1
|
Marks K, Ahn SJ, Rai N, Anfray A, Iadecola C, Anrather J. A minimally invasive thrombotic model to study stroke in awake mice. Nat Commun 2025; 16:4356. [PMID: 40348793 PMCID: PMC12065827 DOI: 10.1038/s41467-025-59617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
Experimental stroke models in rodents are essential for mechanistic studies and therapeutic development. However, these models have several limitations negatively impacting their translational relevance. Here we aimed to develop a minimally invasive thrombotic stroke model through magnetic particle delivery that does not require craniotomy, is amenable to reperfusion therapy, can be combined with in vivo imaging modalities, and can be performed in awake mice. We found that the model results in reproducible cortical infarcts within the middle cerebral artery (MCA) territory with cytologic and immune changes similar to that observed with more invasive distal MCA occlusion models. Importantly, the injury produced by the model was ameliorated by tissue plasminogen activator (tPA) administration. We also show that MCA occlusion in awake animals results in bigger ischemic lesions independent of day/night cycle. Magnetic particle delivery had no overt effects on physiologic parameters and systemic immune biomarkers. In conclusion, we developed a novel stroke model in mice that fulfills many requirements for modeling human stroke.
Collapse
Affiliation(s)
- Kimberly Marks
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sung-Ji Ahn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ninamma Rai
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Fatima M, Bazarbaev A, Rana A, Khurshid R, Effiom V, Bajwa NK, Nasir A, Candelario K, Tabraiz SA, Colon S, Lee C, Dankwa S, Hameed I. Neuroprotective Strategies in Coronary Artery Disease Interventions. J Cardiovasc Dev Dis 2025; 12:143. [PMID: 40278202 PMCID: PMC12027976 DOI: 10.3390/jcdd12040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Neuroprotective strategies in coronary artery interventions are essential due to the rising number of high-risk patients undergoing procedures like coronary artery bypass grafting (CABG), totally endoscopic coronary artery bypass (TECAB), and hybrid revascularization. In this review article, we summarize the neurological complications associated with coronary artery disease intervention and the risk mitigation strategies. CABG carries significant risks, including ischemic stroke, encephalopathy, seizures, and peripheral nerve injuries. Risk factors include advanced age, hypertension, diabetes, and atherosclerosis. Off-pump CABG minimizes stroke risk by avoiding aortic manipulation and CPB. TECAB and hybrid revascularization have fewer reported neurological complications but still pose risks of stroke and cranial nerve injuries. Pharmacological neuroprotection includes agents such as barbiturates, volatile anesthetics, lidocaine, NMDA receptor antagonists, magnesium, nimodipine, corticosteroids, and aprotinin. Deep hypothermic circulatory arrest (DHCA) is reserved for complex aortic cases requiring a bloodless surgical field. Intraoperative strategies involve cerebral perfusion monitoring, embolic protection devices, and therapeutic hypothermia. Preoperative optimization targets risk factors, arrhythmia prevention, and antiplatelet therapy management. Postoperatively, timely antiplatelet administration, glucose control, hemodynamic stabilization, and cognitive monitoring are critical. Comprehensive neuroprotective approaches, spanning pre- to postoperative phases, aim to reduce neurological complications and enhance outcomes in coronary interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Irbaz Hameed
- Division of Cardiac Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT 06510, USA; (M.F.); (A.B.); (A.R.); (R.K.); (V.E.); (N.K.B.); (A.N.); (K.C.); (S.A.T.); (S.C.); (C.L.); (S.D.)
| |
Collapse
|
3
|
Marks K, Ahn SJ, Rai N, Anfray A, Iadecola C, Anrather J. A minimally invasive thrombotic stroke model to study circadian rhythm in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598243. [PMID: 38915621 PMCID: PMC11195071 DOI: 10.1101/2024.06.10.598243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Experimental stroke models in rodents are essential for mechanistic studies and therapeutic development. However, these models have several limitations negatively impacting their translational relevance. Here we aimed to develop a minimally invasive thrombotic stroke model through magnetic particle delivery that does not require craniotomy, is amenable to reperfusion therapy, can be combined with in vivo imaging modalities, and can be performed in awake mice. We found that the model results in reproducible cortical infarcts within the middle cerebral artery (MCA) with cytologic and immune changes similar to that observed with more invasive distal MCA occlusion models. Importantly, the injury produced by the model was ameliorated by tissue plasminogen activator (tPA) administration. We also show that MCA occlusion in awake animals results in bigger ischemic lesions independent of day/night cycle. Magnetic particle delivery had no overt effects on physiologic parameters and systemic immune biomarkers. In conclusion, we developed a novel stroke model in mice that fulfills many requirements for modeling human stroke.
Collapse
|
4
|
Isngadi I, Hartono R, Willianto A. Clinical improvement and tumor regression in parturient with a brain tumor and intracranial bleeding after C-section with general anesthesia: A case report. BALI JOURNAL OF ANESTHESIOLOGY 2023. [DOI: 10.4103/bjoa.bjoa_250_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
5
|
Jacquens A, Needham EJ, Zanier ER, Degos V, Gressens P, Menon D. Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. Int J Mol Sci 2022; 23:11193. [PMID: 36232495 PMCID: PMC9570205 DOI: 10.3390/ijms231911193] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Head trauma is the most common cause of disability in young adults. Known as a silent epidemic, it can cause a mosaic of symptoms, whether neurological (sensory-motor deficits), psychiatric (depressive and anxiety symptoms), or somatic (vertigo, tinnitus, phosphenes). Furthermore, cranial trauma (CT) in children presents several particularities in terms of epidemiology, mechanism, and physiopathology-notably linked to the attack of an immature organ. As in adults, head trauma in children can have lifelong repercussions and can cause social and family isolation, difficulties at school, and, later, socio-professional adversity. Improving management of the pre-hospital and rehabilitation course of these patients reduces secondary morbidity and mortality, but often not without long-term disability. One hypothesized contributor to this process is chronic neuroinflammation, which could accompany primary lesions and facilitate their development into tertiary lesions. Neuroinflammation is a complex process involving different actors such as glial cells (astrocytes, microglia, oligodendrocytes), the permeability of the blood-brain barrier, excitotoxicity, production of oxygen derivatives, cytokine release, tissue damage, and neuronal death. Several studies have investigated the effect of various treatments on the neuroinflammatory response in traumatic brain injury in vitro and in animal and human models. The aim of this review is to examine the various anti-inflammatory therapies that have been implemented.
Collapse
Affiliation(s)
- Alice Jacquens
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Edward J. Needham
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| | - Elisa R. Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Vincent Degos
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Pierre Gressens
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - David Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
6
|
Contemporary Neuroprotection Strategies during Cardiac Surgery: State of the Art Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312747. [PMID: 34886474 PMCID: PMC8657178 DOI: 10.3390/ijerph182312747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
Open-heart surgery is the leading cause of neuronal injury in the perioperative state, with some patients complicating with cerebrovascular accidents and delirium. Neurological fallout places an immense burden on the psychological well-being of the person affected, their family, and the healthcare system. Several randomised control trials (RCTs) have attempted to identify therapeutic and interventional strategies that reduce the morbidity and mortality rate in patients that experience perioperative neurological complications. However, there is still no consensus on the best strategy that yields improved patient outcomes, such that standardised neuroprotection protocols do not exist in a significant number of anaesthesia departments. This review aims to discuss contemporary evidence for preventing and managing risk factors for neuronal injury, mechanisms of injury, and neuroprotection interventions that lead to improved patient outcomes. Furthermore, a summary of existing RCTs and large observational studies are examined to determine which strategies are supported by science and which lack definitive evidence. We have established that the overall evidence for pharmacological neuroprotection is weak. Most neuroprotective strategies are based on animal studies, which cannot be fully extrapolated to the human population, and there is still no consensus on the optimal neuroprotective strategies for patients undergoing cardiac surgery. Large multicenter studies using universal standardised neurological fallout definitions are still required to evaluate the beneficial effects of the existing neuroprotective techniques.
Collapse
|
7
|
Shi YH, Li Y, Wang Y, Xu Z, Fu H, Zheng GQ. Ginsenoside-Rb1 for Ischemic Stroke: A Systematic Review and Meta-analysis of Preclinical Evidence and Possible Mechanisms. Front Pharmacol 2020; 11:285. [PMID: 32296332 PMCID: PMC7137731 DOI: 10.3389/fphar.2020.00285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background Ischemic stroke is the most common type of stroke, while pharmacological therapy options are limited. Ginsenosides are the major bioactive compounds in Ginseng and have been found to have various pharmacological effects in the nervous system. In the present study, we sought to evaluate the effects of Ginsenoside-Rb1 (G-Rb1), an important ingredient of ginsenosides, and the probable neuroprotective mechanisms in experimental ischemic strokes. Methods Studies of G-Rb1 on ischemic stroke animal models were identified from 7 databases. No clinical trials were included in the analysis. The primary outcome measures were neurological function scores, infarct volume, evans blue content and/or brain water content (BWC). The second outcome measures were the possible neuroprotective mechanisms. All the data were analyzed by Rev Man 5.3. Result Pooled preclinical data showed that compared with the controls, G-Rb1 could improve neurological function (Zea Longa (n = 367, P < 0.01); mNSS (n = 70, P < 0.01); Water maze test (n = 48, P < 0.01); Bederson (n = 16, P < 0.01)), infarct area (TTC (n = 211, P < 0.01); HE (n = 26, P < 0.01)), as well as blood-brain barrier function (BWC (n = 64, P < 0.01); Evans blue content (n=26, P < 0.05)). It also can increase BDNF (n = 26, P < 0.01), Gap-43 (n = 16, P < 0.01), SOD (n = 30, P < 0.01), GSH (n = 16, P < 0.01), Nissl-positive cells (n = 12, P < 0.01), Nestin-positive cells (n = 10, P < 0.05), and reduce Caspase-3 (n = 36, P < 0.01), IL-1 (n = 32, P < 0.01), TNF-α (n = 72, P < 0.01), MDA (n = 18, P < 0.01), NO (n = 44, P < 0.01), NOX (n = 32, P < 0.05), ROS (n = 6, P < 0.05), NF-κB (P < 0.05) and TUNEL-positive cells (n = 52, P < 0.01). Conclusion Available findings demonstrated the preclinical evidence that G-Rb1 has a potential neuroprotective effect, largely through attenuating brain water content, promoting the bioactivities of neurogenesis, anti-apoptosis, anti-oxidative, anti-inflammatory, energy supplement and cerebral circulation.
Collapse
Affiliation(s)
- Yi-Hua Shi
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan Fu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Zhou X, Lv X, Zhang L, Yan J, Hu R, Sun Y, Xi S, Jiang H. Ketamine promotes the neural differentiation of mouse embryonic stem cells by activating mTOR. Mol Med Rep 2020; 21:2443-2451. [PMID: 32236601 PMCID: PMC7185302 DOI: 10.3892/mmr.2020.11043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/31/2018] [Indexed: 12/23/2022] Open
Abstract
Ketamine is a widely used general anesthetic and has been reported to demonstrate neurotoxicity and neuroprotection. Investigation into the regulatory mechanism of ketamine on influencing neural development is of importance for a better and safer way of relieving pain. Reverse transcription‑quantitative polymerase chain reaction and western blotting were used to detect the critical neural associated gene expression, and flow cytometry to detect the neural differentiation effect. Hence, in the present study the underlying mechanism of ketamine (50 nM) on neural differentiation of the mouse embryonic stem cell (mESC) line 46C was investigated. The results demonstrated that a low dose of ketamine (50 nM) promoted the differentiation of mESCs to neural stem cells (NSCs) and activated mammalian target of rapamycin (mTOR) by upregulating the expression levels of phosphorylated (p)‑mTOR. Furthermore, inhibition of the mTOR signaling pathway by rapamycin or knockdown of mTOR suppressed neural differentiation. A rescue experiment further confirmed that downregulation of mTOR inhibited the promotion of neural differentiation induced by ketamine. Taken together, the present study indicated that a low level of ketamine upregulated p‑mTOR expression levels, promoting neural differentiation.
Collapse
Affiliation(s)
- Xuhui Zhou
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Xiang Lv
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Lei Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Rong Hu
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Yu Sun
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Siwei Xi
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute, Shanghai 200011, P.R. China
| |
Collapse
|
9
|
Kim D, Ahn JH, Jung H, Choi KY, Jeong JS. Effects of neuromuscular blockade reversal on bispectral index and frontal electromyogram during steady-state desflurane anesthesia: a randomized trial. Sci Rep 2019; 9:10486. [PMID: 31324862 PMCID: PMC6642209 DOI: 10.1038/s41598-019-47047-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
The degree of neuromuscular blockade reversal may affect bispectral index (BIS) value. One possible reason is that the reverse of neuromuscular blockade affects electromyographic (EMG) signals of fascial muscle. Another reason is, the afferentation theory, the reverse of neuromuscular blockade relieves block signals generated in muscle stretch receptors from accessing the brain through afferent nerve pathways and induces arousal. Inaccurate BIS value may lead to overdose of drugs or the risk of intraoperative awareness. We compared changes in BIS and EMG values according to neuromuscular blockade reversal agents under steady-state desflurane anesthesia. A total of 65 patients were randomly allocated to receive either neostigmine 0.05 mg/kg, sugammadex 4 mg/kg, or pyridostigmine 0.25 mg/kg for neuromuscular blockade reversal under stable desflurane anesthesia, and 57 patients completed the study. The primary outcome was change in BIS and EMG values before and after administration of neuromuscular blockade reversal agents (between train-of-four [TOF] count 1-2 and TOF ratio 0.9). The change in BIS and EMG values before and after administration of neuromuscular blockade reversal agents were statistically different in each group (BIS: Neostigmine group, P < 0.001; Sugammadex group, P < 0.001; Pyridostigmine group, P = 0.001; EMG: Neostigmine group, P = 0.001; Sugammadex group, P < 0.001; Pyridostigmine group, P = 0.001; respectively). The BIS and EMG values had a positive correlation (P < 0.001). Our results demonstrate that the EMG and BIS values have increased after neuromuscular blockade reversal under desflurane anesthesia regardless of the type of neuromuscular blockade reversal agent. BIS should be applied carefully to measure of depth of anesthesia after neuromuscular blockade reversal.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Hee Ahn
- Department of Anaesthesiology and Pain Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyunjoo Jung
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ka Young Choi
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Seon Jeong
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Shekhar H, Palaniappan A, Peng T, Lafond M, Moody MR, Haworth KJ, Huang S, McPherson DD, Holland CK. Characterization and Imaging of Lipid-Shelled Microbubbles for Ultrasound-Triggered Release of Xenon. Neurotherapeutics 2019; 16:878-890. [PMID: 31020629 PMCID: PMC6694347 DOI: 10.1007/s13311-019-00733-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Xenon (Xe) is a bioactive gas capable of reducing and stabilizing neurologic injury in stroke. The goal of this work was to develop lipid-shelled microbubbles for xenon loading and ultrasound-triggered release. Microbubbles loaded with either xenon (Xe-MB) or xenon and octafluoropropane (Xe-OFP-MB) (9:1 v/v) were synthesized by high-shear mixing. The size distribution and the frequency-dependent attenuation coefficient of Xe-MB and Xe-OFP-MB were measured using a Coulter counter and a broadband acoustic attenuation spectroscopy system, respectively. The Xe dose was evaluated using gas chromatography/mass spectrometry. The total Xe doses in Xe-MB and Xe-OFP-MB were 113.1 ± 13.5 and 145.6 ± 25.5 μl per mg of lipid, respectively. Co-encapsulation of OFP increased the total xenon dose, attenuation coefficient, microbubble stability (in an undersaturated solution), and shelf life of the agent. Triggered release of gas payload was demonstrated with 6-MHz duplex Doppler and 220-kHz pulsed ultrasound. These results constitute the first step toward the use of lipid-shelled microbubbles for applications such as neuroprotection in stroke.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Arunkumar Palaniappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tao Peng
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maxime Lafond
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Melanie R Moody
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shaoling Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - David D McPherson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
11
|
Bürge M, Kratzer S, Mattusch C, Hofmann C, Kreuzer M, Parsons CG, Rammes G. The anaesthetic xenon partially restores an amyloid beta-induced impairment in murine hippocampal synaptic plasticity. Neuropharmacology 2019; 151:21-32. [PMID: 30940537 DOI: 10.1016/j.neuropharm.2019.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND It is controversially discussed whether general anaesthesia increases the risk of Alzheimer's disease (AD) or accelerates its progression. One important factor in AD pathogenesis is the accumulation of soluble amyloid beta (Aβ) oligomers which affect N-methyl-d-aspartate (NMDA) receptor function and abolish hippocampal long-term potentiation (LTP). NMDA receptor antagonists, at concentrations allowing physiological activation, can prevent Aβ-induced deficits in LTP. The anaesthetics xenon and S-ketamine both act as NMDA receptor antagonists and have been reported to be neuroprotective. In this study, we investigated the effects of subanaesthetic concentrations of these drugs on LTP deficits induced by different Aβ oligomers and compared them to the effects of radiprodil, a NMDA subunit 2B (GluN2B)-selective antagonist. METHODS We applied different Aβ oligomers to murine brain slices and recorded excitatory postsynaptic field potentials before and after high-frequency stimulation in the CA1 region of hippocampus. Radiprodil, xenon and S-ketamine were added and recordings evoked from a second input were measured. RESULTS Xenon and radiprodil, applied at low concentrations, partially restored the LTP deficit induced by pre-incubated Aβ1-42. S-ketamine showed no effect. None of the drugs tested were able to ameliorate Aβ1-40-induced LTP-deficits. CONCLUSIONS Xenon administered at subanaesthetic concentrations partially restored Aβ1-42-induced impairment of LTP, presumably via its weak NMDA receptor antagonism. The effects were in a similar range than those obtained with the NMDA-GluN2B antagonist radiprodil. Our results point to protective properties of xenon in the context of pathological distorted synaptic physiology which might be a meaningful alternative for anaesthesia in AD patients.
Collapse
Affiliation(s)
- Martina Bürge
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; Department of Perioperative Medicine, Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, United Kingdom.
| | - Stephan Kratzer
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Corinna Mattusch
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; Hexal AG, Industriestr. 25, 83607 Holzkirchen, Germany
| | - Carolin Hofmann
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Matthias Kreuzer
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | | | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
12
|
Park JH, Kim D, Shin BS. Effects of propofol and isoflurane on excitatory amino acid carrier 1 mRNA and glutathione protein levels in rat hippocampus. J Int Med Res 2018; 46:4705-4716. [PMID: 30198359 PMCID: PMC6259380 DOI: 10.1177/0300060518795583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE We compared the effects of two anesthetics, isoflurane and propofol, on the nuclear or cytosolic localization of nuclear factor erythroid 2-related factor 2 (Nrf2), mRNA expression levels of excitatory amino acid carrier 1 (EAAC1), and glutathione (GSH) protein levels in the rat hippocampus. METHODS Fifty-two adult male Sprague-Dawley rats were randomly divided into three groups: a control group, a group that received propofol for 240 minutes (P240), and a group that received isoflurane for 240 minutes (I240). We compared GSH protein and EAAC1 mRNA expression levels in the rat hippocampus and evaluated Nrf2 content in cytosolic and nuclear fractions in the three groups. RESULTS GSH protein and EAAC1 mRNA expression levels were significantly higher in the I240 and P240 groups compared with the control group. The I240 and P240 groups showed lower Nrf2 protein levels in the cytosolic fractions, but higher levels in the nuclear fractions compared with the control group. CONCLUSION Treatment with isoflurane or propofol may enhance GSH production by facilitating translocation of Nrf2 into the nucleus and increasing EAAC1mRNA expression in the rat hippocampus. Isoflurane and propofol show similar profiles in EAAC1 expression-associated GSH production.
Collapse
Affiliation(s)
- Jin Hyoung Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Doyeon Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | - Byung Seop Shin
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Transcranial Cerebral Oxymetric Monitoring Reduces Brain Hypoxia in Obese and Elderly Patients Undergoing General Anesthesia for Laparoscopic Cholecystectomy. Surg Laparosc Endosc Percutan Tech 2018; 27:248-252. [PMID: 28708768 DOI: 10.1097/sle.0000000000000444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aims of this prospective, observational study were to evaluate the changes of the regional cerebral saturation (rSO2) measured by near-infrared spectroscopy during elective laparoscopic cholecystectomy under total intravenous anesthesia and the association between patient's characteristics and critical decline of rSO2. Hemodynamics, rSO2, and oxygen saturation were recorded in different time points: before the anesthesia (Tbas), 2 minutes after the induction (supine position) (Tind), 2 minutes after CO2 insufflation (supine) (TCO2), 10 minutes after CO2 insufflation (reverse Trendelenburg) (TrevT), and 2 minutes after deflation (supine) (Tpost). Average age was 53±13 (range: 22 to 79 y). In 12 of a total of 62 patients (19.4%) the rSO2 decreased >20% (20.5% to 28.4%) in TCO2 or TrevT times. Significantly higher decrease of the rSO2 was found in patients older than 65 years and those with body mass index >30 kg/m (P<0.05). Noninvasive monitoring of cerebral oxygenation could be an important part of perioperative care in obese and older patients.
Collapse
|
14
|
Tasbihgou SR, Netkova M, Kalmar AF, Doorduin J, Struys MMRF, Schoemaker RG, Absalom AR. Brain changes due to hypoxia during light anaesthesia can be prevented by deepening anaesthesia; a study in rats. PLoS One 2018; 13:e0193062. [PMID: 29451906 PMCID: PMC5815614 DOI: 10.1371/journal.pone.0193062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/02/2018] [Indexed: 01/13/2023] Open
Abstract
In anaesthetic practice the risk of cerebral ischemic/hypoxic damage is thought to be attenuated by deep anaesthesia. The rationale is that deeper anaesthesia reduces cerebral oxygen demand more than light anaesthesia, thereby increasing the tolerance to ischemia or hypoxia. However, evidence to support this is scarce. We thus investigated the influence of light versus deep anaesthesia on the responses of rat brains to a period of hypoxia. In the first experiment we exposed adult male Wistar rats to deep or light propofol anaesthesia and then performed [18F]- Fludeoxyglucose (FDG) Positron Emission Tomography (PET) scans to verify the extent of cerebral metabolic suppression. In subsequent experiments, rats were subjected to light/deep propofol anaesthesia and then exposed to a period of hypoxia or ongoing normoxia (n = 9-11 per group). A further 5 rats, not exposed to anaesthesia or hypoxia, served as controls. Four days later a Novel Object Recognition (NOR) test was performed to assess mood and cognition. After another 4 days, the animals were sacrificed for later immunohistochemical analyses of neurogenesis/neuroplasticity (Doublecortin; DCX), Brain Derived Neurotrophic Factor (BDNF) expression and neuroinflammation (Ionized calcium-binding adaptor protein-1; Iba-1) in hippocampal and piriform cortex slices. The hippocampi of rats subjected to hypoxia during light anaesthesia showed lower DCX positivity, and therefore lower neurogenesis, but higher BDNF levels and microglia hyper-ramification. Exploration was reduced, but no significant effect on NOR was observed. In the piriform cortex, higher DCX positivity was observed, associated with neuroplasticity. All these effects were attenuated by deep anaesthesia. Deepening anaesthesia attenuated the brain changes associated with hypoxia. Hypoxia during light anaesthesia had a prolonged effect on the brain, but no impairment in cognitive function was observed. Although reduced hippocampal neurogenesis may be considered unfavourable, higher BDNF expression, associated with microglia hyper-ramification may suggest activation of repair mechanisms. Increased neuroplasticity observed in the piriform cortex supports this, and might reflect a prolonged state of alertness rather than damage.
Collapse
Affiliation(s)
- Setayesh R. Tasbihgou
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Mina Netkova
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Alain F. Kalmar
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, the Netherlands
| | - Michel M. R. F. Struys
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
- Department of Anaesthesia, Ghent University, Gent, Belgium
| | - Regien G. Schoemaker
- Department of Molecular Neurobiology, GELIFES, University of Groningen, Groningen, the Netherlands
| | - Anthony R. Absalom
- Department of Anaesthesiology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Guo W, Ding J, Jin X, Li G. Effect of cerebral oxygen saturation on postoperative nausea and vomiting in female laparoscopic surgery patients. Medicine (Baltimore) 2017; 96:e8275. [PMID: 29019899 PMCID: PMC5662322 DOI: 10.1097/md.0000000000008275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate effect of cerebral oxygen saturation (SCTO2) on postoperative nausea and vomiting (PONV) in female patients who underwent laparoscopic surgery. METHODS This study included 90 female patients who underwent laparoscopic surgery (60 cases of gynecological operations and 30 cases of gallbladder operations). All patients were allocated into 3 groups of 30 patients each: group A (gynecological laparoscopic surgery), group B (gynecological laparoscopic surgery with mannitol treatment) and group C (laparoscopic cholecystectomy surgery). Perioperative SCTO2, mean blood flow velocity of vertebral artery (VM), vascular resistance index of vertebral artery (RI), and PONV (within 48 hours after surgery) were investigated. RESULTS No differences in age, body weight, operation time, and hemoglobin levels were observed among the patients (P > .05). The SCTO2 values for groups B and C were lower than those for group A in both brain hemispheres at T4 and T5 (P < .05). The VM was higher in group B than in groups A and C at T3 (P < .05), but differences in VM were not observed between groups B and C at T4 or T5. However, the VM of group A was still lower than the other groups (P < .05), and no difference in VM was observed among the 3 groups at T6 (P > .05). The RI was higher in group C than in groups A and B at T4 (P < .05). The incidence of PONV within 48 hours after surgery was significantly higher in group A than in the other 2 groups (P < .05). CONCLUSION Strategies that maintain normal SCTO2 may reduce the incidence of PONV in female patients who underwent laparoscopy surgery by reducing perioperative intracranial pressure.
Collapse
|
16
|
Economic Evaluation of Pharmacologic Pre- and Postconditioning With Sevoflurane Compared With Total Intravenous Anesthesia in Liver Surgery: A Cost Analysis. Anesth Analg 2017; 124:925-933. [PMID: 28067701 PMCID: PMC5305288 DOI: 10.1213/ane.0000000000001814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Pharmacologic pre- and postconditioning with sevoflurane compared with total IV anesthesia in patients undergoing liver surgery reduced complication rates as shown in 2 recent randomized controlled trials. However, the potential health economic consequences of these different anesthesia regimens have not yet been assessed. METHODS An expostcost analysis of these 2 trials in 129 patients treated between 2006 and 2010 was performed. We analyzed direct medical costs for in-hospital stay and compared pharmacologic pre- and postconditioning with sevoflurane (intervention) with total IV anesthesia (control) from the perspective of a Swiss university hospital. Year 2015 costs, converted to US dollars, were derived from hospital cost accounting data and compared with a multivariable regression analysis adjusting for relevant covariables. Costs with negative prefix indicate savings and costs with positive prefix represent higher spending in our analysis. RESULTS Treatment-related costs per patient showed a nonsignificant change by -12,697 US dollars (95% confidence interval [CI], 10,956 to -36,352; P = .29) with preconditioning and by -6139 US dollars (95% CI, 6723 to -19,000; P = .35) with postconditioning compared with the control group. Results were robust in our sensitivity analysis. For both procedures (control and intervention) together, major complications led to a significant increase in costs by 86,018 US dollars (95% CI, 13,839-158,198; P = .02) per patient compared with patients with no major complications. CONCLUSIONS In this cost analysis, reduced in-hospital costs by pharmacologic conditioning with sevoflurane in patients undergoing liver surgery are suggested. This possible difference in costs compared with total IV anesthesia is the result of reduced complication rates with pharmacologic conditioning, because major complications have significant cost implications.
Collapse
|
17
|
Kamata K, Fukushima R, Nomura M, Ozaki M. A case of left frontal high-grade glioma diagnosed during pregnancy. JA Clin Rep 2017; 3:18. [PMID: 29457062 PMCID: PMC5804599 DOI: 10.1186/s40981-017-0090-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022] Open
Abstract
Background As pregnancy accelerates glioma growth, therapeutic abortion has been recommended prior to tumor resection. Additionally, it has also been suggested that the extent of glioma resection is closely correlated with patient survival. Case presentation A 162-cm, 61.4-kg, 30-year-old, right-handed primigravida was referred to our institution at 21 weeks gestation to obtain a second opinion. At 18 weeks gestation, the patient developed new-onset generalized convulsive seizures (GCSs), which were poorly controlled by anticonvulsant polytherapy, early in the second trimester. A 6-cm lesion located in her left frontal supplementary motor area (SMA) was suspected as a grade III glioma, classified according to the World Health Organization (WHO) guidelines. Due to the limited evidence on the use of adjuvant therapy during pregnancy, tumors causing neurological symptoms and seizures must be treated, in order to stabilize the maternal condition and enable a safe birth. In the case of pregnant patients, awake craniotomy using intraoperative magnetic resonance imaging (iMRI) is considered advantageous, achieving gross total resection with a reduction of direct cortical stimulation, which may induce seizure, and so reducing fetal exposure to anesthetics. The “Asleep-Awake-Asleep” technique was performed at 27 weeks and 2 days gestation. As use of propofol in pregnant patients is prohibited, general anesthesia was maintained through administration of sevoflurane and remifentanil until the first scan of iMRI, and was subsequently re-induced with dexmedetomidine when tumor removal had been accomplished. A supraglottic airway (SGA) was used until the patient’s cranium was opened. There were no complications during either the procedure or the post-operative period. At 35 weeks gestation, the patient delivered a healthy baby of 2317 g. Pathological examination of the patient, revealed an anaplastic astrocytoma, thus radiotherapy and chemotherapy began 2 months post-delivery. There is no evidence of tumor recurrence in the patient and the child did not show any medical or developmental concerns at the point of the 17-month follow-up. Conclusions Since evidence on the use of adjuvant therapy during pregnancy is limited, extensive resection with functional monitoring is recommended if a brain tumor is presumed to be malignant. Awake craniotomy is considered advantageous to pregnant patients because subjective movement preserves the patient’s motor function and reduces fetal exposure to anesthetics. Therefore, providing multidisciplinary discussion takes place within the decision-making process, as well as careful perioperative preparation, awake craniotomy should be considered, even in the case of pregnant patients.
Collapse
Affiliation(s)
- Kotoe Kamata
- Department of Anesthesiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Risa Fukushima
- Department of Anesthesiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Minoru Nomura
- Department of Anesthesiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| | - Makoto Ozaki
- Department of Anesthesiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666 Japan
| |
Collapse
|
18
|
Honeybul S, Ho KM, Gillett GR. Reconsidering the role of decompressive craniectomy for neurological emergencies. J Crit Care 2017; 39:185-189. [PMID: 28285834 DOI: 10.1016/j.jcrc.2017.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE There is little doubt that decompressive craniectomy can reduce mortality. However, there is concern that any reduction in mortality comes at an increase in the number of survivors with severe neurological disability. METHOD Over the past decade there have been several randomised controlled trials comparing surgical decompression with standard medical therapy in the context of ischaemic stroke and severe traumatic brain injury. The results of each trial are evaluated. RESULTS There is now unequivocal evidence that a decompressive craniectomy reduces mortality in the context of "malignant" middle infarction and following severe traumatic brain injury. However, it has only been possible to demonstrate an improvement in outcome by categorizing a mRS of 4 and upper severe disability as favourable outcome. This is contentious and an alternative interpretation is that surgical decompression reduces mortality but exposes a patient to a greater risk of survival with severe disability. CONCLUSION It would appear unlikely that further randomised controlled trials will be possible given the significant reduction in mortality achieved by surgical decompression. It may be that observational cohort studies and outcome prediction models may provide data to determine those patients most likely to benefit from surgical decompression.
Collapse
Affiliation(s)
- S Honeybul
- Department of Neurosurgery, Sir Charles Gairdner Hospital and Royal Perth Hospital, Western Australia, Australia.
| | - K M Ho
- Department of Intensive Care Medicine and School of Population Health, University of Western Australia, Australia
| | - G R Gillett
- Dunedin Hospital and Otago Bioethics Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Sommer CJ. Ischemic stroke: experimental models and reality. Acta Neuropathol 2017; 133:245-261. [PMID: 28064357 PMCID: PMC5250659 DOI: 10.1007/s00401-017-1667-0] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/31/2016] [Accepted: 01/01/2017] [Indexed: 12/11/2022]
Abstract
The vast majority of cerebral stroke cases are caused by transient or permanent occlusion of a cerebral blood vessel (“ischemic stroke”) eventually leading to brain infarction. The final infarct size and the neurological outcome depend on a multitude of factors such as the duration and severity of ischemia, the existence of collateral systems and an adequate systemic blood pressure, etiology and localization of the infarct, but also on age, sex, comorbidities with the respective multimedication and genetic background. Thus, ischemic stroke is a highly complex and heterogeneous disorder. It is immediately obvious that experimental models of stroke can cover only individual specific aspects of this multifaceted disease. A basic understanding of the principal molecular pathways induced by ischemia-like conditions comes already from in vitro studies. One of the most frequently used in vivo models in stroke research is the endovascular suture or filament model in rodents with occlusion of the middle cerebral artery (MCA), which causes reproducible infarcts in the MCA territory. It does not require craniectomy and allows reperfusion by withdrawal of the occluding filament. Although promptly restored blood flow is far from the pathophysiology of spontaneous human stroke, it more closely mimics the therapeutic situation of mechanical thrombectomy which is expected to be increasingly applied to stroke patients. Direct transient or permanent occlusion of cerebral arteries represents an alternative approach but requires craniectomy. Application of endothelin-1, a potent vasoconstrictor, allows induction of transient focal ischemia in nearly any brain region and is frequently used to model lacunar stroke. Circumscribed and highly reproducible cortical lesions are characteristic of photothrombotic stroke where infarcts are induced by photoactivation of a systemically given dye through the intact skull. The major shortcoming of this model is near complete lack of a penumbra. The two models mimicking human stroke most closely are various embolic stroke models and spontaneous stroke models. Closeness to reality has its price and goes along with higher variability of infarct size and location as well as unpredictable stroke onset in spontaneous models versus unpredictable reperfusion in embolic clot models.
Collapse
Affiliation(s)
- Clemens J Sommer
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz; Focus Program Translational Neuroscience (FTN) and Rhine Main Neuroscience Network (rmn2), Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
20
|
Sommer JB, Bach A, Malá H, Strømgaard K, Mogensen J, Pickering DS. In vitro and in vivo effects of a novel dimeric inhibitor of PSD-95 on excitotoxicity and functional recovery after experimental traumatic brain injury. Eur J Neurosci 2016; 45:238-248. [PMID: 27859797 DOI: 10.1111/ejn.13483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
PSD-95 inhibitors have been shown to be neuroprotective in stroke, but have only to a very limited extent been evaluated in the treatment of traumatic brain injury (TBI) that has pathophysiological mechanisms in common with stroke. The aims of the current study were to assess the effects of a novel dimeric inhibitor of PSD-95, UCCB01-147, on histopathology and long-term cognitive outcome after controlled cortical impact (CCI) in rats. As excitotoxic cell death is thought to be a prominent part of the pathophysiology of TBI, we also investigated the neuroprotective effects of UCCB01-147 and related compounds on NMDA-induced cell death in cultured cortical neurons. Anesthetized rats were given a CCI or sham injury, and were randomized to receive an injection of either UCCB01-147 (10 mg/kg), the non-competitive NMDAR-receptor antagonist MK-801 (1 mg/kg) or saline immediately after injury. At 2 and 4 weeks post-trauma, spatial learning and memory were assessed in a water maze, and at 3 months, brains were removed for estimation of lesion volumes. Overall, neither treatment with UCCB01-147 nor MK-801 resulted in significant improvements of cognition and histopathology after CCI. Although MK-801 provided robust neuroprotection against NMDA-induced toxicity in cultured cortical neurons, UCCB01-147 failed to reduce cell death and became neurotoxic at high doses. The data suggest potential differential effects of PSD-95 inhibition in stroke and TBI that should be investigated further in future studies taking important experimental factors such as timing of treatment, dosage, and anesthesia into consideration.
Collapse
Affiliation(s)
- Jens Bak Sommer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark.,The Unit for Cognitive Neuroscience (UCN), Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark
| | - Hana Malá
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100, Copenhagen, Denmark
| |
Collapse
|
21
|
Ružman T, Šimurina T, Gulam D, Ružman N, Miškulin M. Sevoflurane preserves regional cerebral oxygen saturation better than propofol: Randomized controlled trial. J Clin Anesth 2016; 36:110-117. [PMID: 28183546 DOI: 10.1016/j.jclinane.2016.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 09/12/2016] [Accepted: 10/27/2016] [Indexed: 11/30/2022]
Abstract
STUDY OBJECTIVE To investigate possible effects of volatile induction and maintenance anesthesia with sevoflurane (VIMA) and total intravenous anesthesia with propofol (TIVA) on regional cerebral oxygen saturation (rcSo2) during laparoscopic cholecystectomy. DESIGN Randomized, prospective and single-blinded study. SETTING Academic hospital. PATIENTS ASA physical status of I and II surgical patients, scheduled for elective laparoscopic cholecystectomy from March 2013 to October 2014. MEASUREMENTS Changes of regional cerebral oxygen saturation were measured by near-infrared spectroscopy on the left and right sides of forehead at different time points: before anesthesia induction (Tbas), immediately after induction (Tind), after applaying a pneumoperitoneum (TCo2), 10 minutes after positioning the patient into reverse Trendelenburg's position (TrtCo2), immediately after desufflation of gas (Tpost) and 30 (Trec30) and 60 (Trec60) minutes after emergence from anesthesia. MAIN RESULTS Study population included 124 patients, 62 in each group. There was no significant difference between these groups according to demographic characteristics, surgery and anesthesia times as well as in the basal rcSo2 values. Statistically higher rSco2 values were noted in the VIMA group when compared to the TIVA group in all time points Tind, TCo2, TrtCo2, Tpost, Trec30 and Trec60 and incidence of critical rcSo2 decreases was statistically lower in VIMA group (P<.05). There were no serious perioperative complications. CONCLUSIONS VIMA technique provides significantly (4%-11%) higher rcSO2 values during general anesthesia for laparoscopic cholecystectomy, when compared with TIVA and also provides significantly less number of critical rcSO2 decreases.
Collapse
Affiliation(s)
- Tomislav Ružman
- Department of Anesthesiology, Resuscitation and Intensive Care Medicine, University Hospital Osijek, J. Huttlera 4, Osijek, Croatia; Faculty of Medicine, University of Osijek, Cara Hadrijana 10, Osijek, Croatia; Our Lady of Lourdes Hospital Drogheda, Boyle O'Reilly Terrace, Drogheda, Co Louth, Ireland
| | - Tatjana Šimurina
- Department of Anesthesiology and ICU, General Hospital Zadar, Bože Peričića 5, Zadar,Croatia; Faculty of Medicine, University of Osijek, Cara Hadrijana 10, Osijek, Croatia; Department of Health Study, University of Zadar, Mihovila Pavlinovića 1, Zadar, Croatia.
| | - Danijela Gulam
- Department of Anesthesiology, Resuscitation and Intensive Care Medicine, University Hospital Osijek, J. Huttlera 4, Osijek, Croatia; Faculty of Medicine, University of Osijek, Cara Hadrijana 10, Osijek, Croatia
| | - Nataša Ružman
- Institute of Public Health for Osijek-Baranya County, Franje Krežme 1, Osijek, Croatia; Faculty of Medicine, University of Osijek, Cara Hadrijana 10, Osijek, Croatia
| | - Maja Miškulin
- Faculty of Medicine, University of Osijek, Cara Hadrijana 10, Osijek, Croatia
| |
Collapse
|
22
|
Klahr AC, Nadeau CA, Colbourne F. Temperature Control in Rodent Neuroprotection Studies: Methods and Challenges. Ther Hypothermia Temp Manag 2016; 7:42-49. [PMID: 27327871 DOI: 10.1089/ther.2016.0018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Extensive animal research facilitated the clinical translation of therapeutic hypothermia for cardiac arrest in adults and hypoxic-ischemic injury in infants. Similarly, clinical interest in hypothermia for other brain injuries, such as stroke, has been greatly supported by positive findings in preclinical work. The reliability, validity, and utility of animal models, among many research practices (blinding, randomization, etc.), are key to successful clinical translation. Here, we review methods used to induce and maintain hypothermia in animal models. These include physical and pharmacological methods. We emphasize the advantages and limitations of each approach, and the importance of using clinically relevant cooling protocols and appropriate monitoring and reporting approaches. Moreover, we performed a literature survey of ischemic stroke studies published in 2015 to highlight the continuing risk of temperature confounds in neuroprotection studies. For example, many still do not accurately monitor and report temperature during surgery (23.5%), even though almost half of these studies (46.0%) use pharmaceutical agents that likely influence temperature. We hope this review stimulates awareness and discussion of the importance of temperature in neuroprotective studies.
Collapse
Affiliation(s)
- Ana C Klahr
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada
| | - Colby A Nadeau
- 2 Department of Psychology, University of Alberta , Edmonton, Canada
| | - Frederick Colbourne
- 1 Neuroscience and Mental Health Institute, University of Alberta , Edmonton, Canada .,2 Department of Psychology, University of Alberta , Edmonton, Canada
| |
Collapse
|
23
|
Honeybul S. Reconsidering the role of hypothermia in management of severe traumatic brain injury. J Clin Neurosci 2016; 28:12-5. [DOI: 10.1016/j.jocn.2016.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 01/04/2016] [Indexed: 11/25/2022]
|
24
|
Peltoniemi MA, Hagelberg NM, Olkkola KT, Saari TI. Ketamine: A Review of Clinical Pharmacokinetics and Pharmacodynamics in Anesthesia and Pain Therapy. Clin Pharmacokinet 2016; 55:1059-77. [DOI: 10.1007/s40262-016-0383-6] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Abstract
Fluid percussion was first conceptualized in the 1940s and has evolved into one of the leading laboratory methods for studying experimental traumatic brain injury (TBI). Over the decades, fluid percussion has been used in numerous species and today is predominantly applied to the rat. The fluid percussion technique rapidly injects a small volume of fluid, such as isotonic saline, through a circular craniotomy onto the intact dura overlying the brain cortex. In brief, the methods involve surgical production of a circular craniotomy, attachment of a fluid-filled conduit between the dura overlying the cortex and the outlet port of the fluid percussion device. A fluid pulse is then generated by the free-fall of a pendulum striking a piston on the fluid-filled cylinder of the device. The fluid enters the cranium, producing a compression and displacement of the brain parenchyma resulting in a sharp, high magnitude elevation of intracranial pressure that is propagated diffusely through the brain. This results in an immediate and transient period of traumatic unconsciousness as well as a combination of focal and diffuse damage to the brain, which is evident upon histological and behavioral analysis. Numerous studies have demonstrated that the rat fluid percussion model reproduces a wide range of pathological features associated with human TBI.
Collapse
Affiliation(s)
- Ken C Van
- Department of Neurological Surgery, University of California at Davis, 1515 Newton Court, One Shields Avenue, Davis, CA, 95616-8797, USA
| | - Bruce G Lyeth
- Department of Neurological Surgery, University of California at Davis, 1515 Newton Court, One Shields Avenue, Davis, CA, 95616-8797, USA.
| |
Collapse
|
26
|
Talley Watts L, Zheng W, Garling RJ, Frohlich VC, Lechleiter JD. Rose Bengal Photothrombosis by Confocal Optical Imaging In Vivo: A Model of Single Vessel Stroke. J Vis Exp 2015:e52794. [PMID: 26131664 DOI: 10.3791/52794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In vivo imaging techniques have increased in utilization due to recent advances in imaging dyes and optical technologies, allowing for the ability to image cellular events in an intact animal. Additionally, the ability to induce physiological disease states such as stroke in vivo increases its utility. The technique described herein allows for physiological assessment of cellular responses within the CNS following a stroke and can be adapted for other pathological conditions being studied. The technique presented uses laser excitation of the photosensitive dye Rose Bengal in vivo to induce a focal ischemic event in a single blood vessel. The video protocol demonstrates the preparation of a thin-skulled cranial window over the somatosensory cortex in a mouse for the induction of a Rose Bengal photothrombotic event keeping injury to the underlying dura matter and brain at a minimum. Surgical preparation is initially performed under a dissecting microscope with a custom-made surgical/imaging platform, which is then transferred to a confocal microscope equipped with an inverted objective adaptor. Representative images acquired utilizing this protocol are presented as well as time-lapse sequences of stroke induction. This technique is powerful in that the same area can be imaged repeatedly on subsequent days facilitating longitudinal in vivo studies of pathological processes following stroke.
Collapse
Affiliation(s)
- Lora Talley Watts
- Department of Cellular and Structural Biology, The University of Texas Health Science Center San Antonio
| | - Wei Zheng
- Department of Cellular and Structural Biology, The University of Texas Health Science Center San Antonio
| | - R Justin Garling
- School of Medicine, The University of Texas Health Science Center San Antonio
| | | | - James Donald Lechleiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center San Antonio;
| |
Collapse
|
27
|
Hudetz JA, Patterson KM, Iqbal Z, Gandhi SD, Pagel PS. Remote Ischemic Preconditioning Prevents Deterioration of Short-Term Postoperative Cognitive Function After Cardiac Surgery Using Cardiopulmonary Bypass: Results of a Pilot Investigation. J Cardiothorac Vasc Anesth 2015; 29:382-8. [DOI: 10.1053/j.jvca.2014.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Indexed: 11/11/2022]
|
28
|
Jickling GC, Sharp FR. Improving the translation of animal ischemic stroke studies to humans. Metab Brain Dis 2015; 30:461-7. [PMID: 24526567 PMCID: PMC4186910 DOI: 10.1007/s11011-014-9499-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 01/28/2014] [Indexed: 12/18/2022]
Abstract
Despite testing more than 1,026 therapeutic strategies in models of ischemic stroke and 114 therapies in human ischemic stroke, only one agent tissue plasminogen activator has successfully been translated to clinical practice as a treatment for acute stroke. Though disappointing, this immense body of work has led to a rethinking of animal stroke models and how to better translate therapies to patients with ischemic stroke. Several recommendations have been made, including the STAIR recommendations and statements of RIGOR from the NIH/NINDS. In this commentary we discuss additional aspects that may be important to improve the translational success of ischemic stroke therapies. These include use of tissue plasminogen activator in animal studies; modeling ischemic stroke heterogeneity in terms of infarct size and cause of human stroke; addressing the confounding effect of anesthesia; use of comparable therapeutic dosage between humans and animals based on biological effect; modeling the human immune system; and developing outcome measures in animals comparable to those used in human stroke trials. With additional study and improved animal modeling of factors involved in human ischemic stroke, we are optimistic that new stroke therapies will be developed.
Collapse
Affiliation(s)
- Glen C Jickling
- Department of Neurology, MIND Institute Wet Labs Room 2415, University of California at Davis Medical Center, 2805 50th Street, Sacramento, CA, 95817, USA,
| | | |
Collapse
|
29
|
Honeybul S, Ho K. The role of evidence based medicine in neurotrauma. J Clin Neurosci 2015; 22:611-6. [DOI: 10.1016/j.jocn.2014.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/17/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
30
|
Laletin V, Bykov Y. General anesthetics as a factor of effective neuroprotection in ischemic stroke models. ACTA ACUST UNITED AC 2015; 61:440-8. [DOI: 10.18097/pbmc20156104440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stroke is the second leading cause of death in the world. Unfortunately, only a few drugs have been proved in clinical trials. Drug development of the last decade has been focused substantially on a promising and heterogeneous group of neuroprotective drugs. Hundreds of compounds were suggested as new putative neuroprotectors, which effectiveness was confirmed in preclinical trials only. At the present time discrepancy between results of preclinical studies and clinical trials requires careful analysis. One of the least evaluated and probably the most noticeable reasons is general anesthesia - an obligatory component of an overwhelming majority of existing animal stroke models. The aim of the review is to describe known mechanisms of common general anesthetics influence on ionotropic and metabotropic plasma membrane receptors, and key signal pathways involved in neuronal hypoxic-ischemic injury and survival
Collapse
Affiliation(s)
- V.S. Laletin
- Irkutsk State Medical University, Irkutsk, Russia
| | - Y.N. Bykov
- Irkutsk State Medical University, Irkutsk, Russia
| |
Collapse
|
31
|
Hirsch S, Dickenson A, Corradini L. Anesthesia influences neuronal activity and drug effectiveness in neuropathic rats. Pain 2014; 155:2583-2590. [DOI: 10.1016/j.pain.2014.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 01/16/2023]
|
32
|
Zuccherelli L. Long term effects of anaesthesia: neurotoxicity at the extremes of age. SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2014. [DOI: 10.1080/22201173.2010.10872640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
|
34
|
Shi H, Sun BL, Zhang J, Lu S, Zhang P, Wang H, Yu Q, Stetler RA, Vosler PS, Chen J, Gao Y. miR-15b suppression of Bcl-2 contributes to cerebral ischemic injury and is reversed by sevoflurane preconditioning. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:381-91. [PMID: 23469855 DOI: 10.2174/1871527311312030011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/04/2012] [Accepted: 11/16/2012] [Indexed: 12/20/2022]
Abstract
Ischemic neuroprotection afforded by sevoflurane preconditioning has been previously demonstrated, yet the underlying mechanism is poorly understood and likely affects a wide range of cellular activities. Several individual microRNAs have been implicated in both the pathogenesis of cerebral ischemia and cellular survival, and are capable of affecting a range of target mRNA. Conceivably, sevoflurane preconditioning may lead to alterations in ischemia-induced microRNA expression that may subsequently exert neuroprotective effects. We first examined the microRNA expression profile following transient cerebral ischemia in rats and the impact of sevoflurane preconditioning. Microarray analysis revealed that 3 microRNAs were up-regulated (>2.0 fold) and 9 were down-regulated (< 0.5 fold) following middle cerebral artery occlusion (MCAO) compared to sham controls. In particular, miR-15b was expressed at significantly high levels after MCAO. Preconditioning with sevoflurane significantly attenuated the upregulation of miR-15b at 72h after reperfusion. Bcl-2, an anti-apoptotic gene involved in the pathogenesis of cerebral ischemia, has been identified as a direct target of miR-15b. Consistent with the observed downregulation of miR-15b in sevoflurane-preconditioned brain, postischemic Bcl-2 expression was significantly increased by sevoflurane preconditioning. We identified the 3'-UTR of Bcl-2 as the target for miR-15b. Molecular inhibition of miR-15b was capable of mimicking the neuroprotective effect of sevoflurane preconditioning, suggesting that the suppression of miR-15b due to sevoflurane contributes to its ischemic neuroprotection. Thus, sevoflurane preconditioning may exert its anti-apoptotic effects by reducing the elevated expression of miR-15b following ischemic injury, allowing its target proteins, including Bcl-2, to be translated and expressed at the protein level.
Collapse
Affiliation(s)
- Hong Shi
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Teo L, Bourne JA. A reproducible and translatable model of focal ischemia in the visual cortex of infant and adult marmoset monkeys. Brain Pathol 2014; 24:459-74. [PMID: 25469561 DOI: 10.1111/bpa.12129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/21/2014] [Indexed: 12/12/2022] Open
Abstract
Models of ischemic brain injury in the nonhuman primate (NHP) are advantageous for investigating mechanisms of central nervous system (CNS) injuries and testing of new therapeutic strategies. However, issues of reproducibility and survivability persist in NHP models of CNS injuries. Furthermore, there are currently no pediatric NHP models of ischemic brain injury. Therefore, we have developed a NHP model of cortical focal ischemia that is highly reproducible throughout life to enable better understanding of downstream consequences of injury. Posterior cerebral arterial occlusion was induced through intracortical injections of endothelin-1 in adult (n = 5) and neonatal (n = 3) marmosets, followed by magnetic resonance imaging (MRI), histology and immunohistochemistry. MRI revealed tissue hyperintensity at the lesion site at 1-7 days followed by isointensity at 14-21 days. Peripheral macrophage and serum albumin infiltration was detected at 1 day, persisting at 21 days. The proportional loss of total V1 as a result of infarction was consistent in adults and neonates. Minor hemorrhagic transformation was detected at 21 days at the lesion core, while neovascularization was detected in neonates, but not in adults. We have developed a highly reproducible and survivable model of focal ischemia in the adult and neonatal marmoset primary visual cortex, demonstrating similar downstream anatomical and cellular pathology to those observed in post-ischemic humans.
Collapse
Affiliation(s)
- Leon Teo
- Australian Regenerative Medicine Institute, Monash University, Clayton, Vic., Australia
| | | |
Collapse
|
37
|
Lapchak PA. Emerging Therapies: Pleiotropic Multi-target Drugs to Treat Stroke Victims. Transl Stroke Res 2013; 2:129-35. [PMID: 21666853 DOI: 10.1007/s12975-011-0074-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Paul A Lapchak
- Translational Research, Cedars-Sinai Medical Center, Department of Neurology, Burns and Allen Research Institute, Davis Research Building, Room D-2091, 110 N. George Burns Road, Los Angeles, CA 90048, USA
| |
Collapse
|
38
|
Zhao XC, Zhang LM, Qiang-Li, Tong DY, Fan LC, An P, Wu XY, Chen WM, Zhao P, Wang J. Isoflurane post-conditioning protects primary cultures of cortical neurons against oxygen and glucose deprivation injury via upregulation of Slit2/Robo1. Brain Res 2013; 1537:283-9. [PMID: 23994690 PMCID: PMC3820100 DOI: 10.1016/j.brainres.2013.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 08/18/2013] [Accepted: 08/19/2013] [Indexed: 12/13/2022]
Abstract
Different mechanisms have been suggested to contribute to isoflurane-mediated neuroprotection. Previous studies have suggested that the protein Slit can abrogate neuronal death in mixed neuronal-glial cultures exposed to oxygen-glucose deprivation (OGD) and reperfusion (OGD/R). We hypothesized that isoflurane increases the expression of Slit and its receptor Robo when cortical neurons are exposed to OGD/R. To test this hypothesis, we exposed primary cortical neurons to OGD for 90 min and reperfusion for 24h and investigated how isoflurane post-conditioning affected cell survival and expression of Slit2 and receptors Robo1 and Robo4. Cell survival increased after administration of isoflurane, as assessed by the lactate dehydrogenase assay, trypan blue analysis, and propidium iodide staining. Western blot analysis showed that cleaved caspase-3 was increased after OGD/R(P<0.01) but reduced by isoflurane post-conditioning. Real-time PCR and Western blot analysis showed that the expression levels of Slit2 and Robo1, but not Robo4, were increased after OGD/R (P<0.5) and increased even further by isoflurane post-conditioning (P<0.01). Our results suggest that isoflurane post-conditioning markedly attenuates apoptosis and necrosis of cortical neurons exposed to OGD/R possibly in part via elevation of Slit2 and Robo1 expression. These findings provide a novel explanation for the pleiotropic effects of isoflurane that could benefit the central nervous system.
Collapse
Affiliation(s)
- Xiao-Chun Zhao
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Li-Min Zhang
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Qiang-Li
- Department of Neurology, The Ninth People’s Hospital, Shanghai Jiaotong University, school of medicine, Shanghai, China
| | - Dong-Yi Tong
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Long-Chang Fan
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping An
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China
| | - Xiu-Ying Wu
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Wei-Min Chen
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Tjepkema-Cloostermans MC, van Meulen FB, Meinsma G, van Putten MJAM. A Cerebral Recovery Index (CRI) for early prognosis in patients after cardiac arrest. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R252. [PMID: 24148747 PMCID: PMC4056571 DOI: 10.1186/cc13078] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022]
Abstract
Introduction Electroencephalogram (EEG) monitoring in patients treated with therapeutic hypothermia after cardiac arrest may assist in early outcome prediction. Quantitative EEG (qEEG) analysis can reduce the time needed to review long-term EEG and makes the analysis more objective. In this study, we evaluated the predictive value of qEEG analysis for neurologic outcome in postanoxic patients. Methods In total, 109 patients admitted to the ICU for therapeutic hypothermia after cardiac arrest were included, divided over a training and a test set. Continuous EEG was recorded during the first 5 days or until ICU discharge. Neurologic outcomes were based on the best achieved Cerebral Performance Category (CPC) score within 6 months. Of the training set, 27 of 56 patients (48%) and 26 of 53 patients (49%) of the test set achieved good outcome (CPC 1 to 2). In all patients, a 5 minute epoch was selected each hour, and five qEEG features were extracted. We introduced the Cerebral Recovery Index (CRI), which combines these features into a single number. Results At 24 hours after cardiac arrest, a CRI <0.29 was always associated with poor neurologic outcome, with a sensitivity of 0.55 (95% confidence interval (CI): 0.32 to 0.76) at a specificity of 1.00 (CI, 0.86 to 1.00) in the test set. This results in a positive predictive value (PPV) of 1.00 (CI, 0.73 to 1.00) and a negative predictive value (NPV) of 0.71 (CI, 0.53 to 0.85). At the same time, a CRI >0.69 predicted good outcome, with a sensitivity of 0.25 (CI, 0.10 to 0.14) at a specificity of 1.00 (CI, 0.85 to 1.00) in the test set, and a corresponding NPV of 1.00 (CI, 0.54 to 1.00) and a PPV of 0.55 (CI, 0.38 to 0.70). Conclusions We introduced a combination of qEEG measures expressed in a single number, the CRI, which can assist in prediction of both poor and good outcomes in postanoxic patients, within 24 hours after cardiac arrest.
Collapse
|
40
|
Li J, Yu W, Li XT, Qi SH, Li B. The effects of propofol on mitochondrial dysfunction following focal cerebral ischemia-reperfusion in rats. Neuropharmacology 2013; 77:358-68. [PMID: 24035920 DOI: 10.1016/j.neuropharm.2013.08.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/29/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022]
Abstract
Propofol has been shown to attenuate brain injury in experimental ischemia models, but few studies have focused on the direct effect of propofol on mitochondrial dysfunction. In this study, we observed the effects of propofol on multiple aspects of mitochondrial dysfunction by studying the mitochondria isolated from rat brains subjected to focal cerebral ischemia-reperfusion. The mitochondria of the cortical tissue were isolated by the Percoll density gradient centrifugation. The isolated mitochondria were fixed and examined with electron microscopy. The calcium-induced mitochondrial swelling was quantified by measuring the decrease in light transmission at 540 nm with a spectrometer. Fluorescent probes were used to selectively stain mitochondria. Flow cytometry was used to measure the membrane potential and the production of reactive oxidative species. Propofol improved the signs of injury in the cortical mitochondria that were exposed to reperfusion following 2 h of focal ischemia. Propofol prevented calcium-induced mitochondrial swelling in a concentration-dependent manner. It did not affect the reperfusion-induced reduction in mitochondrial membrane potential. However, it decreased the production of the mitochondrial reactive oxidative species, which are generated during reperfusion. These results demonstrate that propofol may protect against mitochondrial dysfunction by preventing the ultrastructural change to the mitochondria and the calcium-induced mitochondrial swelling. This protective effect may be mediated by inhibiting the mitochondrial membrane permeability transition and reducing the production of reactive oxidative species in mitochondria.
Collapse
Affiliation(s)
- Jun Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001 Harbin, China
| | - Wei Yu
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001 Harbin, China
| | - Xue-Ting Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001 Harbin, China
| | - Si-Hua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, No. 37, Yiyuan Street, Nangang District, 150001 Harbin, China.
| | - Bing Li
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
41
|
Kuklin V. Survival rate in patients after sudden cardiac arrest at the university hospital of northern Norway treated with or without opioids: A retrospective evaluation. Saudi J Anaesth 2013; 7:310-4. [PMID: 24015136 PMCID: PMC3757806 DOI: 10.4103/1658-354x.115355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Experimental studies both in vivo and in vitro show significantly increased survival rate in animals and in cortical neurons respectively exposed to acute hypoxia and pre-treated with opioids compared to non-treated counterparts. Thus, the main aim of the study was to examine survival rates in patients after sudden cardiac arrest (SCA) in the hospital who were or were not treated with opioids before and/or during cardiac pulmonary resuscitation (CPR). METHODS The registry SCA database at the University Hospital of Northern Norway (UNN) for the period of January 2006-December 2009 was used to obtain data for the evaluation. Inclusion criteria were observed SCA at UNN for patients with American Society of Anesthesiologists (ASA) 1-3. Exclusion criteria included ASA four to five patients and unobserved SCA. Study patients were divided into two groups: Those not treated with opioids and those treated with opioids not more then 3 h before and/or during CPR. Survival rate 1, 2, 3 and 28 days post CPR were compared for the two groups. RESULTS A total of 117 patients were registered in the SCA database at UNN for the period from January 2006 to December 2009. Sixty seven patients were excluded from the study: 17 patients had an unknown time of SCA dιbut, two patients had only syncope and 48 were ASA four to five patients. A total of 50 ASA one to three patients were included in the study, 33 and 17 patients respectively in the control and opioid-treated groups. The patients who were treated with opioids before or during CPR had a significantly higher 1, 2, 3 and 28 days survival rate as compared to those receiving only conventional CPR. The model was adjusted for duration of CPR (P=0.047) and treatment with adrenaline (P=0.779) in the groups. Adjusted Odds ratio was 0.075 (95% confidence interval (CI): 0.015-0.387). Relative risk of fatal outcome in the opioids group was 0.2944 (95% CI: 0.1549-0.5594). CONCLUSION Significantly higher 1, 2, 3 and 28 days survival rate and reduced duration of CPR were found in the patients additionally treated with opioids compared to ordinary resuscitation. Further prospective, randomized, controlled trials are needed to investigate the effects of early administration of opioids during CPR on survival and brain function in patients with witnessed in-hospital SCA.
Collapse
Affiliation(s)
- Vladimir Kuklin
- Department of Anaesthesiology, Kongsberg Hospital, Kongsberg, Norway
| |
Collapse
|
42
|
Sahu S, Lata I, Gupta D. Management of pregnant female with meningioma for craniotomy. J Neurosci Rural Pract 2013; 1:35-7. [PMID: 21799618 PMCID: PMC3137832 DOI: 10.4103/0976-3147.63101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Intracranial meningioma during pregnancy challenges the skill of obstetricians, neurosurgeons and neuroanesthesiologists in resection of the tumor and to secure delivery of the baby. Advances in fetal and maternal monitoring, neuroanesthesia, and microsurgical techniques allow safe neurosurgical management of these patients. Urgent neurosurgical intervention is reserved for the management of malignancies, active hydrocephalus, and benign brain tumors associated with signs of impending herniation or progressive neurological deficit. Particular attention is given to maintain stable maternal hemodynamics to avoid uterine hypo perfusion and fetal hypoxia intraoperatively. Therefore, the major challenge of neuroanesthesia during pregnancy is to provide an appropriate balance between competing, and even contradictory, clinical goals of neuroanesthesiology and obstetric practice.
Collapse
Affiliation(s)
- Sandeep Sahu
- Department of Anaesthesiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, UP, India
| | | | | |
Collapse
|
43
|
Smit AL, Seehase M, Stokroos RJ, Jellema RK, Felipe L, Chenault MN, Anteunis LJC, Kremer B, Kramer BW. Functional impairment of the auditory pathway after perinatal asphyxia and the short-term effect of perinatal propofol anesthesia in lambs. Pediatr Res 2013; 74:34-8. [PMID: 23575875 DOI: 10.1038/pr.2013.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/14/2012] [Indexed: 11/09/2022]
Abstract
BACKGROUND Sensorineural hearing loss (SNHL) is a common feature in the postasphyxial syndrome in newborns. Several anesthetic drugs have been proposed to attenuate secondary neuronal injury elicited by hypoxia-ischemia. We hypothesized that propofol anesthesia reduces auditory impairment after perinatal asphyxia in comparison with isoflurane. METHODS Twenty-three pregnant ewes were randomized to propofol or isoflurane anesthesia and sedation. The lambs underwent in utero umbilical cord occlusion (isoflurane n = 5; propofol n = 7) and were compared with sham-treated animals (isoflurane n = 5; propofol n = 6) at a gestational age of 133 d. For 8 h after delivery by cesarean section, repeated auditory brainstem responses (ABRs) were recorded to obtain hearing thresholds, peak amplitudes, latencies, and interpeak latencies. RESULTS Significantly elevated mean thresholds, diminished amplitudes, and elevated latencies were observed in the asphyxia group relative to the control group through the observation period. Comparison of anesthetic treatment in the asphyxia group revealed a significantly lower elevation in threshold and less impairment in the ABR amplitudes and latencies during propofol anesthesia as compared with isoflurane anesthesia. CONCLUSION Our results support the hypothesis that anesthesia with propofol has a preventive effect on the functional changes to the auditory pathway in the event of perinatal asphyxia.
Collapse
Affiliation(s)
- Adriana L Smit
- Department of Otorhinolaryngology/Head and Neck Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bilotta F, Gelb A, Stazi E, Titi L, Paoloni F, Rosa G. Pharmacological perioperative brain neuroprotection: a qualitative review of randomized clinical trials. Br J Anaesth 2013; 110:i113-i120. [DOI: 10.1093/bja/aet059] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
45
|
Walter B, Eiselt M, Cumming P, Xiong G, Hinz R, Uthe S, Brust P, Bauer R. Resistance of brain glucose metabolism to thiopental-induced CNS depression in newborn piglets. Int J Dev Neurosci 2013; 31:157-64. [PMID: 23305916 DOI: 10.1016/j.ijdevneu.2012.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 12/30/2012] [Indexed: 10/27/2022] Open
Abstract
The transition from mild sedation to deep anaesthesia is marked by the phenomenon of burst suppression (BS). FDG-PET studies show that the cerebral metabolic rate for glucose (CMRglc) declines dramatically with onset of BS in the adult brain. Global CMRglc increases substantially in the post-natal period and achieves its maximum in preadolescence. However, the impact of post-natal brain development on the vulnerability of CMRglc to the onset of BS has not been documented. Therefore, cerebral blood flow and metabolism were measured using a variant of the Kety-Schmidt method, in conjunction with quantitative regional estimation of brain glucose uptake by FDG-PET in groups of neonate and juvenile pigs, under a condition of light sedation or after induction of deep anaesthesia with thiopental. Quantification of simultaneous ECoG recordings was used to establish the correlation between anaesthesia-related changes in brain electrical activity and the observed cerebrometabolic changes. In the condition of light sedation the magnitude of CMRglc was approximately 20% higher in the older pigs, with the greatest developmental increase evident in the cerebral cortex and basal ganglia (P<0.05). Onset of BS was associated with 20-40% declines in CMRglc. Subtraction of the mean parametric maps for CMRglc showed the absolute reductions in CMRglc evoked by thiopental anaesthesia to be two-fold greater in the pre-adolescent pigs than in the neonates (P<0.05). Thus, the lesser suppression of brain energy demand of neonate brain during deep anaesthesia represents a reduced part of thiopental suppressing brain metabolism in neonates.
Collapse
Affiliation(s)
- Bernd Walter
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu S, Chen JF. Strategies for therapeutic hypometabothermia. JOURNAL OF EXPERIMENTAL STROKE & TRANSLATIONAL MEDICINE 2012; 5:31-42. [PMID: 24179563 PMCID: PMC3811165 DOI: 10.6030/1939-067x-5.1.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although therapeutic hypothermia and metabolic suppression have shown robust neuroprotection in experimental brain ischemia, systemic complications have limited their use in treating acute stroke patients. The core temperature and basic metabolic rate are tightly regulated and maintained in a very stable level in mammals. Simply lowering body temperature or metabolic rate is actually a brutal therapy that may cause more systemic as well as regional problems other than providing protection. These problems are commonly seen in hypothermia and barbiturate coma. The main innovative concept of this review is to propose thermogenically optimal and synergistic reduction of core temperature and metabolic rate in therapeutic hypometabothermia using novel and clinically practical approaches. When metabolism and body temperature are reduced in a systematically synergistic manner, the outcome will be maximal protection and safe recovery, which happen in natural process, such as in hibernation, daily torpor and estivation.
Collapse
Affiliation(s)
- Shimin Liu
- Department of Neurology, Boston University School of Medicine, Boston, USA
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, USA
| |
Collapse
|
47
|
A Clinically Relevant Rabbit Embolic Stroke Model for Acute Ischemic Stroke Therapy Development: Mechanisms and Targets. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Klein K, Fukui K, Schramm P, Stadie A, Fischer G, Werner C, Oertel J, Engelhard K. Human cerebral microcirculation and oxygen saturation during propofol-induced reduction of bispectral index †. Br J Anaesth 2011; 107:735-41. [DOI: 10.1093/bja/aer227] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Diederich K, Quennet V, Bauer H, Müller HD, Wersching H, Schäbitz WR, Minnerup J, Sommer C. Successful regeneration after experimental stroke by granulocyte-colony stimulating factor is not further enhanced by constraint-induced movement therapy either in concurrent or in sequential combination therapy. Stroke 2011; 43:185-92. [PMID: 22020031 DOI: 10.1161/strokeaha.111.622159] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Both application of granulocyte-colony stimulating factor (G-CSF) and constraint-induced movement therapy (CIMT) have been shown to improve outcome after experimental stroke. The aim of the present study was to determine whether concurrent or sequential combination of both therapies will further enhance therapeutic benefit and whether specific modifications in the abundance of various neurotransmitter receptors do occur. METHODS Adult male Wistar rats were subjected to photothrombotic ischemia and assigned to the following treatment groups (n=20 each): (1) ischemic control (saline); (2) CIMT (CIMT between poststroke Days 2 and 11; (3) G-CSF (10 μg/kg G-CSF daily between poststroke Days 2 and 11; (4) combined concurrent group (CIMT plus 10 μg/kg G-CSF daily between poststroke Days 2 and 11; and (5) combined sequential group (CIMT between poststroke Days 2 and 11 and 10 μg/kg G-CSF daily between poststroke Days 12 and 21, respectively). Rats were functionally tested before and up to 4 weeks after ischemia. Quantitative receptor autography was performed for N-methyl-d-aspartate, AMPA, and GABA(A) receptors. RESULTS Significant improvement of functional outcome was seen in all groups treated with G-CSF alone and in either combination with CIMT, whereas CIMT alone failed to enhance recovery. Infarct sizes and remaining cortical tissue did not differ in the various treatment groups. Failure of significant benefit in the CIMT group was associated with a shift toward inhibition in perilesional and remote cortical regions. CONCLUSIONS Our findings disclose G-CSF as the major player for enhanced recovery after experimental stroke, preventing a shift toward inhibition as seen in the CIMT group.
Collapse
Affiliation(s)
- Kai Diederich
- Department of Neurology, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Taşkara E, Gör A, Kutlu O, Karagüzel E, Cobanoğlu U, Topbaş M, Senel AC. Does propofol prevent testicular ischemia-reperfusion injury due to torsion in the long term? Pediatr Surg Int 2011; 27:1003-7. [PMID: 21626015 DOI: 10.1007/s00383-011-2895-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Our aim was to investigate the long-term preventive effect of propofol on testicular ischemia-reperfusion injury in a rat model. METHODS Twenty-four adult male Sprague-Dawley rats were randomly divided into four groups (n = 6 for each group), control, sham-operated, torsion/detorsion (T/D) and T/D + propofol. Testicular ischemia was achieved by twisting the left testis 720° clockwise for 2 h. Half an hour before detorsion, 50 mg/kg propofol was given intraperitoneally to the T/D + propofol group. Ipsilateral orchiectomies to determine mean testicular weights and histopathological examination according to Johnsen's mean testicular biopsy score criteria were performed 30 days after surgical procedure in all groups. RESULTS Mean testicular weights were 1.57 ± 0.12 g in group I, 1.59 ± 0.36 g in group II, 0.84 ± 0.20 g in group III and 0.87 ± 0.29 g in group IV. Mean testicular weights decreased significantly in the T/D groups, but no improvement in testicular weight was observed with propofol administration (p 0.9372). Similarly, the Johnsen's mean testicular biopsy scores of the T/D groups were lower than those of the control and sham-operated groups, but no positive effect was determined with the administration of propofol in the T/D groups (p 0.1797). CONCLUSIONS Our results showed that there is no apparent long-term therapeutic potential attendant on using propofol in the treatment of testicular ischemia-reperfusion injury caused by testis torsion.
Collapse
Affiliation(s)
- Ersoy Taşkara
- Department of Urology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | | | | | | | | | | | | |
Collapse
|