1
|
Ioannou P, Baliou S, Samonis G. Nanotechnology in the Diagnosis and Treatment of Antibiotic-Resistant Infections. Antibiotics (Basel) 2024; 13:121. [PMID: 38391507 PMCID: PMC10886108 DOI: 10.3390/antibiotics13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The development of antimicrobial resistance (AMR), along with the relative reduction in the production of new antimicrobials, significantly limits the therapeutic options in infectious diseases. Thus, novel treatments, especially in the current era, where AMR is increasing, are urgently needed. There are several ongoing studies on non-classical therapies for infectious diseases, such as bacteriophages, antimicrobial peptides, and nanotechnology, among others. Nanomaterials involve materials on the nanoscale that could be used in the diagnosis, treatment, and prevention of infectious diseases. This review provides an overview of the applications of nanotechnology in the diagnosis and treatment of infectious diseases from a clinician's perspective, with a focus on pathogens with AMR. Applications of nanomaterials in diagnosis, by taking advantage of their electrochemical, optic, magnetic, and fluorescent properties, are described. Moreover, the potential of metallic or organic nanoparticles (NPs) in the treatment of infections is also addressed. Finally, the potential use of NPs in the development of safe and efficient vaccines is also reviewed. Further studies are needed to prove the safety and efficacy of NPs that would facilitate their approval by regulatory authorities for clinical use.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - George Samonis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- First Department of Medical Oncology, Metropolitan Hospital of Neon Faliron, 18547 Athens, Greece
| |
Collapse
|
2
|
Perazzolo S, Stephen ZR, Eguchi M, Xu X, Delle Fratte R, Collier AC, Melvin AJ, Ho RJY. A novel formulation enabled transformation of 3-HIV drugs tenofovir-lamivudine-dolutegravir from short-acting to long-acting all-in-one injectable. AIDS 2023; 37:2131-2136. [PMID: 37650755 PMCID: PMC10959254 DOI: 10.1097/qad.0000000000003706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
OBJECTIVE To develop an injectable dosage form of the daily oral HIV drugs, tenofovir (T), lamivudine (L), and dolutegravir (D), creating a single, complete, all-in-one TLD 3-drug-combination that demonstrates long-acting pharmacokinetics. DESIGN Using drug-combination-nanoparticle (DcNP) technology to stabilize multiple HIV drugs, the 3-HIV drugs TLD, with disparate physical-chemical properties, are stabilized and assembled with lipid-excipients to form TLD-in-DcNP . TLD-in-DcNP is verified to be stable and suitable for subcutaneous administration. To characterize the plasma time-courses and PBMC concentrations for all 3 drugs, single subcutaneous injections of TLD-in-DcNP were given to nonhuman primates (NHP, M. nemestrina ). RESULTS Following single-dose TLD-in-DcNP , all drugs exhibited long-acting profiles in NHP plasma with levels that persisted for 4 weeks above predicted viral-effective concentrations for TLD in combination. Times-to-peak were within 24 hr in all NHP for all drugs. Compared to a free-soluble TLD, TLD-in-DcNP provided exposure enhancement and extended duration 7.0-, 2.1-, and 20-fold as AUC boost and 10-, 8.3-, and 5.9-fold as half-life extension. Additionally, DcNP may provide more drug exposure in cells than plasma with PBMC-to-plasma drug ratios exceeding one, suggesting cell-targeted drug-combination delivery. CONCLUSIONS This study confirms that TLD with disparate properties can be made stable by DcNP to enable TLD concentrations of 4 weeks in NHP. Study results highlighted the potential of TLD-in-DcNP as a convenient all-in-one, complete HIV long-acting product for clinical development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rodney J Y Ho
- Department of Pharmaceutics
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Ullah Nayan M, Sillman B, Hasan M, Deodhar S, Das S, Sultana A, Thai Hoang Le N, Soriano V, Edagwa B, Gendelman HE. Advances in long-acting slow effective release antiretroviral therapies for treatment and prevention of HIV infection. Adv Drug Deliv Rev 2023; 200:115009. [PMID: 37451501 DOI: 10.1016/j.addr.2023.115009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Adherence to daily oral antiretroviral therapy (ART) is a barrier to both treatment and prevention of human immunodeficiency virus (HIV) infection. To overcome limitations of life-long daily regimen adherence, long-acting (LA) injectable antiretroviral (ARV) drugs, nanoformulations, implants, vaginal rings, microarray patches, and ultra-long-acting (ULA) prodrugs are now available or in development. These medicines enable persons who are or at risk for HIV infection to be treated with simplified ART regimens. First-generation LA cabotegravir, rilpivirine, and lenacapavir injectables and a dapivirine vaginal ring are now in use. However, each remains limited by existing dosing intervals, ease of administration, or difficulties in finding drug partners. ULA ART regimens provide an answer, but to date, such next-generation formulations remain in development. Establishing the niche will require affirmation of extended dosing, improved access, reduced injection volumes, improved pharmacokinetic profiles, selections of combination treatments, and synchronization of healthcare support. Based on such needs, this review highlights recent pharmacological advances and a future treatment perspective. While first-generation LA ARTs are available for HIV care, they remain far from ideal in meeting patient needs. ULA medicines, now in advanced preclinical development, may close gaps toward broader usage and treatment options.
Collapse
Affiliation(s)
- Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Brady Sillman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Science, University of Nebraska Medical Center, NE, USA
| | - Suyash Deodhar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Srijanee Das
- Department of Pathology and Microbiology, University of Nebraska Medical Center, NE, USA
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | - Nam Thai Hoang Le
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA
| | | | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
4
|
Lipid Nanocarriers for Anti-HIV Therapeutics: A Focus on Physicochemical Properties and Biotechnological Advances. Pharmaceutics 2021; 13:pharmaceutics13081294. [PMID: 34452255 PMCID: PMC8398060 DOI: 10.3390/pharmaceutics13081294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Since HIV was first identified, and in a relatively short period of time, AIDS has become one of the most devastating infectious diseases of the 21st century. Classical antiretroviral therapies were a major step forward in disease treatment options, significantly improving the survival rates of HIV-infected individuals. Even though these therapies have greatly improved HIV clinical outcomes, antiretrovirals (ARV) feature biopharmaceutic and pharmacokinetic problems such as poor aqueous solubility, short half-life, and poor penetration into HIV reservoir sites, which contribute to the suboptimal efficacy of these regimens. To overcome some of these issues, novel nanotechnology-based strategies for ARV delivery towards HIV viral reservoirs have been proposed. The current review is focused on the benefits of using lipid-based nanocarriers for tuning the physicochemical properties of ARV to overcome biological barriers upon administration. Furthermore, a correlation between these properties and the potential therapeutic outcomes has been established. Biotechnological advancements using lipid nanocarriers for RNA interference (RNAi) delivery for the treatment of HIV infections were also discussed.
Collapse
|
5
|
Rawat P, Gupta S. Dual engineered gold nanoparticle based synergistic prophylaxis delivery system for HIV/AIDS. Med Hypotheses 2021; 150:110576. [PMID: 33799160 DOI: 10.1016/j.mehy.2021.110576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/15/2022]
Abstract
HIV is a pandemic and continuously raises problem across the world. This disease puts an immense pressure on treatment modalities. There are only few clinically accepted drugs available for the treatment and few molecules under clinical development. Although, the antiretroviral drugs give reliable and positive response on control of virus replication but during the long treatment, it has been affirmed that there are number of side effects. With recent advancements in biotechnology, nanomaterials such as gold and silver etc. are proving to be a game changer in targeted drug delivery treatment. As gold nanoparticles (AuNPs) are biocompatible natural excipients, a lot of scientists are very eager to investigate more about the immune effects of AuNPs to create a safe and cost effective treatment that could potentially help in the reduction of numerous toxic effects present in the existing treatments of various critical diseases like cancer and HIV etc. In this context, the present hypothesis recommends the use of combination drug delivery strategy based on gold nanoparticles that could pave the way to overcome adverse results of existing delivery techniques of antiretroviral drugs to treat HIV. This review also highlights the fact that a proper development of this gold nanoparticle combination antiretroviral drug delivery approach will not only help to suppress the virus multiplication but also target the viral entry area by attaching with gp120 (glycoprotein 120), and inhibit the binding with CD4 (Cluster of differentiation 4) T cells.
Collapse
Affiliation(s)
- Purnima Rawat
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India.
| | - Sharad Gupta
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India.
| |
Collapse
|
6
|
Scholz EMB, Kashuba ADM. The Lymph Node Reservoir: Physiology, HIV Infection, and Antiretroviral Therapy. Clin Pharmacol Ther 2021; 109:918-927. [PMID: 33529355 DOI: 10.1002/cpt.2186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022]
Abstract
Despite advances in treatment, finding a cure for HIV remains a top priority. Chronic HIV infection is associated with increased risk of comorbidities, such as diabetes and cardiovascular disease. Additionally, people living with HIV must remain adherent to daily antiretroviral therapy, because lapses in medication adherence can lead to viral rebound and disease progression. Viral recrudescence occurs from cellular reservoirs in lymphoid tissues. In particular, lymph nodes are central to the pathology of HIV due to their unique architecture and compartmentalization of immune cells. Understanding how antiretrovirals (ARVs) penetrate lymph nodes may explain why these tissues are maintained as HIV reservoirs, and how they contribute to viral rebound upon treatment interruption. In this report, we review (i) the physiology of the lymph nodes and their function as part of the immune and lymphatic systems, (ii) the pathogenesis and outcomes of HIV infection in lymph nodes, and (iii) ARV concentrations and distribution in lymph nodes, and the relationship between ARVs and HIV in this important reservoir.
Collapse
Affiliation(s)
- Erin M B Scholz
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Angela D M Kashuba
- Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina, USA.,School of Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Yu J, Yu D, Lane S, McConnachie L, Ho RJY. Controlled Solvent Removal from Antiviral Drugs and Excipients in Solution Enables the Formation of Novel Combination Multi-Drug-Motifs in Pharmaceutical Powders Composed of Lopinavir, Ritonavir and Tenofovir. J Pharm Sci 2020; 109:3480-3489. [PMID: 32791073 PMCID: PMC8986323 DOI: 10.1016/j.xphs.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023]
Abstract
Diverging physicochemical properties of HIV drug combinations are challenging to formulate as a single dosage form. We have found that 2-to-4 hydrophilic and hydrophobic HIV drugs in combination can be stabilized with lipid excipients under a controlled solvent removal process to form a novel pharmaceutical powder distinct from typical amorphous material. This discovery has enabled production of a drug combination nanoparticle (DcNP) powder composed of 3 HIV drugs-water-insoluble lopinavir (LogP = 4.7) and ritonavir (LogP = 5.6) and water-soluble tenofovir (LogP = -1.6). DcNP powder, exhibiting repeating units of multi-drug-motifs (referred to as MDM), is made by dissolving all constituents in ethanolic solution, followed by controlled solvent removal. The DcNP powder intersperses chemically diverse drug molecules with lipid excipients to form repeating MDM units. The proposed MDM structure is consistent with data collected with X-ray diffraction, differential calorimetry, and time-of-flight secondary ion mass spectrometry. The successful assembly of chemically diverse drugs in MDM structure is likely due to a novel process of making drug combination powders. The method described here has successfully extended to formulating other clinically prescribed antiviral drug combinations, and thus may serve as a platform technology for developing drug combination nanoparticles for treating a wide range of chronic diseases.
Collapse
Affiliation(s)
- Jesse Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Danni Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Sarah Lane
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Lisa McConnachie
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195-7610, USA.
| |
Collapse
|
8
|
Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in Antiviral Material Development. Chempluschem 2020; 85:2105-2128. [PMID: 32881384 PMCID: PMC7461489 DOI: 10.1002/cplu.202000460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
The rise in human pandemics demands prudent approaches in antiviral material development for disease prevention and treatment via effective protective equipment and therapeutic strategy. However, the current state of the antiviral materials research is predominantly aligned towards drug development and its related areas, catering to the field of pharmaceutical technology. This review distinguishes the research advances in terms of innovative materials exhibiting antiviral activities that take advantage of fast-developing nanotechnology and biopolymer technology. Essential concepts of antiviral principles and underlying mechanisms are illustrated, followed with detailed descriptions of novel antiviral materials including inorganic nanomaterials, organic nanomaterials and biopolymers. The biomedical applications of the antiviral materials are also elaborated based on the specific categorization. Challenges and future prospects are discussed to facilitate the research and development of protective solutions and curative treatments.
Collapse
Affiliation(s)
- Lili Liang
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Interdisciplinary Graduate ProgramNanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Ashiq Ahamed
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Laboratory of Molecular Science and EngineeringJohan Gadolin Process Chemistry Centre Åbo Akademi UniversityFI-20500Turku/ÅboFinland
| | - Liya Ge
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Xiaoxu Fu
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| |
Collapse
|
9
|
Halling Folkmar Andersen A, Tolstrup M. The Potential of Long-Acting, Tissue-Targeted Synthetic Nanotherapy for Delivery of Antiviral Therapy Against HIV Infection. Viruses 2020; 12:E412. [PMID: 32272815 PMCID: PMC7232358 DOI: 10.3390/v12040412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022] Open
Abstract
Oral administration of a combination of two or three antiretroviral drugs (cART) has transformed HIV from a life-threatening disease to a manageable infection. However, as the discontinuation of therapy leads to virus rebound in plasma within weeks, it is evident that, despite daily pill intake, the treatment is unable to clear the infection from the body. Furthermore, as cART drugs exhibit a much lower concentration in key HIV residual tissues, such as the brain and lymph nodes, there is a rationale for the development of drugs with enhanced tissue penetration. In addition, the treatment, with combinations of multiple different antiviral drugs that display different pharmacokinetic profiles, requires a strict dosing regimen to avoid the emergence of drug-resistant viral strains. An intriguing opportunity lies within the development of long-acting, synthetic scaffolds for delivering cART. These scaffolds can be designed with the goal to reduce the frequency of dosing and furthermore, hold the possibility of potential targeting to key HIV residual sites. Moreover, the synthesis of combinations of therapy as one molecule could unify the pharmacokinetic profiles of different antiviral drugs, thereby eliminating the consequences of sub-therapeutic concentrations. This review discusses the recent progress in the development of long-acting and tissue-targeted therapies against HIV for the delivery of direct antivirals, and examines how such developments fit in the context of exploring HIV cure strategies.
Collapse
Affiliation(s)
- Anna Halling Folkmar Andersen
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
10
|
Takalani F, Kumar P, Kondiah PPD, Choonara YE, Pillay V. Lipid-drug conjugates and associated carrier strategies for enhanced antiretroviral drug delivery. Pharm Dev Technol 2019; 25:267-280. [PMID: 31744408 DOI: 10.1080/10837450.2019.1694037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mortality rate of patients infected with HIV-1 has been significantly reduced by using HAART. However, the virus to date has not been eradicated. Transmission of HIV-1 infection through sexual intercourse remains an ongoing challenge, with increased risk of infection occurring in women. Interestingly, ARV drugs can be chemically linked with lipids to produce lipid-drug conjugates (LDCs). This alters pharmacokinetic properties of ARV drugs and thereby resulting in improved effectiveness. Although LDCs can be administered without a delivery carrier, they are usually incorporated into suitable delivery systems such as lipid nanoparticles, polymeric nanoparticles, micelles, liposomes, emulsions, and carbon nanotubes. Given that LDCs have the potential to improve oral bioavailability, lipophilicity, toxicity, and drug targeting, it is of our great interest to review strategies of lipid-drug conjugation together with their delivery systems for enhanced antiretroviral efficacy.
Collapse
Affiliation(s)
- Funanani Takalani
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Burgunder E, Fallon JK, White N, Schauer AP, Sykes C, Remling-Mulder L, Kovarova M, Adamson L, Luciw P, Garcia JV, Akkina R, Smith PC, Kashuba ADM. Antiretroviral Drug Concentrations in Lymph Nodes: A Cross-Species Comparison of the Effect of Drug Transporter Expression, Viral Infection, and Sex in Humanized Mice, Nonhuman Primates, and Humans. J Pharmacol Exp Ther 2019; 370:360-368. [PMID: 31235531 PMCID: PMC6695867 DOI: 10.1124/jpet.119.259150] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
In a "kick and kill" strategy for human immunodeficiency virus (HIV) eradication, protective concentrations of antiretrovirals (ARVs) in the lymph node are important to prevent vulnerable cells from further HIV infection. However, the factors responsible for drug distribution and concentration into these tissues are largely unknown. Although humanized mice and nonhuman primates (NHPs) are crucial to HIV research, ARV tissue pharmacology has not been well characterized across species. This study investigated the influence of drug transporter expression, viral infection, and sex on ARV penetration within lymph nodes of animal models and humans. Six ARVs were dosed for 10 days in humanized mice and NHPs. Plasma and lymph nodes were collected at necropsy, 24 hours after the last dose. Human lymph node tissue and plasma from deceased patients were collected from tissue banks. ARV, active metabolite, and endogenous nucleotide concentrations were measured by liquid chromatography-tandem mass spectrometry, and drug transporter expression was measured using quantitative polymerase chain reaction and quantitative targeted absolute proteomics. In NHPs and humans, lymph node ARV concentrations were greater than or equal to plasma, and tenofovir diphosphate/deoxyadenosine triphosphate concentration ratios achieved efficacy targets in lymph nodes from all three species. There was no effect of infection or sex on ARV concentrations. Low drug transporter expression existed in lymph nodes from all species, and no predictive relationships were found between transporter gene/protein expression and ARV penetration. Overall, common preclinical models of HIV infection were well suited to predict human ARV exposure in lymph nodes, and low transporter expression suggests primarily passive drug distribution in these tissues. SIGNIFICANCE STATEMENT: During human immunodeficiency virus (HIV) eradication strategies, protective concentrations of antiretrovirals (ARVs) in the lymph node prevent vulnerable cells from further HIV infection. However, ARV tissue pharmacology has not been well characterized across preclinical species used for HIV eradication research, and the influence of drug transporters, HIV infection, and sex on ARV distribution and concentration into the lymph node is largely unknown. Here we show that two animal models of HIV infection (humanized mice and nonhuman primates) were well suited to predict human ARV exposure in lymph nodes. Additionally, we found that drug transporter expression was minimal and-along with viral infection and sex-did not affect ARV penetration into lymph nodes from any species.
Collapse
Affiliation(s)
- Erin Burgunder
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - John K Fallon
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Nicole White
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Amanda P Schauer
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Craig Sykes
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Leila Remling-Mulder
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Martina Kovarova
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Lourdes Adamson
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Paul Luciw
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - J Victor Garcia
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Ramesh Akkina
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Philip C Smith
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| | - Angela D M Kashuba
- Eshelman School of Pharmacy (E.B., J.K.F., N.W., A.P.S., C.S., P.C.S., A.D.M.K.) and School of Medicine (M.K., J.V.G., A.D.M.K.), University of North Carolina, Chapel Hill, North Carolina; School of Medicine, Colorado State University, Fort Collins, Colorado (L.R.-M., R.A.); and School of Medicine, University of California, Davis, California (L.A., P.L.)
| |
Collapse
|
12
|
Eradication of Human Immunodeficiency Virus Type-1 (HIV-1)-Infected Cells. Pharmaceutics 2019; 11:pharmaceutics11060255. [PMID: 31159417 PMCID: PMC6631149 DOI: 10.3390/pharmaceutics11060255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/01/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023] Open
Abstract
Predictions made soon after the introduction of human immunodeficiency virus type-1 (HIV-1) protease inhibitors about potentially eradicating the cellular reservoirs of HIV-1 in infected individuals were too optimistic. The ability of the HIV-1 genome to remain in the chromosomes of resting CD4+ T cells and macrophages without being expressed (HIV-1 latency) has prompted studies to activate the cells in the hopes that the immune system can recognize and clear these cells. The absence of natural clearance of latently infected cells has led to the recognition that additional interventions are necessary. Here, we review the potential of utilizing suicide gene therapy to kill infected cells, excising the chromosome-integrated HIV-1 DNA, and targeting cytotoxic liposomes to latency-reversed HIV-1-infected cells.
Collapse
|
13
|
Cao S, Woodrow KA. Nanotechnology approaches to eradicating HIV reservoirs. Eur J Pharm Biopharm 2019; 138:48-63. [PMID: 29879528 PMCID: PMC6279622 DOI: 10.1016/j.ejpb.2018.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/29/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
The advent of combination antiretroviral therapy (cART) has transformed HIV-1 infection into a controllable chronic disease, but these therapies are incapable of eradicating the virus to bring about an HIV cure. Multiple strategies have been proposed and investigated to eradicate latent viral reservoirs from various biological sanctuaries. However, due to the complexity of HIV infection and latency maintenance, a single drug is unlikely to eliminate all HIV reservoirs and novel strategies may be needed to achieve better efficacy while limiting systemic toxicity. In this review, we describe HIV latency in cellular and anatomical reservoirs, and present an overview of current strategies for HIV cure with a focus on their challenges for clinical translation. Then we provide a summary of nanotechnology solutions that have been used to address challenges in HIV cure by delivering physicochemically diverse agents for combination therapy or targeting HIV reservoir sites. We also review nanocarrier-based gene delivery and immunotherapy used in cancer treatment but may have potential applications in HIV cure.
Collapse
Affiliation(s)
- Shijie Cao
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
14
|
Extended cell and plasma drug levels after one dose of a three-in-one nanosuspension containing lopinavir, efavirenz, and tenofovir in nonhuman primates. AIDS 2018; 32:2463-2467. [PMID: 30102655 DOI: 10.1097/qad.0000000000001969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To characterize a drug-combination nanoparticle (DcNP) containing water-insoluble lopinavir (LPV) and efavirenz (EFV), and water-soluble tenofovir (TFV), for its potential as a long-acting combination HIV treatment. DESIGN Three HIV drugs (LPV, EFV, TFV) with well established efficacy and safety were coformulated into a single DcNP suspension. Two macaques were administered one subcutaneous injection and drug concentrations in plasma and mononuclear cells (in peripheral blood and lymph nodes) were analyzed over 2 weeks. Pharmacokinetic parameters and cell-to-plasma relationships of LPV, EFV, and TFV were determined. RESULTS This three-in-one nanoformulation provided extended concentrations of all drugs in lymph node cells that were 57- to 228-fold higher than those in plasma. Levels of all three drugs in peripheral blood mononuclear cells persisted for 2 weeks at levels equal to or higher than those in plasma. CONCLUSION With long-acting characteristics and higher drug penetration/persistence in cells, this three-in-one DcNP may enhance therapeutic efficacy of these well studied HIV drugs due to colocalization and targeting of this three-drug combination to HIV host cells.
Collapse
|
15
|
Chonco L, Fernández G, Kalhapure R, Hernáiz MJ, García-Oliva C, Gonzalez VM, Martín ME, Govender T, Parboosing R. Novel DNA Aptamers Against CCL21 Protein: Characterization and Biomedical Applications for Targeted Drug Delivery to T Cell-Rich Zones. Nucleic Acid Ther 2018; 28:242-251. [PMID: 29733244 DOI: 10.1089/nat.2017.0689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chemokine (C-C motif) ligand 21 (CCL21) is a cytokine that attracts CCR7-positive cells to the T cell (paracortical) zone of lymph nodes by directional migration of these cells along the CCL21 gradient. In this article, we sought to mimic this chemotactic mechanism, by identifying a novel aptamer that binds CCL21 with high affinity. In vitro selection of DNA aptamers was performed by the Systematic Evolution of Ligands by Exponential Enrichment. Quantitative polymerase chain reaction (qPCR) and enzyme-linked oligonucleotide assay were used to screen for high-affinity aptamers against human and mouse CCL21 protein, respectively. Three such aptamers were identified. Surface plasmon resonance showed equilibrium dissociation constant (Kd) for these three aptamers in the nano to picomolar range. Cytotoxicity assays showed <10% toxicity in HEK293 and HL-60 cells. Last, in vivo biodistribution was successfully performed and CCL21 chemokine-binding aptamers were quantified within the draining lymph nodes and spleen using qPCR. Fluorescence microscopy revealed that one of the aptamers showed significantly higher presence in the paracortex than the control aptamer. The use of anti-CCL21 aptamers to mimic the chemotaxis mechanism thus represents a promising approach to achieve targeted delivery of drugs to the T cell-rich zones of the lymph node. This may be important for the treatment of HIV infection and the eradication of HIV reservoirs.
Collapse
Affiliation(s)
- Louis Chonco
- 1 Department of Virology, National Health Laboratory Service/University of KwaZulu-Natal , c/o Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Gerónimo Fernández
- 2 Aptus Biotech SL , Madrid, Spain
- 3 Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal , Madrid, Spain
| | - Rahul Kalhapure
- 4 Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal , Durban, South Africa
| | - María J Hernáiz
- 5 Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Complutense University of Madrid , Madrid, Spain
| | - Cecilia García-Oliva
- 5 Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Complutense University of Madrid , Madrid, Spain
| | - Victor M Gonzalez
- 2 Aptus Biotech SL , Madrid, Spain
- 3 Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal , Madrid, Spain
| | - M Elena Martín
- 2 Aptus Biotech SL , Madrid, Spain
- 3 Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal , Madrid, Spain
| | - Thirumala Govender
- 4 Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal , Durban, South Africa
| | - Raveen Parboosing
- 1 Department of Virology, National Health Laboratory Service/University of KwaZulu-Natal , c/o Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| |
Collapse
|
16
|
Mu Q, Yu J, McConnachie LA, Kraft JC, Gao Y, Gulati GK, Ho RJY. Translation of combination nanodrugs into nanomedicines: lessons learned and future outlook. J Drug Target 2018; 26:435-447. [PMID: 29285948 PMCID: PMC6205718 DOI: 10.1080/1061186x.2017.1419363] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/01/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022]
Abstract
The concept of nanomedicine is not new. For instance, some nanocrystals and colloidal drug molecules are marketed that improve pharmacokinetic characteristics of single-agent therapeutics. For the past two decades, the number of research publications on single-agent nanoformulations has grown exponentially. However, formulations advancing to pre-clinical and clinical evaluations that lead to therapeutic products has been limited. Chronic diseases such as cancer and HIV/AIDS require drug combinations, not single agents, for durable therapeutic responses. Therefore, development and clinical translation of drug combination nanoformulations could play a significant role in improving human health. Successful translation of promising concepts into pre-clinical and clinical studies requires early considerations of the physical compatibility, pharmacological synergy, as well as pharmaceutical characteristics (e.g. stability, scalability and pharmacokinetics). With this approach and robust manufacturing processes in place, some drug-combination nanoparticles have progressed to non-human primate and human studies. In this article, we discuss the rationale and role of drug-combination nanoparticles, the pre-clinical and clinical research progress made to date and the key challenges for successful clinical translation. Finally, we offer insight to accelerate clinical translation through leveraging robust nanoplatform technologies to enable implementation of personalised and precision medicine.
Collapse
Affiliation(s)
- Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Jesse Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | | | - John C. Kraft
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Yu Gao
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, China
| | - Gaurav K. Gulati
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rodney J. Y. Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Gao Y, Kraft JC, Yu D, Ho RJY. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. Eur J Pharm Biopharm 2018; 138:75-91. [PMID: 29678735 DOI: 10.1016/j.ejpb.2018.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/20/2023]
Abstract
Combination antiretroviral therapy (cART) given orally has transformed HIV from a terminal illness to a manageable chronic disease. Yet despite the recent development of newer and more potent drugs for cART and suppression of virus in blood to undetectable levels, residual virus remains in tissues. Upon stopping cART, virus rebounds and progresses to AIDS. Current oral cART regimens have several drawbacks including (1) challenges in patient adherence due to pill fatigue or side-effects, (2) the requirement of life-long daily drug intake, and (3) limited penetration and retention in cells within lymph nodes. Appropriately designed injectable nano-drug combinations that are long-acting and retained in HIV susceptible cells within lymph nodes may address these challenges. While a number of nanomaterials have been investigated for delivery of HIV drugs and drug combinations, key challenges involve developing and scaling delivery systems that provide a drug combination targeted to HIV host cells and tissues where residual virus persists. With validation of the drug-insufficiency hypothesis in lymph nodes, progress has been made in the development of drug combination nanoparticles that are long-acting and targeted to lymph nodes and cells. Unique drug combination nanoparticles (DcNPs) composed of three HIV drugs-lopinavir, ritonavir, and tenofovir-have been shown to provide enhanced drug levels in lymph nodes; and elevated drug-combination levels in HIV-host cells in the blood and plasma for two weeks. This review summarizes the progress in the development of nanoparticle-based drug delivery systems for HIV therapy. It discusses how injectable nanocarriers may be designed to enable delivery of drug combinations that are long-lasting and target-selective in physiological contexts (in vivo) to provide safe and effective use. Consistent drug combination exposure in the sites of residual HIV in tissues and cells may overcome drug insufficiency observed in patients on oral cART.
Collapse
Affiliation(s)
- Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Danni Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States; Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
18
|
Kraft JC, McConnachie LA, Koehn J, Kinman L, Sun J, Collier AC, Collins C, Shen DD, Ho RJY. Mechanism-based pharmacokinetic (MBPK) models describe the complex plasma kinetics of three antiretrovirals delivered by a long-acting anti-HIV drug combination nanoparticle formulation. J Control Release 2018; 275:229-241. [PMID: 29432823 PMCID: PMC5878144 DOI: 10.1016/j.jconrel.2018.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/02/2018] [Indexed: 01/20/2023]
Abstract
Existing oral antiretroviral (ARV) agents have been shown in human studies to exhibit limited lymph node penetration and lymphatic drug insufficiency. As lymph nodes are a reservoir of HIV, it is critical to deliver and sustain effective levels of ARV combinations in these tissues. To overcome lymph node drug insufficiency of oral combination ARV therapy (cART), we developed and reported a long-acting and lymphocyte-targeting injectable that contains three ARVs-hydrophobic lopinavir (LPV) and ritonavir (RTV), and hydrophilic tenofovir (TFV)-stabilized by lipid excipients in a nanosuspension. A single subcutaneous (SC) injection of this first-generation formulation of drug combination nanoparticles (DcNPs), named TLC-ART101, provided persistent ARV levels in macaque lymph node mononuclear cells (LNMCs) for at least 1 week, and in peripheral blood mononuclear cells (PBMCs) and plasma for at least 2 weeks, demonstrating long-acting pharmacokinetics for all three drugs. In addition, the lymphocyte-targeting properties of this formulation were demonstrated by the consistently higher intracellular drug concentrations in LNMCs and PBMCs versus those in plasma. To provide insights into the complex mechanisms of absorption and disposition of TLC-ART101, we constructed novel mechanism-based pharmacokinetic (MBPK) models. Based upon plasma PK data obtained after single administration of TLC-ART101 (DcNPs) and a solution formulation of free triple-ARVs, the models feature uptake from the SC injection site that respectively routes free and nanoparticle-associated ARVs via the blood vasculature and lymphatics, and their eventual distribution into and clearance from the systemic circulation. The models provided simultaneous description of the complex long-acting plasma and lymphatic PK profiles for all three ARVs in TLC-ART101. The long-acting PK characteristics of the three drugs in TLC-ART101 were likely due to a combination of mechanisms including: (1) DcNPs undergoing preferential lymphatic uptake from the subcutaneous space, (2) retention in nodes during lymphatic first-pass, (3) subsequent slow release of ARVs into blood circulation, and (4) limited extravasation of DcNP-associated ARVs that resulted in longer persistence in the circulation.
Collapse
Affiliation(s)
- John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Lisa A McConnachie
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Josefin Koehn
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Loren Kinman
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Jianguo Sun
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Ann C Collier
- Department of Medicine, University of Washington, Seattle, WA 98195, United States; Center for AIDS Research, University of Washington, Seattle, WA 98195, United States
| | - Carol Collins
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States; Center for AIDS Research, University of Washington, Seattle, WA 98195, United States; Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
19
|
McConnachie LA, Kinman LM, Koehn J, Kraft JC, Lane S, Lee W, Collier AC, Ho RJY. Long-Acting Profile of 4 Drugs in 1 Anti-HIV Nanosuspension in Nonhuman Primates for 5 Weeks After a Single Subcutaneous Injection. J Pharm Sci 2018; 107:1787-1790. [PMID: 29548975 DOI: 10.1016/j.xphs.2018.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 12/17/2022]
Abstract
Daily oral antiretroviral therapy regimens produce limited drug exposure in tissues where residual HIV persists and suffer from poor patient adherence and disparate drug kinetics, which all negatively impact outcomes. To address this, we developed a tissue- and cell-targeted long-acting 4-in-1 nanosuspension composed of lopinavir (LPV), ritonavir, tenofovir (TFV), and lamivudine (3TC). In 4 macaques dosed subcutaneously, drug levels over 5 weeks in plasma, lymph node mononuclear cells (LNMCs), and peripheral blood mononuclear cells (PBMCs) were analyzed by liquid chromatography-tandem mass spectrometry. Plasma and PBMC levels of the active drugs (LPV, TFV, and 3TC) were sustained for 5 weeks; PBMC exposures to LPV, ritonavir, and 3TC were 12-, 16-, 42-fold higher than those in plasma. Apparent T1/2z of LPV, TFV, and 3TC were 219.1, 63.1, and 136.3 h in plasma; 1045.7, 105.9, and 127.7 h in PBMCs. At day 8, LPV, TFV, and 3TC levels in LNMCs were 4.1-, 5.0-, and 1.9-fold higher than in those in PBMCs and much higher than in plasma. Therefore, 1 dose of a 4-drug nanosuspension exhibited persistent drug levels in LNMCs, PBMCs, and plasma for 5 weeks. With interspecies scaling and dose adjustment, this 4-in-1 HIV drug-combination could be a long-acting treatment with the potential to target residual virus in tissues and improve patient adherence.
Collapse
Affiliation(s)
- Lisa A McConnachie
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Loren M Kinman
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Josefin Koehn
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Sarah Lane
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Wonsok Lee
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195
| | - Ann C Collier
- Department of Medicine, University of Washington, Seattle, Washington 98195; Center for AIDS Research, University of Washington, Seattle, Washington 98195
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195; Center for AIDS Research, University of Washington, Seattle, Washington 98195; Department of Bioengineering, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
20
|
Kraft JC, Treuting PM, Ho RJY. Indocyanine green nanoparticles undergo selective lymphatic uptake, distribution and retention and enable detailed mapping of lymph vessels, nodes and abnormalities. J Drug Target 2018; 26:494-504. [PMID: 29388438 DOI: 10.1080/1061186x.2018.1433681] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The distributed network of lymph vessels and nodes in the body, with its complex architecture and physiology, presents a major challenge for whole-body lymphatic-targeted drug delivery. To gather physiological and pathological information of the lymphatics, near-infrared (NIR) fluorescence imaging of NIR fluorophores is used in clinical practice due to its tissue-penetrating optical radiation (700-900 nm) that safely provides real-time high-resolution in vivo images. However, indocyanine green (ICG), a common clinical NIR fluorophore, is unstable in aqueous environments and under light exposure, and its poor lymphatic distribution and retention limits its use as a NIR lymphatic tracer. To address this, we investigated in mice the distribution pathways of a novel nanoparticle formulation that stabilises ICG and is optimised for lymphatic drug delivery. From the subcutaneous space, ICG particles provided selective lymphatic uptake, lymph vessel and node retention, and extensive first-pass lymphatic distribution of ICG, enabling 0.2 mm and 5-10 cell resolution of lymph vessels, and high signal-to-background ratios for lymphatic vessel and node networks. Soluble (free) ICG readily dissipated from lymph vessels local to the injection site and absorbed into the blood. These unique characteristics of ICG particles could enable mechanistic studies of the lymphatics and diagnosis of lymphatic abnormalities.
Collapse
Affiliation(s)
- John C Kraft
- a Department of Pharmaceutics , University of Washington , Seattle , WA , USA
| | - Piper M Treuting
- b Department of Comparative Medicine , University of Washington , Seattle , WA , USA
| | - Rodney J Y Ho
- a Department of Pharmaceutics , University of Washington , Seattle , WA , USA.,c Department of Bioengineering , University of Washington , Seattle , WA , USA
| |
Collapse
|
21
|
Kraft JC, McConnachie LA, Koehn J, Kinman L, Collins C, Shen DD, Collier AC, Ho RJ. Long-acting combination anti-HIV drug suspension enhances and sustains higher drug levels in lymph node cells than in blood cells and plasma. AIDS 2017; 31:765-770. [PMID: 28099191 PMCID: PMC5345888 DOI: 10.1097/qad.0000000000001405] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of the present study was to determine whether a combination of anti-HIV drugs - tenofovir (TFV), lopinavir (LPV) and ritonavir (RTV) - in a lipid-stabilized nanosuspension (called TLC-ART101) could enhance and sustain intracellular drug levels and exposures in lymph node and blood cells above those in plasma. DESIGN Four macaques were given a single dose of TLC-ART101 subcutaneously. Drug concentrations in plasma and mononuclear cells of the blood (PBMCs) and lymph nodes (LNMCs) were analysed using a validated combination LC-MS/MS assay. RESULTS For the two active drugs (TFV, LPV), plasma and PBMC intracellular drug levels persisted for over 2 weeks; PBMC drug exposures were three- to four-fold higher than those in plasma. Apparent terminal half-lives (t1/2) of TFV and LPV were 65.3 and 476.9 h in plasma, and 169.1 and 151.2 h in PBMCs. At 24 and 192 h, TFV and LPV drug levels in LNMCs were up to 79-fold higher than those in PBMCs. Analysis of PBMC intracellular TFV and its active metabolite TFV-diphosphate (TFV-DP) indicated that intracellular exposures of total TFV and TFV-DP were markedly higher and persisted longer than in humans and macaques dosed with oral TFV prodrugs, tenofovir disoproxil fumarate (TDF) or tenofovir alafenamide (TAF). CONCLUSIONS A simple, scalable three-drug combination, lipid-stabilized nanosuspension exhibited persistent drug levels in cells of lymph nodes and the blood (HIV host cells) and in plasma. With appropriate dose adjustment, TLC-ART101 may be a useful HIV treatment with a potential to impact residual virus in lymph nodes.
Collapse
|
22
|
Kirtane AR, Langer R, Traverso G. Past, Present, and Future Drug Delivery Systems for Antiretrovirals. J Pharm Sci 2016; 105:3471-3482. [PMID: 27771050 DOI: 10.1016/j.xphs.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
The human immunodeficiency virus has infected millions of people and the epidemic continues to grow rapidly in some parts of the world. Antiretroviral (ARV) therapy has provided improved treatment and prolonged the life expectancy of patients. Moreover, there is growing interest in using ARVs to protect against new infections. Hence, ARVs have emerged as our primary strategy in combating the virus. Unfortunately, several challenges limit the optimal performance of these drugs. First, ARVs often require life-long use and complex dosing regimens. This results in low patient adherence and periods of lapsed treatment manifesting in drug resistance. This has prompted the development of alternate dosage forms such as vaginal rings and long-acting injectables that stand to improve patient adherence. Another problem central to therapeutic failure is the inadequate penetration of drugs into infected tissues. This can lead to incomplete treatment, development of resistance, and viral rebound. Several strategies have been developed to improve drug penetration into these drug-free sanctuaries. These include encapsulation of drugs in nanoparticles, use of pharmacokinetic enhancers, and cell-based drug delivery platforms. In this review, we discuss issues surrounding ARV therapy and their impact on drug efficacy. We also describe various drug delivery-based approaches developed to overcome these issues.
Collapse
Affiliation(s)
- Ameya R Kirtane
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - Giovanni Traverso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
23
|
Ho RJY, Yu J, Li B, Kraft JC, Freeling JP, Koehn J, Shao J. Systems Approach to targeted and long-acting HIV/AIDS therapy. Drug Deliv Transl Res 2016; 5:531-9. [PMID: 26315144 DOI: 10.1007/s13346-015-0254-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Medication adherence and insufficient drug levels are central to HIV/AIDS disease progression. Recently, Fletcher et al. confirmed that HIV patients on oral antiretroviral therapy had lower intracellular drug concentrations in lymph nodes than in blood. For instance, in the same patient, multiple lymph node drug concentrations were as much as 99 % lower than in blood. This study built upon our previous finding that HIV patients taking oral indinavir had 3-fold lower mononuclear cell drug concentrations in lymph nodes than in blood. As a result, an association between insufficient lymph node drug concentrations in cells and persistent viral replication has now been validated. Lymph node cells, particularly CD4 T lymphocytes, host HIV infection and persistence; CD4 T cell depletion in blood correlates with AIDS progression. With established drug targets to overcome drug insufficiency in lymphoid cells and tissues, we have developed and employed a "Systems Approach" to engineer multi-drug-incorporated particles for HIV treatment. The goal is to improve lymphatic HIV drug exposure to eliminate HIV drug insufficiency and disease progression. We found that nano-particulate drugs that absorb, transit, and retain in the lymphatic system after subcutaneous dosing improve intracellular lymphatic drug exposure and overcome HIV lymphatic drug insufficiency. The composition, physical properties, and stability of the drug nanoparticles contribute to the prolonged and enhanced drug exposure in lymphoid cells and tissues. In addition to overcoming lymphatic drug insufficiency and potentially reversing HIV infection, targeted drug nanoparticle properties may extend drug concentrations and enable the development of long-acting HIV drug therapy for enhanced patient compliance.
Collapse
Affiliation(s)
- Rodney J Y Ho
- Departments of Pharmaceutics and Bioengineering, University of Washington, Seattle, WA, USA.
| | - Jesse Yu
- Departments of Pharmaceutics and Bioengineering, University of Washington, Seattle, WA, USA
| | - Bowen Li
- Departments of Pharmaceutics and Bioengineering, University of Washington, Seattle, WA, USA
| | - John C Kraft
- Departments of Pharmaceutics and Bioengineering, University of Washington, Seattle, WA, USA
| | - Jennifer P Freeling
- Departments of Pharmaceutics and Bioengineering, University of Washington, Seattle, WA, USA
| | - Josefin Koehn
- Departments of Pharmaceutics and Bioengineering, University of Washington, Seattle, WA, USA
| | - Jingwei Shao
- Departments of Pharmaceutics and Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Shao J, Kraft JC, Li B, Yu J, Freeling J, Koehn J, Ho RJ. Nanodrug formulations to enhance HIV drug exposure in lymphoid tissues and cells: clinical significance and potential impact on treatment and eradication of HIV/AIDS. Nanomedicine (Lond) 2016; 11:545-64. [PMID: 26892323 DOI: 10.2217/nnm.16.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although oral combination antiretroviral therapy effectively clears plasma HIV, patients on oral drugs exhibit much lower drug concentrations in lymph nodes than blood. This drug insufficiency is linked to residual HIV in cells of lymph nodes. While nanoformulations improve drug solubility, safety and delivery, most HIV nanoformulations are intended to extend plasma levels. A stable nanodrug combination that transports, delivers and accumulates in lymph nodes is needed to clear HIV in lymphoid tissues. This review discusses limitations of current oral combination antiretroviral therapy and advances in anti-HIV nanoformulations. A 'systems approach' has been proposed to overcome these limitations. This concept has been used to develop nanoformulations for overcoming drug insufficiency, extending cell and tissue exposure and clearing virus for treating HIV/AIDS.
Collapse
Affiliation(s)
- Jingwei Shao
- Cancer Metastasis Alert & Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, PR China.,Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Bowen Li
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jesse Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Freeling
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Josefin Koehn
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Rodney Jy Ho
- Cancer Metastasis Alert & Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, PR China.,Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.,Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Nelson AG, Zhang X, Ganapathi U, Szekely Z, Flexner CW, Owen A, Sinko PJ. Drug delivery strategies and systems for HIV/AIDS pre-exposure prophylaxis and treatment. J Control Release 2015; 219:669-680. [PMID: 26315816 PMCID: PMC4879940 DOI: 10.1016/j.jconrel.2015.08.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 01/08/2023]
Abstract
The year 2016 will mark an important milestone - the 35th anniversary of the first reported cases of HIV/AIDS. Antiretroviral Therapy (ART) including Highly Active Antiretroviral Therapy (HAART) drug regimens is widely considered to be one of the greatest achievements in therapeutic drug research having transformed HIV infection into a chronically managed disease. Unfortunately, the lack of widespread preventive measures and the inability to eradicate HIV from infected cells highlight the significant challenges remaining today. Moving forward there are at least three high priority goals for anti-HIV drug delivery (DD) research: (1) to prevent new HIV infections from occurring, (2) to facilitate a functional cure, i.e., when HIV is present but the body controls it without drugs and (3) to eradicate established infection. Pre-exposure Prophylaxis (PrEP) represents a significant step forward in preventing the establishment of chronic HIV infection. However, the ultimate success of PrEP will depend on achieving sustained antiretroviral (ARV) tissue concentrations and will require strict patient adherence to the regimen. While first generation long acting/extended release (LA/ER) DD Systems (DDS) currently in development show considerable promise, significant DD treatment and prevention challenges persist. First, there is a critical need to improve cell specificity through targeting in order to selectively achieve efficacious drug concentrations in HIV reservoir sites to control/eradicate HIV as well as mitigate systemic side effects. In addition, approaches for reducing cellular efflux and metabolism of ARV drugs to prolong effective concentrations in target cells need to be developed. Finally, given the current understanding of HIV pathogenesis, next generation anti-HIV DDS need to address selective DD to the gut mucosa and lymph nodes. The current review focuses on the DDS technologies, critical challenges, opportunities, strategies, and approaches by which novel delivery systems will help iterate towards prevention, functional cure and eventually the eradication of HIV infection.
Collapse
Affiliation(s)
- Antoinette G Nelson
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Xiaoping Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Usha Ganapathi
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Zoltan Szekely
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Charles W Flexner
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Andrew Owen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Patrick J Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
26
|
Trevaskis NL, Kaminskas LM, Porter CJH. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov 2015; 14:781-803. [DOI: 10.1038/nrd4608] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev 2015; 115:11109-46. [PMID: 26154342 DOI: 10.1021/acs.chemrev.5b00109] [Citation(s) in RCA: 560] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Darrell J Irvine
- The Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University , 400 Technology Square, Cambridge, Massachusetts 02139, United States.,Howard Hughes Medical Institute , Chevy Chase, Maryland 20815, United States
| | | | | | | |
Collapse
|
28
|
Zhang YJ, Zhan X, Wang L, Ho RJY, Sasaki T. pH-responsive artemisinin dimer in lipid nanoparticles are effective against human breast cancer in a xenograft model. J Pharm Sci 2015; 104:1815-24. [PMID: 25753991 DOI: 10.1002/jps.24407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/16/2014] [Accepted: 01/28/2015] [Indexed: 01/09/2023]
Abstract
Artemisinin (ART), a well-known antimalaria drug, also exhibits anticancer activities. We previously reported a group of novel dimeric artemisinin piperazine conjugates (ADPs) possessing pH-dependent aqueous solubility and a proof-of-concept lipid nanoparticle formulation based on natural egg phosphatidylcholine (EPC). EPC may induce allergic reactions in individuals sensitive to egg products. Therefore, the goal of this report is to develop ADP-synthetic lipid particles suitable for in vivo evaluation. We found that ADP binds to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with greater than 90% efficiency and forms drug-lipid particles (d ∼ 80 nm). Cryo-electron microscopy of the ADP drug-lipid particles revealed unilamellar vesicle-like structures. Detailed characterization studies show insertion of the ADP lead compound, ADP109, into the DPPC membrane and the presence of an aqueous core. Over 50% of the ADP109 was released in 48 hours at pH4 compared with less than 20% at neutral. ADP109-lipid particles exhibited high potency against human breast cancer, but was tolerated well by nontumorigenic cells. In MDA-MB-231 mouse xenograft model, lipid-bound ADP109 particles were more effective than paclitaxel in controlling tumor growth. Cellular uptake studies showed endocytosis of the nanoparticles and release of core-trapped marker throughout the cytosol at 37°C. These results demonstrate, for the first time, the in vivo feasibility of lipid-bound ART dimer for cancer chemotherapy.
Collapse
Affiliation(s)
- Yitong J Zhang
- Department of Chemistry, University of Washington, Seattle, Washington, 98195
| | | | | | | | | |
Collapse
|
29
|
Freeling JP, Koehn J, Shu C, Sun J, Ho RJ. Anti-HIV drug-combination nanoparticles enhance plasma drug exposure duration as well as triple-drug combination levels in cells within lymph nodes and blood in primates. AIDS Res Hum Retroviruses 2015; 31:107-14. [PMID: 25402233 DOI: 10.1089/aid.2014.0210] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV patients on combination oral drug therapy experience insufficient drug levels in lymph nodes, which is linked to viral persistence. Following success in enhancing lymph node drug levels and extending plasma residence time of indinavir formulated in lipid nanoparticles, we developed multidrug anti-HIV lipid nanoparticles (anti-HIV LNPs) containing lopinavir (LPV), ritonavir (RTV), and tenofovir (PMPA). These anti-HIV LNPs were prepared, characterized, scaled up, and evaluated in primates with a focus on plasma time course and intracellular drug exposure in blood and lymph nodes. Four macaques were subcutaneously administered anti-HIV LNPs and free drug suspension in a crossover study. The time course of the plasma drug concentration as well as intracellular drug concentrations in blood and inguinal lymph nodes were analyzed to compare the effects of LNP formulation. Anti-HIV LNPs incorporated LPV and RTV with high efficiency and entrapped a reproducible fraction of hydrophilic PMPA. In primates, anti-HIV LNPs produced over 50-fold higher intracellular concentrations of LPV and RTV in lymph nodes compared to free drug. Plasma and intracellular drug levels in blood were enhanced and sustained up to 7 days, beyond that achievable by their free drug counterpart. Thus, multiple antiretroviral agents can be simultaneously incorporated into anti-HIV lipid nanoparticles to enhance intracellular drug concentrations in blood and lymph nodes, where viral replication persists. As these anti-HIV lipid nanoparticles also prolonged plasma drug exposure, they hold promise as a long-acting dosage form for HIV patients in addressing residual virus in cells and tissue.
Collapse
Affiliation(s)
| | - Josefin Koehn
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Cuiling Shu
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jianguo Sun
- Department of Pharmaceutics, University of Washington, Seattle, Washington
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Rodney J.Y. Ho
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
30
|
Long-acting three-drug combination anti-HIV nanoparticles enhance drug exposure in primate plasma and cells within lymph nodes and blood. AIDS 2014; 28:2625-7. [PMID: 25102089 DOI: 10.1097/qad.0000000000000421] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Insufficient HIV drug levels in lymph nodes have been linked to viral persistence. To overcome lymphatic drug insufficiency, we developed and evaluated in primates a lipid-drug nanoparticle containing lopinavir, ritonavir, and tenofovir. These nanoparticles produced over 50-fold higher intracellular lopinavir, ritonavir and tenofovir concentrations in lymph nodes compared to free drug. Plasma and intracellular drug levels in blood were enhanced and sustained for 7 days after a single subcutaneous dose, exceeding that achievable with current oral therapy.
Collapse
|
31
|
Abstract
INTRODUCTION HIV research is limited by the fact that lentiviruses are highly species specific. The need for appropriate models to promote research has led to the development of many elaborate surrogate animal models. AREAS COVERED This review looks at the history of animal models for HIV research. Although natural animal lentivirus infections and chimeric viruses such as chimera between HIV and simian immunodeficiency virus and simian-tropic HIV are briefly discussed, the main focus is on small animal models, including the complex design of the 'humanized' mouse. The review also traces the historic evolution and milestones as well as depicting current models and future prospects for HIV research. EXPERT OPINION HIV research is a complex and challenging task that is highly manpower-, money- and time-consuming. Besides factors such as hypervariability and latency, the lack of appropriate animal models that exhibit and recapitulate the entire infectious process of HIV, is one of the reasons behind the failure to eliminate the lentivirus from the human population. This obstacle has led to the exploitation and further development of many sophisticated surrogate animal models for HIV research. While there is no animal model that perfectly mirrors and mimics HIV infections in humans, there are a variety of host species and viruses that complement each other. Combining the insights from each model, and critically comparing the results obtained with data from human clinical trials should help expand our understanding of HIV pathogenesis and drive future drug development.
Collapse
Affiliation(s)
- Katja Sliva
- Paul-Ehrlich-Institute, Department of Virology, Section 2/2 AIDS, New and Emerging pathogens , Paul-Ehrlich Strasse 51-59, 63225 Langen , Germany +0049 6103 774017 ; +0049 6103 771234 ;
| |
Collapse
|
32
|
Showa SP, Nyabadza F, Hove-Musekwa SD, Magombedze G. A comparison of elasticities of viral levels to specific immune response mechanisms in human immunodeficiency virus infection. BMC Res Notes 2014; 7:737. [PMID: 25331717 PMCID: PMC4221687 DOI: 10.1186/1756-0500-7-737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of an asymptomatic phase in an HIV infection indicates that the immune system can partially control the infection. Determining the immune mechanisms that contribute significantly to the partial control of the infection enhance the HIV infection intervention strategies and is important in vaccine development. Towards this goal, a discrete time HIV model, which incorporates the life cycle aspects of the virus, the antibody (humoral) response and the cell-mediated immune response is formulated to determine immune system components that are most efficient in controlling viral levels. Ecological relationships are used to model the interplay between the immune system components and the HIV pathogen. Model simulations and transient elasticity analysis of the viral levels to immune response parameters are used to compare the different immune mechanisms. RESULTS It is shown that cell-mediated immune response is more effective in controlling the viral levels than the antibody response. Killing of infected cells is shown to be crucial in controlling the viral levels. Our results show a negative correlation between the antibody response and the viral levels in the early stages of the infection, but we predicted this immune mechanism to be positively correlated with the viral levels in the late stage of the infection. A result that suggests lack of relevance of antibody response with infection progression. On the contrary, we predicted the cell-mediated immune response to be always negatively correlated with viral levels. CONCLUSION Neutralizing antibodies can only control the viral levels in the early days of the HIV infection whereas cell-mediated immune response is beneficial during all the stages of the infection. This study predicts that vaccine design efforts should also focus on stimulating killer T cells that target infected cells.
Collapse
Affiliation(s)
- Sarudzai P Showa
- Department of Applied Mathematics, National University of Science and Technology, P,O, Box AC 939 Ascot, Bulawayo, Zimbabwe.
| | | | | | | |
Collapse
|
33
|
Duan J, Freeling JP, Koehn J, Shu C, Ho RJY. Evaluation of atazanavir and darunavir interactions with lipids for developing pH-responsive anti-HIV drug combination nanoparticles. J Pharm Sci 2014; 103:2520-9. [PMID: 24948204 DOI: 10.1002/jps.24046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/05/2022]
Abstract
We evaluated two human immunodeficiency virus (HIV) protease inhibitors, atazanavir (ATV) and darunavir (DRV), for pH-dependent solubility, lipid binding, and drug release from lipid nanoparticles (LNPs). Both ATV and DRV incorporated into LNPs composed of pegylated and non-pegylated phospholipids with nearly 100% efficiency, but only ATV-LNPs formed stable lipid-drug particles and exhibited pH-dependent drug release. DRV-LNPs were unstable and formed mixed micelles at low drug-lipid concentrations, and thus are not suitable for lipid-drug particle development. When ATV-LNPs were prepared with ritonavir (RTV), a metabolic and cellular membrane exporter inhibitor, and tenofovir (TFV), an HIV reverse-transcriptase inhibitor, stable, scalable, and reproducible anti-HIV drug combination LNPs were produced. Drug incorporation efficiencies of 85.5 ± 8.2, 85.1 ± 7.1, and 6.1 ± 0.8% for ATV, RTV, and TFV, respectively, were achieved. Preliminary primate pharmacokinetic studies with these pH-responsive anti-HIV drug combination LNPs administered subcutaneously produced detectable plasma concentrations that lasted for 7 days for all three drugs. These anti-HIV LNPs could be developed as a long-acting targeted antiretroviral therapy.
Collapse
Affiliation(s)
- Jinghua Duan
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, 98195-7610
| | | | | | | | | |
Collapse
|
34
|
Anti-HIV drug particles may overcome lymphatic drug insufficiency and associated HIV persistence. Proc Natl Acad Sci U S A 2014; 111:E2512-3. [PMID: 24889644 DOI: 10.1073/pnas.1406554111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Pemmaraju B, Agarwal HK, Oh D, Buckheit KW, Buckheit RW, Tiwari R, Parang K. Synthesis and Biological Evaluation of 5'- O-Dicarboxylic Fatty Acyl Monoester Derivatives of Anti-HIV Nucleoside Reverse Transcriptase Inhibitors. Tetrahedron Lett 2014; 55:1983-1986. [PMID: 24791029 PMCID: PMC4001930 DOI: 10.1016/j.tetlet.2014.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A number of 5'-O-dicarboxylic fatty acyl monoester derivatives of 3'-azido-3'-deoxythymidine (zidovudine, AZT), 2',3'-didehydro-2',3'-dideoxythymidine (stavudine, d4T), and 3'-fluoro-3'-deoxythymidine (alovudine, FLT) were synthesized to improve the lipophilicity and potentially the cellular delivery of parent polar 2', 3'-dideoxynucleoside (ddN) analogues. The compounds were evaluated for their anti-HIV activity. Three different fatty acids with varying chain length of suberic acid (octanedioic acid), sebacic acid (decanedioic acid), and dodecanedioic acid were used for the conjugation with the nucleosides. The compounds were evaluated for anti-HIV activity and cytotoxicity. All dicarboxylic ester conjugates of nucleosides exhibited significantly higher anti-HIV activity than that of the corresponding parent nucleoside analogs. Among all the tested conjugates, 5'-O-suberate derivative of AZT (EC50 = 0.10 nM) was found to be the most potent compound and showed 80-fold higher anti-HIV activity than AZT without any significant toxicity (TC50 > 500 nM).
Collapse
Affiliation(s)
- Bhanu Pemmaraju
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Hitesh K Agarwal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Donghoon Oh
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Karen W. Buckheit
- ImQuest BioSciences Inc. 7340 Executive Way, Suite R, Frederick, MD, 21704, United States
| | - Robert W. Buckheit
- ImQuest BioSciences Inc. 7340 Executive Way, Suite R, Frederick, MD, 21704, United States
| | - Rakesh Tiwari
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
- School of Pharmacy, Chapman University, Orange, CA, 92618, United States
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
- School of Pharmacy, Chapman University, Orange, CA, 92618, United States
| |
Collapse
|
36
|
Chudasama A, Patel V, Nivsarkar M, Vasu K, Shishoo C. Role of lipid-based excipients and their composition on the bioavailability of antiretroviral self-emulsifying formulations. Drug Deliv 2014; 22:531-40. [PMID: 24601856 DOI: 10.3109/10717544.2014.891270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to develop self-emulsifying drug delivery system (SEDDS) to improve solubility and enhance the oral absorption of the poorly water-soluble drug, nevirapine. This lipid-based formulation may help to target the drug to lymphoid organs where HIV-1 virus resides mainly. The influence of the oil, surfactant and co-surfactant types on the drug solubility and their ratios on forming efficient and stable SEDDS were investigated in detail. Two SEDDS (F1 and F2) were prepared and characterized by morphological observation, droplet size and zeta potential determination, cloud point measurement and in vitro diffusion study. The influence of droplet size on the absorption from formulations with varying concentration of oil and surfactant was also evaluated from two self-emulsifying formulations. Oral bioavailability of nevirapine SEDDS was checked by using rat model. Results of diffusion rate and oral bioavailability of nevirapine SEDDS were compared with marketed suspension. The absorption of nevirapine from F1 and F2 showed 1.92 and 1.98-fold increase (p < 0.05) in relative bioavailability, respectively, compared with that of the suspension. There was no statistical significant difference (p < 0.05) between F1 and F2 in their AUC and C(max). This indicated that there was apparent poor correlation between the droplet size and in vivo absorption. However, nevirapine in SEDDS showed higher ex vivo stomach and intestinal permeability and in vivo absorption than the marketed suspension, suggesting that the SEDDS may be a useful delivery system for targeting nevirapine to lymphoid organs.
Collapse
|
37
|
Tseng YC, Xu Z, Guley K, Yuan H, Huang L. Lipid-calcium phosphate nanoparticles for delivery to the lymphatic system and SPECT/CT imaging of lymph node metastases. Biomaterials 2014; 35:4688-98. [PMID: 24613050 DOI: 10.1016/j.biomaterials.2014.02.030] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/16/2014] [Indexed: 11/26/2022]
Abstract
A lipid/calcium/phosphate (LCP) nanoparticle (NP) formulation (particle diameter ∼25 nm) with superior siRNA delivery efficiency was developed and reported previously. Here, we describe the successful formulation of (111)In into LCP for SPECT/CT imaging. Imaging and biodistribution studies showed that, polyethylene glycol grafted (111)In-LCP preferentially accumulated in the lymph nodes at ∼70% ID/g in both C57BL/6 and nude mice when the improved surface coating method was used. Both the liver and spleen accumulated only ∼25% ID/g. Larger LCP (diameter ∼67 nm) was less lymphotropic. These results indicate that 25 nm LCP was able to penetrate into tissues, enter the lymphatic system, and accumulate in the lymph nodes via lymphatic drainage due to 1) small size, 2) a well-PEGylated lipid surface, and 3) a slightly negative surface charge. The capability of intravenously injected (111)In-LCP to visualize an enlarged, tumor-loaded sentinel lymph node was demonstrated using a 4T1 breast cancer lymph node metastasis model. Systemic gene delivery to the lymph nodes after IV injection was demonstrated by the expression of red fluorescent protein cDNA. The potential of using LCP for lymphatic drug delivery is discussed.
Collapse
Affiliation(s)
- Yu-Cheng Tseng
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
| | - Zhenghong Xu
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
| | - Kevin Guley
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
| | - Hong Yuan
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA
| | - Leaf Huang
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7571, USA.
| |
Collapse
|
38
|
Kraft JC, Ho RJY. Interactions of indocyanine green and lipid in enhancing near-infrared fluorescence properties: the basis for near-infrared imaging in vivo. Biochemistry 2014; 53:1275-83. [PMID: 24512123 PMCID: PMC3985908 DOI: 10.1021/bi500021j] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Indocyanine green (ICG) is a near-infrared
(NIR) contrast agent
commonly used for in vivo cardiovascular and eye
imaging. For medical diagnosis, ICG is limited by its aqueous instability,
concentration-dependent aggregation, and rapid degradation. To overcome
these limitations, scientists have formulated ICG in various liposomes,
which are spherical lipid membrane vesicles with an aqueous core.
Some encapsulate ICG, while others mix it with liposomes. There is
no clear understanding of lipid–ICG interactions. Therefore,
we investigated lipid–ICG interactions by fluorescence and
photon correlation spectroscopy. These data were used to design stable
and maximally fluorescent liposomal ICG nanoparticles for NIR optical
imaging of the lymphatic system. We found that ICG binds to and is
incorporated completely and stably into the lipid membrane. At a lipid:ICG
molar ratio of 250:1, the maximal fluorescence intensity was detected.
ICG incorporated into liposomes enhanced the fluorescence intensity
that could be detected across 1.5 cm of muscle tissue, while free
ICG only allowed 0.5 cm detection. When administered subcutaneously
in mice, lipid-bound ICG in liposomes exhibited a higher intensity,
NIR image resolution, and enhanced lymph node and lymphatic vessel
visualization. It also reduced the level of fluorescence quenching
due to light exposure and degradation in storage. Lipid-bound ICG
could provide additional medical diagnostic value with NIR optical
imaging for early intervention in cases of lymphatic abnormalities.
Collapse
Affiliation(s)
- John C Kraft
- Department of Pharmaceutics, University of Washington , Seattle, Washington 98195, United States
| | | |
Collapse
|
39
|
Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A 2014; 111:2307-12. [PMID: 24469825 DOI: 10.1073/pnas.1318249111] [Citation(s) in RCA: 546] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antiretroviral therapy can reduce HIV-1 to undetectable levels in peripheral blood, but the effectiveness of treatment in suppressing replication in lymphoid tissue reservoirs has not been determined. Here we show in lymph node samples obtained before and during 6 mo of treatment that the tissue concentrations of five of the most frequently used antiretroviral drugs are much lower than in peripheral blood. These lower concentrations correlated with continued virus replication measured by the slower decay or increases in the follicular dendritic cell network pool of virions and with detection of viral RNA in productively infected cells. The evidence of persistent replication associated with apparently suboptimal drug concentrations argues for development and evaluation of novel therapeutic strategies that will fully suppress viral replication in lymphatic tissues. These strategies could avert the long-term clinical consequences of chronic immune activation driven directly or indirectly by low-level viral replication to thereby improve immune reconstitution.
Collapse
|
40
|
Kraft JC, Freeling JP, Wang Z, Ho RJY. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci 2014; 103:29-52. [PMID: 24338748 PMCID: PMC4074410 DOI: 10.1002/jps.23773] [Citation(s) in RCA: 387] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/13/2022]
Abstract
Liposomes are spherical-enclosed membrane vesicles mainly constructed with lipids. Lipid nanoparticles are loaded with therapeutics and may not contain an enclosed bilayer. The majority of those clinically approved have diameters of 50-300 nm. The growing interest in nanomedicine has fueled lipid-drug and lipid-protein studies, which provide a foundation for developing lipid particles that improve drug potency and reduce off-target effects. Integrating advances in lipid membrane research has enabled therapeutic development. At present, about 600 clinical trials involve lipid particle drug delivery systems. Greater understanding of pharmacokinetics, biodistribution, and disposition of lipid-drug particles facilitated particle surface hydration technology (with polyethylene glycol) to reduce rapid clearance and provide sufficient blood circulation time for drug to reach target tissues and cells. Surface hydration enabled the liposome-encapsulated cancer drug doxorubicin (Doxil) to gain clinical approval in 1995. Fifteen lipidic therapeutics are now clinically approved. Although much research involves attaching lipid particles to ligands selective for occult cells and tissues, preparation procedures are often complex and pose scale-up challenges. With emerging knowledge in drug target and lipid-drug distribution in the body, a systems approach that integrates knowledge to design and scale lipid-drug particles may further advance translation of these systems to improve therapeutic safety and efficacy.
Collapse
Affiliation(s)
- John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | | | | |
Collapse
|
41
|
Abstract
Research in the many areas of HIV treatment, eradication and prevention has necessitated measurement of antiretroviral (ARV) concentrations in nontraditional specimen types. To determine the knowledgebase of critical details for accurate bioanalysis, a review of the literature was performed and summarized. Bioanalytical assays for 31 ARVs, including metabolites, were identified in 205 publications measuring various tissues and biofluids. 18 and 30% of tissue or biofluid methods, respectively, analyzed more than one specimen type; 35-37% of the tissue or biofluid methods quantitated more than one ARV. 20 and 76% of tissue or biofluid methods, respectively, were used for the analysis of human specimens. HPLC methods with UV detection predominated, but chronologically MS detection began to surpass. 40% of the assays provided complete intra- and inter-assay validation data, but only 9% of publications provided any stability data with even less for the prevalent ARV in treatments.
Collapse
|
42
|
Zhang YJ, Gallis B, Taya M, Wang S, Ho RJY, Sasaki T. pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members. PLoS One 2013; 8:e59086. [PMID: 23516601 PMCID: PMC3597601 DOI: 10.1371/journal.pone.0059086] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/11/2013] [Indexed: 12/04/2022] Open
Abstract
Artemisinin (ART) dimers show potent anti-proliferative activities against breast cancer cells. To facilitate their clinical development, novel pH-responsive artemisinin dimers were synthesized for liposomal nanoparticle formulations. A new ART dimer was designed to become increasingly water-soluble as pH declines. The new artemisinin dimer piperazine derivatives (ADPs) remained tightly associated with liposomal nanoparticles (NPs) at neutral pH but were efficiently released at acidic pH's that are known to exist within solid tumors and organelles such as endosomes and lysosomes. ADPs incorporated into nanoparticles down regulated the anti-apoptotic protein, survivin, and cyclin D1 when incubated at low concentrations with breast cancer cell lines. We demonstrate for the first time, for any ART derivative, that ADP NPs can down regulate the oncogenic protein HER2, and its counterpart, HER3 in a HER2+ cell line. We also show that the wild type epidermal growth factor receptor (EGFR or HER1) declines in a triple negative breast cancer (TNBC) cell line in response to ADP NPs. The declines in these proteins are achieved at concentrations of NP109 at or below 1 µM. Furthermore, the new artemisinin derivatives showed improved cell-proliferation inhibition effects compared to known dimer derivatives.
Collapse
Affiliation(s)
- Yitong J. Zhang
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Byron Gallis
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington, United States of America
| | - Michio Taya
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Shusheng Wang
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Rodney J. Y. Ho
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, United States of America
| | - Tomikazu Sasaki
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
43
|
Enhanced anti-HIV efficacy of indinavir after inclusion in CD4-targeted lipid nanoparticles. J Acquir Immune Defic Syndr 2013; 61:417-24. [PMID: 22743598 DOI: 10.1097/qai.0b013e3182653c1f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Combination drug therapy has reduced plasma HIV to undetectable levels; however, drug-sensitive virus persists in patients' lymphoid tissue. We have reported significant lymphoid tissue drug localization with indinavir-associated lipid nanoparticles (LNPs). Our current objective is to evaluate whether additional enhancement is achievable by targeting these particles to CD4-HIV host cells. METHODS We characterized 2 peptide-coated (CD4-BP2 and CD4-BP4) drug-associated LNPs and demonstrated CD4-cell specificity. Drug-associated LNPs expressing polyethyleneglycol were exposed on HIV-2-infected cells under dynamic conditions that emulated lymph node physiology for 15, 30, and 60 minutes at concentrations from 0 to 25 μM and evaluated for antiviral activity and cell-associated drug concentrations. The specificity of CD4-mediated enhancement of indinavir LNPs antiviral activity was evaluated by blocking with anti-CD4 antibody. RESULTS Inclusion of CD4-binding peptides on LNPs enhanced antiviral activity for all incubation conditions, compared with control particles or soluble drug (eg, 60 minutes exposure, EC50 = 0.12-0.13 vs. 0.46 μM for targeted nanoparticles vs. soluble drug). The CD4-BP4 peptide exhibited higher efficiency in eliciting antiviral activity than CD4-BP2-coated particles (EC50 = 7.5 μM vs. >25 μM at 15 minutes drug exposure). This enhancement seems to be driven by CD4 availability and cell-associated indinavir concentrations, as blocking of CD4 significantly ablated indinavir efficacy in targeted particles and indinavir concentrations reflected the observed anti-HIV activity. CONCLUSIONS We constructed CD4-targeted LNPs that provide selective binding and efficient delivery of indinavir to CD4-HIV host cells. Inclusion of polyethyleneglycol in LNPs would minimize immune recognition of peptides. The enhancement of anti-HIV effects is effective even under limited time exposure.
Collapse
|
44
|
Lisziewicz J, Tőke ER. Nanomedicine applications towards the cure of HIV. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:28-38. [DOI: 10.1016/j.nano.2012.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/23/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
45
|
Affiliation(s)
- Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
46
|
Parboosing R, Maguire GEM, Govender P, Kruger HG. Nanotechnology and the treatment of HIV infection. Viruses 2012; 4:488-520. [PMID: 22590683 PMCID: PMC3347320 DOI: 10.3390/v4040488] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/15/2012] [Accepted: 03/27/2012] [Indexed: 01/25/2023] Open
Abstract
Suboptimal adherence, toxicity, drug resistance and viral reservoirs make the lifelong treatment of HIV infection challenging. The emerging field of nanotechnology may play an important role in addressing these challenges by creating drugs that possess pharmacological advantages arising out of unique phenomena that occur at the “nano” scale. At these dimensions, particles have physicochemical properties that are distinct from those of bulk materials or single molecules or atoms. In this review, basic concepts and terms in nanotechnology are defined, and examples are provided of how nanopharmaceuticals such as nanocrystals, nanocapsules, nanoparticles, solid lipid nanoparticles, nanocarriers, micelles, liposomes and dendrimers have been investigated as potential anti-HIV therapies. Such drugs may, for example, be used to optimize the pharmacological characteristics of known antiretrovirals, deliver anti-HIV nucleic acids into infected cells or achieve targeted delivery of antivirals to the immune system, brain or latent reservoirs. Also, nanopharmaceuticals themselves may possess anti-HIV activity. However several hurdles remain, including toxicity, unwanted biological interactions and the difficulty and cost of large-scale synthesis of nanopharmaceuticals.
Collapse
Affiliation(s)
- Raveen Parboosing
- Department of Virology, National Health Laboratory Service/University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
- Author to whom correspondence should be addressed; ; Tel.: +27-31-240-2816; Fax: +27-31-240-2797
| | - Glenn E. M. Maguire
- School of Chemistry, University of KwaZulu-Natal, Varsity Drive, Durban 4001, South Africa; (G.E.M. M.); (H.G.K.)
| | - Patrick Govender
- School of Biochemistry, Genetics and Microbiology, University of KwaZulu-Natal, Durban 4001, South Africa; (P.G.)
| | - Hendrik G. Kruger
- School of Chemistry, University of KwaZulu-Natal, Varsity Drive, Durban 4001, South Africa; (G.E.M. M.); (H.G.K.)
| |
Collapse
|
47
|
Endsley AN, Ho RJY. Design and characterization of novel peptide-coated lipid nanoparticles for targeting anti-HIV drug to CD4 expressing cells. AAPS JOURNAL 2012; 14:225-35. [PMID: 22391788 DOI: 10.1208/s12248-012-9329-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 02/01/2012] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency virus (HIV) persists in lymph nodes and lymphoid tissues even during aggressive drug treatment, likely due to insufficient drug concentrations at this site. Therefore, to eliminate this residual virus, methods that enhance lymph node drug concentrations are currently being evaluated. Although enhanced drug concentrations in tissue have been achieved with drug-associated lipid nanoparticles, targeting these particles to CD4(+) cells may provide specific delivery of drug to HIV target cells and further enhance drug efficacy. We have evaluated four candidate peptides with reported binding specificity to CD4 for anchoring on lipid nanoparticle preparations previously shown to localize in lymph nodes. Terminal cysteine containing candidate peptides were conjugated to lipid nanoparticles through maleimide-linked phospholipids for targeting to CD4 cells. Using fluorescently labeled lipid nanoparticle binding to cells with varying degree of CD4 expression (CEMx174, Molt-4, Jurkat, and Ramos), we indentified two peptide sequences that provided CD4 selectivity to nanoparticles. These two peptide candidates on lipid nanoparticles bound to cells corresponding to the degree of CD4 expression and in a peptide dose dependent manner. Further, binding of these targeted lipid nanoparticles was CD4 specific, as pre-exposure of CD4(+) cells to anti-CD4 antibodies or free peptides inhibited the binding interactions. These results indicate targeting of lipid nanoparticles for specific binding to CD4 can be accomplished by tagging CD4 binding peptides with peptides, and these results provide a basis for further evaluation of this targeted delivery system to enhance antiviral drug delivery to CD4(+) HIV host cells, particularly those in lymph nodes and lymphoid tissues.
Collapse
Affiliation(s)
- Aaron N Endsley
- Department of Pharmaceutics, University of Washington, Box 357610, Seattle, Washington 98195, USA
| | | |
Collapse
|
48
|
Bourry O, Mannioui A, Sellier P, Roucairol C, Durand-Gasselin L, Dereuddre-Bosquet N, Benech H, Roques P, Le Grand R. Effect of a short-term HAART on SIV load in macaque tissues is dependent on time of initiation and antiviral diffusion. Retrovirology 2010; 7:78. [PMID: 20868521 PMCID: PMC2955669 DOI: 10.1186/1742-4690-7-78] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV reservoirs are rapidly established after infection, and the effect of HAART initiated very early during acute infection on HIV reservoirs remains poorly documented, particularly in tissue known to actively replicate the virus. In this context, we used the model of experimental infection of macaques with pathogenic SIV to assess in different tissues: (i) the effect of a short term HAART initiated at different stages during acute infection on viral dissemination and replication, and (ii) the local concentration of antiviral drugs. RESULTS Here, we show that early treatment with AZT/3TC/IDV initiated either within 4 hours after intravenous infection of macaques with SIVmac251 (as a post exposure prophylaxis) or before viremia peak (7 days post-infection [pi]), had a strong impact on SIV production and dissemination in all tissues but did not prevent infection. When treatment was initiated after the viremia peak (14 days pi) or during early chronic infection (150 days pi), significant viral replication persists in the peripheral lymph nodes and the spleen of treated macaques despite a strong effect of treatment on viremia and gut associated lymphoid tissues. In these animals, the level of virus persistence in tissues was inversely correlated with local concentrations of 3TC: high concentrations of 3TC were measured in the gut whereas low concentrations were observed in the secondary lymphoid tissues. IDV, like 3TC, showed much higher concentration in the colon than in the spleen. AZT concentration was below the quantification threshold in all tissues studied. CONCLUSIONS Our results suggest that limited antiviral drug diffusion in secondary lymphoid tissues may allow persistent viral replication in these tissues and could represent an obstacle to HIV prevention and eradication.
Collapse
Affiliation(s)
- Olivier Bourry
- CEA, Division of Immuno-Virology, DSV/iMETI, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim PS, Read SW. Nanotechnology and HIV: potential applications for treatment and prevention. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:693-702. [DOI: 10.1002/wnan.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter S. Kim
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah W. Read
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Ramana LN, Sethuraman S, Ranga U, Krishnan UM. Development of a liposomal nanodelivery system for nevirapine. J Biomed Sci 2010; 17:57. [PMID: 20624325 PMCID: PMC2914021 DOI: 10.1186/1423-0127-17-57] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 07/13/2010] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The treatment of AIDS remains a serious challenge owing to high genetic variation of Human Immunodeficiency Virus type 1 (HIV-1). The use of different antiretroviral drugs (ARV) is significantly limited by severe side-effects that further compromise the quality of life of the AIDS patient. In the present study, we have evaluated a liposome system for the delivery of nevirapine, a hydrophobic non-nucleoside reverse transcriptase inhibitor. Liposomes were prepared from egg phospholipids using thin film hydration. The parameters of the process were optimized to obtain spherical liposomes below 200 nm with a narrow polydispersity. The encapsulation efficiency of the liposomes was optimized at different ratios of egg phospholipid to cholesterol as well as drug to total lipid. The data demonstrate that encapsulation efficiency of 78.14% and 76.25% were obtained at egg phospholipid to cholesterol ratio of 9:1 and drug to lipid ratio of 1:5, respectively. We further observed that the size of the liposomes and the encapsulation efficiency of the drug increased concomitantly with the increasing ratio of drug and lipid and that maximum stability was observed at the physiological pH. Thermal analysis of the drug encapsulated liposomes indicated the formation of a homogenous drug-lipid system. The magnitude of drug release from the liposomes was examined under different experimental conditions including in phosphate buffered saline (PBS), Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum or in the presence of an external stimulus such as low frequency ultrasound. Within the first 20 minutes 40, 60 and 100% of the drug was released when placed in PBS, DMEM or when ultrasound was applied, respectively. We propose that nevirapine-loaded liposomal formulations reported here could improve targeted delivery of the anti-retroviral drugs to select compartments and cells and alleviate systemic toxic side effects as a consequence.
Collapse
Affiliation(s)
- Lakshmi N Ramana
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology, SASTRA University, Thanjavur 613 401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology, SASTRA University, Thanjavur 613 401, India
| | - Udaykumar Ranga
- Molecular Virology Laboratory, Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Uma M Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology, SASTRA University, Thanjavur 613 401, India
| |
Collapse
|