1
|
Alsayyah C, Rodrigues E, Hach J, Renne MF, Ernst R. Reversible tuning of membrane sterol levels by cyclodextrin in a dialysis setting. Biophys J 2025:S0006-3495(25)00174-2. [PMID: 40143542 DOI: 10.1016/j.bpj.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/14/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
Large unilamellar vesicles are popular membrane models for studying the impact of lipids and bilayer properties on the structure and function of transmembrane proteins. However, the functional reconstitution of transmembrane proteins in liposomes can be challenging, especially if the hydrophobic thickness of the protein does not match the thickness of the lipid bilayer. Such hydrophobic mismatch causes protein aggregation and low yields during the reconstitution procedure, which are exacerbated in sterol-rich membranes featuring low membrane compressibility. Here, we explore new approaches to reversibly tune the sterol content of (proteo)liposomes with methyl-β-cyclodextrin (mβCD) in a dialysis setting. Maintaining (proteo)liposomes in a confined compartment minimizes loss of material during cholesterol transfer and facilitates efficient removal of mβCD. We monitor the sterol concentration in the membrane with help of the solvatochromic probe C-Laurdan, which reports on lipid packing. Using Förster resonance energy transfer, we show that cholesterol delivery to proteoliposomes induces the oligomerization of a membrane property sensor, whereas a subsequent removal of cholesterol demonstrates full reversibility. We propose that tuning membrane compressibility by mβCD-meditated cholesterol delivery and removal in a dialysis setup provides a new handle to study the impact of sterols and membrane compressibility on membrane protein structure, function, and dynamics.
Collapse
Affiliation(s)
- Cynthia Alsayyah
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Saar, Germany; Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Saar, Germany; Center for Biophysics (ZBP), Saarland University, Saarland, Germany
| | - Emmanuel Rodrigues
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Saar, Germany; Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Saar, Germany; Center for Biophysics (ZBP), Saarland University, Saarland, Germany
| | - Julia Hach
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Saar, Germany; Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Saar, Germany; Center for Biophysics (ZBP), Saarland University, Saarland, Germany
| | - Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Saar, Germany; Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Saar, Germany; Center for Biophysics (ZBP), Saarland University, Saarland, Germany
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Saar, Germany; Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Saar, Germany; Center for Biophysics (ZBP), Saarland University, Saarland, Germany.
| |
Collapse
|
2
|
Kurisu M, Imai M. Osmotic spawning vesicle. SOFT MATTER 2024; 20:8976-8989. [PMID: 39282998 DOI: 10.1039/d4sm00915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We discovered a cascade vesicle division system driven by osmotic inflation. Binary giant unilamellar vesicles (GUVs) composed of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and cholesterol (Chol) were subjected to an osmotic pressure difference by encapsulating membrane-impermeable osmolytes (typically sucrose) in an external aqueous solution containing membrane-permeable osmolytes (typically fructose). This simple setup enabled the mother GUVs to repeatedly form small membrane buds and subsequently undergo divisions over several hundred seconds, resulting in the production of approximately 30-300 daughter GUVs from a single mother GUV. The observed morphological change of GUVs is well described by the mechanical balance between membrane bending, membrane tension, and osmotic pressure difference based on the spontaneous curvature model. This "osmotic spawning" behavior of GUVs does not rely on chemical reactions or functional macromolecules. Therefore, this cascade division system is compatible with various chemical systems and has the potential to implement proliferation ability in artificial cells, drug delivery systems, and protocells simply by modifying their membrane compartments and osmolytes.
Collapse
Affiliation(s)
- Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, Japan.
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, Japan.
| |
Collapse
|
3
|
Kennison-Cook KB, Heberle FA. Disruption of liquid/liquid phase separation in asymmetric GUVs prepared by hemifusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600037. [PMID: 38979299 PMCID: PMC11230200 DOI: 10.1101/2024.06.21.600037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Model asymmetric bilayers are useful for studying the coupling between lateral and transverse lipid organization. Here, we used calcium-induced hemifusion to create asymmetric giant unilamellar vesicles (aGUVs) for exploring the phase behavior of 16:0-PC/16:1-PC/Cholesterol, a simplified model for the mammalian plasma membrane. Symmetric GUVs (sGUVs) were first prepared using a composition that produced coexisting liquid-disordered and liquid-ordered phases visible by confocal fluorescence microscopy. The sGUVs were then hemifused to a supported lipid bilayer (SLB) composed of uniformly mixed 16:1-PC/Cholesterol. The extent of outer leaflet exchange was quantified in aGUVs in two ways: (1) from the reduction in fluorescence intensity of a lipid probe initially in the sGUV ("probe exit"); or (2) from the gain in intensity of a probe initially in the SLB ("probe entry"). These measurements revealed a large variability in the extent of outer leaflet exchange in aGUVs within a given preparation, and two populations with respect to their phase behavior: a subset of vesicles that remained phase separated, and a second subset that appeared uniformly mixed. Moreover, a correlation between phase behavior and extent of asymmetry was observed, with more strongly asymmetric vesicles having a greater probability of being uniformly mixed. We also observed substantial overlap between these populations, an indication that the uncertainty in measured exchange fraction is high. We developed models to determine the position of the phase boundary (i.e., the fraction of outer leaflet exchange above which domain formation is suppressed) and found that the phase boundaries determined separately from probe-entry and probe-exit data are in good agreement. Our models also provide improved estimates of the compositional uncertainty of individual aGUVs. We discuss several potential sources of uncertainty in the determination of lipid exchange from fluorescence measurements.
Collapse
|
4
|
Dziura D, Dziura M, Marquardt D. Studying lipid flip-flop in asymmetric liposomes using 1H NMR and TR-SANS. Methods Enzymol 2024; 700:295-328. [PMID: 38971604 DOI: 10.1016/bs.mie.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The specific spatial and temporal distribution of lipids in membranes play a crucial role in determining the biochemical and biophysical properties of the system. In nature, the asymmetric distribution of lipids is a dynamic process with ATP-dependent lipid transporters maintaining asymmetry, and passive transbilayer diffusion, that is, flip-flop, counteracting it. In this chapter, two probe-free techniques, 1H NMR and time-resolved small angle neutron scattering, are described in detail as methods of investigating lipid flip-flop rates in synthetic liposomes that have been generated with an asymmetric bilayer composition.
Collapse
Affiliation(s)
- Dominik Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Maksymilian Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada; Department of Physics, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
5
|
Wang Z, Li W, Jiang Y, Park J, Gonzalez KM, Wu X, Zhang QY, Lu J. Cholesterol-modified sphingomyelin chimeric lipid bilayer for improved therapeutic delivery. Nat Commun 2024; 15:2073. [PMID: 38453918 PMCID: PMC10920917 DOI: 10.1038/s41467-024-46331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cholesterol (Chol) fortifies packing and reduces fluidity and permeability of the lipid bilayer in vesicles (liposomes)-mediated drug delivery. However, under the physiological environment, Chol is rapidly extracted from the lipid bilayer by biomembranes, which jeopardizes membrane stability and results in premature leakage for delivered payloads, yielding suboptimal clinic efficacy. Herein, we report a Chol-modified sphingomyelin (SM) lipid bilayer via covalently conjugating Chol to SM (SM-Chol), which retains membrane condensing ability of Chol. Systemic structure activity relationship screening demonstrates that SM-Chol with a disulfide bond and longer linker outperforms other counterparts and conventional phospholipids/Chol mixture systems on blocking Chol transfer and payload leakage, increases maximum tolerated dose of vincristine while reducing systemic toxicities, improves pharmacokinetics and tumor delivery efficiency, and enhances antitumor efficacy in SU-DHL-4 diffuse large B-cell lymphoma xenograft model in female mice. Furthermore, SM-Chol improves therapeutic delivery of structurally diversified therapeutic agents (irinotecan, doxorubicin, dexamethasone) or siRNA targeting multi-drug resistant gene (p-glycoprotein) in late-stage metastatic orthotopic KPC-Luc pancreas cancer, 4T1-Luc2 triple negative breast cancer, lung inflammation, and CT26 colorectal cancer animal models in female mice compared to respective FDA-approved nanotherapeutics or lipid compositions. Thus, SM-Chol represents a promising platform for universal and improved drug delivery.
Collapse
Affiliation(s)
- Zhiren Wang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yanhao Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jonghan Park
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Xiangmeng Wu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Qing-Yu Zhang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, USA
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA.
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, USA.
- Clinical and Translational Oncology Program (CTOP), The University of Arizona Cancer Center, Tucson, AZ, 85721, USA.
- BIO5 Institute, The University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
6
|
Sabaghi Y, PourFarzad F, Zolghadr L, Bahrami A, Shojazadeh T, Farasat A, Gheibi N. A nano-liposomal carrier containing p-coumaric acid for induction of targeted apoptosis on melanoma cells and kinetic modeling. Biochem Biophys Res Commun 2024; 690:149219. [PMID: 37995451 DOI: 10.1016/j.bbrc.2023.149219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
There has been a growth in the use of plant compounds as biological products for the prevention and treatment of various diseases, including cancer. As a phenolic compound, p-Coumaric acid (p-CA) demonstrates preferrable biological effects such as anti-cancer activities. A nano-liposomal carrier containing p-CA was designed to increase the anticancer effectiveness of this compound on melanoma cells (A375). To determine the characteristics of synthesized liposomes, encapsulation efficiency was measured. In addition, the particle size was measured utilizing DLS, FTIR, and morphology examination using SEM. In vitro release was also studied through the dialysis method, while toxicity was evaluated using the MTT assay. To determine apoptotic characteristics, biotechnology tools like flow cytometry, real time PCR, and atomic force microscopy (AFM) were employed. The findings indicated that in the cells treated with the liposomal form of p-CA, the amount of elastic modulus was higher compared to its free form. Kinetic modeling indicated that the best fitting model was zero-order.
Collapse
Affiliation(s)
- Yalda Sabaghi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farnaz PourFarzad
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin, Iran.
| | - Azita Bahrami
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Tahereh Shojazadeh
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Alireza Farasat
- Monoclnal Antibodi Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Commuicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
7
|
Wang Z, Yelamanchili D, Liu J, Gotto AM, Rosales C, Gillard BK, Pownall HJ. Serum opacity factor normalizes erythrocyte morphology in Scarb1 -/- mice in an HDL-free cholesterol-dependent way. J Lipid Res 2023; 64:100456. [PMID: 37821077 PMCID: PMC10641538 DOI: 10.1016/j.jlr.2023.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023] Open
Abstract
Compared with WT mice, HDL receptor-deficient (Scarb1-/-) mice have higher plasma levels of free cholesterol (FC)-rich HDL and exhibit multiple pathologies associated with a high mol% FC in ovaries, platelets, and erythrocytes, which are reversed by lowering HDL. Bacterial serum opacity factor (SOF) catalyzes the opacification of plasma by targeting and quantitatively converting HDL to neo HDL (HDL remnant), a cholesterol ester-rich microemulsion, and lipid-free APOA1. SOF delivery with an adeno-associated virus (AAVSOF) constitutively lowers plasma HDL-FC and reverses female infertility in Scarb1-/- mice in an HDL-dependent way. We tested whether AAVSOF delivery to Scarb1-/- mice will normalize erythrocyte morphology in an HDL-FC-dependent way. We determined erythrocyte morphology and FC content (mol%) in three groups-WT, untreated Scarb1-/- (control), and Scarb1-/- mice receiving AAVSOF-and correlated these with their respective HDL-mol% FC. Plasma-, HDL-, and tissue-lipid compositions were also determined. Plasma- and HDL-mol% FC positively correlated across all groups. Among Scarb1-/- mice, AAVSOF treatment normalized reticulocyte number, erythrocyte morphology, and erythrocyte-mol% FC. Erythrocyte-mol% FC positively correlated with HDL-mol% FC and with both the number of reticulocytes and abnormal erythrocytes. AAVSOF treatment also reduced FC of extravascular tissues to a lesser extent. HDL-FC spontaneously transfers from plasma HDL to cell membranes. AAVSOF treatment lowers erythrocyte-FC and normalizes erythrocyte morphology and lipid composition by reducing HDL-mol% FC.
Collapse
Affiliation(s)
- Ziyi Wang
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Departments of Endocrinology and Xiangya Hospital, Central South University, Changsha, China
| | | | - Jing Liu
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Departments of Endocrinology and Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Antonio M Gotto
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Corina Rosales
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Baiba K Gillard
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Henry J Pownall
- Center for Bioenergetics, Houston Methodist, Houston, TX, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Duan H, Song W, Zhao J, Yan W. Polyunsaturated Fatty Acids (PUFAs): Sources, Digestion, Absorption, Application and Their Potential Adjunctive Effects on Visual Fatigue. Nutrients 2023; 15:nu15112633. [PMID: 37299596 DOI: 10.3390/nu15112633] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
When the eyes are exposed to the environment, they are easily affected by strong light stimulation and harmful substances. At the same time, prolonged use of the eyes or incorrect eye habits can cause visual fatigue, which mainly manifests as eye dryness, soreness, blurred vision, and various discomforts. The main reason for this is a decline in the function of the eye, especially the cornea and retina on the surface of the eye, which have the greatest impact on the normal function of the eye. Research has found that supplementation with appropriate foods or nutrients can effectively strengthen the eye against external and internal stimuli, thereby alleviating or avoiding visual fatigue. Among these, supplementation with polyunsaturated fatty acids has been found to be effective at protecting eye health and relieving visual fatigue. This article summarizes the sources of polyunsaturated fatty acids (including the main dietary sources and internal synthesis), the mechanisms of digestion and absorption of polyunsaturated fatty acids in the body and the safety of polyunsaturated fatty acid applications. It also reviews the mechanism of action of polyunsaturated fatty acids in aiding the relief of visual fatigue based on the mechanism of impaired function or structure of the ocular surface and fundus in the hope of providing some reference and insight into the development and application of polyunsaturated fatty acids in functional foods for the relief of visual fatigue.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wei Song
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Jian Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| |
Collapse
|
9
|
Lipowsky R, Ghosh R, Satarifard V, Sreekumari A, Zamaletdinov M, Różycki B, Miettinen M, Grafmüller A. Leaflet Tensions Control the Spatio-Temporal Remodeling of Lipid Bilayers and Nanovesicles. Biomolecules 2023; 13:926. [PMID: 37371505 PMCID: PMC10296112 DOI: 10.3390/biom13060926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Biological and biomimetic membranes are based on lipid bilayers, which consist of two monolayers or leaflets. To avoid bilayer edges, which form when the hydrophobic core of such a bilayer is exposed to the surrounding aqueous solution, a single bilayer closes up into a unilamellar vesicle, thereby separating an interior from an exterior aqueous compartment. Synthetic nanovesicles with a size below 100 nanometers, traditionally called small unilamellar vesicles, have emerged as potent platforms for the delivery of drugs and vaccines. Cellular nanovesicles of a similar size are released from almost every type of living cell. The nanovesicle morphology has been studied by electron microscopy methods but these methods are limited to a single snapshot of each vesicle. Here, we review recent results of molecular dynamics simulations, by which one can monitor and elucidate the spatio-temporal remodeling of individual bilayers and nanovesicles. We emphasize the new concept of leaflet tensions, which control the bilayers' stability and instability, the transition rates of lipid flip-flops between the two leaflets, the shape transformations of nanovesicles, the engulfment and endocytosis of condensate droplets and rigid nanoparticles, as well as nanovesicle adhesion and fusion. To actually compute the leaflet tensions, one has to determine the bilayer's midsurface, which represents the average position of the interface between the two leaflets. Two particularly useful methods to determine this midsurface are based on the density profile of the hydrophobic lipid chains and on the molecular volumes.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Rikhia Ghosh
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Icahn School of Medicine Mount Sinai, New York, NY 10029, USA
| | - Vahid Satarifard
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Yale Institute for Network Science, Yale University, New Haven, CT 06520, USA
| | - Aparna Sreekumari
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 678 623, India
| | - Miftakh Zamaletdinov
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Bartosz Różycki
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Markus Miettinen
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
10
|
Kurisu M, Katayama R, Sakuma Y, Kawakatsu T, Walde P, Imai M. Synthesising a minimal cell with artificial metabolic pathways. Commun Chem 2023; 6:56. [PMID: 36977828 PMCID: PMC10050237 DOI: 10.1038/s42004-023-00856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
A "synthetic minimal cell" is considered here as a cell-like artificial vesicle reproduction system in which a chemical and physico-chemical transformation network is regulated by information polymers. Here we synthesise such a minimal cell consisting of three units: energy production, information polymer synthesis, and vesicle reproduction. Supplied ingredients are converted to energy currencies which trigger the synthesis of an information polymer, where the vesicle membrane plays the role of a template. The information polymer promotes membrane growth. By tuning the membrane composition and permeability to osmolytes, the growing vesicles show recursive reproduction over several generations. Our "synthetic minimal cell" greatly simplifies the scheme of contemporary living cells while keeping their essence. The chemical pathways and the vesicle reproduction pathways are well described by kinetic equations and by applying the membrane elasticity model, respectively. This study provides new insights to better understand the differences and similarities between non-living forms of matter and life.
Collapse
Affiliation(s)
- Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Ryosuke Katayama
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Toshihiro Kawakatsu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladmir-Prelog-Weg 5, CH-8093, Zürich, Switzerland
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aoba, Sendai, 980-8578, Japan.
| |
Collapse
|
11
|
Noguchi H. Membrane domain formation induced by binding/unbinding of curvature-inducing molecules on both membrane surfaces. SOFT MATTER 2023; 19:679-688. [PMID: 36597888 DOI: 10.1039/d2sm01536f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The domain formation of curvature-inducing molecules, such as peripheral or transmembrane proteins and conical surfactants, is studied in thermal equilibrium and nonequilibrium steady states using meshless membrane simulations. These molecules can bind to both surfaces of a bilayer membrane and also move to the opposite leaflet by a flip-flop. Under symmetric conditions for the two leaflets, the membrane domains form checkerboard patterns in addition to striped and spot patterns. The unbound membrane stabilizes the vertices of the checkerboard. Under asymmetric conditions, the domains form kagome-lattice and thread-like patterns. In the nonequilibrium steady states, a flow of the binding molecules between the upper and lower solutions can occur via flip-flop.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| |
Collapse
|
12
|
Varma M, Deserno M. Distribution of cholesterol in asymmetric membranes driven by composition and differential stress. Biophys J 2022; 121:4001-4018. [PMID: 35927954 PMCID: PMC9674969 DOI: 10.1016/j.bpj.2022.07.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Many lipid membranes of eukaryotic cells are asymmetric, which means the two leaflets differ in at least one physical property, such as lipid composition or lateral stress. Maintaining this asymmetry is helped by the fact that ordinary phospholipids rarely transition between leaflets, but cholesterol is an exception: its flip-flop times are in the microsecond range, so that its distribution between leaflets is determined by a chemical equilibrium. In particular, preferential partitioning can draw cholesterol into a more saturated leaflet, and phospholipid number asymmetry can force it out of a compressed leaflet. Combining highly coarse-grained membrane simulations with theoretical modeling, we investigate how these two driving forces play against each other until cholesterol's chemical potential is equilibrated. The theory includes two coupled elastic sheets and a Flory-Huggins mixing free energy with a χ parameter. We obtain a relationship between χ and the interaction strength between cholesterol and lipids in either of the two leaflets, and we find that it depends, albeit weakly, on lipid number asymmetry. The differential stress measurements under various asymmetry conditions agree with our theoretical predictions. Using the two kinds of asymmetries in combination, we find that it is possible to counteract the phospholipid number bias, and the resultant stress in the membrane, via the control of cholesterol mixing in the leaflets.
Collapse
Affiliation(s)
- Malavika Varma
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
13
|
Giacometti SI, MacRae MR, Dancel-Manning K, Bhabha G, Ekiert DC. Lipid Transport Across Bacterial Membranes. Annu Rev Cell Dev Biol 2022; 38:125-153. [PMID: 35850151 DOI: 10.1146/annurev-cellbio-120420-022914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The movement of lipids within and between membranes in bacteria is essential for building and maintaining the bacterial cell envelope. Moving lipids to their final destination is often energetically unfavorable and does not readily occur spontaneously. Bacteria have evolved several protein-mediated transport systems that bind specific lipid substrates and catalyze the transport of lipids across membranes and from one membrane to another. Specific protein flippases act in translocating lipids across the plasma membrane, overcoming the obstacle of moving relatively large and chemically diverse lipids between leaflets of the bilayer. Active transporters found in double-membraned bacteria have evolved sophisticated mechanisms to traffic lipids between the two membranes, including assembling to form large, multiprotein complexes that resemble bridges, shuttles, and tunnels, shielding lipids from the hydrophilic environment of the periplasm during transport. In this review, we explore our current understanding of the mechanisms thought to drive bacterial lipid transport.
Collapse
Affiliation(s)
- Sabrina I Giacometti
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Mark R MacRae
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Kristen Dancel-Manning
- Office of Science and Research, New York University School of Medicine, New York, NY, USA;
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Weinhofer I, Buda A, Kunze M, Palfi Z, Traunfellner M, Hesse S, Villoria-Gonzalez A, Hofmann J, Hametner S, Regelsberger G, Moser AB, Eichler F, Kemp S, Bauer J, Kühl JS, Forss-Petter S, Berger J. Peroxisomal very long-chain fatty acid transport is targeted by herpesviruses and the antiviral host response. Commun Biol 2022; 5:944. [PMID: 36085307 PMCID: PMC9462615 DOI: 10.1038/s42003-022-03867-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Very long-chain fatty acids (VLCFA) are critical for human cytomegalovirus replication and accumulate upon infection. Here, we used Epstein-Barr virus (EBV) infection of human B cells to elucidate how herpesviruses target VLCFA metabolism. Gene expression profiling revealed that, despite a general induction of peroxisome-related genes, EBV early infection decreased expression of the peroxisomal VLCFA transporters ABCD1 and ABCD2, thus impairing VLCFA degradation. The mechanism underlying ABCD1 and ABCD2 repression involved RNA interference by the EBV-induced microRNAs miR-9-5p and miR-155, respectively, causing significantly increased VLCFA levels. Treatment with 25-hydroxycholesterol, an antiviral innate immune modulator produced by macrophages, restored ABCD1 expression and reduced VLCFA accumulation in EBV-infected B-lymphocytes, and, upon lytic reactivation, reduced virus production in control but not ABCD1-deficient cells. Finally, also other herpesviruses and coronaviruses target ABCD1 expression. Because viral infection might trigger neuroinflammation in X-linked adrenoleukodystrophy (X-ALD, inherited ABCD1 deficiency), we explored a possible link between EBV infection and cerebral X-ALD. However, neither immunohistochemistry of post-mortem brains nor analysis of EBV seropositivity in 35 X-ALD children supported involvement of EBV in the onset of neuroinflammation. Collectively, our findings indicate a previously unrecognized, pivotal role of ABCD1 in viral infection and host defence, prompting consideration of other viral triggers in cerebral X-ALD.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Agnieszka Buda
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Zsofia Palfi
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Matthäus Traunfellner
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Sarah Hesse
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Andrea Villoria-Gonzalez
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jörg Hofmann
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Günther Regelsberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Ann B Moser
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Florian Eichler
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Stephan Kemp
- Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jörn-Sven Kühl
- Department of Pediatric Oncology, Hematology, and Hemostaseology, University Hospital Leipzig, Leipzig, Germany
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Sreekumari A, Lipowsky R. Large stress asymmetries of lipid bilayers and nanovesicles generate lipid flip-flops and bilayer instabilities. SOFT MATTER 2022; 18:6066-6078. [PMID: 35929498 DOI: 10.1039/d2sm00618a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Much effort has been devoted to lipid bilayers and nanovesicles with a compositional asymmetry between the two leaflets of the bilayer membranes. Here, we address another fundamental asymmetry related to lipid densities and membrane tensions. To avoid membrane rupture, the osmotic conditions must be adjusted in such a way that the bilayer membranes are subject to a relatively low bilayer tension. However, even for vanishing bilayer tension, the individual leaflets can still experience significant leaflet tensions if one leaflet is stretched whereas the other leaflet is compressed. Such a stress asymmetry between the two leaflets can be directly controlled in molecular dynamics simulations by the initial assembly of the lipid bilayers. This stress asymmetry is varied here over a wide range to determine the stability and instability regimes of the asymmetric bilayers. The stability regime shrinks with decreasing size and increasing membrane curvature of the nanovesicle. In the instability regimes, the lipids undergo stress-induced flip-flops with a flip-flop rate that increases with increasing stress asymmetry. The onset of flip-flops can be characterized by a cumulative distribution function that is well-fitted by an exponential function for planar bilayers but has a sigmoidal shape for nanovesicles. In addition, the bilayer membranes form transient non-bilayer structures that relax back towards ordered bilayers with a reduced stress asymmetry. Our study reveals intrinsic limits for the possible magnitude of the transbilayer stress asymmetry and shows that the leaflet tensions represent key parameters for the flip-flop rates.
Collapse
Affiliation(s)
- Aparna Sreekumari
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Reinhard Lipowsky
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| |
Collapse
|
16
|
Imai M, Sakuma Y, Kurisu M, Walde P. From vesicles toward protocells and minimal cells. SOFT MATTER 2022; 18:4823-4849. [PMID: 35722879 DOI: 10.1039/d1sm01695d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In contrast to ordinary condensed matter systems, "living systems" are unique. They are based on molecular compartments that reproduce themselves through (i) an uptake of ingredients and energy from the environment, and (ii) spatially and timely coordinated internal chemical transformations. These occur on the basis of instructions encoded in information molecules (DNAs). Life originated on Earth about 4 billion years ago as self-organised systems of inorganic compounds and organic molecules including macromolecules (e.g. nucleic acids and proteins) and low molar mass amphiphiles (lipids). Before the first living systems emerged from non-living forms of matter, functional molecules and dynamic molecular assemblies must have been formed as prebiotic soft matter systems. These hypothetical cell-like compartment systems often are called "protocells". Other systems that are considered as bridging units between non-living and living systems are called "minimal cells". They are synthetic, autonomous and sustainable reproducing compartment systems, but their constituents are not limited to prebiotic substances. In this review, we focus on both membrane-bounded (vesicular) protocells and minimal cells, and provide a membrane physics background which helps to understand how morphological transformations of vesicle systems might have happened and how vesicle reproduction might be coupled with metabolic reactions and information molecules. This research, which bridges matter and life, is a great challenge in which soft matter physics, systems chemistry, and synthetic biology must take joined efforts to better understand how the transformation of protocells into living systems might have occurred at the origin of life.
Collapse
Affiliation(s)
- Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Minoru Kurisu
- Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
17
|
Li F, Hu G, Long X, Cao Y, Li Q, Guo W, Wang J, Liu J, Fu S. Stearic Acid Activates the PI3K-mTOR-4EBP1/S6K and mTOR-SREBP-1 Signaling Axes through FATP4-CDK1 To Promote Milk Synthesis in Primary Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4007-4018. [PMID: 35333520 DOI: 10.1021/acs.jafc.2c00208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stearic acid (SA), an 18-carbon long-chain saturated fatty acid, has great potential for promoting lactation. Therefore, this study investigates the effects and mechanism of SA on milk synthesis in primary bovine mammary epithelial cells (BMECs). In our study, we found that SA significantly increased β-casein and triglycerides, and the effect was most significant at 100 μM. Signaling pathway studies have found that SA affects milk synthesis by upregulating cyclin-dependent kinase 1 (CDK1) to activate PI3K-mTOR-4EBP1/S6K and mTOR-SREBP-1 pathways. Furthermore, we detected fatty acid transport proteins (FATPs) when BMECs were treated with SA; the mRNA levels of FATP3 (3.713 ± 0.583) and FATP4 (40.815 ± 8.959) were significantly upregulated at 100 μM. Subsequently, we constructed FATP4-siRNA and found that SA was transported by FATP4 into BMECs, promoting milk synthesis. Collectively, these results revealed that SA activated PI3K-mTOR-4EBP1/S6K and mTOR-SREBP-1 signaling axes through FATP4-CDK1 to promote milk synthesis in BMECs.
Collapse
Affiliation(s)
- Feng Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoyu Long
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Cao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qianqian Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiaxin Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
18
|
Allender DW, Schick M. A Theoretical Basis for Nanodomains. J Membr Biol 2022; 255:451-460. [PMID: 35084528 DOI: 10.1007/s00232-021-00213-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 01/06/2023]
Abstract
We review the current theories of nanodomain, or "raft," formation. We emphasize that the idea that they are co-exisiting Lo and Ld phases is fraught with difficulties, as is the closely related idea that they are due to critical fluctuations. We then review an alternate theory that the plasma membrane is a two-dimensional microemulsion, and that the mechanism that drives to zero the line tension between Lo and Ld phases is the coupling of height and composition fluctuations. The theory yields rafts of SM and cholesterol in the outer leaf and POPS and POPC in the inner leaf. The "sea" between rafts consists of POPC in the outer leaf and POPE and cholesterol in the inner leaf. The characteristic size of the domain structures is tens of nanometers.
Collapse
Affiliation(s)
- D W Allender
- Department of Physics, University of Washington, Seattle, Washington, USA.,Department of Physics, Kent State University, Kent, OH, USA
| | - M Schick
- Department of Physics, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
19
|
Perez-Salas U, Garg S, Gerelli Y, Porcar L. Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. CURRENT TOPICS IN MEMBRANES 2021; 88:359-412. [PMID: 34862031 DOI: 10.1016/bs.ctm.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on time-resolved neutron scattering, particularly time-resolved small angle neutron scattering (TR-SANS), as a powerful in situ noninvasive technique to investigate intra- and intermembrane transport and distribution of lipids and sterols in lipid membranes. In contrast to using molecular analogues with potentially large chemical tags that can significantly alter transport properties, small angle neutron scattering relies on the relative amounts of the two most abundant isotope forms of hydrogen: protium and deuterium to detect complex membrane architectures and transport processes unambiguously. This review discusses advances in our understanding of the mechanisms that sustain lipid asymmetry in membranes-a key feature of the plasma membrane of cells-as well as the transport of lipids between membranes, which is an essential metabolic process.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States.
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, United States
| | - Yuri Gerelli
- Department of Life and Environmental Sciences, Universita` Politecnica delle Marche, Ancona, Italy
| | | |
Collapse
|
20
|
Lipowsky R. Remodeling of Membrane Shape and Topology by Curvature Elasticity and Membrane Tension. Adv Biol (Weinh) 2021; 6:e2101020. [PMID: 34859961 DOI: 10.1002/adbi.202101020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/04/2021] [Indexed: 01/08/2023]
Abstract
Cellular membranes exhibit a fascinating variety of different morphologies, which are continuously remodeled by transformations of membrane shape and topology. This remodeling is essential for important biological processes (cell division, intracellular vesicle trafficking, endocytosis) and can be elucidated in a systematic and quantitative manner using synthetic membrane systems. Here, recent insights obtained from such synthetic systems are reviewed, integrating experimental observations and molecular dynamics simulations with the theory of membrane elasticity. The study starts from the polymorphism of biomembranes as observed for giant vesicles by optical microscopy and small nanovesicles in simulations. This polymorphism reflects the unusual elasticity of fluid membranes and includes the formation of membrane necks or fluid 'worm holes'. The proliferation of membrane necks generates stable multi-spherical shapes, which can form tubules and tubular junctions. Membrane necks are also essential for the remodeling of membrane topology via membrane fission and fusion. Neck fission can be induced by fine-tuning of membrane curvature, which leads to the controlled division of giant vesicles, and by adhesion-induced membrane tension as observed for small nanovesicles. Challenges for future research include the interplay of curvature elasticity and membrane tension during membrane fusion and the localization of fission and fusion processes within intramembrane domains.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Theory & Biosystems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| |
Collapse
|
21
|
Anderson RH, Sochacki KA, Vuppula H, Scott BL, Bailey EM, Schultz MM, Kerkvliet JG, Taraska JW, Hoppe AD, Francis KR. Sterols lower energetic barriers of membrane bending and fission necessary for efficient clathrin-mediated endocytosis. Cell Rep 2021; 37:110008. [PMID: 34788623 PMCID: PMC8620193 DOI: 10.1016/j.celrep.2021.110008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is critical for cellular signal transduction, receptor recycling, and membrane homeostasis in mammalian cells. Acute depletion of cholesterol disrupts CME, motivating analysis of CME dynamics in the context of human disorders of cholesterol metabolism. We report that inhibition of post-squalene cholesterol biosynthesis impairs CME. Imaging of membrane bending dynamics and the CME pit ultrastructure reveals prolonged clathrin pit lifetimes and shallow clathrin-coated structures, suggesting progressive impairment of curvature generation correlates with diminishing sterol abundance. Sterol structural requirements for efficient CME include 3′ polar head group and B-ring conformation, resembling the sterol structural prerequisites for tight lipid packing and polarity. Furthermore, Smith-Lemli-Opitz fibroblasts with low cholesterol abundance exhibit deficits in CME-mediated transferrin internalization. We conclude that sterols lower the energetic costs of membrane bending during pit formation and vesicular scission during CME and suggest that reduced CME activity may contribute to cellular phenotypes observed within disorders of cholesterol metabolism. Anderson et al. demonstrate that sterol abundance and identity play a dominant role in facilitating clathrin-mediated endocytosis. Detailed analyses of clathrin-coated pits under sterol depletion support a requirement for sterol-mediated membrane bending during multiple stages of endocytosis, implicating endocytic dysfunction within the pathogenesis of disorders of cholesterol metabolism.
Collapse
Affiliation(s)
- Ruthellen H Anderson
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA; Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Harika Vuppula
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA
| | - Brandon L Scott
- Nanoscience and Nanoengineering, South Dakota School of Mines & Technology, Rapid City, SD 57701, USA
| | - Elizabeth M Bailey
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA
| | - Maycie M Schultz
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jason G Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA; BioSystems Networks and Translational Research Center, Brookings, SD 57007, USA.
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
22
|
Schoop V, Martello A, Eden ER, Höglinger D. Cellular cholesterol and how to find it. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158989. [PMID: 34118431 DOI: 10.1016/j.bbalip.2021.158989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/06/2023]
Abstract
Cholesterol is an essential component of eukaryotic cellular membranes. Information about its subcellular localization and transport pathways inside cells are key for the understanding and treatment of cholesterol-related diseases. In this review we give an overview over the most commonly used methods that contributed to our current understanding of subcellular cholesterol localization and transport routes. First, we discuss methods that provide insights into cholesterol metabolism based on readouts of downstream effects such as esterification. Subsequently, we focus on the use of cholesterol-binding molecules as probes that facilitate visualization and quantification of sterols inside of cells. Finally, we explore different analogues of cholesterol which, when taken up by living cells, are integrated and transported in a similar fashion as endogenous sterols. Taken together, we highlight the challenges and advantages of each method such that researchers studying aspects of cholesterol transport may choose the most pertinent approach for their problem.
Collapse
Affiliation(s)
- Valentin Schoop
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Andrea Martello
- University College London (UCL), Institute of Ophthalmology, EC1V 9EL London, United Kingdom
| | - Emily R Eden
- University College London (UCL), Institute of Ophthalmology, EC1V 9EL London, United Kingdom
| | - Doris Höglinger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Noguchi H. Vesicle budding induced by binding of curvature-inducing proteins. Phys Rev E 2021; 104:014410. [PMID: 34412221 DOI: 10.1103/physreve.104.014410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Vesicle budding induced by protein binding that generates an isotropic spontaneous curvature is studied using a mean-field theory. Many spherical buds are formed via protein binding. As the binding chemical potential increases, the proteins first bind to the buds and then to the remainder of the vesicle. For a high spontaneous curvature and/or high bending rigidity of the bound membrane, it is found that a first-order transition occurs between a small number of large buds and a large number of small buds. These two states coexist around the transition point. The proposed scheme is simple and easily applicable to many interaction types, so we investigate the effects of interprotein interactions, the protein-insertion-induced changes in area, the variation of the saddle-splay modulus, and the area-difference-elasticity energy. The differences in the preferred curvatures for curvature sensing and generation are also clarified.
Collapse
Affiliation(s)
- Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
24
|
van den Broek K, Epple M, Kersten LS, Kuhn H, Zielesny A. Quantitative Estimation of Cyclotide-Induced Bilayer Membrane Disruption by Lipid Extraction with Mesoscopic Simulation. J Chem Inf Model 2021; 61:3027-3040. [PMID: 34008405 DOI: 10.1021/acs.jcim.1c00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclotide-induced membrane disruption is studied at the microsecond timescale by dissipative particle dynamics to quantitatively estimate a kinetic rate constant for membrane lipid extraction with a ″sandwich″ interaction model where two bilayer membranes enclose a cyclotide/water compartment. The obtained bioactivity trends for cyclotides Kalata B1, Cycloviolacin O2, and selected mutants with different membrane types are in agreement with experimental findings: For all membranes investigated, Cycloviolacin O2 shows a higher lipid extraction activity than Kalata B1. The presence of cholesterol leads to a decreased cyclotide activity compared to cholesterol-free membranes. Phosphoethanolamine-rich membranes exhibit an increased membrane disruption. A cyclotide's ″hydrophobic patch″ surface area is important for its bioactivity. A replacement of or with charged amino acid residues may lead to super-mutants with above-native activity but without simple charge-activity patterns. Cyclotide mixtures show linearly additive bioactivities without significant sub- or over-additive effects. The proposed method can be applied as a fast and easy-to-use tool for exploring structure-activity relationships of cyclotide/membrane systems: With the open software provided, the rate constant of a single cyclotide/membrane system can be determined in about 1 day by a scientific end-user without programming skills.
Collapse
Affiliation(s)
- Karina van den Broek
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen, Germany.,Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, 45665 Recklinghausen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45141 Essen, Germany
| | - Lisa Sophie Kersten
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, 45665 Recklinghausen, Germany
| | - Hubert Kuhn
- CAM-D Technologies GmbH, 42697 Solingen, Germany
| | - Achim Zielesny
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, 45665 Recklinghausen, Germany
| |
Collapse
|
25
|
Lipowsky R, Dimova R. Introduction to remodeling of biomembranes. SOFT MATTER 2021; 17:214-221. [PMID: 33406179 DOI: 10.1039/d0sm90234a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In general, biomembranes and giant vesicles can respond to cues in their aqueous environment by remodeling their molecular composition, shape, or topology. This themed collection focuses on remodeling of membrane shape which is intimately related to membrane curvature. In this introductory contribution, we clarify the different notions of curvature and describe the general nanoscopic mechanisms for curvature generation and membrane scaffolding. At the end, we give a brief outlook on membrane tension.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Rumiana Dimova
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| |
Collapse
|
26
|
Bukiya AN, Leo MD, Jaggar JH, Dopico AM. Cholesterol activates BK channels by increasing KCNMB1 protein levels in the plasmalemma. J Biol Chem 2021; 296:100381. [PMID: 33556372 PMCID: PMC7950327 DOI: 10.1016/j.jbc.2021.100381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 01/03/2023] Open
Abstract
Calcium-/voltage-gated, large-conductance potassium channels (BKs) control critical physiological processes, including smooth muscle contraction. Numerous observations concur that elevated membrane cholesterol (CLR) inhibits the activity of homomeric BKs consisting of channel-forming alpha subunits. In mammalian smooth muscle, however, native BKs include accessory KCNMB1 (β1) subunits, which enable BK activation at physiological intracellular calcium. Here, we studied the effect of CLR enrichment on BK currents from rat cerebral artery myocytes. Using inside-out patches from middle cerebral artery (MCA) myocytes at [Ca2+]free=30 μM, we detected BK activation in response to in vivo and in vitro CLR enrichment of myocytes. While a significant increase in myocyte CLR was achieved within 5 min of CLR in vitro loading, this brief CLR enrichment of membrane patches decreased BK currents, indicating that BK activation by CLR requires a protracted cellular process. Indeed, blocking intracellular protein trafficking with brefeldin A (BFA) not only prevented BK activation but led to channel inhibition upon CLR enrichment. Surface protein biotinylation followed by Western blotting showed that BFA blocked the increase in plasmalemmal KCNMB1 levels achieved via CLR enrichment. Moreover, CLR enrichment of arteries with naturally high KCNMB1 levels, such as basilar and coronary arteries, failed to activate BK currents. Finally, CLR enrichment failed to activate BK channels in MCA myocytes from KCNMB1-/- mouse while activation was detected in their wild-type (C57BL/6) counterparts. In conclusion, the switch in CLR regulation of BK from inhibition to activation is determined by a trafficking-dependent increase in membrane levels of KCNMB1 subunits.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| | - M Dennis Leo
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jonathan H Jaggar
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
27
|
Abstract
Cholesterol homeostasis and trafficking are critical to the maintenance of the asymmetric plasma membrane of eukaryotic cells. Disruption or dysfunction of cholesterol trafficking leads to numerous human diseases. ATP-binding cassette (ABC) transporters play several critical roles in this process, and mutations in these sterol transporters lead to disorders such as Tangier disease and sitosterolemia. Biochemical and structural information on ABC sterol transporters is beginning to emerge, with published structures of ABCA1 and ABCG5/G8; these two proteins function in the reverse cholesterol transport pathway and mediate the efflux of cholesterol and xenosterols to high-density lipoprotein and bile salt micelles, respectively. Although both of these transporters belong to the ABC family and mediate the efflux of a sterol substrate, they have many distinct differences. Here, we summarize the current understanding of sterol transport driven by ABC transporters, with an emphasis on these two extensively characterized transporters.
Collapse
Affiliation(s)
- Ashlee M Plummer
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Alan T Culbertson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
28
|
Membrane Curvature, Trans-Membrane Area Asymmetry, Budding, Fission and Organelle Geometry. Int J Mol Sci 2020; 21:ijms21207594. [PMID: 33066582 PMCID: PMC7590041 DOI: 10.3390/ijms21207594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
In biology, the modern scientific fashion is to mostly study proteins. Much less attention is paid to lipids. However, lipids themselves are extremely important for the formation and functioning of cellular membrane organelles. Here, the role of the geometry of the lipid bilayer in regulation of organelle shape is analyzed. It is proposed that during rapid shape transition, the number of lipid heads and their size (i.e., due to the change in lipid head charge) inside lipid leaflets modulates the geometrical properties of organelles, in particular their membrane curvature. Insertion of proteins into a lipid bilayer and the shape of protein trans-membrane domains also affect the trans-membrane asymmetry between surface areas of luminal and cytosol leaflets of the membrane. In the cases where lipid molecules with a specific shape are not predominant, the shape of lipids (cylindrical, conical, or wedge-like) is less important for the regulation of membrane curvature, due to the flexibility of their acyl chains and their high ability to diffuse.
Collapse
|
29
|
CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis. Nat Commun 2020; 11:4765. [PMID: 32958780 PMCID: PMC7505845 DOI: 10.1038/s41467-020-18565-8] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/31/2020] [Indexed: 02/03/2023] Open
Abstract
Fatty acids (FAs) are essential nutrients, but how they are transported into cells remains unclear. Here, we show that FAs trigger caveolae-dependent CD36 internalization, which in turn delivers FAs into adipocytes. During the process, binding of FAs to CD36 activates its downstream kinase LYN, which phosphorylates DHHC5, the palmitoyl acyltransferase of CD36, at Tyr91 and inactivates it. CD36 then gets depalmitoylated by APT1 and recruits another tyrosine kinase SYK to phosphorylate JNK and VAVs to initiate endocytic uptake of FAs. Blocking CD36 internalization by inhibiting APT1, LYN or SYK abolishes CD36-dependent FA uptake. Restricting CD36 at either palmitoylated or depalmitoylated state eliminates its FA uptake activity, indicating an essential role of dynamic palmitoylation of CD36. Furthermore, blocking endocytosis by targeting LYN or SYK inhibits CD36-dependent lipid droplet growth in adipocytes and high-fat-diet induced weight gain in mice. Our study has uncovered a dynamic palmitoylation-regulated endocytic pathway to take up FAs.
Collapse
|
30
|
Sarmento MJ, Hof M, Šachl R. Interleaflet Coupling of Lipid Nanodomains - Insights From in vitro Systems. Front Cell Dev Biol 2020; 8:284. [PMID: 32411705 PMCID: PMC7198703 DOI: 10.3389/fcell.2020.00284] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
The plasma membrane is a complex system, consisting of two layers of lipids and proteins compartmentalized into small structures called nanodomains. Despite the asymmetric composition of both leaflets, coupling between the layers is surprisingly strong. This can be evidenced, for example, by recent experimental studies performed on phospholipid giant unilamellar vesicles showing that nanodomains formed in the outer layer are perfectly registered with those in the inner leaflet. Similarly, microscopic phase separation in one leaflet can induce phase separation in the opposing leaflet that would otherwise be homogeneous. In this review, we summarize the current theoretical and experimental knowledge that led to the current view that domains are – irrespective of their size – commonly registered across the bilayer. Mechanisms inducing registration of nanodomains suggested by theory and calculations are discussed. Furthermore, domain coupling is evidenced by experimental studies based on the sparse number of methods that can resolve registered from independent nanodomains. Finally, implications that those findings using model membrane studies might have for cellular membranes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova, Prague, Czechia
| |
Collapse
|
31
|
Shen H, Wu Z, Zhao K, Yang H, Deng M, Wen S. Effect of Cholesterol and 6-Ketocholestanol on Membrane Dipole Potential and Sterol Flip-Flop Motion in Bilayer Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11232-11241. [PMID: 31373497 DOI: 10.1021/acs.langmuir.9b01802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A variety of experimental and theoretical approaches have been employed to investigate the sterol flip-flop motion in lipid bilayer membranes. However, the sterol effect on the dipole potential of lipid bilayer membranes is less well studied and the influence of dipole potential on sterol flip-flop motion in lipid bilayer membranes is less well understood. In our previous works, we have demonstrated the performance of our coarse-grained (CG) model in the computation of the dipole potential. In this work, five 30 μs CG simulations of dimyristoylphosphatidylcholine (DMPC) bilayers were carried out at different sterol concentrations (in a range from 10 to 50% mole fraction). Then, a comparison was made between the effects of cholesterol (CHOL) and 6-ketocholestanol (6-KC) on the dipole potential of DMPC lipid bilayers as well as the sterol flip-flop motion. Our CG simulations show that the membrane dipole potential is impacted more significantly by 6-KC than by CHOL. This finding is consistent with recent experimental studies. Meanwhile, our work suggests that the sterol-sterol interactions (in particular, electrostatic interactions) should be critical to the formation of sterol-sterol clusters, which would hinder the sterol flip-flop motion inside the lipid bilayers. This is in support of the recent experimental study on the sterol transportation in lipid bilayer membranes.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology , Guizhou Education University , No. 115, Gaoxin Road , Guiyang , Guizhou 550018 , P. R. China
- School of Information , Guizhou University of Finance and Economics , University City of Huaxi District, Guiyang , Guizhou 550025 , P. R. China
| | - Zhenhua Wu
- School of Information , Guizhou University of Finance and Economics , University City of Huaxi District, Guiyang , Guizhou 550025 , P. R. China
| | - Kun Zhao
- School of Information , Guizhou University of Finance and Economics , University City of Huaxi District, Guiyang , Guizhou 550025 , P. R. China
| | - Hengxiu Yang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology , Guizhou Education University , No. 115, Gaoxin Road , Guiyang , Guizhou 550018 , P. R. China
| | - Mingsen Deng
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology , Guizhou Education University , No. 115, Gaoxin Road , Guiyang , Guizhou 550018 , P. R. China
- School of Information , Guizhou University of Finance and Economics , University City of Huaxi District, Guiyang , Guizhou 550025 , P. R. China
| | - Shuiguo Wen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology , Guizhou Education University , No. 115, Gaoxin Road , Guiyang , Guizhou 550018 , P. R. China
| |
Collapse
|
32
|
Miettinen MS, Lipowsky R. Bilayer Membranes with Frequent Flip-Flops Have Tensionless Leaflets. NANO LETTERS 2019; 19:5011-5016. [PMID: 31056917 PMCID: PMC6750870 DOI: 10.1021/acs.nanolett.9b01239] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/03/2019] [Indexed: 05/28/2023]
Abstract
Biomembranes are built up from lipid bilayers with two leaflets that typically differ in their lipid composition. Each lipid molecule stays within one leaflet of the bilayer before it undergoes a transition, or flip-flop, to the other leaflet. The corresponding flip-flop times are very different for different lipid species and vary over several orders of magnitude. Here, we use molecular dynamics simulations to elucidate the consequences of this separation of time scales for compositionally asymmetric bilayers. We first study bilayers with two lipid components that do not undergo flip-flops on the accessible time scales. In such a situation, one must distinguish a bilayer state in which both leaflets have the same preferred area from another state in which each leaflet is tensionless. However, when we add a third lipid component that undergoes frequent flip-flops, the bilayer relaxes toward the state with tensionless leaflets, not to the state with equal preferred leaflet areas. Furthermore, we show that bilayers with compositional asymmetry acquire a significant spontaneous curvature even if both leaflets are tensionless. Our results can be extended to lipid bilayers with a large number of lipid components provided at least one of these components undergoes frequent flip-flops. For cellular membranes containing lipid pumps, the leaflet tensions also depend on the rates of protein-induced flip-flops.
Collapse
|
33
|
Rosales C, Gillard BK, Xu B, Gotto AM, Pownall HJ. Revisiting Reverse Cholesterol Transport in the Context of High-Density Lipoprotein Free Cholesterol Bioavailability. Methodist Debakey Cardiovasc J 2019; 15:47-54. [PMID: 31049149 DOI: 10.14797/mdcj-15-1-47] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dysregulated free cholesterol (FC) metabolism has been implicated in nearly all stages of atherosclerosis, the underlying cause of most cardiovascular disease. According to a widely cited model, the burden of macrophage FC in the arterial wall is relieved by transhepatic reverse cholesterol transport (RCT), which comprises three successive steps: (1) macrophage FC efflux to high-density lipoprotein (HDL) and/or its major protein, apolipoprotein AI; (2) FC esterification by lecithin:cholesterol acyltransferase (LCAT); and (3) HDL-cholesteryl ester (CE) uptake via the hepatic HDL-receptor, scavenger receptor class B type 1 (SR-B1). Recent studies have challenged the validity of this model, most notably the role of LCAT, which appears to be of minor importance. In mice, most macrophage-derived FC is rapidly cleared from plasma (t1/2 < 5 min) without esterification by hepatic uptake; the remainder is taken up by multiple tissue and cell types, especially erythrocytes. Further, some FC is cleared by the nonhepatic transintestinal pathway. Lastly, FC movement among lipid surfaces is reversible, so that a higher-than-normal level of HDL-FC bioavailability-defined by high plasma HDL levels concurrent with a high mol% HDL-FC-leads to the transfer of excess FC to cells in vivo. SR-B1-/- mice provide an animal model to study the mechanistic consequences of high HDL-FC bioavailability that provokes atherosclerosis and other metabolic abnormalities. Future efforts should aim to reduce HDL-FC bioavailability, thereby reducing FC accretion by tissues and the attendant atherosclerosis.
Collapse
Affiliation(s)
- Corina Rosales
- HOUSTON METHODIST RESEARCH INSTITUTE, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS.,WEILL CORNELL MEDICINE, NEW YORK, NEW YORK
| | - Baiba K Gillard
- HOUSTON METHODIST RESEARCH INSTITUTE, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS.,WEILL CORNELL MEDICINE, NEW YORK, NEW YORK
| | - Bingqing Xu
- XIANGYA HOSPITAL, CENTRAL SOUTH UNIVERSITY, CHANGSHA, CHINA
| | - Antonio M Gotto
- HOUSTON METHODIST RESEARCH INSTITUTE, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS.,WEILL CORNELL MEDICINE, NEW YORK, NEW YORK
| | - Henry J Pownall
- HOUSTON METHODIST RESEARCH INSTITUTE, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS.,WEILL CORNELL MEDICINE, NEW YORK, NEW YORK
| |
Collapse
|
34
|
Wu S, Näär AM. A lipid-free and insulin-supplemented medium supports De Novo fatty acid synthesis gene activation in melanoma cells. PLoS One 2019; 14:e0215022. [PMID: 30970006 PMCID: PMC6457551 DOI: 10.1371/journal.pone.0215022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/25/2019] [Indexed: 12/23/2022] Open
Abstract
While investigating the role played by de novo lipid (DNL) biosynthesis in cancer cells, we sought a medium condition that would support cell proliferation without providing any serum lipids. Here we report that a defined serum free cell culture medium condition containing insulin, transferrin and selenium (ITS) supports controlled study of transcriptional regulation of de novo fatty acid (DNFA) production and de novo cholesterol synthesis (DNCS) in melanoma cell lines. This lipid-free ITS medium is able to support continuous proliferation of several melanoma cell lines that utilize DNL to support their lipid requirements. We show that the ITS medium stimulates gene transcription in support of both DNFA and DNCS, specifically mediated by SREBP1/2 in melanoma cells. We further found that the ITS medium promoted SREBP1 nuclear localization and occupancy on DNFA gene promoters. Our data show clear utility of this serum and lipid-free medium for melanoma cancer cell culture and lipid-related areas of investigation.
Collapse
Affiliation(s)
- Su Wu
- Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts, United States of America
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SW); (AMN)
| | - Anders M. Näär
- Massachusetts General Hospital Center for Cancer Research, Charlestown, Massachusetts, United States of America
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SW); (AMN)
| |
Collapse
|
35
|
Changes in the asymmetric distribution of cholesterol in the plasma membrane influence streptolysin O pore formation. Sci Rep 2019; 9:4548. [PMID: 30872611 PMCID: PMC6418215 DOI: 10.1038/s41598-019-39973-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/21/2019] [Indexed: 01/23/2023] Open
Abstract
ATP-binding cassette A1 (ABCA1) plays a key role in generating high-density lipoprotein (HDL) and preventing atherosclerosis. ABCA1 exports cholesterol and phospholipid to apolipoprotein A-I (apoA-I) in serum to generate HDL. We found that streptolysin O (SLO), a cholesterol-dependent pore-forming toxin, barely formed pores in ABCA1-expressing cells, even in the absence of apoA-I. Neither cholesterol content in cell membranes nor the amount of SLO bound to cells was affected by ABCA1. On the other hand, binding of the D4 domain of perfringolysin O (PFO) to ABCA1-expressing cells increased, suggesting that the amount of cholesterol in the outer leaflet of the plasma membrane (PM) increased and that the cholesterol dependences of these two toxins differ. Addition of cholesterol to the PM by the MβCD-cholesterol complex dramatically restored SLO pore formation in ABCA1-expressing cells. Therefore, exogenous expression of ABCA1 causes reduction in the cholesterol level in the inner leaflet, thereby suppressing SLO pore formation.
Collapse
|
36
|
Gu RX, Baoukina S, Tieleman DP. Cholesterol Flip-Flop in Heterogeneous Membranes. J Chem Theory Comput 2019; 15:2064-2070. [PMID: 30633868 DOI: 10.1021/acs.jctc.8b00933] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cholesterol is the most abundant molecule in the plasma membrane of mammals. Its distribution across the two membrane leaflets is critical for understanding how cells work. Cholesterol trans-bilayer motion (flip-flop) is a key process influencing its distribution in membranes. Despite extensive investigations, the rate of cholesterol flip-flop and its dependence on the lateral heterogeneity of membranes remain uncertain. In this work, we used atomistic molecular dynamics simulations to sample spontaneous cholesterol flip-flop events in a DPPC:DOPC:cholesterol mixture with heterogeneous lateral distribution of lipids. In addition to an overall flip-flop rate at the time scale of sub-milliseconds, we identified a significant impact of local environment on flip-flop rate. We discuss the atomistic details of the flip-flop events observed in our simulations.
Collapse
Affiliation(s)
- Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences , University of Calgary , 2500 University Drive, N.W. , Calgary , Alberta T2N 1N4 , Canada
| | - Svetlana Baoukina
- Centre for Molecular Simulation and Department of Biological Sciences , University of Calgary , 2500 University Drive, N.W. , Calgary , Alberta T2N 1N4 , Canada
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences , University of Calgary , 2500 University Drive, N.W. , Calgary , Alberta T2N 1N4 , Canada
| |
Collapse
|
37
|
Münter R, Kristensen K, Pedersbæk D, Larsen JB, Simonsen JB, Andresen TL. Dissociation of fluorescently labeled lipids from liposomes in biological environments challenges the interpretation of uptake studies. NANOSCALE 2018; 10:22720-22724. [PMID: 30488936 DOI: 10.1039/c8nr07755j] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Within nanomedicine, liposomes are investigated for their ability to deliver drug cargoes specifically into subcellular compartments of target cells. Such studies are often based on flow cytometry or microscopy, where researchers rely on fluorescently labeled lipids (FLLs) incorporated into the liposomal membrane to determine the localization of the liposomes within cells. These studies assume that the FLLs stay embedded in the liposomal membrane throughout the duration of the experiment. Here, we used size exclusion chromatography (SEC) to investigate the validity of this assumption by quantitatively determining the propensity of various widely used FLLs to dissociate from liposomes during incubation in human plasma. For certain commonly used off-the-shelf FLLs, up to 75% of the dye dissociated from the liposomes, while others dissociated less than 10%. To investigate the implications of this finding, we measured the peripheral blood leukocyte uptake of liposomes formulated with different FLLs using flow cytometry, and observed a significant difference in uptake correlating with the FLL's dissociation tendencies. Consequently, the choice of FLL can dramatically influence the conclusions drawn from liposome uptake and localization studies due to uptake of dissociated FLLs. The varying dissociation propensities for the FLLs were not reflected when incubating in buffer, showing that non-biological environments are unsuitable to mimic liposomal stability in a drug delivery context. Overall, our findings suggest that it is crucial for researchers to evaluate the stability of their FLL-labeled liposomes in biological environments, and the simplicity of the SEC assay put forward here makes it very applicable for the purpose.
Collapse
Affiliation(s)
- Rasmus Münter
- Department of Micro- and Nanotechnology (DTU Nanotech), Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | |
Collapse
|
38
|
Leng X, Zhu F, Wassall SR. Vitamin E Has Reduced Affinity for a Polyunsaturated Phospholipid: An Umbrella Sampling Molecular Dynamics Simulations Study. J Phys Chem B 2018; 122:8351-8358. [PMID: 30111105 DOI: 10.1021/acs.jpcb.8b05016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin E is an essential micronutrient. The primary function of this lipid-soluble antioxidant is to protect membrane phospholipids from oxidation. Whether vitamin E preferentially interacts with polyunsaturated phospholipids to optimize protection of the lipid species most vulnerable to oxidative attack has been an unanswered question for a long time. In this work, we compared the binding of α-tocopherol (αtoc), the form of vitamin E retained by the human body, in bilayers composed of polyunsaturated 1-stearoyl-2-docosahexaenoylphosphatidylcholine (SDPC, 18:0-22:6PC) and, as a control, monounsaturated 1-stearoyl-2-oleoylphosphatidylcholine (SOPC, 18:0-18:1PC) by umbrella sampling molecular dynamics simulations. From the potential of mean force as a function depth within the bilayer, we find that the binding energy of αtoc is less in SDPC (Δ Gbind = 16.7 ± 0.3 kcal/mol) than that in SOPC (Δ Gbind = 18.3 ± 0.4 kcal/mol). The lower value in SDPC is ascribed to the high disorder of polyunsaturated fatty acids that produces a less tightly packed arrangement. Deformation of the bilayer is observed during desorption, indicating that phosphatidylcholine (PC)-PC and αtoc-PC interactions contribute to the binding energy. Our results do not support the proposal that vitamin E interacts more favorably with polyunsaturated phospholipids.
Collapse
Affiliation(s)
- Xiaoling Leng
- Department of Physics , IUPUI , Indianapolis , Indiana 46202-3273 , United States
| | - Fangqiang Zhu
- Department of Physics , IUPUI , Indianapolis , Indiana 46202-3273 , United States
| | - Stephen R Wassall
- Department of Physics , IUPUI , Indianapolis , Indiana 46202-3273 , United States
| |
Collapse
|
39
|
Miller EJ, Voïtchovsky K, Staykova M. Substrate-led cholesterol extraction from supported lipid membranes. NANOSCALE 2018; 10:16332-16342. [PMID: 30132496 DOI: 10.1039/c8nr03399d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The lipid membrane is a principal building block in biology, technology and industry, where it often occurs supported by other hydrophilic structures. Interactions with the support can affect the physical behavior of the membrane from the local organization and diffusion of lipids and proteins, to phase transitions, and the local mechanical properties. In this study we show that supporting substrates textured with nanoscale hydrophilic and hydrophobic domains can modify the membrane's chemical composition by selectively extracting cholesterol molecules without affecting the remaining phospholipids. Using polydimethylsiloxane (PDMS) substrates with various degrees of plasma oxidation, we are able to trigger dramatic changes in the membrane morphology and biophysical properties, and relate them to the amount of extracted cholesterol. We also show that it is possible to control the cholesterol extraction through mechanical extension of the flexible PDMS support. Given the ubiquity of bio-substrates with textured surface properties and the wide use of PDMS we expect that our results will have implications not only in biological and chemical sciences but also in nanotechnologies such as organ on a chip technologies, biosensors, and stretchable bio-electronics.
Collapse
|
40
|
Steck TL, Lange Y. Transverse distribution of plasma membrane bilayer cholesterol: Picking sides. Traffic 2018; 19:750-760. [PMID: 29896788 DOI: 10.1111/tra.12586] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/23/2022]
Abstract
The transverse asymmetry (sidedness) of phospholipids in plasma membrane bilayers is well characterized, distinctive, actively maintained and functionally important. In contrast, numerous studies using a variety of techniques have concluded that plasma membrane bilayer cholesterol is either mostly in the outer leaflet or the inner leaflet or is fairly evenly distributed. Sterols might simply partition according to their differing affinities for the asymmetrically disposed phospholipids, but some studies have proposed that it is actively transported to the outer leaflet. Other work suggests that the sterol is enriched in the inner leaflet, driven by either positive interactions with the phosphatidylethanolamine on that side or by its exclusion from the outer leaflet by the long chain sphingomyelin molecules therein. This uncertainty raises three questions: is plasma membrane cholesterol sidedness fixed in a given cell or cell type; is it generally the same among mammalian species; and does it serve specific physiological functions? This review grapples with these issues.
Collapse
Affiliation(s)
- Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
41
|
Filipe HAL, Javanainen M, Salvador A, Galvão AM, Vattulainen I, Loura LMS, Moreno MJ. Quantitative Assessment of Methods Used To Obtain Rate Constants from Molecular Dynamics Simulations—Translocation of Cholesterol across Lipid Bilayers. J Chem Theory Comput 2018; 14:3840-3848. [DOI: 10.1021/acs.jctc.8b00150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hugo A. L. Filipe
- Coimbra Chemistry Center, University of Coimbra, P-3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-517 Coimbra, Portugal
| | - Matti Javanainen
- Laboratory of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Armindo Salvador
- Coimbra Chemistry Center, University of Coimbra, P-3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, P-3004-517 Coimbra, Portugal
| | - Adelino M. Galvão
- CQE—Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal
| | - Ilpo Vattulainen
- Laboratory of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
- MEMPHYS—Center
for Biomembrane Physics, FI-00014 Helsinki, Finland
| | - Luís M. S. Loura
- Coimbra Chemistry Center, University of Coimbra, P-3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, P-3000-548 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, University of Coimbra, P-3004-535 Coimbra, Portugal
- Chemistry Department, University of Coimbra, P-3004-535 Coimbra, Portugal
| |
Collapse
|
42
|
Yu Q, Sun J, Huang S, Chang H, Bai Q, Chen YX, Liang D. Inward Budding and Endocytosis of Membranes Regulated by de Novo Designed Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6183-6193. [PMID: 29733597 DOI: 10.1021/acs.langmuir.8b00882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein-mediated endocytosis of membrane is a key event in biological system. The mechanism, however, is still not clear. Using a de novo designed bola-type peptide KKKLLLLLLLLKKK (K3L8K3) as a protein mimic, we studied how it induced giant unilamellar vesicle (GUV) to form inward buds or endocytosis at varying conditions. Results show that the inward budding is initiated as the charged lipids are neutralized by K3L8K3, which results in a negative spontaneous curvature. If the charged lipids have unsaturated tails, the buddings are slim fibrils, which can further wrap into a spherical structure. In the case of saturated charged lipids, the buddings are rigid tubules, stable in the studied time period. The unsaturated lipid to saturated lipid ratio in the mother membrane is another key parameter governing the shape and dynamics of the buds. A complete endocytosis is observed when K3L8K3 is attached with a hydrophobic moiety, suggesting that hydrophobic interaction helps the buds to detach from the mother membrane. The molecules in the surrounding medium, such as negatively charged oligonucleotides, are engulfed into the GUV via endocytosis pathway induced by K3L8K3. Our study provides a novel strategy for illustrating the endocytosis mechanism by using peptides of simple sequence.
Collapse
|
43
|
Gillard BK, Rosales C, Xu B, Gotto AM, Pownall HJ. Rethinking reverse cholesterol transport and dysfunctional high-density lipoproteins. J Clin Lipidol 2018; 12:849-856. [PMID: 29731282 DOI: 10.1016/j.jacl.2018.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022]
Abstract
Human plasma high-density lipoprotein cholesterol concentrations are a negative risk factor for atherosclerosis-linked cardiovascular disease. Pharmacological attempts to reduce atherosclerotic cardiovascular disease by increasing plasma high-density lipoprotein cholesterol have been disappointing so that recent research has shifted from HDL quantity to HDL quality, that is, functional vs dysfunctional HDL. HDL has varying degrees of dysfunction reflected in impaired reverse cholesterol transport (RCT). In the context of atheroprotection, RCT occurs by 2 mechanisms: one is the well-known trans-hepatic pathway comprising macrophage free cholesterol (FC) efflux, which produces early forms of FC-rich nascent HDL (nHDL). Lecithin:cholesterol acyltransferase converts HDL-FC to HDL-cholesteryl ester while converting nHDL from a disc to a mature spherical HDL, which transfers its cholesteryl ester to the hepatic HDL receptor, scavenger receptor B1 for uptake, conversion to bile salts, or transfer to the intestine for excretion. Although widely cited, current evidence suggests that this is a minor pathway and that most HDL-FC and nHDL-FC rapidly transfer directly to the liver independent of lecithin:cholesterol acyltransferase activity. A small fraction of plasma HDL-FC enters the trans-intestinal efflux pathway comprising direct FC transfer to the intestine. SR-B1-/- mice, which have impaired trans-hepatic FC transport, are characterized by high plasma levels of a dysfunctional FC-rich HDL that increases plasma FC bioavailability in a way that produces whole-body hypercholesterolemia and multiple pathologies. The design of future therapeutic strategies to improve RCT will have to be formulated in the context of these dual RCT mechanisms and the role of FC bioavailability.
Collapse
Affiliation(s)
- Baiba K Gillard
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| | - Corina Rosales
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| | - Bingqing Xu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Antonio M Gotto
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| | - Henry J Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
44
|
Breidigan JM, Krzyzanowski N, Liu Y, Porcar L, Perez-Salas U. Influence of the membrane environment on cholesterol transfer. J Lipid Res 2017; 58:2255-2263. [PMID: 29046341 PMCID: PMC5711489 DOI: 10.1194/jlr.m077909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/09/2017] [Indexed: 01/28/2023] Open
Abstract
Cholesterol, an essential component in biological membranes, is highly unevenly distributed within the cell, with most localized in the plasma membrane while only a small fraction is found in the endoplasmic reticulum, where it is synthesized. Cellular membranes differ in lipid composition and protein content, and these differences can exist across their leaflets too. This thermodynamic landscape that cellular membranes impose on cholesterol is expected to modulate its transport. To uncover the role the membrane environment has on cholesterol inter- and intra-membrane movement, we used time-resolved small angle neutron scattering to study the passive movement of cholesterol between and within membranes with varying degrees of saturation content. We found that cholesterol moves systematically slower as the degree of saturation in the membranes increases, from a palmitoyl oleyl phosphotidylcholine membrane, which is unsaturated, to a dipalmitoylphosphatidylcholine (DPPC) membrane, which is fully saturated. Additionally, we found that the energetic barrier to move cholesterol in these phosphatidylcholine membranes is independent of their relative lipid composition and remains constant for both flip-flop and exchange at ∼100 kJ/mol. Further, by replacing DPPC with the saturated lipid palmitoylsphingomyelin, an abundant saturated lipid of the outer leaflet of the plasma membrane, we found the rates decreased by a factor of two. This finding is in stark contrast with recent molecular dynamic simulations that predict a dramatic slow-down of seven orders of magnitude for cholesterol flipping in membranes with a similar phosphocholine and SM lipid composition.
Collapse
Affiliation(s)
| | | | - Yangmingyue Liu
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607
| | - Lionel Porcar
- Large Scale Structures Group, Institut Laue-Langevin, F-38042 Grenoble CEDEX 9, France
| | - Ursula Perez-Salas
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
45
|
Rahimi M, Regan D, Arroyo M, Subramaniam AB, Stone HA, Staykova M. Shape Transformations of Lipid Bilayers Following Rapid Cholesterol Uptake. Biophys J 2017; 111:2651-2657. [PMID: 28002741 DOI: 10.1016/j.bpj.2016.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/11/2016] [Accepted: 11/03/2016] [Indexed: 11/29/2022] Open
Abstract
High cholesterol levels in the blood increase the risk of atherosclerosis. A common explanation is that the cholesterol increase in the plasma membrane perturbs the shape and functions of cells by disrupting the cell signaling pathways and the formation of membrane rafts. In this work, we show that after enhanced transient uptake of cholesterol, mono-component lipid bilayers change their shape similarly to cell membranes in vivo. The bilayers either expel lipid protrusions or spread laterally as a result of the ensuing changes in their lipid density, the mechanical constraints imposed on them, and the properties of cyclodextrin used as a cholesterol donor. In light of the increasingly recognized link between membrane tension and cell behavior, we propose that the physical adaptation of the plasma membrane to cholesterol uptake may play a substantial role in the biological response.
Collapse
Affiliation(s)
- Mohammad Rahimi
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - David Regan
- Department of Physics, University of Durham, Durham, United Kingdom
| | - Marino Arroyo
- Universitat Politecnica de Catalunya, Barcelona, Spain
| | | | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | | |
Collapse
|
46
|
Improved Stability and Enhanced Oral Bioavailability of Atorvastatin Loaded Stearic Acid Modified Gelatin Nanoparticles. Pharm Res 2017; 34:1505-1516. [DOI: 10.1007/s11095-017-2173-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022]
|
47
|
Kieler-Ferguson HM, Chan D, Sockolosky J, Finney L, Maxey E, Vogt S, Szoka FC. Encapsulation, controlled release, and antitumor efficacy of cisplatin delivered in liposomes composed of sterol-modified phospholipids. Eur J Pharm Sci 2017; 103:85-93. [PMID: 28263913 DOI: 10.1016/j.ejps.2017.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
We employed a recently introduced class of sterol-modified lipids (SML) to produce m-PEG-DSPE containing liposome compositions with a range of cis-platinum content release rates. SML have a cholesterol succinate attached to the phosphatidylglycerol head group and a fatty acid at the 2 position. These compositions were compared to the well-studied liposome phospholipid compositions: mPEG-DSPE/Hydrogenated Soy PC/cholesterol or mPEG-DSPE/POPC/cholesterol to determine the effect of the cis-platinum release extent on C26 tumor proliferation in the BALB/c colon carcinoma mouse model. The release rates of cis-platinum from liposomes composed of SML are a function of the acyl chain length. SML-liposomes with shorter acyl chain lengths C-8 provided more rapid cisplatin release, lower in vitro IC50, and were easier to formulate compared to liposomes using traditional phospholipid compositions. Similar to other liposome cis-platinum formulations, the half-life of m-PEG-DSPE SML liposome cisplatin is substantially longer than the free drug. This resulted in a higher tumor cisplatin concentration at 48h post-dosing compared to the free drug and higher Pt-DNA adducts in the tumor. Moreover, the maximum tolerated dose of the liposome formulations where up to four fold greater than the free drug. Using X-ray fluorescence spectroscopy on tumor sections, we compared the location of platinum, to the location of a fluorescence lipid incorporated in the liposomes. The liposome platinum co-localized with the fluorescent lipid and both were non-uniformly distributed in the tumor. Non-encapsulated Cis-platinum, albeit at a low concentration, was more uniformly distributed thorough the tumor. Three liposome formulations, including the well-studied hydrogenated HSPC composition, had better antitumor activity in the murine colon 26 carcinoma model as compared to the free drug at the same dose but the SML liposome platinum formulations did not perform better than the HSPC formulation.
Collapse
Affiliation(s)
- Heidi M Kieler-Ferguson
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA; Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, CA 94143-0912, USA
| | - Darren Chan
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, CA 94143-0912, USA
| | - Jonathan Sockolosky
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, CA 94143-0912, USA
| | - Lydia Finney
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Evan Maxey
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Francis C Szoka
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, CA 94143-0912, USA.
| |
Collapse
|
48
|
Litz JP, Thakkar N, Portet T, Keller SL. Depletion with Cyclodextrin Reveals Two Populations of Cholesterol in Model Lipid Membranes. Biophys J 2017; 110:635-645. [PMID: 26840728 DOI: 10.1016/j.bpj.2015.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022] Open
Abstract
Recent results provide evidence that cholesterol is highly accessible for removal from both cell and model membranes above a threshold concentration that varies with membrane composition. Here we measured the rate at which methyl-β-cyclodextrin depletes cholesterol from a supported lipid bilayer as a function of cholesterol mole fraction. We formed supported bilayers from two-component mixtures of cholesterol and a PC (phosphatidylcholine) lipid, and we directly visualized the rate of decrease in area of the bilayers with fluorescence microscopy. Our technique yields the accessibility of cholesterol over a wide range of concentrations (30-66 mol %) for many individual bilayers, enabling fast acquisition of replicate data. We found that the bilayers contain two populations of cholesterol, one with low surface accessibility and the other with high accessibility. A larger fraction of the total membrane cholesterol appears in the more accessible population when the acyl chains of the PC-lipid tails are more unsaturated. Our findings are most consistent with the predictions of the condensed-complex and cholesterol bilayer domain models of cholesterol-phospholipid interactions in lipid membranes.
Collapse
Affiliation(s)
- Jonathan P Litz
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Niket Thakkar
- Department of Chemistry, University of Washington, Seattle, Washington; Department of Applied Mathematics, University of Washington, Seattle, Washington
| | - Thomas Portet
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, Washington; Department of Physics, University of Washington, Seattle, Washington.
| |
Collapse
|
49
|
Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat Chem Biol 2016; 13:268-274. [PMID: 28024150 DOI: 10.1038/nchembio.2268] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/21/2016] [Indexed: 11/08/2022]
Abstract
Controlled distribution of lipids across various cell membranes is crucial for cell homeostasis and regulation. We developed an imaging method that allows simultaneous in situ quantification of cholesterol in two leaflets of the plasma membrane (PM) using tunable orthogonal cholesterol sensors. Our imaging revealed marked transbilayer asymmetry of PM cholesterol (TAPMC) in various mammalian cells, with the concentration in the inner leaflet (IPM) being ∼12-fold lower than that in the outer leaflet (OPM). The asymmetry was maintained by active transport of cholesterol from IPM to OPM and its chemical retention at OPM. Furthermore, the increase in the IPM cholesterol level was triggered in a stimulus-specific manner, allowing cholesterol to serve as a signaling lipid. We found excellent correlation between the IPM cholesterol level and cellular Wnt signaling activity, suggesting that TAPMC and stimulus-induced PM cholesterol redistribution are crucial for tight regulation of cellular processes under physiological conditions.
Collapse
|
50
|
Marino KA, Prada-Gracia D, Provasi D, Filizola M. Impact of Lipid Composition and Receptor Conformation on the Spatio-temporal Organization of μ-Opioid Receptors in a Multi-component Plasma Membrane Model. PLoS Comput Biol 2016; 12:e1005240. [PMID: 27959924 PMCID: PMC5154498 DOI: 10.1371/journal.pcbi.1005240] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/07/2016] [Indexed: 11/21/2022] Open
Abstract
The lipid composition of cell membranes has increasingly been recognized as playing an important role in the function of various membrane proteins, including G Protein-Coupled Receptors (GPCRs). For instance, experimental and computational evidence has pointed to lipids influencing receptor oligomerization directly, by physically interacting with the receptor, and/or indirectly, by altering the bulk properties of the membrane. While the exact role of oligomerization in the function of class A GPCRs such as the μ-opioid receptor (MOR) is still unclear, insight as to how these receptors oligomerize and the relevance of the lipid environment to this phenomenon is crucial to our understanding of receptor function. To examine the effect of lipids and different MOR conformations on receptor oligomerization we carried out extensive coarse-grained molecular dynamics simulations of crystal structures of inactive and/or activated MOR embedded in an idealized mammalian plasma membrane composed of 63 lipid types asymmetrically distributed across the two leaflets. The results of these simulations point, for the first time, to specific direct and indirect effects of the lipids, as well as the receptor conformation, on the spatio-temporal organization of MOR in the plasma membrane. While sphingomyelin-rich, high-order lipid regions near certain transmembrane (TM) helices of MOR induce an effective long-range attractive force on individual protomers, both long-range lipid order and interface formation are found to be conformation dependent, with a larger number of different interfaces formed by inactive MOR compared to active MOR. The μ-opioid receptor (MOR) is an important pharmaceutical target in the treatment of pain. In order to develop novel pain therapies, devoid of the serious side-effects of present opioid analgesics, we need to understand the fundamentals of how MOR works on the molecular level. While some studies suggest that oligomers of MOR could play a role in signaling, how MOR forms dimers, which interfaces form, and the exact role of oligomers in MOR function remain unclear. While research has shown that the membrane environment can affect membrane protein function, most previous computational work to study oligomerization has been performed in a very simple membrane. Here, we use molecular dynamics simulations of MOR in a heterogeneous plasma membrane model (comprising 63 lipid types) to investigate how the presence of the protein modulates its lipid environment, affecting species distribution and sculpting characteristic order and thickness profiles around the receptors. Such modulations, in turn, induce long-range interactions between the proteins and favor the formation of specific dimeric conformations.
Collapse
Affiliation(s)
- Kristen A. Marino
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Diego Prada-Gracia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
- * E-mail:
| |
Collapse
|