1
|
Tokgonul S, Ozyilmaz ED, Comoglu T, Gürbüz MM, Doğan Topal B, Kocak FE, Ozakpinar HR. Evaluation of the effect of carvedilol orodispersible tablets on ischemia-reperfusion injury and flap viability in rats: An in vivo study. Arch Pharm (Weinheim) 2024:e2400618. [PMID: 39367562 DOI: 10.1002/ardp.202400618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Flap surgery is an integral part of plastic surgery, and ischemia-reperfusion (I/R) injury significantly affects the viability of the flap. Carvedilol (CRV), a nonselective beta-blocker with alpha-1 blocking and antioxidant properties, and known for its potential in reducing I/R damage, was chosen as the active substance for our study. The aim of this study was to investigate the vasodilator and antioxidant effects of CRV on rat inferior epigastric artery skin flap using orally disintegrating tablets (ODTs). The optimized ODT formulation was subjected to in vivo experiments using Sprague-Dawley female rats (n = 24) divided into three groups: Group I (control, I/R), Group II (treatment, I/R + CRV), and Group III (treatment, I/R), I/R + CRV ODT). Reperfusion was then observed following the release of the microclamp from the pedicle, and the flap was then re-adapted to its original position. Control rats were given oral isotonic solution via gavage and were subjected to 8 h of ischemia and 12 h of reperfusion. Group II was given 2 mg/kg CRV oral tablets for 7 days before and after surgery. Group III was given 2 mg/kg/day CRV ODT for the same period. Biopsies were taken from the flap and histopathological and biochemical analyses including superoxide dismutase, glutathionenitric oxide, malondialdehyde, paraoxonase 1, total oxidant, and total antioxidant capacities were performed. This study demonstrates that CRV ODTs significantly increased flap viability by approximately 25% compared to the control group, highlighting their promising therapeutic potential.
Collapse
Affiliation(s)
| | - Emine Dilek Ozyilmaz
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Tansel Comoglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Manolya Müjgan Gürbüz
- Institute of Health Sciences, Ankara University, Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Medipol University, Ankara, Turkey
| | - Burcu Doğan Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Fatma Emel Kocak
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kutahya, Turkey
| | | |
Collapse
|
2
|
Nair L, Asuzu P, Dagogo-Jack S. Ethnic Disparities in the Risk Factors, Morbidity, and Mortality of Cardiovascular Disease in People With Diabetes. J Endocr Soc 2024; 8:bvae116. [PMID: 38911352 PMCID: PMC11192623 DOI: 10.1210/jendso/bvae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 06/25/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in people with diabetes. Compared with European Americans, African Americans have more favorable lipid profiles, as indicated by higher high-density lipoprotein cholesterol, lower triglycerides, and less dense low-density lipoprotein particles. The less atherogenic lipid profile translates to lower incidence and prevalence of CVD in African Americans with diabetes, despite higher rates of hypertension and obesity. However, African Americans with CVD experience worse clinical outcomes, including higher mortality, compared with European Americans. This mini-review summarizes the epidemiology, pathophysiology, mechanisms, and management of CVD in people with diabetes, focusing on possible factors underlying the "African American CVD paradox" (lower CVD incidence/prevalence but worse outcomes). Although the reasons for the disparities in CVD outcomes remain to be fully elucidated, we present a critical appraisal of the roles of suboptimal control of risk factors, inequities in care delivery, several biological factors, and psychosocial stress. We identify gaps in current knowledge and propose areas for future investigation.
Collapse
Affiliation(s)
- Lekshmi Nair
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Özdemir Ç, Arslan M, Küçük A, Yığman Z, Dursun AD. Therapeutic Efficacy of Boric Acid Treatment on Brain Tissue and Cognitive Functions in Rats with Experimental Alzheimer's Disease. Drug Des Devel Ther 2023; 17:1453-1462. [PMID: 37220543 PMCID: PMC10200114 DOI: 10.2147/dddt.s405963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION Oxidative stress has an important role in the pathophysiology of Alzheimer's disease (AD), the most common type of dementia. Boric acid (BA) contributes significantly to the protection of the brain by reducing lipid peroxidation and supporting antioxidant defense. We aimed to evaluate the therapeutic potential of BA treatment in AD rats. MATERIALS AND METHODS Four groups were formed as Control (C), Alzheimer's (A), Alzheimer's + Boric acid (ABA), Boric acid (BA). Intracerebroventricular injection of Streptozotocin (STZ) was preferred to create an AD. After 4 weeks, BA was applied 3 times every other day. The Radial Arm Maze Test (RAMT) was used to evaluate memory and learning abilities. Biochemical and histopathological evaluations were made in the hippocampus. RESULTS Initial RAMT inlet/outlet (I/O) numbers were similar. Two weeks after STZ injection, I/O numbers decreased in group A and ABA compared to group C and BA (p<0.05). After the second BA application, I/O numbers increased in the ABA group compared to the A group (p<0.05). In group A, PON-1, TOS and OSI levels were higher and TAS levels were lower than in groups BA and C. After BA treatment, PON-1 and OSI levels were lower in the ABA group than in the A group (p<0.05). Although there was an increase in TAS value and a decrease in TOS, this did not make a statistical difference. The thickness of the pyramidal cell in CA1 and the granular cell layers in the dentate gyrus, and the number of intact and degenerated neurons in the pyramidal cell layer were similar between the groups. DISCUSSION Significant improvement in learning and memory abilities after BA application is promising for AD. CONCLUSION These results show that BA application positively affects learning and memory abilities, and reduces oxidative stress. More extensive studies are required to evaluate histopathological efficacy.
Collapse
Affiliation(s)
- Çağrı Özdemir
- Mamak State Hospital Department of Anesthesiology and Reanimation, Ankara, Turkey
| | - Mustafa Arslan
- Gazi University Faculty of Medicine Department of Anesthesiology and Reanimation, Ankara, Turkey
- Gazi University, Life Sciences Application and Research Center, Ankara, Turkey
- Gazi University, Laboratory Animal Breeding and Experimental Research Center (GÜDAM), Ankara, Turkey
| | - Ayşegül Küçük
- Kutahya Health Sciences University Faculty of Medicine, Department of Physiology, Kutahya, Turkey
| | - Zeynep Yığman
- Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
- Gazi University Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
| | - Ali Doğan Dursun
- Atılım University Faculty of Medicine Department of Physiology, Ankara, Turkey
| |
Collapse
|
4
|
Nasreen FJ, Balasubramaniam G. Paraoxonase gene polymorphisms: Understanding the biochemical and genetic basis of coronary artery disease. J Taibah Univ Med Sci 2022; 18:257-264. [PMID: 36817215 PMCID: PMC9926197 DOI: 10.1016/j.jtumed.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 01/31/2023] Open
Abstract
Objectives Serum paraoxonase (PON) is a glycoprotein with antioxidant and anti-atherosclerotic activities. The Q192R and L55M gene polymorphisms of PON have been implicated as risk factors for coronary artery disease (CAD) but have not been extensively explored in South Indians. We aimed to assess the Q192R and L55M genetic polymorphisms of the PON1 gene in participants with CAD, including genotypes and allele frequencies for PON1 gene polymorphism. Methods This prospective case-control study involved 20 participants in each group. Patients with angiographically demonstrated CAD were included in the case group. PON1 activity was measured, and PON gene polymorphism was determined. Serum PON was quantitatively analyzed with a RayBio® Human PON1 ELISA kit. Chi square tests were used to assess the association of the genotypes with sex and any comorbidities in cases and controls. A p value ≤ 0.05 was considered significant. Results Mutant type L55M polymorphism was observed in 50% of patients, whereas wild type Q192R polymorphism was observed in 42.5% of the participants. The mean PON values between groups did not significantly differ, whereas PON U/L was significantly (p = 0.001) lower in the case group. The L55M polymorphism did not significantly differ between the case and the control groups (p = 0.213), whereas the Q192R polymorphism was statistically significant in cases compared with controls (p ≤ 0.001). Conclusion Low plasma PON1 and HDL levels, and higher LDL, total cholesterol and triglyceride levels were observed in patients with CAD. More patients with CAD than healthy individuals had Q192R polymorphism.
Collapse
Affiliation(s)
| | - Gayathri Balasubramaniam
- Department of Biochemistry, PSG Institute of Medical Sciences and Research, Coimbatore, India
- Corresponding address: Department of Biochemistry, PSG Institute of Medical Sciences and Research, Coimbatore, India.
| |
Collapse
|
5
|
Could the PON1 phenotype play a key role in insulin resistance? Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Chuang YC, Chen CC. Force From Filaments: The Role of the Cytoskeleton and Extracellular Matrix in the Gating of Mechanosensitive Channels. Front Cell Dev Biol 2022; 10:886048. [PMID: 35586339 PMCID: PMC9108448 DOI: 10.3389/fcell.2022.886048] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
The senses of proprioception, touch, hearing, and blood pressure on mechanosensitive ion channels that transduce mechanical stimuli with high sensitivity and speed. This conversion process is usually called mechanotransduction. From nematode MEC-4/10 to mammalian PIEZO1/2, mechanosensitive ion channels have evolved into several protein families that use variant gating models to convert different forms of mechanical force into electrical signals. In addition to the model of channel gating by stretching from lipid bilayers, another potent model is the opening of channels by force tethering: a membrane-bound channel is elastically tethered directly or indirectly between the cytoskeleton and the extracellular molecules, and the tethering molecules convey force to change the channel structure into an activation form. In general, the mechanical stimulation forces the extracellular structure to move relative to the cytoskeleton, deforming the most compliant component in the system that serves as a gating spring. Here we review recent studies focusing on the ion channel mechanically activated by a tethering force, the mechanotransduction-involved cytoskeletal protein, and the extracellular matrix. The mechanosensitive channel PIEZO2, DEG/ENaC family proteins such as acid-sensing ion channels, and transient receptor potential family members such as NompC are discussed. State-of-the-art techniques, such as polydimethylsiloxane indentation, the pillar array, and micropipette-guided ultrasound stimulation, which are beneficial tools for exploring the tether model, are also discussed.
Collapse
Affiliation(s)
- Yu-Chia Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
- Taiwan Mouse Clinic, BioTReC, Academia Sinica, Taipei, Taiwan
- *Correspondence: Chih-Cheng Chen,
| |
Collapse
|
7
|
Oh M, Ha DI, Son C, Kang JG, Hwang H, Moon SB, Kim M, Nam J, Kim JS, Song SY, Kim YS, Park S, Yoo JS, Ko JH, Park K. Defect in cytosolic Neu2 sialidase abrogates lipid metabolism and impairs muscle function in vivo. Sci Rep 2022; 12:3216. [PMID: 35217678 PMCID: PMC8881595 DOI: 10.1038/s41598-022-07033-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
Sialic acid (SA) is present in glycoconjugates and important in cell-cell recognition, cell adhesion, and cell growth and as a receptor. Among the four mammalian sialidases, cytosolic NEU2 has a pivotal role in muscle and neuronal differentiation in vitro. However, its biological functions in vivo remain unclear due to its very low expression in humans. However, the presence of cytoplasmic glycoproteins, gangliosides, and lectins involved in cellular metabolism and glycan recognition has suggested the functional importance of cytosolic Neu2 sialidases. We generated a Neu2 knockout mouse model via CRISPR/Cas9-mediated genome engineering and analyzed the offspring littermates at different ages to investigate the in vivo function of cytosolic Neu2 sialidase. Surprisingly, knocking out the Neu2 gene in vivo abrogated overall lipid metabolism, impairing motor function and leading to diabetes. Consistent with these results, Neu2 knockout led to alterations in sialylated glycoproteins involved in lipid metabolism and muscle function, as shown by glycoproteomics analysis.
Collapse
Affiliation(s)
- Mijung Oh
- Medical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Dae-In Ha
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Chaeyeon Son
- Medical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jeong Gu Kang
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Su Bin Moon
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Minjeong Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jihae Nam
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung Soo Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Sang Yong Song
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Sangwoo Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea.
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Kyoungsook Park
- Medical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Shirinzadeh H, Dilek E, Alım Z. Evaluation of Naphthalenylmethylen Hydrazine Derivatives as Potent Inhibitors on, Antiatherogenic Enzymes, Paraoxonase I and Acetylcholinesterase Activities. ChemistrySelect 2022. [DOI: 10.1002/slct.202104489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hanif Shirinzadeh
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Erzincan Binali Yildirim University, Yalnizbag Erzincan Turkey
| | - Esra Dilek
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yildirim University, Yalnizbag Erzincan Turkey
| | - Zuhal Alım
- Department of Chemistry Faculty of Science and Arts Kırşehir Ahi Evran University Bagbaşi Kırşehir Turkey
| |
Collapse
|
9
|
Talpo TC, Motta BP, Oliveira JOD, Figueiredo ID, Pinheiro CG, dos Santos CHC, Carvalho MGD, Brunetti IL, Baviera AM. Siolmatra brasiliensis stem extract ameliorates antioxidant defenses and mitigates glycoxidative stress in mice with high-fat diet-induced obesity. Obes Res Clin Pract 2022; 16:130-137. [DOI: 10.1016/j.orcp.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
|
10
|
Xie F, Chen L, Jin S, Qiu F, Huang M, Kan J, Li Y, Sun X, Wang H, Du J, Li Y. Supplementation with Ginseng, Lilii Bulbus, and Poria induces alterations in the serum metabolic profile of healthy adults. Food Funct 2022; 13:9602-9609. [DOI: 10.1039/d2fo00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preventive and therapeutic effects of herbal supplementation containing Ginseng, Lilii Bulbus, and Poria (GLP) on inflammation and oxidative stress in healthy adults have been demonstrated in our previous studies....
Collapse
|
11
|
Fois SS, Canu S, Fois AG. The Role of Oxidative Stress in Sarcoidosis. Int J Mol Sci 2021; 22:ijms222111712. [PMID: 34769145 PMCID: PMC8584035 DOI: 10.3390/ijms222111712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
Sarcoidosis is a rare, systemic inflammatory disease whose diagnosis and management can pose a challenge for clinicians and specialists. Scientific knowledge on the molecular pathways that drive its development is still lacking, with no standardized therapies available and insufficient strategies to predict patient outcome. In recent years, oxidative stress has been highlighted as an important factor in the pathogenesis of sarcoidosis, involving several enzymes and molecules in the mechanism of the disease. This review presents current data on the role of oxidative stress in sarcoidosis and its interaction with inflammation, as well as the application of antioxidative therapy in the disease.
Collapse
Affiliation(s)
- Sara Solveig Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy;
- Correspondence:
| | - Sara Canu
- Respiratory Diseases Operative Unit, University Hospital of Sassari, 07100 Sassari, Italy;
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy;
| |
Collapse
|
12
|
Pires RS, Braga PGS, Santos JMB, Amaral JB, Amirato GR, Trettel CS, Dos Santos CAF, Vaisberg M, Nali LHS, Vieira RP, Maranhão RC, Pithon-Curi TC, Barros MP, Bachi ALL. l-Glutamine supplementation enhances glutathione peroxidase and paraoxonase-1 activities in HDL of exercising older individuals. Exp Gerontol 2021; 156:111584. [PMID: 34653558 DOI: 10.1016/j.exger.2021.111584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxidative stress is an important factor in the formation of atherosclerotic plaques. High-density lipoprotein (HDL) harbors paraoxonase-1 (PON-1) and glutathione peroxidase (GPx), key enzymes in the protection against the harmful effects of oxidative stress. Although exercise training can increase both HDL-c content and its antioxidant action, and glutamine (Gln) intake also promotes GPx-based defenses, the association between exercise training and Gln in the regulation of PON-1 activity was not explored. Therefore, the objective of this study was to investigate the effects of Gln supplementation on the redox balance and on the total HDL antioxidant capacity by evaluation of the activity of PON-1 and GPx enzymes in physically exercised elderly individuals compared to non-exercised ones. METHODS Fifty-one practitioners of a combined exercise training program (CET, age: 71.9 ± 5.7 years) and 32 non-practitioners (NP, age: 73 ± 6.3 years) participated in the study. CET and NP groups were separated into 2 subgroups according to the supplementation: Gln, 0.3 g/kg/day + 10 g maltodextrin (CET-Gln, n = 26; and NP-Gln, n = 16) or placebo, 10 g maltodextrin (CET-PL, n = 25; and NP-PL, n = 16). Blood samples were drawn at baseline and after 30 days after commencement of the supplementation for biochemical and enzyme activity analyses. RESULTS Increased HDL-c, total peroxidase (PRx), and GPx activities were found in both CET-Gln and NP-Gln after the supplementation period, compared to baseline, in opposition to CET-PL and NP-PL groups. PON-1 activity increased only in CET-Gln. In both CET-Gln and NP-Gln groups, there was a reduction of the total peroxides/PRx, iron/PRx, and total peroxides/GPX ratios after supplementation. In CET-Gln, thiobarbituric acid-reactive substances (TBARS)/PRx and TBARS/GPx ratios were also lower after supplementation. CET-Gln and CET-PL subgroups had lower glycemia than NP-Gln and NP-PL, either at baseline or after the supplementation periods. The other parameters were unchanged after supplementation [total cholesterol, LDL-c, triglycerides, non-HDL cholesterol, total peroxides, TBARS, iron serum, Trolox-equivalent antioxidant capacity (TEAC), and uric acid]. CONCLUSIONS Gln supplementation can increase glutathione peroxidase activity regardless the individuals were physically active or sedentary, but the PON-1 activity only increased in physically active individuals. These results show the potential of Gln supplementation in the maintenance of the vascular redox balance, with potential implications for atherogenesis protection.
Collapse
Affiliation(s)
- Renier S Pires
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, SP 04829-300, Brazil
| | - Pedro G S Braga
- Lipid Metabolism Laboratory, Heart Institute (InCor), Medical School Hospital, University of São Paulo, SP 05403-900, Brazil
| | - Juliana M B Santos
- Post-Graduation Program in Science of Human and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP 11015-020, Brazil
| | - Jônatas B Amaral
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), São Paulo, SP 04025-002, Brazil
| | - Gislene R Amirato
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), São Paulo, SP 04025-002, Brazil
| | - Caio S Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil
| | - Carlos A F Dos Santos
- Department of Medicine (Geriatrics and Gerontology), Federal University of São Paulo (UNIFESP), São Paulo, SP 04020-050, Brazil
| | - Mauro Vaisberg
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), São Paulo, SP 04025-002, Brazil
| | - Luis H S Nali
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, SP 04829-300, Brazil
| | - Rodolfo P Vieira
- Post-Graduation Program in Science of Human and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP 11015-020, Brazil; Post-graduation Program in Bioengineering and Biomedical Engineering, Universidade Brasil, São Paulo, SP 08230-030, Brazil; Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São Jose dos Campos, SP 12245-520, Brazil
| | - Raul C Maranhão
- Lipid Metabolism Laboratory, Heart Institute (InCor), Medical School Hospital, University of São Paulo, SP 05403-900, Brazil
| | - Tania C Pithon-Curi
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil
| | - Marcelo P Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil
| | - André L L Bachi
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, SP 04829-300, Brazil; ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), São Paulo, SP 04025-002, Brazil; Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São Jose dos Campos, SP 12245-520, Brazil.
| |
Collapse
|
13
|
Meisinger C, Freuer D, Bub A, Linseisen J. Association between inflammatory markers and serum paraoxonase and arylesterase activities in the general population: a cross-sectional study. Lipids Health Dis 2021; 20:81. [PMID: 34332593 PMCID: PMC8325814 DOI: 10.1186/s12944-021-01508-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/16/2021] [Indexed: 01/04/2023] Open
Abstract
Background Recent studies focused on modulating factors of paraoxonase-1 (PON1) activity. In some studies the association between pro-inflammatory markers and PON1 activity was examined, but so far no population-based investigations on this issue have been conducted. The present study investigated the relationships between the pro-inflammatory markers tumor necrosis factor (TNF)-α, leptin, interleukin (IL)-6, and high-sensitive C-reactive protein (hs-CRP) and paraoxonase and arylesterase, two hydrolytic activities of PON1, in the population-based Bavarian Food Consumption Survey II. Methods Based on 504 participants (217 men, 287 women), the relationship between the pro-inflammatory markers and the outcomes paraoxonase and arylesterase activities were investigated using multivariable linear models. Results Circulating plasma levels of leptin (P-value < 0.0001), hs-CRP (P-value = 0.031) and IL-6 (P-value = 0.045) were significantly non-linearly associated with arylesterase activity. Leptin levels were also significantly associated with paraoxonase activity (P-value = 0.024) independently from confounding factors, including high-density lipoprotein (HDL) cholesterol. With increasing levels of these inflammatory parameters, arylesterase and paraoxonase activities increased; however, at higher levels (> 75th percentile) the activities reached a plateau or even decreased somewhat. After Bonferroni-Holm correction, only leptin remained non-linearly but significantly associated with arylesterase activity (adjusted overall P-value < 0.0001). Neither age nor sex nor obesity modified the associations. No association was found between TNF-α and paraoxonase or arylesterase activity. Conclusions The present findings suggest that in persons with very high levels of inflammation, PON1 activity may be impaired, a fact that might subsequently be accompanied by a higher risk for cardiometabolic diseases. Whether or not the measurement of PON1 activity in combination with a lipid profile and certain inflammatory markers could improve the prediction of cardiometabolic diseases in middle-aged individuals from the general population should be evaluated in clinical studies.
Collapse
Affiliation(s)
- Christa Meisinger
- Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany. .,Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany.
| | - Dennis Freuer
- Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.,Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max-Rubner-Institut, Federal Research Institute of Nutrition and Food, 76131, Karlsruhe, Germany
| | - Jakob Linseisen
- Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.,Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany
| |
Collapse
|
14
|
Aliahmadi M, Amiri F, Bahrami LS, Hosseini AF, Abiri B, Vafa M. Effects of raw red beetroot consumption on metabolic markers and cognitive function in type 2 diabetes patients. J Diabetes Metab Disord 2021; 20:673-682. [PMID: 34222085 PMCID: PMC8212206 DOI: 10.1007/s40200-021-00798-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study aimed to investigate the effects of raw red beetroot consumption on metabolic markers and cognitive function in type 2 diabetes patients. METHODS In a quasi-experimental study, 44 type 2 diabetes patients (57 ± 4.5 years) consumed raw red beetroot (100 g, daily), for 8 weeks. Metabolic markers including body weight, glucose and lipid profile parameters, inflammatory and oxidative stress markers, paraoxonase-1 activity, hepatic enzymes, blood pressure and cognitive function were measured at the beginning and end of 8 weeks. RESULTS Raw red beetroot consumption resulted in a significant decrease in fasting blood sugar (FBS) levels (-13.53 mg/dL), glycosylated hemoglobin (HbA1c)(-0.34%), apolipoproteinB100 (ApoB100) (-8.25 mg/dl), aspartate aminotransferase (AST) (-1.75 U/L), alanine aminotransferase (ALT) (-3.7 U/L), homocysteine (-7.88 μmol/l), systolic (-0.73 mmHg) and diastolic blood pressure (-0.34 mmHg), anda significant increase in total antioxidant capacity (TAC) (105 μmol/L) and cognitive function tests (all P values <0.05). Other variables did not change significantly after the intervention. CONCLUSIONS Raw red beetroot consumption for 8 weeks in T2DM patients has beneficial impacts on cognitive function, glucose metabolism and other metabolic markers.
Collapse
Affiliation(s)
- Mitra Aliahmadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amiri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Sadat Bahrami
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Agha Fatemeh Hosseini
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Wubuli A, Gerlinger C, Reyer H, Oster M, Muráni E, Trakooljul N, Ponsuksili S, Wolf P, Wimmers K. Reduced phosphorus intake throughout gestation and lactation of sows is mitigated by transcriptional adaptations in kidney and intestine. BMC Genomics 2020; 21:626. [PMID: 32917128 PMCID: PMC7488499 DOI: 10.1186/s12864-020-07049-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/03/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The environmental impact of pig farming need to be reduced, with phosphorus (P) being of particular interest. Specified dietary regimens and management systems contribute to meet environmental concerns and reduce economic constrains. However, pregnant and lactating sows represent vulnerable individuals, whose reproductive potential and metabolic health status relies on adequate supply of macro- and micronutrients. The aim of this study was to investigate, whether sows fed with a dietary P content that is below or above current recommendations are capable to maintain mineral homeostasis during the reproduction cycle and which endogenous mechanisms are retrieved therefore in kidney and jejunum. Nulliparous gilts were fed iso-energetic diets with recommended (M), reduced (L), or high (H) amounts of mineral P supplements throughout gestation and lactation periods. Blood metabolites and hormones referring to the P homeostasis were retrieved prior to term (110 days of gestation) and at weaning (28 days of lactation). Transcriptional responses in kidney cortex and jejunal mucosa were analyzed using RNA sequencing. RESULTS The variable dietary P content neither led to an aberration on fertility traits such as total weaned piglets nor to an effect on the weight pattern throughout gestation and lactation. Serum parameters revealed a maintained P homeostasis as reflected by unaltered inorganic P and calcium levels in L and H fed groups. The serum calcitriol levels were increased in lactating L sows. The endocrine responses to the dietary challenge were reflected at the transcriptional level. L diets led to an increase in CYP27B1 expression in the kidney compared to the H group and to an altered gene expression associated with lipid metabolism in the kidney and immune response in the jejunum. CONCLUSIONS Our results suggest that current P requirements for gestating and lactating sows are sufficient and over supplementation of mineral P is not required. Shifts in renal and jejunal expression patterns between L and H groups indicate an affected intermediate metabolism, which long-term relevance needs to be further clarified.
Collapse
Affiliation(s)
- Aisanjiang Wubuli
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Christian Gerlinger
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
- Nutritional Physiology and Animal Nutrition, University of Rostock, Justus-von-Liebig-Weg 6b, 18059, Rostock, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Michael Oster
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Eduard Muráni
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Petra Wolf
- Nutritional Physiology and Animal Nutrition, University of Rostock, Justus-von-Liebig-Weg 6b, 18059, Rostock, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
- Animal Breeding and Genetics, University of Rostock, Justus-von-Liebig-Weg 7, 18059, Rostock, Germany.
| |
Collapse
|
16
|
Noma SAA, Erzengin M, Tunç T, Balcıoğlu S. Synthesis, characterization and biological assessment of a novel hydrazone as potential anticancer agent and enzyme inhibitor. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Tabatabaie M, Abdollahi S, Salehi-Abargouei A, Clark CCT, Karimi-Nazari E, Fallahzadeh H, Rahmanian M, Mozaffari-Khosravi H. The effect of resveratrol supplementation on serum levels of asymmetric de-methyl-arginine and paraoxonase 1 activity in patients with type 2 diabetes: A randomized, double-blind controlled trial. Phytother Res 2020; 34:2023-2031. [PMID: 32144833 DOI: 10.1002/ptr.6655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 02/16/2020] [Indexed: 12/16/2022]
Abstract
The present study sought to investigate the effect of micronized resveratrol supplementation on serum levels of asymmetric de-methyl-arginine (ADMA) and paraoxonase-1 (PON1) activity in patients with type 2 diabetes (T2D). In this double-blinded randomized trial, 76 patients with T2D were recruited. Participants were randomly assigned to consume 1,000 mg resveratrol or placebo capsules (methylcellulose) per day, for 8 weeks. Serum levels of ADMA and PON1 enzyme activity were measured at the beginning and end of the intervention using the enzyme-linked immunosorbent assay method. In total, 71 participants completed the study. Our results showed that resveratrol significantly decreased serum levels of ADMA (-0.16 ± 0.11, p < .001) and improved PON1 enzyme activity (15.39 ± 13.99, p < .001) compared with placebo, after adjusting for confounding factors (age, sex, and baseline body mass index). Our findings suggest that 8-week resveratrol supplementation may produce beneficial effects on serum levels of ADMA and PON1 enzyme activity in patients with T2DM. However, further research is needed to confirm the veracity of these results.
Collapse
Affiliation(s)
- Mahtab Tabatabaie
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shima Abdollahi
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University, Bojnurd, Iran
| | - Amin Salehi-Abargouei
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Cain C T Clark
- Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, UK
| | - Elham Karimi-Nazari
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Rahmanian
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
18
|
Cai J, Pires KM, Ferhat M, Chaurasia B, Buffolo MA, Smalling R, Sargsyan A, Atkinson DL, Summers SA, Graham TE, Boudina S. Autophagy Ablation in Adipocytes Induces Insulin Resistance and Reveals Roles for Lipid Peroxide and Nrf2 Signaling in Adipose-Liver Crosstalk. Cell Rep 2019; 25:1708-1717.e5. [PMID: 30428342 DOI: 10.1016/j.celrep.2018.10.040] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 09/10/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a homeostatic cellular process involved in the degradation of long-lived or damaged cellular components. The role of autophagy in adipogenesis is well recognized, but its role in mature adipocyte function is largely unknown. We show that the autophagy proteins Atg3 and Atg16L1 are required for proper mitochondrial function in mature adipocytes. In contrast to previous studies, we found that post-developmental ablation of autophagy causes peripheral insulin resistance independently of diet or adiposity. Finally, lack of adipocyte autophagy reveals cross talk between fat and liver, mediated by lipid peroxide-induced Nrf2 signaling. Our data reveal a role for autophagy in preventing lipid peroxide formation and its transfer in insulin-sensitive peripheral tissues.
Collapse
Affiliation(s)
- Jinjin Cai
- Division of Endocrinology Diabetes and Metabolism, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Karla M Pires
- Department of Nutrition and Integrative Physiology, University of Utah College of Health and Program in Molecular Medicine, Salt Lake City, UT 84112, USA
| | - Maroua Ferhat
- Department of Nutrition and Integrative Physiology, University of Utah College of Health and Program in Molecular Medicine, Salt Lake City, UT 84112, USA
| | - Bhagirath Chaurasia
- Department of Nutrition and Integrative Physiology, University of Utah College of Health and Program in Molecular Medicine, Salt Lake City, UT 84112, USA
| | - Márcio A Buffolo
- Department of Nutrition and Integrative Physiology, University of Utah College of Health and Program in Molecular Medicine, Salt Lake City, UT 84112, USA
| | - Rana Smalling
- Division of Endocrinology Diabetes and Metabolism, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ashot Sargsyan
- Division of Endocrinology Diabetes and Metabolism, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Donald L Atkinson
- Department of Nutrition and Integrative Physiology, University of Utah College of Health and Program in Molecular Medicine, Salt Lake City, UT 84112, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah College of Health and Program in Molecular Medicine, Salt Lake City, UT 84112, USA
| | - Timothy E Graham
- Division of Endocrinology Diabetes and Metabolism, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Progenitor Life Sciences, Salt Lake City, UT 84108, USA.
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah College of Health and Program in Molecular Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
19
|
Paraoxonase 3: Structure and Its Role in Pathophysiology of Coronary Artery Disease. Biomolecules 2019; 9:biom9120817. [PMID: 31816846 PMCID: PMC6995636 DOI: 10.3390/biom9120817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Spanning three decades in research, Paraoxonases (PON1) carried potential of dealing with neurotoxicity of organophosphates entering the circulation and preventing cholinergic crisis. In the past few years, the Paraoxonase multigene family (PON1, PON2, PON3) has been shown to play an important role in pathogenesis of cardiovascular disorders including coronary artery disease (CAD). The PON genes are clustered in tandem on the long arm of human chromosome 7 (q21, 22). All of them have been shown to act as antioxidants. Of them, PON3 is the least studied member as its exact physiological substrate is still not clear. This has further led to limitation in our understanding of its role in pathogenesis of CAD and development of the potential therapeutic agents which might modulate its activity, expression in circulation and tissues. In the present review, we discuss the structure and activity of human PON3 enzyme and its Single nucleotide variants that could potentially lead to new clinical strategies in prevention and treatment of CAD.
Collapse
|
20
|
Li Z, Zhang J, Zhang Y, Zuo Z. Role of esterase mediated hydrolysis of simvastatin in human and rat blood and its impact on pharmacokinetic profiles of simvastatin and its active metabolite in rat. J Pharm Biomed Anal 2019; 168:13-22. [DOI: 10.1016/j.jpba.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/10/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
|
21
|
Miki T, Miyoshi T, Kotani K, Kohno K, Asonuma H, Sakuragi S, Koyama Y, Nakamura K, Ito H. Decrease in oxidized high-density lipoprotein is associated with slowed progression of coronary artery calcification: Subanalysis of a prospective multicenter study. Atherosclerosis 2019; 283:1-6. [DOI: 10.1016/j.atherosclerosis.2019.01.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 12/27/2022]
|
22
|
Sumirtanurdin R, Thalib AY, Cantona K, Abdulah R. Effect of genetic polymorphisms on Alzheimer's disease treatment outcomes: an update. Clin Interv Aging 2019; 14:631-642. [PMID: 30992661 PMCID: PMC6445219 DOI: 10.2147/cia.s200109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genetic variations in individuals may cause differences in the response to cholinesterase inhibitor drugs used in the treatment of Alzheimer's disease (AD). Through this review, we aimed to understand the potential relationship between genetic polymorphisms and treatment response in AD. We conducted a systematic review of the studies published from 2006 to 2018 that assessed the relationship between genetic polymorphisms and the pharmacotherapeutic outcomes of patients with AD. Via several possible mechanisms, genetic polymorphisms of many genes, including ABCA1, ApoE3, CYP2D6, CHAT, CHRNA7, and ESR1, appear to have strong correlations with the treatment response of patients with AD. Indeed, these genetic polymorphisms, either in the form of single nucleotide polymorphisms or direct changes to one or more amino acids, have been shown to cause differences in the therapeutic response. In summary, our findings indicate that genetic polymorphisms should be considered in the management of AD to achieve both effective and efficient treatment outcomes in terms of cost and prognosis.
Collapse
Affiliation(s)
- Riyadi Sumirtanurdin
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia,
| | - Amirah Y Thalib
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia,
| | - Kelvin Cantona
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia,
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia, .,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia,
| |
Collapse
|
23
|
Horodyska J, Hamill RM, Reyer H, Trakooljul N, Lawlor PG, McCormack UM, Wimmers K. RNA-Seq of Liver From Pigs Divergent in Feed Efficiency Highlights Shifts in Macronutrient Metabolism, Hepatic Growth and Immune Response. Front Genet 2019; 10:117. [PMID: 30838035 PMCID: PMC6389832 DOI: 10.3389/fgene.2019.00117] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
Liver is a metabolically complex organ that influences nutrient partitioning and potentially modulates the efficiency of converting energy acquired from macronutrients ingestion into a muscle and/or adipose tissue (referred to as feed efficiency, FE). The objective of this study was to sequence the hepatic tissue transcriptome of closely related but differently feed efficient pigs (n = 16) and identify relevant biological processes that underpin the differences in liver phenotype between FE groups. Liver weight did not significantly differ between the FE groups, however, blood parameters showed that total protein, glucose, cholesterol and percentage of lymphocytes were significantly greater in high-FE pigs. Ontology analysis revealed carbohydrate, lipid and protein metabolism to be significantly enriched with differentially expressed genes. In particular, high-FE pigs exhibited gene expression patterns suggesting improved absorption of carbohydrates and cholesterol as well as enhanced reverse cholesterol transport. Furthermore, the inferred decrease in bile acid synthesis in high-FE pigs may contribute to the observed greater levels of serum glucose, which can be then delivered to cells and utilized for growth and maintenance. Gene ontology analysis also suggested that livers of more efficient pigs may be characterized by higher protein turnover and increased epithelial cell differentiation, whereby an enhanced quantity of invariant natural killer T-cells and viability of natural killer cells could induce a quicker and more effective hepatic response to inflammatory stimuli. Our findings suggest that this prompt hepatic response to inflammation in high-FE group may contribute to the more efficient utilization of nutrients for growth in these animals.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Ireland.,Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | | | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Peadar G Lawlor
- Teagasc, Pig Production Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ursula M McCormack
- Teagasc, Pig Production Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| |
Collapse
|
24
|
Gilad D, Atiya S, Mozes-Autmazgin Z, Ben-Shushan RS, Ben-David R, Amram E, Tamir S, Chuyun D, Szuchman-Sapir A. Paraoxonase 1 in endothelial cells impairs vasodilation induced by arachidonic acid lactone metabolite. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:386-393. [PMID: 30572120 DOI: 10.1016/j.bbalip.2018.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Paraoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated lactonase, which is known for its antiatherogenic properties. Previous studies in PON1 knockout (PON1KO) mice revealed that PON1KO mice have low blood pressure, which is inversely correlated with the renal levels of the cytochrome P450 -derived arachidonic acid metabolite 5,6-epoxyeicosatrienoic acid (5,6-EET). Our previous studies revealed that 5,6-EET is unstable, transforming to the δ-lactone isomer 5,6-δ-DHTL, an endothelium-derived hyperpolarizing factor (EDHF) that mediates vasodilation, and it is a potential substrate for PON1. AIM To elucidate the role of PON1 in the modulation of vascular resistance via the regulation of the lactone-containing metabolite 5,6-δ-DHTL. RESULTS In mouse resistance arteries, PON1 was found to be present and active in the endothelial layer. Vascular reactivity experiments revealed that 5,6-δ-DHTL dose-dependently dilates PON1KO mouse mesenteric arteries significantly more than wild type (w.t.) resistance arteries. Pre-incubation with HDL or rePON1 reduced 5,6-δ-DHTL-dependent vasodilation. FACS analyses and confocal microscopy experiments revealed that fluorescence-tagged rePON1 penetrates into human endothelial cells' (ECs') in both dose- and time- dependent manner, accumulate in the perinuclear compartment, and retains its lactonase activity in the cells. The presence of rePON1, but not the presence of PON1 loss-of-lactonase-activity mutant, reduced the Ca2+ influx in the ECs mediated by 5,6-δ-DHTL. CONCLUSION PON1 lactonase activity in the endothelium affects vascular dilation by regulating Ca2+ influx mediated by the lactone-containing EDHF 5,6-δ-DHTL.
Collapse
Affiliation(s)
- Dan Gilad
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Shahar Atiya
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Ziv Mozes-Autmazgin
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel
| | - Rotem Shelly Ben-Shushan
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel
| | - Raz Ben-David
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Eytan Amram
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Snait Tamir
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | | | - Andrea Szuchman-Sapir
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel.
| |
Collapse
|
25
|
Horodyska J, Reyer H, Wimmers K, Trakooljul N, Lawlor PG, Hamill RM. Transcriptome analysis of adipose tissue from pigs divergent in feed efficiency reveals alteration in gene networks related to adipose growth, lipid metabolism, extracellular matrix, and immune response. Mol Genet Genomics 2018; 294:395-408. [PMID: 30483895 DOI: 10.1007/s00438-018-1515-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 11/13/2018] [Indexed: 12/14/2022]
Abstract
Adipose tissue is hypothesized to play a vital role in regulation of feed efficiency (FE; efficiency in converting energy and nutrients into tissue), of which improvement will simultaneously reduce environmental impact and feed cost per pig. The objective of the present study was to sequence the subcutaneous adipose tissue transcriptome in FE-divergent pigs (n = 16) and identify relevant biological processes underpinning observed differences in FE. We previously demonstrated that high-FE pigs were associated with lower fatness when compared to their counterparts. Here, ontology analysis of a total of 209 annotated genes that were differentially expressed at a p < 0.01 revealed establishment of a dense extracellular matrix and inhibition of capillary formation as one underlying mechanism to achieve suppressed adipogenesis. Moreover, mechanisms ensuring an efficient utilization of lipids in high-FE pigs might be orchestrated by upstream regulators including CEBPA and EGF. Consequently, high-FE adipose tissue could exhibit more efficient cholesterol disposal, whilst inhibition of inflammatory and immune response in high-FE pigs may be an indicator of an optimally functioning adipose tissue. Taken together, adipose tissue growth, extracellular matrix formation, lipid metabolism and inflammatory and immune response are key biological events underpinning the differences in FE. Further investigations focusing on elucidating these processes would assist the animal production industry in optimizing strategies related to nutrient utilization and product quality.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Dublin 15, Ireland.,Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ruth M Hamill
- Teagasc, Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
26
|
Horodyska J, Wimmers K, Reyer H, Trakooljul N, Mullen AM, Lawlor PG, Hamill RM. RNA-seq of muscle from pigs divergent in feed efficiency and product quality identifies differences in immune response, growth, and macronutrient and connective tissue metabolism. BMC Genomics 2018; 19:791. [PMID: 30384851 PMCID: PMC6211475 DOI: 10.1186/s12864-018-5175-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Feed efficiency (FE) is an indicator of efficiency in converting energy and nutrients from feed into a tissue that is of major environmental and economic significance. The molecular mechanisms contributing to differences in FE are not fully elucidated, therefore the objective of this study was to profile the porcine Longissimus thoracis et lumborum (LTL) muscle transcriptome, examine the product quality from pigs divergent in FE and investigate the functional networks underpinning the potential relationship between product quality and FE. RESULTS RNA-Seq (n = 16) and product quality (n = 40) analysis were carried out in the LTL of pigs differing in FE status. A total of 272 annotated genes were differentially expressed with a P < 0.01. Functional annotation revealed a number of biological events related to immune response, growth, carbohydrate & lipid metabolism and connective tissue indicating that these might be the key mechanisms governing differences in FE. Five most significant bio-functions altered in FE groups were 'haematological system development & function', 'lymphoid tissue structure & development', 'tissue morphology', 'cellular movement' and 'immune cell trafficking'. Top significant canonical pathways represented among the differentially expressed genes included 'IL-8 signalling', 'leukocyte extravasation signalling, 'sphingosine-1-phosphate signalling', 'PKCθ signalling in T lymphocytes' and 'fMLP signalling in neutrophils'. A minor impairment in the quality of meat, in relation to texture and water-holding capacity, produced by high-FE pigs was observed. High-FE pigs also had reduced intramuscular fat content and improved nutritional profile in terms of fatty acid composition. CONCLUSIONS Ontology analysis revealed enhanced activity of adaptive immunity and phagocytes in high-FE pigs suggesting more efficient conserving of resources, which can be utilised for other important biological processes. Shifts in carbohydrate conversion into glucose in FE-divergent muscle may underpin the divergent evolution of pH profile in meat from the FE-groups. Moreover, altered amino acid metabolism and increased mobilisation & flux of calcium may influence growth in FE-divergent muscle. Furthermore, decreased degradation of fibroblasts in FE-divergent muscle could impact on collagen turnover and alter tenderness of meat, whilst enhanced lipid degradation in high-FE pigs may potentially underlie a more efficient fat metabolism in these animals.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland.,Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | | | - Peadar G Lawlor
- Teagasc, Pig Development Department, AGRIC, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ruth M Hamill
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland.
| |
Collapse
|
27
|
Intermittent living; the use of ancient challenges as a vaccine against the deleterious effects of modern life - A hypothesis. Med Hypotheses 2018; 120:28-42. [PMID: 30220336 DOI: 10.1016/j.mehy.2018.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/25/2018] [Accepted: 08/04/2018] [Indexed: 12/19/2022]
Abstract
Chronic non-communicable diseases (CNCD) are the leading cause of mortality in developed countries. They ensue from the sum of modern anthropogenic risk factors, including high calorie nutrition, malnutrition, sedentary lifestyle, social stress, environmental toxins, politics and economic factors. Many of these factors are beyond the span of control of individuals, suggesting that CNCD are inevitable. However, various studies, ours included, show that the use of intermittent challenges with hormetic effects improve subjective and objective wellbeing of individuals with CNCD, while having favourable effects on immunological, metabolic and behavioural indices. Intermittent cold, heat, fasting and hypoxia, together with phytochemicals in multiple food products, have widespread influence on many pathways related with overall health. Until recently, most of the employed challenges with hormetic effects belonged to the usual transient live experiences of our ancestors. Our hypothesis; we conclude that, whereas the total inflammatory load of multi-metabolic and psychological risk factors causes low grade inflammation and aging, the use of intermittent challenges, united in a 7-10 days lasting hormetic intervention, might serve as a vaccine against the deleterious effects of chronic low grade inflammation and it's metabolic and (premature) aging consequences.
Collapse
|
28
|
Shunmoogam N, Naidoo P, Chilton R. Paraoxonase (PON)-1: a brief overview on genetics, structure, polymorphisms and clinical relevance. Vasc Health Risk Manag 2018; 14:137-143. [PMID: 29950852 PMCID: PMC6014389 DOI: 10.2147/vhrm.s165173] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Paraoxonase-1 (PON1) is a high-density lipoprotein-associated esterase and is speculated to play a role in several human diseases including diabetes mellitus and atherosclerosis. Low PON1 activity has been associated with increased risk of major cardiovascular events, therefore a variety of studies have been conducted to establish the cardioprotective properties and clinical relevance of PON1. The major aim of this review was to highlight the important studies and to subsequently assess if PON1 has clinical relevance. A review of the literature showed that there is currently insufficient data to suggest that PON1 has clinical relevance. It is our opinion that robust studies are required to clarify the clinical relevance of PON1.
Collapse
Affiliation(s)
| | | | - Robert Chilton
- Department of Medicine, Division of Cardiology and Interventional Cardiology, University of Texas Health Science Center at San Antonia, San Antonia, TX, USA
| |
Collapse
|
29
|
Zeng X, Xi Y, Jiang W. Protective roles of flavonoids and flavonoid-rich plant extracts against urolithiasis: A review. Crit Rev Food Sci Nutr 2018; 59:2125-2135. [DOI: 10.1080/10408398.2018.1439880] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiangquan Zeng
- Bioengineering Department, College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua Donglu No. 17, Beijing, PR China
| | - Yu Xi
- Bioengineering Department, College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua Donglu No. 17, Beijing, PR China
| | - Weibo Jiang
- Bioengineering Department, College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua Donglu No. 17, Beijing, PR China
| |
Collapse
|
30
|
Samouilidou E, Bountou E, Papandroulaki F, Papamanolis M, Papakostas D, Grapsa E. Serum Endocan Levels are Associated With Paraoxonase 1 Concentration in Patients With Chronic Kidney Disease. Ther Apher Dial 2018; 22:325-331. [PMID: 29368426 DOI: 10.1111/1744-9987.12654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/01/2017] [Accepted: 10/26/2017] [Indexed: 01/30/2023]
Abstract
Endocan is a soluble proteoglycan released by the vascular endothelium. The increase of its serum levels is associated with inflammation, endothelial dysfunction and cardiovascular events in patients with chronic kidney disease (CKD). We studied the association of serum endocan with the lipid profile of 105 CKD patients with dyslipidemia, divided in two groups, non-dialyzed (CKD, N = 57) and hemodialysis (HD, N = 48) in comparison with 30 normal controls (NC). We also analyzed endocan in relation with the concentration of two serum HDL-linked members of the paraoxonase (PON) family, PON1 and PON3, which have been previously found to have antiatherogenic properties. The results showed that endocan levels were significantly higher in HD patients than in CKD patients (P < 0.001) and NC (P < 0.001). PON1 was significantly decreased only in HD patients compared to NC (P < 0.001), whereas PON3 was significantly increased in both patient groups (P < 0.001). Endocan levels were significantly and positively correlated with total cholesterol and LDL-C in CKD and additionally were negatively correlated with HDL-C in HD group. PON1 levels were significantly correlated with endocan in both groups, while no correlation was observed for PON3 in either group. Multiple regression analysis between endocan and the above lipid parameters in the total of patients revealed that endocan was independently associated only with PON1 (β = -0.513, P = 0.002). It is concluded that the increase of serum endocan levels in patients with CKD may be associated with the decrease of PON1 concentration, irrespective of lipid alterations produced by atherosclerosis development.
Collapse
Affiliation(s)
| | - Eirini Bountou
- Nephrology Department, "Aretaeio" University Hospital, Athens, Greece
| | | | | | | | - Eirini Grapsa
- Nephrology Department, "Aretaeio" University Hospital, Athens, Greece
| |
Collapse
|
31
|
Shaik AH, Shaik NR, Mohammed AK, Al Omar SY, Mohammad A, Mohaya TA, Kodidhela LD. Terminalia pallida fruit ethanolic extract ameliorates lipids, lipoproteins, lipid metabolism marker enzymes and paraoxonase in isoproterenol-induced myocardial infarcted rats. Saudi J Biol Sci 2017; 25:431-436. [PMID: 29692646 PMCID: PMC5911636 DOI: 10.1016/j.sjbs.2017.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/04/2017] [Accepted: 11/01/2017] [Indexed: 02/05/2023] Open
Abstract
The present study aimed to evaluate the effect of Terminalia pallida fruit ethanolic extract (TpFE) on lipids, lipoproteins, lipid metabolism marker enzymes and paraoxonase (PON) in isoproterenol (ISO)-induced myocardial infarcted rats. PON is an excellent serum antioxidant enzyme which involves in the protection of low density lipoprotein cholesterol (LDL-C) from the process of oxidation for the prevention of cardiovascular diseases. ISO caused a significant increase in the concentration of total cholesterol, triglycerides, LDL-C, very low density lipoprotein cholesterol and lipid peroxidation whereas significant decrease in the concentration of high density lipoprotein cholesterol. ISO administration also significantly decreased the activities of lecithin cholesterol acyl transferase, PON and lipoprotein lipase whereas significantly increased the activity of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase. Oral pretreatment of TpFE at doses 100, 300 and 500 mg/kg body weight (bw) and gallic acid (15 mg/kg bw) for 30 days challenged with concurrent injection of ISO (85 mg/kg bw) on 29th and 30th day significantly attenuated these alterations and restored the levels of lipids, lipoproteins and the activities of lipid metabolizing enzymes. Also TpFE significantly elevated the serum antioxidant enzyme PON. This is the first report revealed that pretreatment with TPFE ameliorated lipid metabolic marker enzymes and increased the antioxidant PON in ISO treated male albino Wistar rats.
Collapse
Affiliation(s)
- Althaf Hussain Shaik
- Central Laboratory, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nayab Rasool Shaik
- Department of Biochemistry, National Post Graduate College, Nandyal, Andhra Pradesh, India
| | - Abdul Kareem Mohammed
- Department of Biochemistry, School of Sciences, Indira Gandhi National Open University, Saket, New Delhi, India
| | | | - Altaf Mohammad
- Central Laboratory, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Lakshmi Devi Kodidhela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| |
Collapse
|
32
|
Saeidi M, Shakeri R, Marjani A, Khajeniazi S. Alzheimer's Disease and Paraoxonase 1 ( PON1) Gene Polymorphisms. Open Biochem J 2017; 11:47-55. [PMID: 28694880 PMCID: PMC5481621 DOI: 10.2174/1874091x01711010047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/11/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Some studies have indicated that human paraoxonase 1 (PON1) activity shows a polymorphic distribution. The aim of this study was to determine the distribution of PON1 polymorphism in patients with Alzheimer's disease in Gorgan and compare it with a healthy control group. METHOD The study included 100 healthy individuals and 50 patients. Enzyme activity and genetic polymorphism of PON1 were determined. RESULT There were significant differences in distribution of genotypes and alleles among patients and control group. The most common genotype was CT in patients and control group, while the most frequent alleles were T and C in patients and controls, respectively. There was a statistically significant variation between serum PON1 activity and -108C> T polymorphism. The highest PON1 enzyme activities in the patients and controls were found in CC, while lower enzyme activities were seen in CT and TT genotypes in both genders and age groups. CONCLUSION Onset of Alzheimer's disease may depend on different polymorphisms of the PON1 enzyme. Late or early-onset of Alzheimer's disease may also depend on age and gender distribution, especially for arylesterase enzyme. Further studies on polymorphism of the enzyme are necessary for interpretation of possible polymorphic effects of enzyme on PON1 activity in humans.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Stem Cell Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Raheleh Shakeri
- Student Research Committee, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Abdoljalal Marjani
- Student Research Committee, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| | - Safoura Khajeniazi
- Department of Medical Technology, Faculty of Advanced Medical Sciences and Technology, Golestan University of Medical Sciences, Gorgan, Golestan province, Iran
| |
Collapse
|
33
|
Scholz N, Monk KR, Kittel RJ, Langenhan T. Adhesion GPCRs as a Putative Class of Metabotropic Mechanosensors. Handb Exp Pharmacol 2017; 234:221-247. [PMID: 27832490 DOI: 10.1007/978-3-319-41523-9_10] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adhesion GPCRs as mechanosensors. Different aGPCR homologs and their cognate ligands have been described in settings, which suggest that they function in a mechanosensory capacity. For details, see text G protein-coupled receptors (GPCRs) constitute the most versatile superfamily of biosensors. This group of receptors is formed by hundreds of GPCRs, each of which is tuned to the perception of a specific set of stimuli a cell may encounter emanating from the outside world or from internal sources. Most GPCRs are receptive for chemical compounds such as peptides, proteins, lipids, nucleotides, sugars, and other organic compounds, and this capacity is utilized in several sensory organs to initiate visual, olfactory, gustatory, or endocrine signals. In contrast, GPCRs have only anecdotally been implicated in the perception of mechanical stimuli. Recent studies, however, show that the family of adhesion GPCRs (aGPCRs), which represents a large panel of over 30 homologs within the GPCR superfamily, displays molecular design and expression patterns that are compatible with receptivity toward mechanical cues (Fig. 1). Here, we review physiological and molecular principles of established mechanosensors, discuss their relevance for current research of the mechanosensory function of aGPCRs, and survey the current state of knowledge on aGPCRs as mechanosensing molecules.
Collapse
Affiliation(s)
- Nicole Scholz
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
| | - Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurologic Disorders, Washington University School of Medicine, St. Louis, 63110, MO, USA
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, Würzburg, 97070, Germany
| | - Tobias Langenhan
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
| |
Collapse
|
34
|
Altuner Torun Y, Ertural U, Ergul AB, Karakukcu C, Akin MA. Reduction in serum paraoxonase level in newborns with hyperbilirubinemia as a marker of oxidative stress. J Matern Fetal Neonatal Med 2016; 30:2297-2300. [DOI: 10.1080/14767058.2016.1247154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | | | - M. A. Akin
- Department of Neonatology, Kayseri Training and Research Hospital, Kayseri, Turkey
| |
Collapse
|
35
|
Anesthetic Propofol-Induced Gene Expression Changes in Patients Undergoing Coronary Artery Bypass Graft Surgery Based on Dynamical Differential Coexpression Network Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:7097612. [PMID: 27437027 PMCID: PMC4942588 DOI: 10.1155/2016/7097612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 02/02/2023]
Abstract
We aimed to determine the influence of anesthetic propofol on gene expression in patients treated by coronary artery bypass graft (CABG) surgery based on differential coexpression network (DCN) and to further reveal the novel mechanisms of the cardioprotective effects of propofol. Firstly, we constructed the DCN for disease condition based on Pearson correlation coefficient (PCC) and weight value. Secondly, the inference of modules was applied to search modules from DCN with same members but varied connectivity. Furthermore, we measured the statistical significance of the modules for selecting differential modules (DMs). Finally, attract method was used for DMs analysis to select key modules. Based on the δ value, 11928 edges and 2956 nodes were chosen to construct DCNs. A total of 29 seed genes were selected. Moreover, by quantifying connectivity changes in shared gene modules across different conditions, 8 DMs with higher connectivity dynamics were identified. Then, we extracted key modules using attract method, there were 8 key modules, and the top 3 modules were module 1, 2, and 3. Furthermore, GCG, PPY, and PON1 were initial seed genes of these 3 key modules, respectively. Accordingly, GCG and PON1 might exert important roles in the cardioprotective effects of propofol during CABG.
Collapse
|
36
|
Eftekhari MH, Allaei M, Khosropanah S, Rajaeifard A, Sohrabi Z. Cranberry Supplement and Metabolic Risk Factors in Obese and Overweight Females. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/jjhr-37255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Patil VP, Patil AB, Patil VS, Ingleshwar DG. Paraoxonase Activity and Lipid Profile in Paediatric Nephrotic Syndrome: A Cross-sectional Study. J Clin Diagn Res 2016; 10:BC17-20. [PMID: 27134858 DOI: 10.7860/jcdr/2016/18524.7440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/28/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Dyslipidaemia of Nephrotic Syndrome (NS) is known to be linked to oxidative reactions and atherosclerosis. Paraoxonase (PON1) has been implicated in the prevention of Low Density Lipoprotein (LDL) lipid peroxidation and also degrades biologically active oxidised lipids in lipoprotein. AIM The present study was taken up to assess PON1 levels in paediatric nephrotic syndrome and also to see if any correlation exists between lipid parameters and PON1. MATERIALS AND METHODS This study consists of Group 1 with 40 cases of NS in the age group of 2-14 years and Group 2 with 40 age and sex matched healthy controls. Lipid profile and paraoxonase activity was measured in serum samples of both the groups. RESULTS Statistical analysis by student's t-test showed that the mean levels of Total Cholesterol, Trigylycerides, LDL, and VLDL were significantly increased in Group 1 when compared to Group 2 (p <0.001). The mean levels of HDL were similar in both groups. The levels of PON1 were significantly lowered in Group 1 when compared to Group 2. Correlation studies showed no significant correlation between lipid profile and PON1. CONCLUSION Cases have atherosclerotic dyslipidaemia and significantly decreased PON1 activity. Decreased PON1 may lead to increased oxidation of LDL accelerating the process of atherosclerosis.
Collapse
Affiliation(s)
- Vijayetha P Patil
- Assistant Professor, Department of Biochemistry, SDM College of Medical Sciences and Hospital , Dharwad, Karnataka, India
| | - Anuradha B Patil
- Professor and Head, Department of Biochemistry, J.N. Medical College , Belgaum, Karnataka, India
| | - Vidya S Patil
- Professor and Head, Department of Biochemistry, SDM College of Medical Sciences and Hospital , Dharwad, Karnataka, India
| | - Deepti G Ingleshwar
- Assistant Professor, Department of Biochemistry, SDM College of Medical Sciences and Hospital , Dharwad, Karnataka, India
| |
Collapse
|
38
|
Fu J, Pacyniak E, Leed MGD, Sadgrove MP, Marson L, Jay M. Interspecies Differences in the Metabolism of a Multiester Prodrug by Carboxylesterases. J Pharm Sci 2016; 105:989-995. [PMID: 26344572 DOI: 10.1002/jps.24632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022]
Abstract
The pentaethyl ester prodrug of the chelating agent diethylene triamine pentaacetic acid (DTPA) referred to as C2E5 is being developed as an orally bioavailable radionuclide decorporation agent. The predicted human efficacy obtained in these experimental animals is confounded by interspecies variations of metabolism. Therefore, in the present study, carboxylesterase-mediated metabolism of [(14)C]-C2E5 was compared in the S9 intestinal and hepatic fractions of human, dog, and rat and their respective plasma. Intestinal hydrolysis of C2E5, resulting in the formation of the tetraethyl ester of DTPA (C2E4), was only detected in human and rat. The primary metabolite in human and dog hepatic fractions was C2E4, whereas the predominant species identified in rat hepatic fractions was the triethyl ester (C2E3). Hepatic hydrolysis of C2E5 causes the formation of C2E4 in human, dog, and rat and C2E3 in rat only. Minimal C2E5 hydrolysis was observed in human and dog plasma, whereas in rat plasma C2E5 converted to C2E3 rapidly, followed by slower further metabolism. Both recombinant CES1 and CES2 play roles in C2E5 metabolism. Together, these data suggest that dogs may be the most appropriate species for predicting human C2E5 metabolism, whereas rats might be useful for clarifying the potential toxicity of C2E5 metabolites.
Collapse
Affiliation(s)
- Jing Fu
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360
| | - Erik Pacyniak
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360
| | - Marina G D Leed
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360
| | - Matthew P Sadgrove
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360
| | - Lesley Marson
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360
| | - Michael Jay
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360.
| |
Collapse
|
39
|
Lin B, Su H, Ma G, Liu Y, Hou Q. Theoretical study of the hydrolysis mechanism of dihydrocoumarin catalyzed by serum paraoxonase 1 (PON1): different roles of Glu53 and His115 for catalysis. RSC Adv 2016. [DOI: 10.1039/c6ra09735a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the PON1-catalyzed hydrolysis of dihydrocoumarin, Glu53 is necessary whereas His115 is not essential but can promote the activity.
Collapse
Affiliation(s)
- Beibei Lin
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Hao Su
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Guangcai Ma
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Qianqian Hou
- Shandong Non-metallic Materials Institute
- Jinan
- China
| |
Collapse
|
40
|
Vaisar T, Tang C, Babenko I, Hutchins P, Wimberger J, Suffredini AF, Heinecke JW. Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity. J Lipid Res 2015; 56:1519-30. [PMID: 25995210 DOI: 10.1194/jlr.m059089] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 12/17/2022] Open
Abstract
Recent studies demonstrate that HDL's ability to promote cholesterol efflux from macrophages associates strongly with cardioprotection in humans independently of HDL-cholesterol (HDL-C) and apoA-I, HDL's major protein. However, the mechanisms that impair cholesterol efflux capacity during vascular disease are unclear. Inflammation, a well-established risk factor for cardiovascular disease, has been shown to impair HDL's cholesterol efflux capacity. We therefore tested the hypothesis that HDL's impaired efflux capacity is mediated by specific changes of its protein cargo. Humans with acute inflammation induced by low-level endotoxin had unchanged HDL-C levels, but their HDL-C efflux capacity was significantly impaired. Proteomic analyses demonstrated that HDL's cholesterol efflux capacity correlated inversely with HDL content of serum amyloid A (SAA)1 and SAA2. In mice, acute inflammation caused a marked impairment of HDL-C efflux capacity that correlated with a large increase in HDL SAA. In striking contrast, the efflux capacity of mouse inflammatory HDL was preserved with genetic ablation of SAA1 and SAA2. Our observations indicate that the inflammatory impairment of HDL-C efflux capacity is due in part to SAA-mediated remodeling of HDL's protein cargo.
Collapse
Affiliation(s)
- Tomáš Vaisar
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Ilona Babenko
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Patrick Hutchins
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Jake Wimberger
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Anthony F Suffredini
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA 98105
| |
Collapse
|
41
|
Eryanni-Levin S, Khatib S, Levy-Rosenzvig R, Tamir S, Szuchman-Sapir A. 5,6-δ-DHTL, a stable metabolite of arachidonic acid, is a potential substrate for paraoxonase 1. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1118-22. [PMID: 25958017 DOI: 10.1016/j.bbalip.2015.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/26/2015] [Accepted: 04/30/2015] [Indexed: 01/28/2023]
Abstract
Paraoxonase 1 (PON1) is an antiatherogenic high density lipoprotein-associated lactonase. Recent findings revealed that PON1 knockout mice have low blood pressure, which is negatively correlated with the level of 5,6-epoxyeicosatrienoic acid (5,6-EET), a cytochrome P450 -derived arachidonic acid metabolite. 5,6-EET is an endothelium-derived hyperpolarizing factor that causes arterial dilation. Under physiological conditions, 5,6-EET is unstable, transforming to its δ-lactone (5,6-δ-DHTL) that evades the degradation by soluble epoxide hydrolase (sEH), arguing for the existence of yet another enzyme that is responsible specifically for its hydrolysis. We therefore hypothesized that PON1 degrades the 5,6-δ-DHTL, and this specific PON1 lactonase activity thus decreases endothelial vasodilatation. The aim of the present study was to investigate the PON1-5,6-δ-DHTL relationship. A liquid chromatography mass spectrometry based method for 5,6-EET derivatives identification was developed. Tracking the lactonization of 5,6-EET in a physiological solution revealed that 5,6-EET was fully converted into 5,6-δ-DHTL. Incubation of 5,6-δ-DHTL with rePON1 resulted in 85.1±3.4% degradation of the substrate to 5,6 dihydroxytrienoic acid (5,6-DHET), while only 12.0±8.7% hydrolysis was detected in the absence of PON1. Accordingly, the levels of 5,6-DHTL were found to be significantly higher in the PON1KO mice than in the wild type mice. Kinetic analysis revealed values of Vmax=0.021±0.01μM/s and Km=150.99±62.1μM. Calculation of the docking energy suggested possible interaction of the 5,6-δ-DHTL in the catalytic region of PON1 with free energy of-5.57 Kcal/mol, preferentially for the (S) enantiomer. These findings demonstrate that 5,6-δ-DHTL is a PON1 substrate and imply that the 5,6-EET vasodilation effect may be impaired by PON1.
Collapse
Affiliation(s)
- Suzy Eryanni-Levin
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Soliman Khatib
- Laboratory of Oxidative Stress and Human Diseases, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Reut Levy-Rosenzvig
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Snait Tamir
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | - Andrea Szuchman-Sapir
- Laboratory of Human Health and Nutrition Sciences, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel.
| |
Collapse
|
42
|
Kilic U, Gok O, Erenberk U, Dundaroz MR, Torun E, Kucukardali Y, Elibol-Can B, Uysal O, Dundar T. A remarkable age-related increase in SIRT1 protein expression against oxidative stress in elderly: SIRT1 gene variants and longevity in human. PLoS One 2015; 10:e0117954. [PMID: 25785999 PMCID: PMC4365019 DOI: 10.1371/journal.pone.0117954] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023] Open
Abstract
Aging is defined as the accumulation of progressive organ dysfunction. Controlling the rate of aging by clarifying the complex pathways has a significant clinical importance. Nowadays, sirtuins have become famous molecules for slowing aging and decreasing age-related disorders. In the present study, we analyzed the SIRT1 gene polymorphisms (rs7895833 A>G, rs7069102 C>G and rs2273773 C>T) and its relation with levels of SIRT1, eNOS, PON-1, cholesterol, TAS, TOS, and OSI to demonstrate the association between genetic variation in SIRT1 and phenotype at different ages in humans. We observed a significant increase in the SIRT1 level in older people and found a significant positive correlation between SIRT1 level and age in the overall studied population. The oldest people carrying AG genotypes for rs7895833 have the highest SIRT1 level suggesting an association between rs7895833 SNP and lifespan longevity. Older people have lower PON-1 levels than those of adults and children which may explain the high levels of SIRT1 protein as a compensatory mechanism for oxidative stress in the elderly. The eNOS protein level was significantly decreased in older people as compared to adults. There was no significant difference in the eNOS level between older people and children. The current study is the first to demonstrate age-related changes in SIRT1 levels in humans and it is important for a much better molecular understanding of the role of the longevity gene SIRT1 and its protein product in aging. It is also the first study presenting the association between SIRT1 expression in older people and rs7895833 in SIRT1 gene.
Collapse
Affiliation(s)
- Ulkan Kilic
- Department of Medical Biology and Regenerative and Restorative Medicine Research Center (REMER), International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- * E-mail:
| | - Ozlem Gok
- Department of Medical Biology and Regenerative and Restorative Medicine Research Center (REMER), International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ufuk Erenberk
- Department of Pediatrics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehmet Rusen Dundaroz
- Department of Pediatrics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Emel Torun
- Department of Pediatrics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Yasar Kucukardali
- Department of Internal Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Birsen Elibol-Can
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Omer Uysal
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Tolga Dundar
- Department of Neurosurgery, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
43
|
Han Y, Dorajoo R, Ke T, Ayala B, Chang X, Khor CC, van Dam RM, Yuan JM, Koh WP, Liu J, Goh DYT, Friedlander Y, Heng CK. Interaction effects between Paraoxonase 1 variants and cigarette smoking on risk of coronary heart disease in a Singaporean Chinese population. Atherosclerosis 2015; 240:40-5. [PMID: 25746376 DOI: 10.1016/j.atherosclerosis.2015.01.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Paraoxonase 1 (PON1) plays an important role in reducing the risk of coronary heart disease (CHD). Smoking is known to reduce PON1 activity. We aimed to investigate the effects of interactions between PON1 variants and smoking on CHD in the Singaporean Chinese population. METHODS In a case-control study nested within Singapore Chinese Health Study (N=1914), subjects with and without CHD were classified into never-smokers and ever-smokers (ever smoked at least one cigarette a day for 1 year or longer). Associations at four independent SNPs at the PON1 locus (rs3735590, rs3917550, rs662, rs3917481) with CHD were evaluated using logistic regression, before/after stratification on smoking status. Interactions between smoking and PON1 variants were analyzed with likelihood ratio tests, by including the SNP*smoking interaction term in regression analyses. RESULTS The T allele at the coding SNP, rs662, was associated with higher risk of CHD in ever-smokers only (OR=1.35, 95% CI 1.08-1.68; adjusted P=0.036). At the miR-SNP, rs3735590, carrying at least one copy of minor allele T was associated with increased risk of CHD in a dominant manner in never-smokers only (OR=1.53, 95% CI 1.11-2.11; adjusted P=0.036). Significant interactions between two PON1 SNPs and smoking in relation to CHD risk were identified (adjusted P=0.012 for rs662; adjusted P=0.044 for rs3735590). These associations remained significant after adjustment for known CHD risk factors and upon correction for multiple tests. CONCLUSIONS Two PON1 SNPs, rs662 and rs3735590, were found to significantly interact with cigarette smoking to modulate the risk of CHD in the Singaporean Chinese population.
Collapse
Affiliation(s)
- Yi Han
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tingjing Ke
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore
| | - Burger Ayala
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore; School of Public Health and Community Medicine, Hebrew University of Jerusalem, Israel
| | - Xuling Chang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore; Duke-NUS Graduate Medical School Singapore, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Daniel Y T Goh
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore
| | - Yechiel Friedlander
- School of Public Health and Community Medicine, Hebrew University of Jerusalem, Israel.
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore.
| |
Collapse
|
44
|
Laird BD, Goncharov AB, Ayotte P, Chan HM. Relationship between the esterase paraoxonase-1 (PON1) and metal concentrations in the whole blood of Inuit in Canada. CHEMOSPHERE 2015; 120:479-485. [PMID: 25260045 DOI: 10.1016/j.chemosphere.2014.08.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
The esterase paraoxonase (PON1), a major component of high-density lipoprotein (HDL), protects against the development of atherosclerosis in humans. Although variation in PON1 activity is primarily governed by PON1 genotype, there is growing evidence that environmental chemicals may also modulate its activity. This cross-sectional study aimed to determine whether environmental exposure to various metals is associated with PON1 activity in Inuit people routinely exposed to mercury (Hg), cadmium (Cd), lead (Pb), and (Se) selenium. PON1 activity and metal concentrations were measured in blood collected from 2172 healthy participants. Sociodemographic, anthropometric and lifestyle variables were also assessed. The associations between PON1 activity and blood metal concentrations, HDL, omega-3 fatty acid blood levels, age, sex, body mass index (BMI), and lifestyle habits (e.g. smoking and alcohol consumption) were explored via multiple linear regression. PON1 activity was positively associated with Se blood concentration (β=0.056, P=0.001) but was negatively associated with Cd blood concentration (β=-0.025, P<0.001). No association was observed between PON1 activity and Hg or Pb blood concentrations. Our results suggest that: PON1 activity is modulated by metal exposure, and Inuit traditional foods may confer health benefit by increasing PON1 activity via higher Se intakes. These findings underline that current environmental metal exposures among Inuit living in the Canadian Arctic are associated with paraoxonase activity, a toxicologically-relevant biochemical parameter.
Collapse
Affiliation(s)
- Brian D Laird
- Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie-Curie, Ottawa, ON, Canada.
| | - Alexey B Goncharov
- School of Health Science, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada.
| | - Pierre Ayotte
- Centre de Recherche du CHUQ, Université Laval, 945 Avenue Wolfe, Québec, QC, Canada.
| | - Hing Man Chan
- Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie-Curie, Ottawa, ON, Canada.
| |
Collapse
|
45
|
Chen Y, Hong C, Riley RD. An alternative pseudolikelihood method for multivariate random-effects meta-analysis. Stat Med 2014; 34:361-80. [PMID: 25363629 PMCID: PMC4305202 DOI: 10.1002/sim.6350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022]
Abstract
Recently, multivariate random-effects meta-analysis models have received a great deal of attention, despite its greater complexity compared to univariate meta-analyses. One of its advantages is its ability to account for the within-study and between-study correlations. However, the standard inference procedures, such as the maximum likelihood or maximum restricted likelihood inference, require the within-study correlations, which are usually unavailable. In addition, the standard inference procedures suffer from the problem of singular estimated covariance matrix. In this paper, we propose a pseudolikelihood method to overcome the aforementioned problems. The pseudolikelihood method does not require within-study correlations and is not prone to singular covariance matrix problem. In addition, it can properly estimate the covariance between pooled estimates for different outcomes, which enables valid inference on functions of pooled estimates, and can be applied to meta-analysis where some studies have outcomes missing completely at random. Simulation studies show that the pseudolikelihood method provides unbiased estimates for functions of pooled estimates, well-estimated standard errors, and confidence intervals with good coverage probability. Furthermore, the pseudolikelihood method is found to maintain high relative efficiency compared to that of the standard inferences with known within-study correlations. We illustrate the proposed method through three meta-analyses for comparison of prostate cancer treatment, for the association between paraoxonase 1 activities and coronary heart disease, and for the association between homocysteine level and coronary heart disease. © 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Yong Chen
- Division of Biostatistics, University of Texas School of Public Health, 1200 Pressler St, Houston, Texas 77030, U.S.A
| | | | | |
Collapse
|
46
|
Bounafaa A, Berrougui H, Ikhlef S, Essamadi A, Nasser B, Bennis A, Yamoul N, Ghalim N, Khalil A. Alteration of HDL functionality and PON1 activities in acute coronary syndrome patients. Clin Biochem 2014; 47:318-25. [PMID: 25218815 DOI: 10.1016/j.clinbiochem.2014.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/29/2014] [Accepted: 08/16/2014] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The functionality of HDL has been suggested as an important factor in the prevention of cardiovascular and coronary artery diseases. The objective of the present study was to investigate the functionality of HDL and the factors that may affect the anti-atherogenic properties of HDL in ACS patients. METHODS AND RESULTS One hundred healthy subjects and 205 ACS patients were recruited. HDL functionality was evaluated by measuring their capacity to mediate cholesterol efflux from J774 macrophages. Oxidative stress status was determined by measuring plasma malondialdehyde (MDA), protein carbonyl, and vitamin E levels by HPLC. The PON1 Q192R polymorphism status and PON1 paraoxonase and arylesterase activities of the healthy subjects and ACS patients were also determined. The HDL of ACS patients displayed a limited capacity to mediate cholesterol efflux, especially via the ABCA1-pathway. MDA (7.06±0.29 μM) and protein carbonyl (9.29±0.26 μM) levels were significantly higher in ACS patients than in healthy subjects (2.29±0.21 μM and 3.07±0.17 μM, respectively, p<0.0001), while α- and γ-tocopherol (vitamin E) levels in ACS patients were 8-fold (p<0.001) and 2-fold (p<0.05) lower than in healthy subjects. Paraoxonase, arylesterase and HDL-corrected PON1 activities (PON1 activity/HDL ratio) were significantly lower in ACS patients. Logistic regression analyses showed that high PON1 paraoxonase and arylesterase activities had a significant protective effect (OR=0.413, CI 0.289-0.590, p<0.001; OR=0.232 CI 0.107-0.499, p<0.001, respectively) even when adjusted for HDL level, age, BMI, and PON1 polymorphism. CONCLUSION The results of the present study showed that the functionality of HDL is impaired in ACS patients and that the impairment may be due to oxidative stress and an alteration of PON1 activities.
Collapse
Affiliation(s)
- Abdelghani Bounafaa
- Laboratory of Biochemistry & Neuroscience, Applied Biochemistry and Toxicology Team, Hassan I University, Faculty of Sciences and Technology, Settat, Morocco; Department of Biology, Polydisciplinary Faculty, Sultan Moulay Sliman University, Beni-Mellal, Morocco; Laboratory of Biochemistry, Pasteur Institute of Morocco, Casablanca, Morocco; Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, Sultan Moulay Sliman University, Beni-Mellal, Morocco; Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Souade Ikhlef
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Abdelkhalid Essamadi
- Laboratory of Biochemistry & Neuroscience, Applied Biochemistry and Toxicology Team, Hassan I University, Faculty of Sciences and Technology, Settat, Morocco
| | - Boubker Nasser
- Laboratory of Biochemistry & Neuroscience, Applied Biochemistry and Toxicology Team, Hassan I University, Faculty of Sciences and Technology, Settat, Morocco
| | - Ahmed Bennis
- Cardiology Service, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Najoua Yamoul
- Cardiology Service, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Noreddine Ghalim
- Laboratory of Biochemistry, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Abdelouahed Khalil
- Department of Medicine, Geriatrics Service, Faculty of Medicine and Biological Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
47
|
Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health--promising therapeutic or hopeless illusion? Pharmacol Res 2014; 90:88-115. [PMID: 25151891 DOI: 10.1016/j.phrs.2014.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 02/07/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural polyphenolic compound that exists in Polygonum cuspidatum, grapes, peanuts and berries, as well as their manufactured products, especially red wine. Resveratrol is a pharmacologically active compound that interacts with multiple targets in a variety of cardiovascular disease models to exert protective effects or induce a reduction in cardiovascular risks parameters. This review attempts to primarily serve to summarize the current research findings regarding the putative cardioprotective effects of resveratrol and the molecular pathways underlying these effects. One intent is to hopefully provide a relatively comprehensive resource for clues that may prompt ideas for additional mechanistic studies which might further elucidate and strengthen the role of the stilbene family of compounds in cardiovascular disease and cardioprotection. Model systems that incorporate a significant functional association with tissues outside of the cardiovascular system proper, such as adipose (cell culture, obesity models) and pancreatic (diabetes) tissues, were reviewed, and the molecular pathways and/or targets related to these models and influenced by resveratrol are discussed. Because the body of work encompassing the stilbenes and other phytochemicals in the context of longevity and the ability to presumably mitigate a plethora of afflictions is replete with conflicting information and controversy, especially so with respect to the human response, we tried to remain as neutral as possible in compiling and presenting the more current data with minimal commentary, permitting the reader free reign to extract the knowledge most helpful to their own investigations.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yam-Fung Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Susan Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael Gyda
- Life Sciences Multimedia Productions, Drexel Hill, PA, USA.
| | - Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China; Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
48
|
Oxidative stress and nephrolithiasis: a comparative pilot study evaluating the effect of pomegranate extract on stone risk factors and elevated oxidative stress levels of recurrent stone formers and controls. Urolithiasis 2014; 42:401-8. [DOI: 10.1007/s00240-014-0686-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/04/2014] [Indexed: 02/05/2023]
|
49
|
Li P, Bu SH, Lu XT, Li LX, Xu AJ, Tang YN, Zhang J. Relationships between PON1 Q192R polymorphism and clinical outcome of antiplatelet treatment after percutaneous coronary intervention: a meta-analysis. Mol Biol Rep 2014; 41:6263-73. [PMID: 24981930 DOI: 10.1007/s11033-014-3509-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/19/2014] [Indexed: 01/11/2023]
Abstract
This meta-analysis was performed to assess the relationships between the PON1 Q192R (rs662 T>C) polymorphism and the clinical outcome of antiplatelet treatment after percutaneous coronary intervention (PCI). A range of electronic databases were searched: Web of Science (1945-2013), the Cochrane Library Database (Issue 12, 2013), PubMed (1966-2013), EMBASE (1980-2013), CINAHL (1982-2013) and the Chinese Biomedical Database (CBM) (1982-2013) without language restrictions. Meta-analysis was conducted using the STATA 12.0 software. The crude odds ratio (OR) with their 95 % confidence interval (CI) were calculated. Six clinical cohort studies with a total number of 5,189 patients undergoing PCI for coronary heart disease were included. Our meta-analysis revealed that the PON1 Q192R polymorphism was correlated with an increased risk of major adverse cardiovascular events (MACE) in patients receiving antiplatelet treatment after PCI (C allele vs. T allele: OR = 1.22, 95 % CI 1.04-1.43, P = 0.014; CT+CC vs. TT: OR = 1.38, 95 % CI 1.03-1.86, P = 0.029; CC vs. TT: OR = 1.45, 95 % CI 1.05-1.99, P = 0.024; respectively), especially among Asians. Furthermore, we found significantly positive correlations between the PON1 Q192R polymorphism and the incidence of stent thrombosis in patients receiving antiplatelet treatment after PCI (C allele vs. T allele: OR = 1.42, 95 % CI 1.08-1.87, P = 0.011; CT+CC vs. TT: OR = 1.93, 95 % CI 1.01-3.67, P = 0.046; CC vs. TT: OR = 2.18, 95 % CI 1.09-4.35, P = 0.027; respectively). Our meta-analysis of clinical cohort studies provides evidence that the PON1 Q192R polymorphism may increase the risk of MACE and stent thrombosis in patients receiving antiplatelet treatment after PCI.
Collapse
Affiliation(s)
- Ping Li
- Department of Pharmacy, The Affiliated Xinhua Hospital of Shanghai Jiaotong University, Kongjiang Road No. 1665, Yangpu District, Shanghai, 200082, People's Republic China
| | | | | | | | | | | | | |
Collapse
|
50
|
Erzengin M, Demir D, Arslan M, Sinan S. Purification and characterization of paraoxonase 1 (PON1) from Swiss Black, Holstein, and Montofon bovines. Appl Biochem Biotechnol 2014; 173:1597-606. [PMID: 24907040 DOI: 10.1007/s12010-014-0931-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/21/2014] [Indexed: 11/28/2022]
Abstract
Paraoxonase 1 (PON1: EC 3.1.8.1) is a calcium-dependent enzyme associated with high-density lipoproteins (HDLs) and has a protective effect against oxidation of low-density lipoproteins (LDLs) in mammals. PON1 is the best-studied member of a family of enzymes called serum paraoxonases, or PONs, identified in mammals and other vertebrates as well as in invertebrates. PONs exhibit a range of important activities, including drug metabolism and detoxification of organophosphates such as nerve agents. This study reports, for the first time, purification and biochemical characterization of serum PON1 from different bovine breeds namely Swiss Black, Holstein, and Montofon. Bovine serum PON1s were purified using ammonium sulfate precipitation followed by Sepharose-4B-L-tyrosine-1-naphthylamine hydrophobic interaction chromatography. SDS-polyacrylamide gel electrophoresis of the purified enzymes indicates a single band with an apparent MW of 43 kDa. The purified enzymes had a specific activity of 10.78, 27.00, and 22.38 U/mg for Swiss Black, Holstein, and Montofon bovines, respectively. The overall purification rates of our method were 262.47-, 2,476.90-, and 538.06-fold for Swiss Black, Holstein, and Montofon bovines, respectively. Furthermore, using phenyl acetate as a substrate, we determined the K M and V max values of the purified enzymes, as 0.80 mM, 1428.5 U/ml for Swiss Black; 0.40 mM, 714.3 U/ml for Holstein; and 0.50 mM, 1,111.1 U/ml for Montofon bovine. The present study has revealed that there is no substantial difference in PON1 activities among the studied bovine breeds.
Collapse
Affiliation(s)
- Mahmut Erzengin
- Faculty of Science and Letters, Department of Chemistry, Aksaray University, 68100, Aksaray, Turkey,
| | | | | | | |
Collapse
|