findings possibly related to heterogenous study designs and differences in methodology. Objectives: This review aims to evaluate the current literature on the prognostic value of plasma protein biomarkers for PAD, their predictive ability for PAD-related adverse outcomes, and their potential roles in guiding PAD management. Methods: To address these challenges, we conducted a systematic review of MEDLINE, Embase, and Cochrane CENTRAL libraries of the current literature (2010-2024). Results: We found 55 studies that evaluated the prognostic value of 44 distinct plasma proteins across various pathophysiological processes. These included markers of immunity and inflammation, markers of metabolism, cardiac biomarkers, markers of kidney function, growth factors and hormones, markers of coagulation and platelet function, extracellular matrix and tissue remodeling proteins, and transport proteins. This review summarizes the existing evidence for prognostic protein plasma biomarkers for PAD and their association with adverse events related to PAD. Conclusions: With this review, we hope to provide a comprehensive list of the prognostic markers and their value as prognostic biomarkers to guide clinical decision making in these patients.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | | | - Sophia Z. Massin
- Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Mohamed Abu-Raisi
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.)
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Muhammad Mamdani
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Vascular Surgery, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Abu Dhabi PO Box 112412, United Arab Emirates
| |
Collapse
|
2
|
Song J, Ok SM, Kwon EY, Kim HJ, Lee JY, Joo JY. Fatty Acid Binding Protein 4 Could Be a Linking Biomarker Between Periodontitis and Systemic Diseases. Biomedicines 2025; 13:402. [PMID: 40002815 PMCID: PMC11853709 DOI: 10.3390/biomedicines13020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: This study aims to investigate the relationship between serum fatty acid-binding protein 4 (FABP4) levels and the severity of periodontitis in systemically healthy individuals. Additionally, the study examines whether non-surgical periodontal treatment can reduce FABP4 levels, establishing its potential as a biomarker linking periodontitis to systemic diseases. Methods: A total of 89 participants with stage I, II, or III periodontitis were recruited, excluding individuals with systemic diseases. Clinical parameters such as clinical attachment level (CAL), probing depth (PD), and gingival index (GI) were recorded. Serum FABP4 levels and Porphyromonas gingivalis (P. gingivalis) antibody titers were measured before and after periodontal treatment using ELISA kits. Statistical analysis included t-tests, correlation analysis, and multiple linear regression to assess changes in FABP4 levels and their association with clinical parameters. Results: FABP4 and P. gingivalis antibody titers significantly increased with the severity of periodontitis (p < 0.001). After non-surgical periodontal treatment, FABP4 levels significantly decreased across all stages of periodontitis. Moderate positive correlations were observed between FABP4 and CAL, PD, GI, and P. gingivalis antibody titers (p < 0.05). Multiple linear regression showed that FABP4 levels increased significantly with the progression of periodontitis, independent of age and sex. Conclusions: The study indicates that FABP4 is a potential biomarker for linking periodontitis to systemic conditions such as cardiovascular diseases and diabetes. Non-surgical periodontal treatment reduced FABP4 levels, potentially contributing to the improvement of systemic conditions associated with elevated FABP4. Further research should explore the role of FABP4 in patients with periodontitis and systemic diseases to strengthen its clinical relevance.
Collapse
Affiliation(s)
- Jiwon Song
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (J.S.); (H.-J.K.); (J.-Y.L.)
| | - Soo-Min Ok
- Department of Oral Medicine, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea;
| | - Eun-Young Kwon
- Department of Periodontology, Dental Clinic Center, Pusan National University Hospital, Busan 49241, Republic of Korea;
| | - Hyun-Joo Kim
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (J.S.); (H.-J.K.); (J.-Y.L.)
- Department of Periodontology, Periodontal Disease Signaling Network Center, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ju-Youn Lee
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (J.S.); (H.-J.K.); (J.-Y.L.)
| | - Ji-Young Joo
- Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan 50612, Republic of Korea; (J.S.); (H.-J.K.); (J.-Y.L.)
- Department of Periodontology, Periodontal Disease Signaling Network Center, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
3
|
Im JH, Lim JS, Han X, Men X, Oh G, Fu X, Cho GH, Hwang WS, Choi SI, Lee OH. Anti-obesogenic effect of standardized Brassica juncea extract on bisphenol A-induced 3T3-L1 preadipocytes and C57BL/6J obese mice. Food Sci Biotechnol 2025; 34:781-791. [PMID: 39958180 PMCID: PMC11822162 DOI: 10.1007/s10068-024-01688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 02/18/2025] Open
Abstract
Bisphenol A (BPA) is a representative obesogen that induces adipocyte differentiation and lipid accumulation by mimicking the action of hormones. Brassica juncea is a plant belonging to the mustard family, and has antioxidant, anti-inflammatory, and anti-obesity effects. However, its efficacy against obesogen-induced obesity requires further investigation. In this study, we investigated the anti-obesogenic effects of Brassica juncea extract (BJE) on BPA-treated 3T3-L1 preadipocytes and C57BL/6J mice. The treatment with BPA and BJE did not have cytotoxic effects in vitro. In addition, BJE inhibited BPA-induced lipid accumulation and suppressed BPA-induced changes in adipocyte differentiation, adipogenesis, and lipolysis protein expression in 3T3-L1 cells. Oral administration of BJE reduced body weight, adipose tissue mass, and adipocyte size in BPA-induced obese C57BL/6 mice. BJE also regulated the expression of proteins involved in adipocyte differentiation, adipogenesis, and lipolysis. These data demonstrate that BJE is a natural functional substance with anti-obesogenic effects.
Collapse
Affiliation(s)
- Ji-Hyun Im
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 South Korea
| | - June seok Lim
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 South Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 South Korea
| | - Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 South Korea
| | - Geon Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 South Korea
| | - Xiaolu Fu
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 South Korea
| | - Geun hee Cho
- Department of Food Biothech, Kangwon National University, Chuncheon, 24341 South Korea
| | | | - Sun-Il Choi
- Department of Food Biothech, Kangwon National University, Chuncheon, 24341 South Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, 24341 South Korea
| |
Collapse
|
4
|
Chi Z, Jia Q, Yang H, Ren H, Jin C, He J, Wuri N, Sui Z, Zhang J, Mengke B, Zhu L, Qiqi G, Aierqing S, Wuli J, Ai D, Fan R, Herrid M. snRNA-seq of adipose tissues reveals the potential cellular and molecular mechanisms of cold and disease resistance in Mongolian cattle. BMC Genomics 2024; 25:999. [PMID: 39448899 PMCID: PMC11520132 DOI: 10.1186/s12864-024-10913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Mongolian cattle are local breeds in northern China with excellent adaptability to harsh environmental conditions. Adipose tissues play essential roles in tolerance to cold and disease, but the associated cellular and molecular mechanisms are unclear. METHODS Single-nucleus RNA sequencing (snRNA-seq) was performed on the adipose tissues from the subcutaneous (SAT), greater omentum (OAT) and perirenal (PAT) of 3 healthy cattle. The adipogenic trajectory was analyzed, and the functional roles of gene of interest were verified in vitro. RESULTS There were different cell subpopulations in adipose tissues. The lipid-deposition adipocytes identified by the PTGER3 marker exhibited outstanding characteristics in SAT. In PAT and OAT, aldosterone was expressed to provide clues for the differential brown adipocytes. Among the DEGs by comparing OAT with SAT and PAT with OAT, C3 was significantly expressed in most of the cell populations in SAT. G0S2, LIPE, LPIN1, PTGER3 and RGCC took part in the adipogenic trajectory from preadipocyte commitment to mature adipocytes. S100A4 expression affected Ca2+ signaling and the expression of UCP1 ~ 3, FABP4 and PTGER3. CONCLUSION The cell heterogeneity and genes expressed in adipose tissues of Mongolian cattle not only determine the endocrine and energy storage, but contribute to adapt to cold and disease resistance.
Collapse
Affiliation(s)
- Zhiduan Chi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Qiong Jia
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Haoyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Hongrui Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Congli Jin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Jinxin He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Nile Wuri
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Ze Sui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Junzhen Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Bayier Mengke
- Animal Husbandry and Veterinary Technology Extension Center of Alxa League, Alxa Left Banner, 750300, China
| | - Lixian Zhu
- Animal Husbandry and Veterinary Technology Extension Center of Alxa League, Alxa Left Banner, 750300, China
| | - Ge Qiqi
- Animal Husbandry and Veterinary Technology Extension Center of Alxa League, Alxa Left Banner, 750300, China
| | - Sarengaowa Aierqing
- Animal Husbandry and Veterinary Technology Extension Center of Alxa League, Alxa Left Banner, 750300, China
| | - Ji Wuli
- Animal Husbandry and Veterinary Technology Extension Center of Alxa League, Alxa Left Banner, 750300, China
| | - Dong Ai
- Bureau of Agriculture and Animal Husbandry of Alxa League, Bayanhot, 750306, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China.
| | - Muren Herrid
- Grassland & Cattle Investment Co., Ltd, Hohhot, 011500, China.
| |
Collapse
|
5
|
Li Q, Wu L, Wang G, Zheng F, Sun J, Zhang Y, Li Z, Li L, Sun B. Inhibitory Effects of Jiuzao Polysaccharides on Alcoholic Fatty Liver Formation in Zebrafish Larvae and Their Regulatory Impact on Intestinal Microbiota. Foods 2024; 13:276. [PMID: 38254577 PMCID: PMC10815347 DOI: 10.3390/foods13020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The liver is critical in alcohol metabolism, and excessive consumption heightens the risk of hepatic damage, potentially escalating to hepatitis and cirrhosis. Jiuzao, a by-product of Baijiu production, contains a rich concentration of naturally active polysaccharides known for their antioxidative properties. This study investigated the influence of Laowuzeng Jiuzao polysaccharide (LJP) on the development of ethanol-induced alcoholic fatty liver. Zebrafish larvae served as the model organisms for examining the LJPs hepatic impact via liver phenotypic and biochemical assays. Additionally, this study evaluated the LJPs effects on gene expression associated with alcoholic fatty liver and the composition of the intestinal microbiota through transcriptomic and 16 S rRNA gene sequencing analyses, respectively. Our findings revealed that LJP markedly mitigated morphological liver damage and reduced oxidative stress and lipid peroxidation in larvae. Transcriptome data indicated that LJP ameliorated hepatic fat accumulation and liver injury by enhancing gene expression involved in alcohol and lipid metabolism. Furthermore, LJP modulated the development of alcoholic fatty liver by altering the prevalence of intestinal Actinobacteriota and Firmicutes, specifically augmenting Acinetobacter while diminishing Chryseobacterium levels. Ultimately, LJP mitigated alcohol-induced hepatic injury by modulating gene expression related to ethanol metabolism, lipid metabolism, and inflammation and by orchestrating alterations in the intestinal microbiota.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Liling Wu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Guangnan Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Yuhang Zhang
- Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053009, China (Z.L.)
| | - Zexia Li
- Hebei Hengshui Laobaigan Liquor Co., Ltd., Hengshui 053009, China (Z.L.)
| | - Lianghao Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China (J.S.); (L.L.); (B.S.)
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
6
|
Xiao S, Qi M, Zhou Q, Gong H, Wei D, Wang G, Feng Q, Wang Z, Liu Z, Zhou Y, Ma X. Macrophage fatty acid oxidation in atherosclerosis. Biomed Pharmacother 2024; 170:116092. [PMID: 38157642 DOI: 10.1016/j.biopha.2023.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Atherosclerosis significantly contributes to the development of cardiovascular diseases (CVD) and is characterized by lipid retention and inflammation within the artery wall. Multiple immune cell types are implicated in the pathogenesis of atherosclerosis, macrophages play a central role as the primary source of inflammatory effectors in this pathogenic process. The metabolic influences of lipids on macrophage function and fatty acid β-oxidation (FAO) have similarly drawn attention due to its relevance as an immunometabolic hub. This review discusses recent findings regarding the impact of mitochondrial-dependent FAO in the phenotype and function of macrophages, as well as transcriptional regulation of FAO within macrophages. Finally, the therapeutic strategy of macrophage FAO in atherosclerosis is highlighted.
Collapse
Affiliation(s)
- Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingxu Qi
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qinyi Zhou
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huiqin Gong
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Duhui Wei
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guangneng Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qilun Feng
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhou Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Liu
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yiren Zhou
- The Affiliated Nanhua Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaofeng Ma
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
7
|
Nimptsch K, Aleksandrova K, Pham TT, Papadimitriou N, Janke J, Christakoudi S, Heath A, Olsen A, Tjønneland A, Schulze MB, Katzke V, Kaaks R, van Guelpen B, Harbs J, Palli D, Macciotta A, Pasanisi F, Yohar SMC, Guevara M, Amiano P, Grioni S, Jakszyn PG, Figueiredo JC, Samadder NJ, Li CI, Moreno V, Potter JD, Schoen RE, Um CY, Weiderpass E, Jenab M, Gunter MJ, Pischon T. Prospective and Mendelian randomization analyses on the association of circulating fatty acid binding protein 4 (FABP-4) and risk of colorectal cancer. BMC Med 2023; 21:391. [PMID: 37833736 PMCID: PMC10576353 DOI: 10.1186/s12916-023-03104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Fatty acid binding protein 4 (FABP-4) is a lipid-binding adipokine upregulated in obesity, which may facilitate fatty acid supply for tumor growth and promote insulin resistance and inflammation and may thus play a role in colorectal cancer (CRC) development. We aimed to investigate the association between circulating FABP-4 and CRC and to assess potential causality using a Mendelian randomization (MR) approach. METHODS The association between pre-diagnostic plasma measurements of FABP-4 and CRC risk was investigated in a nested case-control study in 1324 CRC cases and the same number of matched controls within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. A two-sample Mendelian randomization study was conducted based on three genetic variants (1 cis, 2 trans) associated with circulating FABP-4 identified in a published genome-wide association study (discovery n = 20,436) and data from 58,131 CRC cases and 67,347 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry. RESULTS In conditional logistic regression models adjusted for potential confounders including body size, the estimated relative risk, RR (95% confidence interval, CI) per one standard deviation, SD (8.9 ng/mL) higher FABP-4 concentration was 1.01 (0.92, 1.12) overall, 0.95 (0.80, 1.13) in men and 1.09 (0.95, 1.25) in women. Genetically determined higher FABP-4 was not associated with colorectal cancer risk (RR per FABP-4 SD was 1.10 (0.95, 1.27) overall, 1.03 (0.84, 1.26) in men and 1.21 (0.98, 1.48) in women). However, in a cis-MR approach, a statistically significant association was observed in women (RR 1.56, 1.09, 2.23) but not overall (RR 1.23, 0.97, 1.57) or in men (0.99, 0.71, 1.37). CONCLUSIONS Taken together, these analyses provide no support for a causal role of circulating FABP-4 in the development of CRC, although the cis-MR provides some evidence for a positive association in women, which may deserve to be investigated further.
Collapse
Affiliation(s)
- Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
| | - Krasimira Aleksandrova
- Department Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology, Bremen, Germany
- Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
| | - Thu Thi Pham
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité - Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Jürgen Janke
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany
| | - Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Alicia Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Århus, Århus, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nutehtal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Verena Katzke
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Justin Harbs
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Alessandra Macciotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Fabrizio Pasanisi
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Sandra Milena Colorado Yohar
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellín, Colombia
| | - Marcela Guevara
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Salud Pública de Navarra, Pamplona, 31003, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Pilar Amiano
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, 20133, Italy
| | - Paula Gabriela Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Jane C Figueiredo
- Cedars-Sinai Medical Center Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - N Jewel Samadder
- Division of Gastroenterology and Hepatology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Victor Moreno
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité - Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, Berlin, Germany
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany
| |
Collapse
|
8
|
Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Gonçalves J, Fresco P. Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer. Cancers (Basel) 2023; 15:4013. [PMID: 37568828 PMCID: PMC10417315 DOI: 10.3390/cancers15154013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.
Collapse
Affiliation(s)
- Victória Bombarda-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Allal Badr-Eddine
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
| | - Patrícia Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Höpfinger A, Karrasch T, Schäffler A, Schmid A. Circulating Levels of Cathelicidin Antimicrobial Peptide (CAMP) Are Affected by Oral Lipid Ingestion. Nutrients 2023; 15:3021. [PMID: 37447348 DOI: 10.3390/nu15133021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION Obesity and related diseases are among the main public health issues in the western world. They are thought to be caused by a state of chronic, low-grade inflammation. Cathelicidin antimicrobial peptide (CAMP) was recently discovered to be expressed and secreted by adipocytes. Representing a novel immunomodulatory adipokine, CAMP might play an important role in the complex interaction between metabolism and inflammation. METHODS In a cohort of 80 volunteers, serum samples were collected prior to, and 2 h, 4 h, and 6 h after, oral lipid ingestion. CAMP, fatty acid binding proteins 2 and 4 (FABP-2/-4), and dipeptidylpeptidase-4 (DPP-4) serum concentrations were measured via ELISA. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with free fatty acids, and gene expression levels of CAMP, FABP-4, and DPP-4 were quantified by RT-PCR. RESULTS The mean base-line CAMP serum concentration was 55.78 ± 29.26 ng/mL, with a range of 10.77-146.24 ng/mL. Interestingly, CAMP serum levels were positively correlated with LDL cholesterol, but negatively correlated with HDL cholesterol and adiponectin. Men exhibited higher CAMP serum concentrations than women, an effect apparently linked to oral contraception in the majority of female participants. In both genders, CAMP serum concentrations significantly decreased in a stepwise manner 4 h and 6 h after oral lipid ingestion. This decline was paralleled by a rise of serum bile acid and triglyceride levels upon lipid ingestion. In human SGBS adipocytes, treatment with free fatty acids did not affect CAMP gene expression, but increased FABP-4 gene expression. CONCLUSIONS In conclusion, systemic levels of the antimicrobial peptide and novel adipokine CAMP are significantly decreased upon oral lipid ingestion. While this decline might be linked to the simultaneous increase in bile acids, the underlying mechanisms remain to be elucidated. Furthermore, CAMP might indicate a putative novel cardiovascular biomarker of both inflammatory and metabolic relevance in metaflammation and adipose inflammation.
Collapse
Affiliation(s)
- Alexandra Höpfinger
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Andreas Schmid
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany
| |
Collapse
|
10
|
Lai D, Ma W, Wang J, Zhang L, Shi J, Lu C, Gu X. Immune infiltration and diagnostic value of immune-related genes in periodontitis using bioinformatics analysis. J Periodontal Res 2023; 58:369-380. [PMID: 36691896 DOI: 10.1111/jre.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/14/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis, which is a chronic inflammatory periodontal disease resulting in destroyed periodontal tissue, is the leading cause of tooth loss in adults. Many studies have found that inflammatory immune responses are involved in the risk of periodontal tissue damage. Therefore, we analyzed the association between immunity and periodontitis using bioinformatics methods to further understand this disease. MATERIALS AND METHODS First, the expression profiles of periodontitis and healthy samples were downloaded from the GEO database, including a training dataset GSE16134 and an external validation dataset GSE10334. Then, differentially expressed genes were identified using the limma package. Subsequently, immune cell infiltration was calculated by using the CIBERSORT algorithm. We further identified genes linking periodontitis and immunity from the ImmPort and DisGeNet databases. In addition, some of them were selected to construct a diagnostic model via a logistic stepwise regression analysis. RESULTS AND CONCLUSIONS Two hundred sixty differentially expressed genes were identified and found to be involved in responses to bacterial and immune-related processes. Subsequently, immune cell infiltration analysis demonstrates significant differences in the abundance of most immune cells between periodontitis and healthy samples, especially in plasma cells. These results suggested that immunity doses play a non-negligible role in periodontitis. Twenty-one genes linking periodontitis and immunity were further identified. And nine hub genes of them were identified that may be key genes involved in the development of periodontitis. Gene ontology analyses showed that these genes are involved in response to molecules of bacterial origin, cell chemotaxis, and response to chemokines. In addition, three genes of them were selected to construct a diagnostic model. And its good diagnostic performance was demonstrated by the receiver operating characteristic curves, with an area under the curve of 0.9424 for the training dataset and 0.9244 for the external validation dataset.
Collapse
Affiliation(s)
- Donglin Lai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhao Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jie Wang
- Department of prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luzhu Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Junfeng Shi
- Department of prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
11
|
Li X, Zhang H, Wang Y, Li Y, Xiong Y, Li R, Zhu J, Lin Y. Overexpression of goat STEAP4 promotes the differentiation of subcutaneous adipocytes. Arch Anim Breed 2022; 65:397-406. [PMID: 36415757 PMCID: PMC9673034 DOI: 10.5194/aab-65-397-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/11/2022] [Indexed: 07/30/2023] Open
Abstract
Objective: The focus of this study was the six-transmembrane epithelial antigen of the prostate 4 (STEAP4) gene, on the basis of the cloned goat STEAP4 gene sequence. Its molecular and expression characteristics were analyzed, and its influence on the differentiation of goat subcutaneous adipocytes was explored through overexpression. Method: Reverse-transcription PCR (RT-PCR) was used to clone the goat STEAP4 sequence, and online tools were used to analyze the molecular characteristic. Real-time quantitative PCR (qPCR) was used to detect the expression level of STEAP4 in goat tissues and subcutaneous adipocyte differentiation. Liposome transfection, BODIPY, Oil Red O staining, and qPCR were used to explore the effect of overexpression of STEAP4 on adipocyte differentiation. Results: The cloned goat STEAP4 gene sequence was 1388 bp, and the complete coding sequence (CDS) region was 1197 bp, which encoded a total of 398 amino acids. Compared with the predicted sequence (XM_005679300.3), there were three base mutations in the CDS region of goat STEAP4, A188G, T281C, and A507G. Among them, A507G changed the amino acid at position 170 from Ile to Val. Analysis of the physical and chemical properties of the protein showed that STEAP4 was a stable hydrophilic basic protein. STEAP4 gene expression level was highest in goat liver tissue ( P < 0.01 ), followed by lung and back subcutaneous adipose tissue. STEAP4 showed different expression levels in goat subcutaneous adipocytes at different times during the induction of differentiation. The expression in the late stage of differentiation was higher than that before differentiation and lowest at 12 h ( P < 0.01 ). Overexpression of STEAP4 promoted the accumulation of intracellular lipid droplets; C/EBP β (CCAAT enhancer binding protein) was extremely significantly up-regulated ( P < 0.01 ), and aP2 (fatty acid binding protein) was significantly up-regulated ( P < 0.05 ). Conclusion: Overexpression of STEAP4 could promote the differentiation of goat subcutaneous preadipocytes. This study lays the foundation for an in-depth study of the role of STEAP4 in goat lipid deposition.
Collapse
Affiliation(s)
- Xin Li
- College of Animal &Veterinary Sciences, Southwest Minzu University,
Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal
Genetic Resource Protection and Utilization of Ministry of Education/Sichuan
Province, Southwest Minzu University, Chengdu 610041, China
| | - Hao Zhang
- College of Animal &Veterinary Sciences, Southwest Minzu University,
Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal
Genetic Resource Protection and Utilization of Ministry of Education/Sichuan
Province, Southwest Minzu University, Chengdu 610041, China
| | - Yong Wang
- College of Animal &Veterinary Sciences, Southwest Minzu University,
Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal
Genetic Resource Protection and Utilization of Ministry of Education/Sichuan
Province, Southwest Minzu University, Chengdu 610041, China
| | - Yanyan Li
- College of Animal &Veterinary Sciences, Southwest Minzu University,
Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal
Genetic Resource Protection and Utilization of Ministry of Education/Sichuan
Province, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- College of Animal &Veterinary Sciences, Southwest Minzu University,
Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal
Genetic Resource Protection and Utilization of Ministry of Education/Sichuan
Province, Southwest Minzu University, Chengdu 610041, China
| | - Ruiwen Li
- Chengdu
Women's and Children's Central Hospital, School of Medicine, University of
Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal
Genetic Resource Protection and Utilization of Ministry of Education/Sichuan
Province, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- College of Animal &Veterinary Sciences, Southwest Minzu University,
Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal
Genetic Resource Protection and Utilization of Ministry of Education/Sichuan
Province, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
12
|
Huang J, Chen G, Zhang Q, Wang Y, Meng Q, Xu F, Zhang X, Zou W, Mi F, Yin J. Correlation between adipocyte fatty acid binding protein and glucose dysregulation is closely associated with obesity and metabolic syndrome: A cohort of Han Chinese population from Yunnan plateau. Lipids 2022; 57:257-264. [PMID: 35778866 DOI: 10.1002/lipd.12353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
The present study investigated the correlation of plasma A-FABP with glucose dysregulation under different body mass index (BMI) and metabolic states in a Han Chinese population from Yunnan plateau. We cross-sectionally analyzed data from the China Multi Ethnic Cohort, Yunnan province. Participants were divided into two groups. Group A contained 297 obese individuals with metabolic syndrome (MetS). Group B contained 326 age-, sex-, and region-matched normal BMI subjects without MetS. Glucose dysregulation was defined as elevated fasting plasma glucose (FPG) (FPG ≥ 5.6 mmol/L or current use of oral hypoglycemic agents or insulin). Circulating A-FABP were assayed by ELISA method. Binary and multiple regression analyses were preformed to evaluate the correlation between A-FABP and glucose dysregulation. Plasma A-FABP level was significantly higher in group A compared with group B (p < 0.001). Plasma A-FABP level correlated positively with elevated FPG in group A (r = 0.120, p = 0.039), but negatively with elevated FPG in group B (r = -0.115, p = 0.039). Multiple logistic regression analysis revealed that A-FABP was an independent predictor for elevated FPG in group A (β, 0.028; 95% CI, 1.001-1.056; p < 0.05), but not in group B (β, -0.008; 95% CI, 0.882-1.117; p > 0.05). In this study, A-FABP was an independent risk factor for glucose dysregulation in obese individuals with MetS living in the Yunnan plateau, but not for those without obesity and MetS.
Collapse
Affiliation(s)
- Juan Huang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Guo Chen
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qiao Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yanjiao Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qiong Meng
- School of Public Health, Kunming Medical University, Kunming, China
| | - Fang Xu
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xuehui Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Wei Zou
- School of Public Health, Kunming Medical University, Kunming, China
| | - Fei Mi
- School of Public Health, Kunming Medical University, Kunming, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China.,Baoshan College of Traditional Chinese Medicine, Baoshan, China
| |
Collapse
|
13
|
Huang X, Zhou Y, Sun Y, Wang Q. Intestinal fatty acid binding protein: A rising therapeutic target in lipid metabolism. Prog Lipid Res 2022; 87:101178. [PMID: 35780915 DOI: 10.1016/j.plipres.2022.101178] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Fatty acid binding proteins (FABPs) are key proteins in lipid transport, and the isoforms are segregated according to their tissue origins. Several isoforms, such as adipose-FABP and epidermal-FABP, have been shown to participate in multiple pathologic processes due to their ubiquitous expression. Intestinal fatty acid binding protein, also termed FABP2 or I-FABP, is specifically expressed in the small intestine. FABP2 can traffic lipids from the intestinal lumen to enterocytes and bind superfluous fatty acids to maintain a steady pool of fatty acids in the epithelium. As a lipid chaperone, FABP2 can also carry lipophilic drugs to facilitate targeted transport. When the integrity of the intestinal epithelium is disrupted, FABP2 is released into the circulation. Thus, it can potentially serve as a clinical biomarker. In this review, we discuss the pivotal role of FABP2 in intestinal lipid metabolism. We also summarize the molecular interactions that have been reported to date, highlighting the clinical prospects of FABP2 research.
Collapse
Affiliation(s)
- Xi Huang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youci Zhou
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunwei Sun
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qijun Wang
- Shanghai Institute of Immunology, Department of Gastroenterology of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
14
|
Huang NW, Lin JH, Jhan JY, Hsu BG, Chang JC. Age and Serum Adipocyte Fatty-Acid-Binding Protein Level Are Associated with Aortic Stiffness in Coronary Artery Bypass Graft Patients. J Cardiovasc Dev Dis 2022; 9:jcdd9040105. [PMID: 35448081 PMCID: PMC9032052 DOI: 10.3390/jcdd9040105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 01/16/2023] Open
Abstract
Old age has been proven to be related to progressed arterial or aortic stiffness. Aortic stiffness is an independent predictor of all-cause and cardiovascular disease mortalities in patients who have undergone coronary artery bypass grafting (CABG) surgery. Higher serum concentrations of adipocyte fatty-acid-binding protein (A-FABP) could be considered a predictor of aortic stiffness in patients with hypertension or diabetes mellitus. This study aims to investigate the relationships between A-FABP and aortic stiffness in patients who have received CABG. A total of 84 CABG patients were enrolled in our study from September 2018 to May 2019. Serum A-FABP levels were determined using a commercial enzyme immunoassay. Carotid−femoral pulse wave velocity (cfPWV) > 10 m/s was defined as aortic stiffness. Of the 84 CABG patients, 28 (33.3%) with aortic stiffness had a higher average age; exhibited higher rates of diabetes; and had higher serum creatinine, C-reactive protein, and A-FABP levels compared to controls. Multivariable logistic regression revealed that serum A-FABP levels (odds ratio (OR) = 1.068, 95% confidence interval (CI) 1.017−1.121, p = 0.008) and age (OR = 1.204, 95% CI 1.067−1.359, p = 0.003) were independent predictors of aortic stiffness. Multivariable stepwise linear regression revealed significant positive correlations of age and A-FABP levels with cfPWV values. Serum A-FABP level is positively correlated with cfPWV values, and a high serum A-FABP level is associated with aortic stiffness in patients who have undergone CABG.
Collapse
Affiliation(s)
- Nai-Wei Huang
- Division of Cardiovascular Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (N.-W.H.); (J.-Y.J.)
| | - Jian-Hong Lin
- Division of Experimental Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
| | - Jin-You Jhan
- Division of Cardiovascular Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (N.-W.H.); (J.-Y.J.)
| | - Bang-Gee Hsu
- Division of Nephrology, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
- Department of Medicine, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: (B.-G.H.); (J.-C.C.); Tel.: +886-3-8561825 (J.-C.C.)
| | - Jui-Chih Chang
- Division of Cardiovascular Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan; (N.-W.H.); (J.-Y.J.)
- Department of Surgery, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: (B.-G.H.); (J.-C.C.); Tel.: +886-3-8561825 (J.-C.C.)
| |
Collapse
|
15
|
Effect of Actin Alpha Cardiac Muscle 1 on the Proliferation and Differentiation of Bovine Myoblasts and Preadipocytes. Animals (Basel) 2021; 11:ani11123468. [PMID: 34944244 PMCID: PMC8698029 DOI: 10.3390/ani11123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Marbling is an important factor affecting the quality of beef. The co-culture (myoblast-preadipocytes) system was successfully established in our lab in the early stage to simulate the internal environment of marbling. Within this environment, ACTC1 gene was a differentially expressed gene screened from the co-culture system. The gene was not expressed in monocultured adipocytes but was expressed in co-cultured adipocytes. Therefore, we hypothesize that the ACTC1 gene plays a role in the development of bovine myoblasts and preadipocytes. In this study, we explored the effect of ACTC1 gene on the proliferation and differentiation of bovine myoblasts and preadipocytes, aiming to discover the potential biological function of ACTC1 gene in muscle development and fat deposition. The results showed that ACTC1 could regulate the development of bovine myoblasts and preadipocytes, and ACTC1 could be used as an important target for improving beef quality in the future. Abstract Actin Alpha Cardiac Muscle 1 (ACTC1) gene is a differentially expressed gene screened through the co-culture system of myoblasts-preadipocytes. In order to study the role of this gene in the process of proliferation and differentiation of bovine myoblasts and preadipocytes, the methods of the knockdown, overexpression, and ectopic expression of ACTC1 were used in this study. After ACTC1 knockdown in bovine myoblasts and inducing differentiation, the sizes and numbers of myotube formation were significantly reduced compared to the control group, and myogenic marker genes—MYOD1, MYOG, MYH3, MRF4, MYF5, CKM and MEF2A—were significantly decreased (p < 0.05, p < 0.01) at both the mRNA and protein levels of myoblasts at different differentiation stages (D0, D2, D4, D6 and D8). Conversely, ACTC1 overexpression induced the inverse result. After ectopic expression of ACTC1 in bovine preadipocytes and induced differentiation, the number and size of lipid droplets were significantly higher than those of the control group, and the expression of adipogenic marker genes—FABP4, SCD1, PPARγ and FASN—were significantly increased (p < 0.05, p < 0.01) at the mRNA and protein levels of preadipocytes at different differentiation stages. Flow cytometry results showed that both the knockdown and overexpression of ACTC1 inhibited the normal cell cycle of myoblasts; however, ectopic expression of ACTC1 in adipocytes induced no significant cell cycle changes. This study is the first to explore the role of ACTC1 in bovine myogenesis and lipogenesis and demonstrates that ACTC1 promotes the differentiation of bovine myoblasts and preadipocytes, affecting the proliferation of myoblasts.
Collapse
|
16
|
Sawadkar P, Mandakhbayar N, Patel KD, Buitrago JO, Kim TH, Rajasekar P, Lali F, Kyriakidis C, Rahmani B, Mohanakrishnan J, Dua R, Greco K, Lee JH, Kim HW, Knowles J, García-Gareta E. Three dimensional porous scaffolds derived from collagen, elastin and fibrin proteins orchestrate adipose tissue regeneration. J Tissue Eng 2021; 12:20417314211019238. [PMID: 34104389 PMCID: PMC8165536 DOI: 10.1177/20417314211019238] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Current gold standard to treat soft tissue injuries caused by trauma and pathological condition are autografts and off the shelf fillers, but they have inherent weaknesses like donor site morbidity, immuno-compatibility and graft failure. To overcome these limitations, tissue-engineered polymers are seeded with stem cells to improve the potential to restore tissue function. However, their interaction with native tissue is poorly understood so far. To study these interactions and improve outcomes, we have fabricated scaffolds from natural polymers (collagen, fibrin and elastin) by custom-designed processes and their material properties such as surface morphology, swelling, wettability and chemical cross-linking ability were characterised. By using 3D scaffolds, we comprehensive assessed survival, proliferation and phenotype of adipose-derived stem cells in vitro. In vivo, scaffolds were seeded with adipose-derived stem cells and implanted in a rodent model, with X-ray microtomography, histology and immunohistochemistry as read-outs. Collagen-based materials showed higher cell adhesion and proliferation in vitro as well as higher adipogenic properties in vivo. In contrast, fibrin demonstrated poor cellular and adipogenesis properties but higher angiogenesis. Elastin formed the most porous scaffold, with cells displaying a non-aggregated morphology in vitro while in vivo elastin was the most degraded scaffold. These findings of how polymers present in the natural polymers mimicking ECM and seeded with stem cells affect adipogenesis in vitro and in vivo can open avenues to design 3D grafts for soft tissue repair.
Collapse
Affiliation(s)
- Prasad Sawadkar
- Regenerative Biomaterials Group, The RAFT Institute and The Griffin Institute, Northwick Park & Saint Mark's Hospital, London, UK.,Division of Surgery and Interventional Science, University College London, London, UK.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Kapil D Patel
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Jennifer Olmas Buitrago
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Tae Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,R&D Center, TE Bios Co, Osong, Republic of Korea
| | - Poojitha Rajasekar
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Ferdinand Lali
- Division of Surgery and Interventional Science, University College London, London, UK.,The Griffin Institute, Northwick Park and St Mark's Hospital, London, UK
| | - Christos Kyriakidis
- Regenerative Biomaterials Group, The RAFT Institute and The Griffin Institute, Northwick Park & Saint Mark's Hospital, London, UK
| | - Benyamin Rahmani
- Department of Mechanical Engineering, University College London, London, UK
| | - Jeviya Mohanakrishnan
- Regenerative Biomaterials Group, The RAFT Institute and The Griffin Institute, Northwick Park & Saint Mark's Hospital, London, UK
| | - Rishbha Dua
- Regenerative Biomaterials Group, The RAFT Institute and The Griffin Institute, Northwick Park & Saint Mark's Hospital, London, UK
| | - Karin Greco
- Division of Surgery and Interventional Science, University College London, London, UK.,The Griffin Institute, Northwick Park and St Mark's Hospital, London, UK
| | - Jung-Hwan Lee
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Jonathan Knowles
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, Republic of Korea.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Elena García-Gareta
- Regenerative Biomaterials Group, The RAFT Institute and The Griffin Institute, Northwick Park & Saint Mark's Hospital, London, UK.,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| |
Collapse
|
17
|
Mosavat M, Mirsanjari M, Lwaleed BA, Kamarudin M, Omar SZ. Adipocyte-Specific Fatty Acid-Binding Protein (AFABP) and Chemerin in Association with Gestational Diabetes: A Case-Control Study. J Diabetes Res 2021; 2021:5533802. [PMID: 34007846 PMCID: PMC8100411 DOI: 10.1155/2021/5533802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Adipocytokines participate in regulating the inflammatory response in glucose homeostasis and type 2 diabetes. However, among these peptides, the role of adipocyte-specific fatty-acid-binding protein (AFABP), chemerin, and secreted protein acidic and rich in cysteine (SPARC) in gestational diabetes (GDM) has not been fully investigated. METHOD The maternal fasting level of adipocytokines of 53 subjects with GDM and 43 normal pregnant (NGDM) was measured using multiplex immunoassay at 24-28 weeks, before delivery, immediate postpartum, and 2-6 months postpuerperium. RESULTS Higher levels of AFABP were associated with a 3.7-fold higher risk of GDM. Low chemerin levels were associated with a 3.6-fold higher risk of GDM. Interleukin-10 (IL-10) was inversely associated with the risk of GDM. SPARC had no association with GDM. AFABP was directly correlated to interleukin-6 (r = 0.50), insulin resistance index (r = 0.26), and body mass index (r = 0.28) and inversely correlated to C-reactive protein (r = -0.27). Chemerin levels were directly and strongly correlated with IL-10 (r = 0.41) and interleukin-4 (r = 0.50) and inversely correlated to insulin resistance index (r = -0.23) in GDM but not NGDM. In the longitudinal assessment, there were no significant differences in AFABP and chemerin concentrations of both studied groups. CONCLUSION AFABP and chemerin were associated with a higher risk of GDM. These adipocytokines were related to insulin resistance, body mass index, and inflammation in pregnant women diagnosed with GDM.
Collapse
Affiliation(s)
- Maryam Mosavat
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mitra Mirsanjari
- Mazandaran University of Medical Sciences, Emam Khomeini Hospital, Fereidonkenar, Mazandaran, Iran
| | | | - Maherah Kamarudin
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Zawiah Omar
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Zhu R, Feng X, Wei Y, Guo D, Li J, Liu Q, Jiang J, Shi D, Huang J. lncSAMM50 Enhances Adipogenic Differentiation of Buffalo Adipocytes With No Effect on Its Host Gene. Front Genet 2021; 12:626158. [PMID: 33841496 PMCID: PMC8033173 DOI: 10.3389/fgene.2021.626158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Fat deposition is one of the most important traits that are mediated by a set of complex regulatory factors in meat animals. Several researches have revealed the significant role of long non-coding RNAs (lncRNAs) in fat deposition while the precise regulatory mechanism is still largely elusive. In this study, we investigated the lncRNA profiles of adipose and muscle tissues in buffalo by using the Illumina HiSeq 3000 platform. In total, 43,809 lncRNAs were finally identified based on the computer algorithm. A comparison analysis revealed 241 lncRNAs that are differentially expressed (DE) in adipose and muscle tissues. We focused on lncSAMM50, a DE lncRNA that has a high expression in adipose tissue. Sequence alignment showed that lncSAMM50 is transcribed from the antisense strand of the upstream region of sorting and assembly machinery component 50 homolog (SAMM50), a gene involved in the function of mitochondrion and is subsequently demonstrated to inhibit the adipogenic differentiation of 3T3-L1 adipocyte cells in this study. lncSAMM50 is highly expressed in adipose tissue and upregulated in the mature adipocytes and mainly exists in the nucleus. Gain-of-function experiments demonstrated that lncSAMM50 promotes the adipogenic differentiation by upregulating adipogenic markers but with no effect on its host gene SAMM50 in buffalo adipocytes. These results indicate that lncSAMM50 enhances fat deposition in buffalo and provide a new factor for the regulatory network of adipogenesis.
Collapse
Affiliation(s)
- Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Xue Feng
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yutong Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Duo Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jiaojiao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jianrong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Yamamoto Y, Owada Y. Possible involvement of fatty acid binding proteins in psychiatric disorders. Anat Sci Int 2021; 96:333-342. [PMID: 33604770 DOI: 10.1007/s12565-020-00598-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential for brain development and function. Increasing evidence has shown that an imbalance of PUFAs is associated with various human psychiatric disorders, including autism and schizophrenia. However, the mechanisms underlying the effects of PUFAs on brain functions at cellular and molecular levels remain unclear. Since PUFAs are insoluble in water, specific transporters are required to deliver PUFAs to appropriate intracellular compartments. Fatty acid-binding proteins (FABPs), the cellular chaperones of PUFAs, are involved in PUFA intracellular trafficking, signal transduction, and gene transcription. Therefore, we focused on the relationship between FABP-regulated PUFA homeostasis in the brain and neuronal plasticity. The authors previously reported that FABP3, which preferentially binds to n-6 PUFAs, is strongly expressed in the gamma-aminobutyric acid (GABAergic) inhibitory interneurons of the adult mouse anterior cingulate cortex (ACC), which is a component of the limbic cortex and is important for the coordination of cognitive and emotional behaviors. Interestingly, Fabp3 KO mice show increased GABA synthesis and abnormal excitatory/inhibitory balance in the ACC. In addition, studies have indicated that FABP7, which preferentially binds to n-3 PUFAs, controls lipid raft function in astrocytes, and astrocytic Fabp7 deficiency results in an altered response of astrocytes to external stimuli. Furthermore, Fabp7 KO mice exhibit aberrant dendritic morphology, and decreased spine density and excitatory synaptic transmission in pyramidal neurons. This review summarizes relationship between PUFAs or FABPs and human psychiatric disorders and discusses recent progress in elucidating the function of FABPs, especially FABP3 and 7, in the brain.
Collapse
Affiliation(s)
- Yui Yamamoto
- Department of Organ Anatomy, Tohoku University, Seiryo-machi Aoba-ku, Sendai, 980-8575, Japan. .,Department of Anatomy, Tohoku Medical and Pharmaceutical University, Fukumuro Miyagino-ku, Sendai, 980-8578, Japan.
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University, Seiryo-machi Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
20
|
Different expression of lipid metabolism-related genes in Shandong black cattle and Luxi cattle based on transcriptome analysis. Sci Rep 2020; 10:21915. [PMID: 33318614 PMCID: PMC7736358 DOI: 10.1038/s41598-020-79086-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/02/2020] [Indexed: 12/03/2022] Open
Abstract
To provide new ideas for improving meat quality and generating new breeds of cattle, the important candidate genes affecting fat deposition in two kinds of cattle were identified. Eighteen months Shandong black cattle (n = 3) and Luxi cattle (n = 3) were randomly assigned into two environmental. The longissimus dorsi muscles of Shandong Black Cattle and Luxi Cattle were collected and analyzed by fatty acid determination, high-throughput sequencing transcriptomics, qRT-PCR expression profile and western blot. The ratio of unsaturated fatty acids to saturated fatty acids was 1.37:1 and 1.24:1 in the muscle tissues of Shandong black cattle and Luxi cattle, respectively. The results of RNA-Seq analysis revealed 1320 DEGs between the longissimus dorsi of Shandong black cattle and Luxi cattle. A total of 867 genes were upregulated, and the other 453 genes were downregulated. With GO enrichment analysis, it was found that the identified DEGs were significantly enriched in regulation of the Wnt signaling pathway, negative regulation of the Wnt signaling pathway, cAMP metabolic process, fat cell differentiation and among other functions. We found that regulation of lipolysis in adipocytes was the significant enrichment pathway of upregulated genes and downregulated genes, PPAR signaling pathway and AMPK signaling pathway are highly representative pathways of lipid metabolism in Shandong black cattle. Network analysis showed that PPARGC1A, ADCY4, ANKRD6, COL1A1, FABP4, ADIPOQ, PLIN1, PLIN2, and LIPE genes were correlated with key loci genes in multiple metabolic pathways. Meanwhile we found that FABP4 and ADIPOQ had 7 common regulatory factors in different genes, which were PLIN1, PLIN2, PPARGC1A, RXRA, PCK1, LEPR, LEP. These genes were involved in regulation of lipolysis in adipocytes, adipocytokine signaling pathway, PPAR signaling pathway. FABP4 and ADIPOQ were selected as important candidate marker genes for fat deposition based on the results.
Collapse
|
21
|
Khadke S, Mandave P, Kuvalekar A, Pandit V, Karandikar M, Mantri N. Synergistic Effect of Omega-3 Fatty Acids and Oral-Hypoglycemic Drug on Lipid Normalization through Modulation of Hepatic Gene Expression in High Fat Diet with Low Streptozotocin-Induced Diabetic Rats. Nutrients 2020; 12:E3652. [PMID: 33261004 PMCID: PMC7760711 DOI: 10.3390/nu12123652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus, which an outcome of impaired insulin action and its secretion, is concomitantly associated with lipid abnormalities. The study was designed to evaluate the combinational effect of omega-3 fatty acids (flax and fish oil) and glibenclamide on abnormal lipid profiles, increased blood glucose, and impaired liver and kidney functions in a high fat diet with low streptozotocin (STZ)-induced diabetic rats, including its probable mechanism of action. The male Wistar rats (n = 48) were distributed into eight groups. All animal groups except the healthy received a high fat diet (HFD) for 90 days. Further, diabetes was developed by low dose STZ (35 mg/kg). Diabetic animals received, omega-3 fatty acids (500 mg/kg), along with glibenclamide (0.25 mg/kg). Both flax and fish oil intervention decreased (p ≤ 0.001) serum triglycerides and very low density lipoprotein and elevated (p ≤ 0.001) high density lipoprotein levels in diabetic rats. Total cholesterol and low-density lipoprotein level was decreased (p ≤ 0.001) in fish oil-treated rats. However, it remained unaffected in the flax oil treatment group. Both flax and fish oil intervention downregulate the expression of fatty acid metabolism genes, transcription factors (sterol regulatory element-binding proteins-1c and nuclear factor-κβ), and their regulatory genes i.e., acetyl-coA carboxylase alpha, fatty acid synthase, and tumor necrosis factors-α. The peroxisome proliferator-activated receptor gamma gene expression was upregulated (p ≤ 0.001) in the fish oil treatment group. Whereas, carnitine palmitoyltransferase 1 and fatty acid binding protein gene expression were upregulated (p ≤ 0.001) in both flax and fish oil intervention group.
Collapse
Affiliation(s)
- Suresh Khadke
- Interactive Research School for Health Affairs, Bharati Vidyapeeth, Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India; (S.K.); (P.M.); (A.K.)
| | - Pallavi Mandave
- Interactive Research School for Health Affairs, Bharati Vidyapeeth, Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India; (S.K.); (P.M.); (A.K.)
| | - Aniket Kuvalekar
- Interactive Research School for Health Affairs, Bharati Vidyapeeth, Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India; (S.K.); (P.M.); (A.K.)
| | - Vijaya Pandit
- Department of Pharmacology, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth, Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India;
| | - Manjiri Karandikar
- Department of Pathology, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth, Deemed to Be University, Pune-Satara Road, Pune 411043, Maharashtra, India;
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
22
|
Li D, Zhang K, Pan Z, Yu M, Lu Y, Wang G, Wu J, Zhang J, Zhang K, Du W. Antibiotics promote abdominal fat accumulation in broilers. Anim Sci J 2020; 91:e13326. [PMID: 32219924 DOI: 10.1111/asj.13326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
Antibiotics stimulate the growth of animals but result in drug residues and bacterial resistance. In this study, the negative effect of antibiotics on abdominal fat deposition was evaluated in broilers. The results showed that adding both chlortetracycline (50 g/1,000 kg) and tylosin (50 g/1,000 kg) significantly increased abdominal fat weight, abdominal fat percentage (p < .05), and triglyceride and cholesterol levels (p < .05) in blood. Also, both products synchronously stimulated intestinal absorption and synthesis of liver fat. The expression levels of the peroxisome proliferator-activated receptor γ (PPARγ), diacylgycerol acyltransferase 2 (DGAT2), lipoprotein lipase (LPL), and fatty acid-binding protein (FABP4) genes in abdominal fat tissue significantly increased (p < .05 or 0.01) when antibiotics were added to the feed. However, no significant difference was found in expression of the fatty acid synthesis (FAS) or acetyl CoA carboxylase (ACC) genes. Further in vitro study results revealed that antibiotics had no effect on fat content or the related gene expression levels in preadipocytes. In summary, the antibiotics induced fat deposition in adipose tissues by activating extracellular absorption of fatty acids from intestinal absorption and synthesis of liver fat. However, it shows no direct regulation by adipose tissue.
Collapse
Affiliation(s)
- Dongfeng Li
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Kun Zhang
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Zaixu Pan
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Minli Yu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yinglin Lu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Guiying Wang
- Animal Husbandry Research Institute, Beijing Sanyuan Breeding Technology Co, Ltd, China
| | - Junfeng Wu
- Jiangsu Lihua Animal Husbandry Co., Ltd. Changzhou, Jiangsu, China
| | - Jin Zhang
- Jiangsu Lihua Animal Husbandry Co., Ltd. Changzhou, Jiangsu, China
| | - Kangning Zhang
- Jiangsu Lihua Animal Husbandry Co., Ltd. Changzhou, Jiangsu, China
| | - Wenxing Du
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Zhang L, Wang F, Wang J, Wang Y, Fang Y. Intestinal fatty acid-binding protein mediates atherosclerotic progress through increasing intestinal inflammation and permeability. J Cell Mol Med 2020; 24:5205-5212. [PMID: 32220004 PMCID: PMC7205806 DOI: 10.1111/jcmm.15173] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/06/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is one of leading phenotypes of cardiovascular diseases, featured with increased vascular intima‐media thickness (IMT) and unstable plaques. The interaction between gastrointestinal system and cardiovascular homeostasis is emerging as a hot topic. Therefore, the present study aimed to explore the role of an intestinal protein, intestinal fatty acid‐binding protein (I‐FABP/FABP2) in the atherosclerotic progress. In western diet–fed ApoE−/− mice, FABP2 was highly expressed in intestine. Silence of intestinal Fabp2 attenuated western diet–induced atherosclerotic phenotypes, including decreasing toxic lipid accumulation, vascular fibrosis and inflammatory response. Mechanistically, intestinal Fabp2 knockdown improved intestinal permeability through increasing the expression of tight junction proteins. Meanwhile, intestinal Fabp2 knockdown mice exhibited down‐regulation of intestinal inflammation in western diet–fed ApoE−/− mice. In clinical patients, the circulating level of FABP2 was obviously increased in patients with cardiovascular disease and positively correlated with the value of carotid intima‐media thickness, total cholesterol and triglyceride. In conclusion, FABP2‐induced intestinal permeability could address a potential role of gastrointestinal system in the development of atherosclerosis, and targeting on intestinal FABP2 might provide a therapeutic approach to protect against atherosclerosis.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Fan Wang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jiajun Wang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yongshun Wang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yan Fang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
24
|
Pastore M, Gentilini A, Marra F. Mechanisms of Fibrogenesis in NASH. NON-ALCOHOLIC FATTY LIVER DISEASE 2020:97-127. [DOI: 10.1007/978-3-319-95828-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Khadke SP, Kuvalekar AA, Harsulkar AM, Mantri N. High Energy Intake Induced Overexpression of Transcription Factors and Its Regulatory Genes Involved in Acceleration of Hepatic Lipogenesis: A Rat Model for Type 2 Diabetes. Biomedicines 2019; 7:E76. [PMID: 31569751 PMCID: PMC6966540 DOI: 10.3390/biomedicines7040076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by impaired insulin action and its secretion. The objectives of the present study were to establish an economical and efficient animal model, mimicking pathophysiology of human T2DM to understand probable molecular mechanisms in context with lipid metabolism. In the present study, male Wistar rats were randomly divided into three groups. Animals were fed with high fat diet (HFD) except healthy control (HC) for 12 weeks. After eight weeks, intra peritoneal glucose tolerance test was performed. After confirmation of glucose intolerance, diabetic control (DC) group was injected with streptozotocin (STZ) (35 mg/kg b.w., i.p.). HFD fed rats showed increase (p ≤ 0.001) in glucose tolerance and HOMA-IR as compared to HC. Diabetes rats showed abnormal (p ≤ 0.001) lipid profile as compared to HC. The hepatocyte expression of transcription factors SREBP-1c and NFκβ, and their target genes were found to be upregulated, while PPAR-γ, CPT1A and FABP expressions were downregulated as compared to the HC. A number of animal models have been raised for studying T2DM, but the study has been restricted to only the biochemical level. The model is validated at biochemical, molecular and histopathological levels, which can be used for screening new therapeutics for the effective management of T2DM.
Collapse
Affiliation(s)
- Suresh P Khadke
- Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Katraj, Pune, Maharashtra 411043, India.
| | - Aniket A Kuvalekar
- Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Katraj, Pune, Maharashtra 411043, India.
| | - Abhay M Harsulkar
- Department of Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, Maharashtra 411038, India.
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
26
|
Reinehr T. Inflammatory markers in children and adolescents with type 2 diabetes mellitus. Clin Chim Acta 2019; 496:100-107. [PMID: 31276632 DOI: 10.1016/j.cca.2019.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
This review examines the potential relationship between serum inflammation markers and type 2 diabetes mellitus (T2DM). Inflammation markers have been proposed as prognostic markers for the development of T2DM and its complications. Furthermore, modulation of the inflammatory process may offer future treatment strategies for T2DM. This review focuses on children and adolescents because there is usually little, if any, complications associated with other disease processes, use of medications, or active tobacco smoking. Furthermore, β-cell failure in young age cannot be solely explained by aging and exhaustion of β-cells due to insulin resistance. Pediatric studies have demonstrated that pro-inflammatory cytokines TNF-α, IL-6, IL-1β, IFNγ, PEDF, and fetuin A were increased in insulin resistance, while the anti-inflammatory cytokines adiponectin and omentin were decreased. Furthermore, TNF-α, fetuin A, FGF-21 were altered in obese children with T2DM suggesting a direct involvement in β-cell failure. Future studies focusing on children and adolescents may facilitate our understanding of T2DM as an inflammatory disease process.
Collapse
Affiliation(s)
- Thomas Reinehr
- Department of Pediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Dr. F. Steiner Str. 5, D-45711 Datteln, Germany.
| |
Collapse
|
27
|
Mak LY, Lee CH, Cheung KS, Wong DKH, Liu F, Hui RWH, Fung J, Xu A, Lam KSL, Yuen MF, Seto WK. Association of adipokines with hepatic steatosis and fibrosis in chronic hepatitis B patients on long-term nucleoside analogue. Liver Int 2019; 39:1217-1225. [PMID: 30912255 DOI: 10.1111/liv.14104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/10/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS It is unknown how concomitant hepatic steatosis affects disease progression in chronic hepatitis B (CHB). Adipokines such as fibroblast growth factor 21 (FGF21) and adipocyte fatty acid-binding protein (AFABP) have been associated with non-alcoholic fatty liver disease. We determined the significance of these metabolic markers in CHB-related liver injury. METHODS We recruited CHB patients on antiviral treatment for transient elastography assessment to determine liver stiffness (advanced fibrosis/cirrhosis, F3/F4, defined by EASL-ALEH criteria) and controlled attenuation parameter (hepatic steatosis, defined as ≥ 248 dB/m). Plasma FGF-21, AFABP and adiponectin levels were measured. RESULTS A total of 415 patients [mean age 59.6 years, 71.6% male, median treatment duration 6.2 years] were recruited. Patients with F3/F4 (N = 151) had lower FGF-21 (11.7 vs 13.6 pg/mL, P = 0.055), higher AFABP (126.8 vs 84.1 pg/mL, P < 0.001) and HOMA-IR (7.1 vs 5.1, P = 0.004) levels compared to those without F3/F4 (N = 264). Multivariate analysis showed that FGF-21 level was associated with hepatic steatosis (OR 1.005, 95% CI 1.001-1.009) and F3/F4 (OR 0.993, 95% CI 0.989-0.998), while AFABP level (OR 1.001, 95% CI 1-1.002), body mass index (BMI) (OR 1.107, 95% CI 1.037-1.182) and presence of diabetes mellitus (OR 2.059, 95% CI 1.206-3.516) were associated with F3/F4. With the combined presence of BMI ≥ 25 kg/m2 , diabetes and AFABP > 105.9 pg/mL, the odds ratio for F3/F4 was 3.712 (95% CI 1.364-10.105, P = 0.010). CONCLUSIONS Low FGF-21 and high AFABP levels were associated with advanced fibrosis/cirrhosis in CHB patients on antiviral treatment. Plasma AFABP, together with other metabolic risk factors, may aid identification of patients lacking fibrosis improvement during antiviral treatment.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Chi-Ho Lee
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Ka-Shing Cheung
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Danny Ka-Ho Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Fen Liu
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Rex Wan-Hin Hui
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - James Fung
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Karen Siu-Ling Lam
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Wai-Kay Seto
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
28
|
Lee CH, Cheung CYY, Woo YC, Lui DTW, Yuen MMA, Fong CHY, Chow WS, Xu A, Lam KSL. Prospective associations of circulating adipocyte fatty acid-binding protein levels with risks of renal outcomes and mortality in type 2 diabetes. Diabetologia 2019; 62:169-177. [PMID: 30267180 DOI: 10.1007/s00125-018-4742-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Elevated circulating adipocyte fatty acid-binding protein (AFABP) levels have been found to correlate with diabetic nephropathy staging in cross-sectional studies. However, it remains unclear whether these higher serum levels reflect a role of AFABP in the development of diabetic kidney disease (DKD), or simply result from its impaired renal clearance in DKD. Here we investigated prospectively the prognostic importance of serum AFABP level in the development of adverse renal outcomes in a large clinic-based cohort of participants with type 2 diabetes. METHODS Baseline serum AFABP levels were measured in 5454 Chinese participants from the Hong Kong West Diabetes Registry. The association between circulating AFABP levels and incident adverse renal outcomes-defined as a composite endpoint of a sustained 40% decline in eGFR, end-stage renal disease requiring renal replacement therapy or kidney transplantation, or renal deaths-was evaluated using multivariable Cox regression analysis. RESULTS Over a median follow-up of 5 years, 754 of the 5454 participants developed incident adverse renal outcomes. Elevated circulating AFABP levels were independently associated with incident adverse renal outcomes (HR 1.43, 95% CI 1.31, 1.57, p < 0.001) after adjustments for conventional risk factors for DKD progression. Importantly, the prognostic role of serum AFABP was independent of the baseline albuminuria status or eGFR levels of the study participants. CONCLUSIONS/INTERPRETATION Circulating AFABP levels were predictive of incident adverse renal outcomes, even in participants with relatively well-preserved kidney function at baseline, suggesting its potential to be a useful marker for early risk stratification in DKD.
Collapse
Affiliation(s)
- Chi Ho Lee
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, People's Republic of China
- Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Chloe Y Y Cheung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Yu Cho Woo
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - David T W Lui
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Michele M A Yuen
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Carol H Y Fong
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Wing Sun Chow
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, People's Republic of China
| | - Amin Xu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, People's Republic of China
- Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Karen S L Lam
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong, SAR, People's Republic of China.
- Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Chronic inflammation, adipokines, and hepatokines have been identified as basis of insulin resistance and β cell failure in animal models. We present our current knowledge concerning the potential relationship between these cytokines, inflammation, metabolic syndrome (MetS), and type 2 diabetes mellitus (T2DM) in the pediatric population. RECENT FINDINGS Pro-inflammatory cytokines related to insulin resistance and MetS in children are tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, interferon gamma, pigment epithelium-derived factor, chemerin, vaspin, and fetuin A. Anti-inflammatory cytokines associated with insulin resistance and MetS in children are leptin, adiponectin, omentin, fibroblast growth factor (FGF)-21, osteocalcin, and irisin. These anti-inflammatory cytokines are decreased (adiponectin, omentin, and osteocalcin) or increased (leptin, FGF-21, and irisin) in obesity suggesting a resistance state. TNF-α, fetuin A, and FGF-21 are altered in obese children with T2DM suggesting an involvement in β cell failure. These cytokines, adipokines, and hepatokines may be able to predict development of MetS and T2DM and have a potential therapeutic target ameliorating insulin resistance.
Collapse
Affiliation(s)
- Thomas Reinehr
- Department of Pediatric Endocrinology, Diabetes and Nutrition Medicine, Vestische Hospital for Children and Adolescents Datteln, University of Witten/Herdecke, Dr. F. Steiner Str. 5, D-45711, Datteln, Germany.
| | - Christian Ludwig Roth
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA
- Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
30
|
Orsag J, Karasek D, Halenka M, Vaverkova H, Spurna J, Kubickova V, Lukes J, Zadrazil J. Association of serum adipocyte fatty acid-binding protein and apolipoprotein B /apolipoprotein A1 ratio with intima media thickness of common carotid artery in dyslipidemic patients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 163:166-171. [PMID: 30209438 DOI: 10.5507/bp.2018.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/19/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Diseases caused by atherosclerosis play the most important role in mortality and morbidity worldwide. Serum adipocyte fatty acid binding protein (A-FABP) seems to be a new promising marker to determine the risk of atherosclerosis. OBJECTIVE The aim of this study was to evaluate relationships between serum A-FABP levels in studied individuals and to assess the possibility of modeling the intima media thickness of the common carotid artery (C-IMT) using A-FABP levels and other observed characteristics. METHODS Seventy two Caucasian individuals were enrolled and divided into 3 groups: dyslipidemic patients with or without metabolic syndrome (MetS+, n=17; MetS-, n= 34) and controls (n=21). RESULTS There was confirmed the well-established risk profile of individuals with MetS (unfavorable lipid and lipoprotein profile, as well as increased parameters of insulin resistence and C-IMT). A-FABP concentrations in this group were significantly higher in comparison with both MetS- and controls. CONCLUSION Using multiple linear regression models of C-IMT values for all individual data, healthy controls and dyslipidemic patients without metabolic syndrome (MetS-) A-FABP levels were not revealed as an important predictor of C-IMT in our model. In contrast, age, gender, waist circumference, nonHDL cholesterol levels and ApoB/ApoA1 ratio were important repressors of C- IMT in study individuals. This finding may be attributed to the overwhelming effect of other more robust risk factors for atherosclerosis in these individuals.
Collapse
Affiliation(s)
- Jiri Orsag
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - David Karasek
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Milan Halenka
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Helena Vaverkova
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Jaromira Spurna
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | - Veronika Kubickova
- Department of Clinical Biochemistry, University Hospital Olomouc, Czech Republic Corresponding author: Jiri Orsag, e-mail
| | - Jiri Lukes
- Department of Clinical Biochemistry, University Hospital Olomouc, Czech Republic Corresponding author: Jiri Orsag, e-mail
| | - Josef Zadrazil
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| |
Collapse
|
31
|
FABP7 promotes cell proliferation and survival in colon cancer through MEK/ERK signaling pathway. Biomed Pharmacother 2018; 108:119-129. [PMID: 30218856 DOI: 10.1016/j.biopha.2018.08.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 11/21/2022] Open
Abstract
Colon cancer (CC), one of the most frequently diagnosed malignancies deriving from the digestive system, has greatly threatened human health and life. Fatty acid binding protein 7 (FABP7), an intracellular protein with the tissue-specific expression pattern, has been reported to be implicated in diverse types of human tumors. However, the biological role of FABP7 in CC is still poorly understood. The current study aimed to investigate the role of FABP7 in CC and illuminate the potential molecular mechanisms. In this present study, we found that FABP7 was highly expressed in CC tissues and cell lines, suggesting the possible involvement of FABP7 in CC tumorigenesis. Moreover, functional investigations showed that FABP7-overexpression promoted CC cell proliferation, colony formation, cell cycle progression and inhibited cell apoptosis; on the contrary, FABP7 knockdown produced an inhibitory effects on CC cell proliferation and survival. Notably, FABP7 knockdown inhibited colon tumor growth in vivo. In addition, mechanistic investigations demonstrated that FABP7 exerted its promoting effects on CC cell proliferation and survival through activation of the MEK/ERK signaling pathway. Collectively, our data indicate that FABP7 may be used as a novel diagnostic bio-marker and a potential therapeutic target for CC.
Collapse
|
32
|
Amiri M, Yousefnia S, Seyed Forootan F, Peymani M, Ghaedi K, Nasr Esfahani MH. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene 2018; 676:171-183. [PMID: 30021130 DOI: 10.1016/j.gene.2018.07.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022]
Abstract
One of the most importantly involved pathways in cancer development is fatty-acid signaling pathway. Synthesized lipids as energetic sources are consumed by cancer cells for proliferation, growth, survival, invasion and angiogenesis. Fatty acids as signaling compounds regulate metabolic and transcriptional networks, survival pathways and inflammatory responses. Aggregation of fatty acids with fatty acid binding proteins (FABPs) facilitates their transportation to different cell organelles. FABPs, a group of lipid binding proteins modulate fatty acid metabolism, cell growth and proliferation and cancer development. They may be used as tumor marker in some cancers. FABPs are expressed in most malignancies such as prostate, breast, liver, bladder and lung cancer which are associated with the incidence, proliferation, metastasis, invasion of tumors. This review introduces several isoforms of FABPs (FABP1-12) and summarizes their function and their possible roles in cancer development through some proposed mechanisms.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Saghar Yousefnia
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Farzad Seyed Forootan
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
33
|
Yang J, Chen Y, Xiong X, Zhou X, Han L, Ni L, Wang W, Wang X, Zhao L, Shao D, Huang C. Peptidome Analysis Reveals Novel Serum Biomarkers for Children with Autism Spectrum Disorder in China. Proteomics Clin Appl 2018; 12:e1700164. [DOI: 10.1002/prca.201700164] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/06/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Juan Yang
- Department of Cell Biology and Genetics; School of Basic Medical Sciences/Key Laboratory of Environment and Genes Related to Diseases; Xi'an Jiaotong University Health Science Center; Xi'an 710061 Shaanxi China
- Center of Computational Systems Medicine; School of Biomedical Informatics; University of Texas Health Science Center at Houston; Houston 77030 USA
| | - Yanni Chen
- Department of Pediatrics; Xi'an Children's Hospital; Xi'an 710003 Shaanxi China
| | - Xiaofan Xiong
- Department of Cell Biology and Genetics; School of Basic Medical Sciences/Key Laboratory of Environment and Genes Related to Diseases; Xi'an Jiaotong University Health Science Center; Xi'an 710061 Shaanxi China
| | - Xiaobo Zhou
- Center of Computational Systems Medicine; School of Biomedical Informatics; University of Texas Health Science Center at Houston; Houston 77030 USA
| | - Lin Han
- Department of Cell Biology and Genetics; School of Basic Medical Sciences/Key Laboratory of Environment and Genes Related to Diseases; Xi'an Jiaotong University Health Science Center; Xi'an 710061 Shaanxi China
| | - Lei Ni
- Department of Cell Biology and Genetics; School of Basic Medical Sciences/Key Laboratory of Environment and Genes Related to Diseases; Xi'an Jiaotong University Health Science Center; Xi'an 710061 Shaanxi China
| | - Wenjing Wang
- Department of Hepatobiliary Surgery; First Affiliated Hospital; Xi'an Jiaotong University; Xi'an 710061 Shaanxi China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics; School of Basic Medical Sciences/Key Laboratory of Environment and Genes Related to Diseases; Xi'an Jiaotong University Health Science Center; Xi'an 710061 Shaanxi China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics; School of Basic Medical Sciences/Key Laboratory of Environment and Genes Related to Diseases; Xi'an Jiaotong University Health Science Center; Xi'an 710061 Shaanxi China
| | - Dongdong Shao
- Department of Pediatrics; Xi'an Children's Hospital; Xi'an 710003 Shaanxi China
| | - Chen Huang
- Department of Cell Biology and Genetics; School of Basic Medical Sciences/Key Laboratory of Environment and Genes Related to Diseases; Xi'an Jiaotong University Health Science Center; Xi'an 710061 Shaanxi China
| |
Collapse
|
34
|
Guo Z, Martucci NJ, Liu Y, Yoo E, Tako E, Mahler GJ. Silicon dioxide nanoparticle exposure affects small intestine function in an in vitro model. Nanotoxicology 2018; 12:485-508. [PMID: 29668341 DOI: 10.1080/17435390.2018.1463407] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of nanomaterials to enhance properties of food and improve delivery of orally administered drugs has become common, but the potential health effects of these ingested nanomaterials remain unknown. The goal of this study is to characterize the properties of silicon dioxide (SiO2) nanoparticles (NP) that are commonly used in food and food packaging, and to investigate the effects of physiologically realistic doses of SiO2 NP on gastrointestinal (GI) health and function. In this work, an in vitro model composed of Caco-2 and HT29-MTX co-cultures, which represent absorptive and goblet cells, was used. The model was exposed to well-characterized SiO2 NP for acute (4 h) and chronic (5 d) time periods. SiO2 NP exposure significantly affected iron (Fe), zinc (Zn), glucose, and lipid nutrient absorption. Brush border membrane intestinal alkaline phosphatase (IAP) activity was increased in response to nano-SiO2. The barrier function of the intestinal epithelium, as measured by transepithelial electrical resistance, was significantly decreased in response to chronic exposure. Gene expression and oxidative stress formation analysis showed NP altered the expression levels of nutrient transport proteins, generated reactive oxygen species, and initiated pro-inflammatory signaling. SiO2 NP exposure damaged the brush border membrane by decreasing the number of intestinal microvilli, which decreased the surface area available for nutrient absorption. SiO2 NP exposure at physiologically relevant doses ultimately caused adverse outcomes in an in vitro model.
Collapse
Affiliation(s)
- Zhongyuan Guo
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - Nicole J Martucci
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - Yizhong Liu
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - Eusoo Yoo
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| | - Elad Tako
- b Plant, Soil and Nutrition Laboratory , Agricultural Research Services, U.S. Department of Agriculture , Ithaca , NY , USA
| | - Gretchen J Mahler
- a Department of Biomedical Engineering , Binghamton University , Binghamton , NY , USA
| |
Collapse
|
35
|
Association of vascular indices with novel circulating biomarkers as prognostic factors for cardiovascular complications in patients with type 2 diabetes mellitus. Clin Biochem 2018; 53:31-37. [DOI: 10.1016/j.clinbiochem.2017.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 11/22/2022]
|
36
|
Otaki Y, Watanabe T, Kubota I. Heart-type fatty acid-binding protein in cardiovascular disease: A systemic review. Clin Chim Acta 2017; 474:44-53. [PMID: 28911997 DOI: 10.1016/j.cca.2017.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 12/12/2022]
Abstract
Fatty acid-binding proteins, whose clinical applications have been studied, are a family of proteins that reflect tissue injury. Heart-type fatty acid-binding protein (H-FABP) is a marker of ongoing myocardial damage and useful for early diagnosis of acute myocardial infarction (AMI). In the past decade, compared to other cardiac enzymes, H-FABP has shown more promise as an early detection marker for AMI. However, the role of H-FABP is being re-examined due to recent refinement in the search for newer biomarkers, and greater understanding of the role of high-sensitivity troponin. We discuss the current role of H-FABP as an early marker for AMI in the era of high sensitive troponin. H-FABP is highlighted as a prognostic marker for a broad spectrum of fatal diseases, viz., AMI, heart failure, arrhythmia, and pulmonary embolism that could be associated with poor clinical outcomes. Because the cut-off value of what constitutes an abnormal H-FABP potentially differs for each cardiovascular event and depends on the clinical setting, an optimal cut-off value has not been clearly established. Of note, several factors such as age, gender, and cardiovascular risk factors, which affect H-FABP levels need to be considered in this context. In this review, we discuss the clinical applications of H-FABP as a prognostic marker in various clinical settings.
Collapse
Affiliation(s)
- Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan.
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
37
|
Chen YC, Hsu BG, Lee CJ, Ho CC, Ho GJ, Lee MC. Serum adipocyte fatty acid-binding protein level is associated with arterial stiffness quantified with cardio-ankle vascular index in kidney transplant patients. Clin Exp Nephrol 2017; 22:188-195. [PMID: 28660445 DOI: 10.1007/s10157-017-1438-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/22/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Arterial stiffness is an established marker of cardiovascular risk and an independent predictor of cardiovascular disease (CVD) events and mortality in kidney transplant (KT) patients. Adipocyte fatty acid-binding protein (A-FABP), a novel adipokine, is positively associated with atherosclerosis. The present study evaluated the relationship between fasting circulating A-FABP and peripheral arterial stiffness using the cardio-ankle vascular index (CAVI) in KT patients. METHODS Fasting blood samples were collected from 74 KT patients, and serum A-FABP levels were measured using an enzyme immunoassay. CAVI was calculated using a waveform device (CAVI-VaSera VS-1000). The cutoff values for high and low levels of arterial stiffness were defined by the CAVI values of ≥9 and <9, respectively. RESULTS Thirty-four patients (45.9%) were classified into the high arterial stiffness group. Compared with the low arterial stiffness group, the high arterial stiffness group had higher values for age (p = 0.015), systolic blood pressure (p < 0.001), pulse pressure (p < 0.001), duration of kidney transplantation (p = 0.005), serum total cholesterol and triglyceride levels (p = 0.033 and 0.047, respectively), glomerular filtration rate (p = 0.019), fasting glucose levels (p = 0.012), and serum A-FABP levels (p < 0.001). Multivariate forward stepwise linear regression analysis showed that age (p = 0.004), systolic blood pressure (p = 0.001), and serum A-FABP levels (p = 0.003) were independent predictors of CAVI value in KT patients. CONCLUSION Serum fasting A-FABP level is positively associated with peripheral arterial stiffness in KT patients.
Collapse
Affiliation(s)
- Yen-Cheng Chen
- Department of Surgery, Buddhist Tzu Chi General Hospital, No. 707, Section 3, Chung-Yang Road, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bang-Gee Hsu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Ching-Chun Ho
- Department of Surgery, Buddhist Tzu Chi General Hospital, No. 707, Section 3, Chung-Yang Road, Hualien, Taiwan
| | - Guan-Jin Ho
- Department of Surgery, Buddhist Tzu Chi General Hospital, No. 707, Section 3, Chung-Yang Road, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Che Lee
- Department of Surgery, Buddhist Tzu Chi General Hospital, No. 707, Section 3, Chung-Yang Road, Hualien, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
38
|
Santhi N, Sasivathanam N, Nirmala Devi K, Arshiya Begum A, Vanitha K, Syed Ali Fathima S. Serum Level of Adipocyte Fatty Acid Binding Protein in Obesity. JOURNAL OF MEDICAL SCIENCES AND HEALTH 2017. [DOI: 10.46347/jmsh.2017.v03i01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
39
|
Associations of A-FABP with Anthropometric and Metabolic Indices and Inflammatory Cytokines in Obese Patients with Newly Diagnosed Type 2 Diabetes. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9382092. [PMID: 27819006 PMCID: PMC5081425 DOI: 10.1155/2016/9382092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/25/2016] [Indexed: 12/21/2022]
Abstract
The study aimed to evaluate the relationship between anthropometric and metabolic indices, inflammatory cytokines, and adipocyte fatty acid-binding protein (A-FABP) in obese patients with newly diagnosed type 2 diabetes. The study included 48 nonobese subjects with newly diagnosed type 2 diabetes, 42 obese subjects with newly diagnosed type 2 diabetes, 30 simple obese subjects, and 30 matched normal subjects. Serum A-FABP was assessed by enzyme-linked immunosorbent assay. Pearson's correlations and multiple linear regression stepwise analysis were used to analyze correlations of A-FABP with anthropometric and metabolic indices and inflammatory cytokines. Obese subjects with newly diagnosed type 2 diabetes had elevated A-FABP compared to normal control, nondiabetic obese patients, and nonobese diabetic patients. A-FABP was significantly correlated with glycated hemoglobin A1C (HbA1C), BMI, triglyceride, Homeostasis Model Assessment Index (HOMA-IR), waist hip rate, C-reactive protein, IL-6, and HDL-C in obese subjects with type 2 diabetes. In multiple linear regression stepwise analysis, BMI, HbA1C, and HOMA-IR were significantly independent determinants for A-FABP. BMI, HbA1C, and HOMA-IR are independently associated with A-FABP in obese subjects with newly diagnosed type 2 diabetes. A-FABP may be related to insulin resistance and inflammation in type 2 diabetes and concomitant obesity.
Collapse
|
40
|
Abali R, Temel Yuksel I, Yuksel MA, Bulut B, Imamoglu M, Emirdar V, Unal F, Guzel S, Celik C. Implications of circulating irisin and Fabp4 levels in patients with polycystic ovary syndrome. J OBSTET GYNAECOL 2016; 36:897-901. [PMID: 27184575 DOI: 10.3109/01443615.2016.1174200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of the study was to evaluate the fatty acid-binding protein-4 (FABP4) and irisin concentrations in women with polycystic ovary syndrome (PCOS). Forty-nine women with PCOS, diagnosed according to Rotterdam criteria and 39 healthy women matched for body mass index (BMI) and age. Serum irisin and plasma FABP4 concentrations were measured in both groups. The association of irisin and FABP4 concentrations with metabolic parameters were also tested. Women with PCOS had significantly lower mean serum irisin concentrations than control subjects (158.5 ± 123.3 versus 222.9 ± 152.2 ng/ml, p < 0.05). Concentrations of FABP4 in PCOS and control groups were not significantly different (10.5 ± 4.4 versus 10.9 ± 4.2 ng/ml, p > 0.05). FABP4 concentrations were correlated with BMI, waist-hip ratio (WHR) and HOMA-IR (r = 0.57, p = 0.001; r = 0.26, p = 0.03; r = 0.26, p = 0.03, respectively). No associations between irisin and all the others parameters except serum levels of LH were found. Serum irisin concentrations of women with PCOS were lower compared to the controls. Moreover, there were no difference in plasma FABP4 concentrations between women with PCOS and controls.
Collapse
Affiliation(s)
- Remzi Abali
- a Department of Obstetrics and Gynecology , Namik Kemal University School of Medicine , Tekirdag , Turkey
| | - Ilkbal Temel Yuksel
- b Department of Obstetrics and Gynecology , Okmeydani Research and Education Hospital , Istanbul , Turkey
| | - Mehmet Aytac Yuksel
- c Department of Obstetrics and Gynecology , Istanbul University Cerrahpasa School of Medicine , Istanbul , Turkey
| | - Berk Bulut
- b Department of Obstetrics and Gynecology , Okmeydani Research and Education Hospital , Istanbul , Turkey
| | - Metehan Imamoglu
- c Department of Obstetrics and Gynecology , Istanbul University Cerrahpasa School of Medicine , Istanbul , Turkey
| | - Volkan Emirdar
- d Department of Obstetrics and Gynecology , Izmir University School of Medicine , Izmir , Turkey
| | - Fehmi Unal
- e Department of Obstetrics and Gynecology , Istanbul Research and Education Hospital , Istanbul , Turkey
| | - Savas Guzel
- a Department of Obstetrics and Gynecology , Namik Kemal University School of Medicine , Tekirdag , Turkey
| | - Cem Celik
- a Department of Obstetrics and Gynecology , Namik Kemal University School of Medicine , Tekirdag , Turkey
| |
Collapse
|
41
|
Munukka E, Wiklund P, Partanen T, Välimäki S, Laakkonen EK, Lehti M, Fischer-Posovzsky P, Wabitsch M, Cheng S, Huovinen P, Pekkala S. Adipocytes as a Link Between Gut Microbiota-Derived Flagellin and Hepatocyte Fat Accumulation. PLoS One 2016; 11:e0152786. [PMID: 27035341 PMCID: PMC4817958 DOI: 10.1371/journal.pone.0152786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/18/2016] [Indexed: 01/22/2023] Open
Abstract
While the role of both elevated levels of circulating bacterial cell wall components and adipose tissue in hepatic fat accumulation has been recognized, it has not been considered that the bacterial components-recognizing adipose tissue receptors contribute to the hepatic fat content. In this study we found that the expression of adipose tissue bacterial flagellin (FLG)-recognizing Toll-like receptor (TLR) 5 associated with liver fat content (r = 0.699, p = 0.003) and insulin sensitivity (r = -0.529, p = 0.016) in humans (n = 23). No such associations were found for lipopolysaccharides (LPS)-recognizing TLR4. To study the underlying molecular mechanisms of these associations, human HepG2 hepatoma cells were exposed in vitro to the conditioned culture media derived from FLG or LPS-challenged human adipocytes. The adipocyte-mediated effects were also compared to the effects of direct HepG2 exposure to FLG and LPS. We found that the media derived from FLG-treated adipocytes stimulated fat accumulation in HepG2 cells, whereas either media derived from LPS-treated adipocytes or direct FLG or LPS exposure did not. This is likely due to that FLG-treatment of adipocytes increased lipolysis and secretion of glycerol, which is known to serve a substrate for triglyceride synthesis in hepatocytes. Similarly, only FLG-media significantly decreased insulin signaling-related Akt phosphorylation, IRS1 expression and mitochondrial respiratory chain ATP5A. In conclusion, our results suggest that the FLG-induced TLR5 activation in adipocytes increases glycerol secretion from adipocytes and decreases insulin signaling and mitochondrial functions, and increases fat accumulation in hepatocytes. These mechanisms could, at least partly, explain the adipose tissue TLR5 expression associated with liver fat content in humans.
Collapse
Affiliation(s)
- Eveliina Munukka
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Clinical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Petri Wiklund
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tiina Partanen
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sakari Välimäki
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eija K. Laakkonen
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Maarit Lehti
- LIKES Research Center for Sport and Health Sciences, Jyväskylä, Finland
| | | | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | - Sulin Cheng
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Pentti Huovinen
- Department of Clinical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Satu Pekkala
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Clinical Microbiology and Immunology, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
42
|
Wang Y, Lin HQ, Xiao CY, Law WK, Hu JS, Ip TM, Wan DCC. Using molecular docking screening for identifying hyperoside as an inhibitor of fatty acid binding protein 4 from a natural product database. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
43
|
Ibarretxe D, Girona J, Amigó N, Plana N, Ferré R, Guaita S, Mallol R, Heras M, Masana L. Impact of epidermal fatty acid binding protein on 2D-NMR-assessed atherogenic dyslipidemia and related disorders. J Clin Lipidol 2015; 10:330-8.e2. [PMID: 27055964 DOI: 10.1016/j.jacl.2015.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/15/2015] [Accepted: 12/14/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND The role of circulating FABP5 on metabolic alterations is under active evaluation. On the other hand, FABP5 SNPs (rs454550 and rs79370435) seem to modulate its effect. OBJECTIVES Our aim was to examine the role of circulating FABP5 levels and its main SNPs in atherogenic dyslipidemia (AD) assessed by 2D-Nuclear Magnetic Resonance (NMR) and related metabolic and inflammation markers. We hypothesized that circulating FABP5 may be a biomarker for metabolic risk. METHODS We studied 459 subjects admitted to the metabolism unit because of lipid metabolism disturbances and/or associated disorders. After a 6-week lipid-lowering drug wash-out period, anamnesis and physical examination were performed. Carotid intime-media thickness (cIMT) was measured by ultrasound. FABP5, FABP4, lipids, metabolic proteins, and enzymes were determined by biochemical methods. The lipid profile was assessed by NMR. The rs454550 and rs79370435 FABP5 gene variants were also determined. RESULTS The FABP5 plasma levels were positively correlated with adiposity, glucose metabolism, and lipolysis parameters and were associated with AD, as assessed by NMR. There was a significant positive correlation between hsCRP and FABP5. The presence of type 2 diabetes, obesity, metabolic syndrome, or AD was associated with higher FABP5 plasma levels (P < .005). The FABP5 concentrations, but not those of FABP4, were higher in patients with carotid plaques. FABP5 was a main determinant of plaque presence according to logistic regression analysis. The rare rs454550 allele was hyper-represented in nonobese subjects (P = .011). CONCLUSIONS FABP5 is a biomarker of adiposity-associated metabolic derangements that include AD thus underscoring the concomitant presence of inflammation. FABP5 is associated with increased subclinical atherosclerosis.
Collapse
Affiliation(s)
- Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, IISPV, Universitat Rovira i Virgili, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, IISPV, Universitat Rovira i Virgili, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Núria Amigó
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Biosfer Teslab, Reus, Spain; Department of Electronic Engineering, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Núria Plana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, IISPV, Universitat Rovira i Virgili, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Raimón Ferré
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, IISPV, Universitat Rovira i Virgili, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Sandra Guaita
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, IISPV, Universitat Rovira i Virgili, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Roger Mallol
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Biosfer Teslab, Reus, Spain; Department of Electronic Engineering, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Mercedes Heras
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, IISPV, Universitat Rovira i Virgili, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Luis Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, "Sant Joan" University Hospital, IISPV, Universitat Rovira i Virgili, Reus, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
44
|
Balogun KA, Cheema SK. Dietary Omega-3 Fatty Acids Prevented Adipocyte Hypertrophy by Downregulating DGAT-2 and FABP-4 in a Sex-Dependent Fashion. Lipids 2015; 51:25-38. [DOI: 10.1007/s11745-015-4105-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/18/2015] [Indexed: 01/03/2023]
|
45
|
Role of nutrition on anemia in elderly. Clin Nutr ESPEN 2015; 11:e1-e11. [PMID: 28531420 DOI: 10.1016/j.clnesp.2015.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 07/08/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
Anemia in elderly population have a great incidence and is related to increased mortality risk. The incidence of nutrition in anemia is about one third of the total. Caloric and protein restriction, iron, vitamin B12, folic deficiency are the causes of nutritional anemia. Protein and energy malnutrition stimulate an increased cytokines production with induction of inflammation, immunodeficiency and anemia. Anorexia and obesity can be associated with anemia due to increased cytokines and hepdicin serum level. Macrophages activity is inhibited and a decrease in red blood cells (RBC), hemoglobin (Hb) concentration due to ineffective erythropoiesis is observed. An adequate energy and protein diet is necessary to reduce inflammation and increase iron absorption. A minimum of 1700 kcal/day and 1.7 gr/kg/day of protein intake are necessary to maintain anabolism in chronic patients to prevent and treat anemia. Iron supplementation by intravenous injection is safe and effective to correct severe iron deficiency. The supplementation of vitamins and oligomineral are useful to reduce oxidative stress and improve RBC longevity. Anemia in elderly could be prevented by an adequate nutrition, a simple and not expensive intervention, and associated to physical exercise reduce the incidence of mortality rate.
Collapse
|
46
|
Canas JA, Damaso L, Hossain J, Balagopal PB. Fatty acid binding proteins 4 and 5 in overweight prepubertal boys: effect of nutritional counselling and supplementation with an encapsulated fruit and vegetable juice concentrate. J Nutr Sci 2015; 4:e39. [PMID: 26688725 PMCID: PMC4678767 DOI: 10.1017/jns.2015.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 12/15/2022] Open
Abstract
Elevated fatty acid binding proteins (FABP) may play a role in obesity and co-morbidities. The role of nutritional interventions in modulating these levels remains unclear. The aim of this post hoc study was to determine the effect of overweight (OW) on FABP4 and FABP5 in boys in relation to indices of adiposity, insulin resistance and inflammation, and to investigate the effects of a 6-month supplementation with an encapsulated fruit and vegetable juice concentrate (FVJC) plus nutritional counselling (NC) on FABP levels. A post hoc analysis of a double-blind, randomised, placebo-controlled study of children recruited from the general paediatric population was performed. A total of thirty age-matched prepubertal boys (nine lean and twenty-one OW; aged 6-10 years) were studied. Patients received NC by a registered dietitian and were randomised to FVJC or placebo capsules for 6 months. FABP4, FABP5, glucose, insulin, homeostasis model assessment-insulin resistance (HOMA-IR), glucose-induced acute insulin response (AIR), lipid-corrected β-carotene (LCβC), adiponectin, leptin, high-sensitivity C-reactive protein (hs-CRP), IL-6 and body composition by dual-energy X-ray absorptiometry were determined before and after the intervention. FABP were higher (P < 0·01) in the OW v. lean boys and correlated directly with HOMA-IR, abdominal fat mass (AFM), hs-CRP, IL-6, and LCβC (P < 0·05 for all). FABP4 was associated with adiponectin and AIR (P < 0·05). FVJC plus NC reduced FABP4, HOMA-IR and AFM (P < 0·05 for all) but not FABP5. OW boys showed elevated FABP4 and FABP5, but only FABP4 was lowered by the FVJC supplement.
Collapse
Affiliation(s)
- Jose A. Canas
- Pediatric Endocrinology and Metabolism, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| | - L. Damaso
- Pediatric Endocrinology and Metabolism, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| | - J. Hossain
- Bioinformatics Core Facility, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| | - P. Babu Balagopal
- Biomedical Research, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| |
Collapse
|
47
|
Li A, Zhao Z, Zhang Y, Fu C, Wang M, Zan L. Tissue expression analysis, cloning, and characterization of the 5′-regulatory region of the bovine fatty acid binding protein 4 gene1. J Anim Sci 2015; 93:5144-52. [DOI: 10.2527/jas.2015-9378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- A. Li
- College of Animal Science and Technology
| | - Z. Zhao
- College of Animal Science and Technology
| | - Y. Zhang
- College of Animal Science and Technology
| | - C. Fu
- College of Animal Science and Technology
| | - M. Wang
- College of Animal Science and Technology
| | - L. Zan
- College of Animal Science and Technology
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, People's Republic of China 712100
| |
Collapse
|
48
|
Utility of Scalp Hair Follicles as a Novel Source of Biomarker Genes for Psychiatric Illnesses. Biol Psychiatry 2015; 78:116-25. [PMID: 25444170 DOI: 10.1016/j.biopsych.2014.07.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Identifying beneficial surrogate genetic markers in psychiatric disorders is crucial but challenging. METHODS Given that scalp hair follicles are easily accessible and, like the brain, are derived from the ectoderm, expressions of messenger RNA (mRNA) and microRNA in the organ were examined between schizophrenia (n for first/second = 52/42) and control subjects (n = 62/55) in two sets of cohort. Genes of significance were also analyzed using postmortem brains (n for case/control = 35/35 in Brodmann area 46, 20/20 in cornu ammonis 1) and induced pluripotent stem cells (n = 4/4) and pluripotent stem cell-derived neurospheres (n = 12/12) to see their role in the central nervous system. Expression levels of mRNA for autism (n for case/control = 18/24) were also examined using scalp hair follicles. RESULTS Among mRNA examined, FABP4 was downregulated in schizophrenia subjects by two independent sample sets. Receiver operating characteristic curve analysis determined that the sensitivity and specificity were 71.8% and 66.7%, respectively. FABP4 was expressed from the stage of neurosphere. Additionally, microarray-based microRNA analysis showed a trend of increased expression of hsa-miR-4449 (p = .0634) in hair follicles from schizophrenia. hsa-miR-4449 expression was increased in Brodmann area 46 from schizophrenia (p = .0007). Finally, we tested the expression of nine putative autism candidate genes in hair follicles and found decreased CNTNAP2 expression in the autism cohort. CONCLUSIONS Scalp hair follicles could be a beneficial genetic biomarker resource for brain diseases, and further studies of FABP4 are merited in schizophrenia pathogenesis.
Collapse
|
49
|
Wang C, Wang L, Li W, Yan F, Tian M, Wu C, Qi L, Wang X, Song J, Hou X, Chen L. Irisin has no effect on lipolysis in 3T3-L1 adipocytes or fatty acid metabolism in HepG2 hepatocytes. Endocrine 2015; 49:90-6. [PMID: 25326905 DOI: 10.1007/s12020-014-0458-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/14/2014] [Indexed: 01/21/2023]
Abstract
Irisin, a newly identified myokine responsible for browning of white or beige adipocytes, has been reported to be present at reduced levels in diabetic patients and associated with obesity, serum triglyceride (TG) levels, and intrahepatic TG levels. We wondered whether irisin could directly affect fatty acid and TG metabolism in adipocytes and hepatocytes. We examined the effects of various concentrations of irisin on lipolysis (according to Oil Red O staining, free fatty acid release, and glycerol release), protein expression of HSL and ATGL, and mRNA expression of other lipid-related genes (UCP-1, PPARγ, FABP-4, HSL, ATGL, PPARα, and CPT-1) in mature 3T3-L1 adipocytes, as well as mRNA levels of genes involved in the synthesis (SREBP-1C and FAS) and β-oxidation (PPARα and CPT-1) of fatty acids in HepG2 hepatocytes under physiological or hyperglycemic conditions. Our results revealed that although irisin significantly increased the mRNA levels of UCP-1 and PPARα, it failed to show detectable effects on lipolysis, HSL or ATGL protein levels, or the mRNA expression of other lipid-related genes in mature 3T3-L1 adipocytes. In HepG2 hepatocytes, high glucose induced the upregulation of SREBP-1C and FAS and the downregulation of PPARα; however, no significant effect of irisin on gene expression was observed under either physiological or hyperglycemic conditions. We therefore conclude that irisin has no significant direct effect on lipolysis in 3T3-L1 adipocytes or on fatty acid metabolism in HepG2 hepatocytes.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
ALS-associated P56S-VAPB mutation restrains 3T3-L1 preadipocyte differentiation. Biochem Biophys Res Commun 2015; 460:831-7. [PMID: 25824044 DOI: 10.1016/j.bbrc.2015.03.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/22/2015] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), which is the most common motor neuron disease in adults, is a neurodegenerative disease that involves the selective and systematic death of upper and lower motor neurons. In addition to the motor neuron death, altered metabolic functions, such as dyslipidemia, have also been reported for ALS patients; however, the underlying mechanism remains unknown. In the present study, we investigated the effects of ALS-associated P56S-vesicle-associated membrane proteinassociated protein B (VAPB), P56S-VAPB on 3T3-L1 preadipocyte differentiation and on the expression of differentiation-associated genes and unfolded protein response (UPR)-related genes. Experiments with 3T3-L1 cells transfected with wild-type (Wt)-VAPB and P56S-VAPB expression vectors showed that the size of lipid droplets was markedly smaller in P56S-VAPB-expressing cells, although fat accumulated intracellularly. In P56S-VAPB-expressing cells, increased the expression of PPARγ2, aP2, and C/EBPα, the genes deeply involved in adipocyte differentiation, was not observed. Furthermore, the expression levels of the UPR-related ATF4 and CHOP genes were found to be enhanced in the P56S-VAPB-expressing cells. From these results, P56S-VAPB was found to suppress adipocyte differentiation by promoting the activation of the ATF4-CHOP pathway. Given previous reports showing increased ATF4 and CHOP expression levels in neurons of ALS patients, results from the present study suggest that dyslipidemia is caused by enhanced ATF4-CHOP pathway in the adipose tissue of ALS patients.
Collapse
|