1
|
Gu X, Yang H, Wu L, Fu Z, Zhou S, Zhang Z, Liu Y, Zhang M, Liu S, Lu W, Wang Q. Contribution of gut microbiota to hepatic steatosis following F-53B exposure from the perspective of glucose and fatty acid metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136104. [PMID: 39405689 DOI: 10.1016/j.jhazmat.2024.136104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
Altered gut microbiota is a pathogenic mechanism of 6:2 Cl-PFESA (F-53B)-induced hepatic steatosis, indicated by correlations between gut microbiota and lipid indices. However, the detailed mechanism remains unknown. In this study, adult zebrafish were exposed to 0.25, 5 and 100 μg/L F-53B for 28 days to explore how microbiota regulate hepatic lipid metabolism from the perspective of glucose and fatty acid metabolism. Results showed glucose and fatty acids were transported from blood into liver after 100 μg/L F-53B exposure, in which glucose was further transformed into acetyl-CoA and fatty acid. The accumulated fatty acids were then converted into triglycerides (TGs), inducing hepatic steatosis. Changes in the abundances of certain gut microbiota contributed to the above processes, which was verified by the fact that the levels of g_Crenobacter, g_Shewanella, and g_Vibrio restored to control levels after Lactobacillus rhamnosus GG intervention, and the levels of their related lipid indicators recovered partially towards the control levels. 0.25 and 5 μg/L F-53B had no effect on the hepatic lipid profile due to the few changed TG synthesis related indicators. Our findings provide novel insights into lipid metabolic disorders caused by F-53B exposure, highlighting the health risks linked to gut microbial dysbiosis.
Collapse
Affiliation(s)
- Xueyan Gu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Huihui Yang
- Department of Nephrology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430000, China
| | - Liu Wu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zhenliang Fu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Shibiao Zhou
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Zehui Zhang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Yu Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Miao Zhang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wuting Lu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Qiyu Wang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
2
|
Cheung M, Tangirala RS, Bethi SR, Joshi HV, Ariazi JL, Tirunagaru VG, Kumar S. Discovery of Tetralones as Potent and Selective Inhibitors of Acyl-CoA:Diacylglycerol Acyltransferase 1. ACS Med Chem Lett 2018; 9:103-108. [PMID: 29456796 DOI: 10.1021/acsmedchemlett.7b00450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/16/2018] [Indexed: 02/05/2023] Open
Abstract
Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) plays an important role in triglyceride synthesis and is a target of interest for the treatment of metabolic disorders. Herein we describe the structure-activity relationship of a novel tetralone series of DGAT1 inhibitors and our strategies for overcoming genotoxic liability of the anilines embedded in the chemical structures, leading to the discovery of a candidate compound, (S)-2-(6-(5-(3-(3,4-difluorophenyl)ureido)pyrazin-2-yl)-1-oxo-2-(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydronaphthalen-2-yl)acetic acid (GSK2973980A, 26d). Compound 26d is a potent and selective DGAT1 inhibitor with excellent DMPK profiles and in vivo efficacy in a postprandial lipid excursion model in mice. Based on the overall biological and developability profiles and acceptable safety profiles in the 7-day toxicity studies in rats and dogs, compound 26d was selected as a candidate compound for further development in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Mui Cheung
- Virtual
Proof of Concept Discovery Performance Unit, Alternative Discovery
and Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Raghuram S. Tangirala
- Collaborative
Research, GVK Biosciences Private Limited, 28A, IDA, Nacharam, Hyderabad 500076, India
| | - Sridhar R. Bethi
- Collaborative
Research, GVK Biosciences Private Limited, 28A, IDA, Nacharam, Hyderabad 500076, India
| | - Hemant V. Joshi
- Collaborative
Research, GVK Biosciences Private Limited, 28A, IDA, Nacharam, Hyderabad 500076, India
| | - Jennifer L. Ariazi
- Virtual
Proof of Concept Discovery Performance Unit, Alternative Discovery
and Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Vijaya G. Tirunagaru
- Collaborative
Research, GVK Biosciences Private Limited, 28A, IDA, Nacharam, Hyderabad 500076, India
| | - Sanjay Kumar
- Virtual
Proof of Concept Discovery Performance Unit, Alternative Discovery
and Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| |
Collapse
|
3
|
Anderson J, Carten J, Farber S. Using fluorescent lipids in live zebrafish larvae: From imaging whole animal physiology to subcellular lipid trafficking. Methods Cell Biol 2016; 133:165-78. [PMID: 27263413 PMCID: PMC5469204 DOI: 10.1016/bs.mcb.2016.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review commercially available fluorescent lipids that can be deployed in live zebrafish to better understand lipid signaling and metabolism. In this chapter, we present criteria one should consider when selecting specific fluorescent lipids for the study of digestive physiology or lipid metabolism in larval zebrafish.
Collapse
Affiliation(s)
- J.L. Anderson
- Carnegie Institution for Science, Baltimore, MD, United States
| | - J.D. Carten
- Carnegie Institution for Science, Baltimore, MD, United States
| | - S.A. Farber
- Carnegie Institution for Science, Baltimore, MD, United States
| |
Collapse
|
4
|
Lee K, Kim M, Lee B, Goo J, Kim J, Naik R, Seo JH, Kim MO, Byun Y, Song GY, Lee HS, Choi Y. Discovery of indolyl acrylamide derivatives as human diacylglycerol acyltransferase-2 selective inhibitors. Org Biomol Chem 2012; 11:849-58. [PMID: 23242135 DOI: 10.1039/c2ob27114a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of indolyl acrylamide derivatives was synthesized as potential diacylglycerol acyltransferase (DGAT) inhibitors. Furfurylamine containing indolyl acrylamide derivative 5h exhibited the most potent DGAT inhibitory activity using microsomes prepared from rat liver. Further evaluation against human DGAT-1 and DGAT-2 identified indolyl acrylamide analogues as selective inhibitors against human DGAT-2. In addition, the most potent compound 5h inhibited triglyceride synthesis dose-dependently in HepG2 cell lines.
Collapse
Affiliation(s)
- Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Seoul 100-715, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Anderson JL, Carten JD, Farber SA. Zebrafish lipid metabolism: from mediating early patterning to the metabolism of dietary fat and cholesterol. Methods Cell Biol 2011; 101:111-41. [PMID: 21550441 PMCID: PMC3593232 DOI: 10.1016/b978-0-12-387036-0.00005-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review studies that employ zebrafish to better understand lipid signaling and metabolism.
Collapse
Affiliation(s)
- Jennifer L Anderson
- Carnegie Institution for Science, Department of Embryology, Baltimore, Maryland, USA
| | | | | |
Collapse
|
6
|
Abstract
There is a strong link between high fat intake and obesity. In addition to its high caloric density, dietary fat has a hyperphagic effect, in part as a result of its high palatability. The recent identification by Laugerette et al. of CD36 as a taste receptor for fatty acids provides insight into the molecular basis of our preference for fat (see the related article beginning on page 3177). As we gain more information regarding the function of this receptor, we may be able to devise better strategies to address the addictive potential of dietary fat.
Collapse
Affiliation(s)
- Nada A Abumrad
- Department of Medicine, Division of Nutritional Science, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
7
|
Chen HC. Enhancing energy and glucose metabolism by disrupting triglyceride synthesis: Lessons from mice lacking DGAT1. Nutr Metab (Lond) 2006; 3:10. [PMID: 16448557 PMCID: PMC1382234 DOI: 10.1186/1743-7075-3-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 01/31/2006] [Indexed: 01/09/2023] Open
Abstract
Although the ability to make triglycerides is essential for normal physiology, excess accumulation of triglycerides results in obesity and is associated with insulin resistance. Inhibition of triglyceride synthesis, therefore, may represent a feasible strategy for the treatment of obesity and type 2 diabetes. Acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) is one of two DGAT enzymes that catalyze the final reaction in the known pathways of mammalian triglyceride synthesis. Mice lacking DGAT1 have increased energy expenditure and insulin sensitivity and are protected against diet-induced obesity and glucose intolerance. These metabolic effects of DGAT1 deficiency result in part from the altered secretion of adipocyte-derived factors. Studies of DGAT1-deficient mice have helped to provide insights into the mechanisms by which cellular lipid metabolism modulates systemic carbohydrate and insulin metabolism, and a better understanding of how DGAT1 deficiency enhances energy expenditure and insulin sensitivity may identify additional targets or strategies for the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Hubert C Chen
- Department of Medicine, University of California, San Francisco, CA 94103, USA.
| |
Collapse
|
8
|
Morton NM, Densmore V, Wamil M, Ramage L, Nichol K, Bünger L, Seckl JR, Kenyon CJ. A polygenic model of the metabolic syndrome with reduced circulating and intra-adipose glucocorticoid action. Diabetes 2005; 54:3371-8. [PMID: 16306351 DOI: 10.2337/diabetes.54.12.3371] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite major advances in understanding monogenic causes of morbid obesity, the complex genetic and environmental etiology of idiopathic metabolic syndrome remains poorly understood. One hypothesis suggests that similarities between the metabolic disease of plasma glucocorticoid excess (Cushing's syndrome) and idiopathic metabolic syndrome results from increased glucocorticoid reamplification within adipose tissue by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1). Indeed, 11beta-HSD-1 is now a major therapeutic target. Because much supporting evidence for a role of adipose 11beta-HSD-1 comes from transgenic or obese rodents with single-gene mutations, we investigated whether the predicted traits of metabolic syndrome and glucocorticoid metabolism were coassociated in a unique polygenic model of obesity developed by long-term selection for divergent fat mass (Fat and Lean mice with 23 vs. 4% fat as body weight, respectively). Fat mice exhibited an insulin-resistant metabolic syndrome including fatty liver and hypertension. Unexpectedly, Fat mice had a marked intra-adipose (11beta-HSD-1) and plasma glucocorticoid deficiency but higher liver glucocorticoid action. Furthermore, metabolic disease was exacerbated only in Fat mice when challenged with exogenous glucocorticoids or a high-fat diet. Our data suggest that idiopathic metabolic syndrome might associate with such a novel pattern of glucocorticoid action and sensitivity in humans, with implications for tissue-specific therapeutic targeting of 11beta-HSD-1.
Collapse
Affiliation(s)
- Nicholas M Morton
- Endocrinology Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, UK.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Gondret F, Damon M, Jadhao SB, Houdebine LM, Herpin P, Hocquette JF. Age-related changes in glucose utilization and fatty acid oxidation. J Muscle Res Cell Motil 2004; 25:405-10. [PMID: 15548870 DOI: 10.1007/s10974-004-2768-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The optimal utilization of energy substrates in muscle fibers is of primary importance for muscle contraction and whole body physiology. This study aimed to investigate the age-related changes in some indicators of glucose catabolism and fatty acid oxidation in muscles of growing rabbits. Longissimus lumborum (fast-twitch, LL) and semimembranosus proprius (slow-twitch, SMP) muscles were collected at 10 or 20 weeks of age ( n=6 per age). Glucose transporter GLUT4 content was investigated by immunoblot assay. Activity levels of five enzymes were measured: lactate dehydrogenase (LDH) and phosphofructokinase (PFK) for glycolysis; citrate synthase (CS), isocitrate dehydrogenase (ICDH) and -3-hydroxyacyl-coenzyme A dehydrogenase (HAD) for oxidation. Mitochondrial and peroxisomal oxidation rates were assessed on fresh homogenates using [1-14C]-oleate as substrate. At both ages, mitochondrial and peroxisomal oxidations rates, as well as activities of oxidative enzymes were higher in SMP than in LL. In both muscles, the apparent rate of fatty acid oxidation by the mitochondria did not differ between the two ages. However, a decrease in the activities of the three oxidative enzymes was observed in LL, whereas activities of CS and HAD and peroxisomal oxidation rate of oleate increased between the two ages in SMP muscle. In both muscles, LDH activity increased between 10 and 20 weeks, without variations in glucose uptake (GLUT4 transporter content) and in the first step of glucose utilization (PFK activity). In conclusion, mitochondrial oxidation rate of fatty acids and activities of selected mitochondrial enzymes were largely unrelated. Moreover, regulation of energy metabolism with advancing age differed between muscle types.
Collapse
Affiliation(s)
- Florence Gondret
- INRA, Unité Mixte de Recherches sur le Veau et le Porc, Saint Gilles, France.
| | | | | | | | | | | |
Collapse
|
11
|
Chen HC, Rao M, Sajan MP, Standaert M, Kanoh Y, Miura A, Farese RV, Farese RV. Role of adipocyte-derived factors in enhancing insulin signaling in skeletal muscle and white adipose tissue of mice lacking Acyl CoA:diacylglycerol acyltransferase 1. Diabetes 2004; 53:1445-51. [PMID: 15161747 DOI: 10.2337/diabetes.53.6.1445] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mice that lack acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in mammalian triglyceride synthesis, have decreased adiposity and increased insulin sensitivity. Here we show that insulin-stimulated glucose transport is increased in the skeletal muscle and white adipose tissue (WAT) of chow-fed DGAT1-deficient mice. This increase in glucose transport correlated with enhanced insulin-stimulated activities of phosphatidylinositol 3-kinase, protein kinase B (or Akt), and protein kinase Clambda (PKC-lambda), three key molecules in the insulin-signaling pathway, and was associated with decreased levels of serine-phosphorylated insulin receptor substrate 1 (IRS-1), a molecule implicated in insulin resistance. Similar findings in insulin signaling were also observed in DGAT1-deficient mice fed a high-fat diet. Interestingly, the increased PKC-lambda activity and decreased serine phosphorylation of IRS-1 were observed in chow-fed wild-type mice transplanted with DGAT1-deficient WAT, consistent with our previous finding that transplantation of DGAT1-deficient WAT enhances glucose disposal in wild-type recipient mice. Our findings demonstrate that DGAT1 deficiency enhances insulin signaling in the skeletal muscle and WAT, in part through altered expression of adipocyte-derived factors that modulate insulin signaling in peripheral tissues.
Collapse
Affiliation(s)
- Hubert C Chen
- James A. Haley Veterans Hospital, ACOS-151, 13000 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Frühbeck G, Gómez-Ambrosi J. Control of body weight: a physiologic and transgenic perspective. Diabetologia 2003; 46:143-72. [PMID: 12627314 DOI: 10.1007/s00125-003-1053-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Revised: 01/23/2003] [Indexed: 12/29/2022]
Affiliation(s)
- G Frühbeck
- Department of Endocrinology, Clínica Universitaria de Navarra, University of Navarre, Avda. Pío XII 36, 31008 Pamplona, Spain.
| | | |
Collapse
|
13
|
Chen HC, Stone SJ, Zhou P, Buhman KK, Farese RV. Dissociation of obesity and impaired glucose disposal in mice overexpressing acyl coenzyme a:diacylglycerol acyltransferase 1 in white adipose tissue. Diabetes 2002; 51:3189-95. [PMID: 12401709 DOI: 10.2337/diabetes.51.11.3189] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) is one of two DGAT enzymes known to catalyze the final step in mammalian triglyceride synthesis. Mice deficient in DGAT1 are resistant to obesity and have enhanced insulin sensitivity. To understand better the relationship between triglyceride synthesis and energy and glucose metabolism, we generated transgenic (aP2-Dgat1) mice in which expression of murine DGAT1 in the white adipose tissue (WAT) was twofold higher than normal. aP2-Dgat1 mice that were fed a regular diet had larger adipocytes and greater total fat pad weight than wild-type (WT) mice. In response to a high-fat diet, aP2-Dgat1 mice became more obese ( approximately 20% greater body weight after 15 weeks) than WT mice. However, the increase in adiposity in aP2-Dgat1 mice was not associated with impaired glucose disposal, as demonstrated by glucose and insulin tolerance tests. Correlating with this finding, triglyceride deposition in the liver and skeletal muscle, two major target tissues of insulin, was similar in aP2-Dgat1 and WT mice. Thus, DGAT1 overexpression in murine WAT provides a model in which obesity does not impair glucose disposal. Our findings support the lipotoxicity hypothesis that the deposition of triglycerides in insulin-sensitive tissues other than adipocytes causes insulin resistance.
Collapse
MESH Headings
- Acyltransferases/genetics
- Acyltransferases/metabolism
- Adipose Tissue/enzymology
- Adipose Tissue, Brown/enzymology
- Animals
- Base Sequence
- DNA Primers
- Diacylglycerol O-Acyltransferase
- Dietary Fats
- Glucose Intolerance/genetics
- Liver/enzymology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Muscle, Skeletal/enzymology
- Myocardium/enzymology
- Obesity/genetics
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Leptin
Collapse
Affiliation(s)
- Hubert C Chen
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94141-9100, USA
| | | | | | | | | |
Collapse
|