1
|
Neuroprotective and Regenerative Effects of Growth Hormone (GH) in the Embryonic Chicken Cerebral Pallium Exposed to Hypoxic-Ischemic (HI) Injury. Int J Mol Sci 2022; 23:ijms23169054. [PMID: 36012320 PMCID: PMC9409292 DOI: 10.3390/ijms23169054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023] Open
Abstract
Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.
Collapse
|
2
|
Gasco V, Cambria V, Bioletto F, Ghigo E, Grottoli S. Traumatic Brain Injury as Frequent Cause of Hypopituitarism and Growth Hormone Deficiency: Epidemiology, Diagnosis, and Treatment. Front Endocrinol (Lausanne) 2021; 12:634415. [PMID: 33790864 PMCID: PMC8005917 DOI: 10.3389/fendo.2021.634415] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI)-related hypopituitarism has been recognized as a clinical entity for more than a century, with the first case being reported in 1918. However, during the 20th century hypopituitarism was considered only a rare sequela of TBI. Since 2000 several studies strongly suggest that TBI-mediated pituitary hormones deficiency may be more frequent than previously thought. Growth hormone deficiency (GHD) is the most common abnormality, followed by hypogonadism, hypothyroidism, hypocortisolism, and diabetes insipidus. The pathophysiological mechanisms underlying pituitary damage in TBI patients include a primary injury that may lead to the direct trauma of the hypothalamus or pituitary gland; on the other hand, secondary injuries are mainly related to an interplay of a complex and ongoing cascade of specific molecular/biochemical events. The available data describe the importance of GHD after TBI and its influence in promoting neurocognitive and behavioral deficits. The poor outcomes that are seen with long standing GHD in post TBI patients could be improved by GH treatment, but to date literature data on the possible beneficial effects of GH replacement therapy in post-TBI GHD patients are currently scarce and fragmented. More studies are needed to further characterize this clinical syndrome with the purpose of establishing appropriate standards of care. The purpose of this review is to summarize the current state of knowledge about post-traumatic GH deficiency.
Collapse
|
3
|
Baltazar-Lara R, Ávila-Mendoza J, Martínez-Moreno CG, Carranza M, Pech-Pool S, Vázquez-Martínez O, Díaz-Muñoz M, Luna M, Arámburo C. Neuroprotective Effects of Growth Hormone (GH) and Insulin-Like Growth Factor Type 1 (IGF-1) after Hypoxic-Ischemic Injury in Chicken Cerebellar Cell Cultures. Int J Mol Sci 2020; 22:ijms22010256. [PMID: 33383827 PMCID: PMC7795313 DOI: 10.3390/ijms22010256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
It has been reported that growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert protective and regenerative actions in response to neural damage. It is also known that these peptides are expressed locally in nervous tissues. When the central nervous system (CNS) is exposed to hypoxia-ischemia (HI), both GH and IGF-1 are upregulated in several brain areas. In this study, we explored the neuroprotective effects of GH and IGF-1 administration as well as the involvement of these endogenously expressed hormones in embryonic chicken cerebellar cell cultures exposed to an acute HI injury. To induce neural damage, primary cultures were first incubated under hypoxic-ischemic (<5% O2, 1g/L glucose) conditions for 12 h (HI), and then incubated under normal oxygenation and glucose conditions (HI + Ox) for another 24 h. GH and IGF-1 were added either during or after HI, and their effect upon cell viability, apoptosis, or necrosis was evaluated. In comparison with normal controls (Nx, 100%), a significant decrease of cell viability (54.1 ± 2.1%) and substantial increases in caspase-3 activity (178.6 ± 8.7%) and LDH release (538.7 ± 87.8%) were observed in the HI + Ox group. On the other hand, both GH and IGF-1 treatments after injury (HI + Ox) significantly increased cell viability (77.2 ± 4.3% and 72.3 ± 3.9%, respectively) and decreased both caspase-3 activity (118.2 ± 3.8% and 127.5 ± 6.6%, respectively) and LDH release (180.3 ± 21.8% and 261.6 ± 33.9%, respectively). Incubation under HI + Ox conditions provoked an important increase in the local expression of GH (3.2-fold) and IGF-1 (2.5-fold) mRNAs. However, GH gene silencing with a specific small-interfering RNAs (siRNAs) decreased both GH and IGF-1 mRNA expression (1.7-fold and 0.9-fold, respectively) in the HI + Ox group, indicating that GH regulates IGF-1 expression under these incubation conditions. In addition, GH knockdown significantly reduced cell viability (35.9 ± 2.1%) and substantially increased necrosis, as determined by LDH release (1011 ± 276.6%). In contrast, treatments with GH and IGF-1 stimulated a partial recovery of cell viability (45.2 ± 3.7% and 53.7 ± 3.2%) and significantly diminished the release of LDH (320.1 ± 25.4% and 421.7 ± 62.2%), respectively. Our results show that GH, either exogenously administered and/or locally expressed, can act as a neuroprotective factor in response to hypoxic-ischemic injury, and that this effect may be mediated, at least partially, through IGF-1 expression.
Collapse
Affiliation(s)
- Rosario Baltazar-Lara
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos G. Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Santiago Pech-Pool
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Olivia Vázquez-Martínez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
- Correspondence: (M.L.); (C.A.); Tel.: +52-55-5623-4066 (M.L.); +52-55-5623-4065 (C.A.); Fax: +52-55-5623-4005 (M.L. & C.A.)
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico; (R.B.-L.); (J.Á.-M.); (C.G.M.-M.); (M.C.); (S.P.-P.); (O.V.-M.); (M.D.-M.)
- Correspondence: (M.L.); (C.A.); Tel.: +52-55-5623-4066 (M.L.); +52-55-5623-4065 (C.A.); Fax: +52-55-5623-4005 (M.L. & C.A.)
| |
Collapse
|
4
|
Power C. Neurologic disease in feline immunodeficiency virus infection: disease mechanisms and therapeutic interventions for NeuroAIDS. J Neurovirol 2017; 24:220-228. [PMID: 29247305 DOI: 10.1007/s13365-017-0593-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022]
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus that causes immunosuppression through virus-mediated CD4+ T cell depletion in feline species. FIV infection is complicated by virus-induced disease in the nervous system. FIV enters the brain soon after primary infection and is detected as FIV-encoded RNA, DNA, and proteins in microglia, macrophages, and astrocytes. FIV infection activates neuroinflammatory pathways including cytokines, chemokines, proteases, and ROS with accompanying neuronal injury and loss. Neurobehavioral deficits during FIV infection are manifested as impaired motor and cognitive functions. Several treatment strategies have emerged from studies of FIV neuropathogenesis including the therapeutic benefits of antiretroviral therapies, other protease inhibitors, anti-inflammatory, and neurotrophic compounds. Recently, insulin's antiviral, anti-inflammatory, and neuroprotective effects were investigated in models of lentivirus brain infection. Insulin suppressed HIV-1 replication in human microglia as well as FIV replication of lymphocytes. Insulin treatment diminished cytokine and chemokine activation in HIV-infected microglia while also protecting neurons from HIV-1 Vpr protein-mediated neurotoxicity. Intranasal (IN) insulin delivery for 6 weeks suppressed FIV expression in the brains of treated cats. IN insulin also reduced neuroinflammation and protected neurons in the hippocampus, striatum, and neocortex of FIV-infected animals. These morphological and molecular effects of IN insulin were confirmed by neurobehavioral studies that showed IN insulin-treated FIV-infected animals displayed improved motor and cognitive performance compared to sham-treated FIV-infected animals. Thus, FIV infection of the nervous system provides a valuable comparative in vivo model for discovering and evaluating disease mechanisms as well as developing therapeutic strategies for NeuroAIDS in humans.
Collapse
Affiliation(s)
- Christopher Power
- Department of Medicine (Neurology) and the Neuroscience and Mental Health Institute, University of Alberta, HMRC 6-11, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration. J Neurosci 2017; 36:10683-10695. [PMID: 27733618 DOI: 10.1523/jneurosci.1287-16.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
HIV-1 infection of the brain causes the neurodegenerative syndrome HIV-associated neurocognitive disorders (HAND), for which there is no specific treatment. Herein, we investigated the actions of insulin using ex vivo and in vivo models of HAND. Increased neuroinflammatory gene expression was observed in brains from patients with HIV/AIDS. The insulin receptor was detected on both neurons and glia, but its expression was unaffected by HIV-1 infection. Insulin treatment of HIV-infected primary human microglia suppressed supernatant HIV-1 p24 levels, reduced CXCL10 and IL-6 transcript levels, and induced peroxisome proliferator-activated receptor gamma (PPAR-γ) expression. Insulin treatment of primary human neurons prevented HIV-1 Vpr-mediated cell process retraction and death. In feline immunodeficiency virus (FIV) infected cats, daily intranasal insulin treatment (20.0 IU/200 μl for 6 weeks) reduced CXCL10, IL-6, and FIV RNA detection in brain, although PPAR-γ in glia was increased compared with PBS-treated FIV+ control animals. These molecular changes were accompanied by diminished glial activation in cerebral cortex and white matter of insulin-treated FIV+ animals, with associated preservation of cortical neurons. Neuronal counts in parietal cortex, striatum, and hippocampus were higher in the FIV+/insulin-treated group compared with the FIV+/PBS-treated group. Moreover, intranasal insulin treatment improved neurobehavioral performance, including both memory and motor functions, in FIV+ animals. Therefore, insulin exerted ex vivo and in vivo antiviral, anti-inflammatory, and neuroprotective effects in models of HAND, representing a new therapeutic option for patients with inflammatory or infectious neurodegenerative disorders including HAND. SIGNIFICANCE STATEMENT HIV-associated neurocognitive disorders (HAND) represent a spectrum disorder of neurocognitive dysfunctions resulting from HIV-1 infection. Although the exact mechanisms causing HAND are unknown, productive HIV-1 infection in the brain with associated neuroinflammation is a potential pathogenic mechanism resulting in neuronal damage and death. We report that, in HIV-infected microglia cultures, insulin treatment led to reduced viral replication and inflammatory gene expression. In addition, intranasal insulin treatment of experimentally feline immunodeficiency virus-infected animals resulted in improved motor and memory performances. We show that insulin restored expression of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which is suppressed by HIV-1 replication. Our findings indicate a unique function for insulin in improving neurological outcomes in lentiviral infections, implicating insulin as a therapeutic intervention for HAND.
Collapse
|
6
|
Boghozian R, McKenzie BA, Saito LB, Mehta N, Branton WG, Lu J, Baker GB, Noorbakhsh F, Power C. Suppressed oligodendrocyte steroidogenesis in multiple sclerosis: Implications for regulation of neuroinflammation. Glia 2017; 65:1590-1606. [PMID: 28707358 DOI: 10.1002/glia.23179] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Neurosteroids are reported to exert anti-inflammatory effects in several neurological disorders. We investigated the expression and actions of the neurosteroid, dehydroepiandrosterone (DHEA), and its more stable 3β-sulphated ester, DHEA-S, in MS and associated experimental models. CNS tissues from patients with MS and animals with experimental autoimmune encephalomyelitis (EAE) displayed reduced DHEA concentrations, accompanied by diminished expression of the DHEA-synthesizing enzyme CYP17A1 in oligodendrocytes (ODCs), in association with increased expression of inflammatory genes including interferon (IFN)-γ and interleukin (IL)-1β. CYP17A1 was expressed variably in different human neural cell types but IFN-γ exposure selectively reduced CYP17A1 detection in ODCs. DHEA-S treatment reduced IL-1β and -6 release from activated human myeloid cells with minimal effect on lymphocyte viability. Animals with EAE receiving DHEA-S treatment showed reduced Il1b and Ifng transcript levels in spinal cord compared to vehicle-treated animals with EAE. DHEA-S treatment also preserved myelin basic protein immunoreactivity and reduced axonal loss in animals with EAE, relative to vehicle-treated EAE animals. Neurobehavioral deficits were reduced in DHEA-S-treated EAE animals compared with vehicle-treated animals with EAE. Thus, CYP17A1 expression in ODCs and its product DHEA were downregulated in the CNS during inflammatory demyelination while DHEA-S provision suppressed neuroinflammation, demyelination, and axonal injury that was evident as improved neurobehavioral performance. These findings indicate that DHEA production is an immunoregulatory pathway within the CNS and its restoration represents a novel treatment approach for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Roobina Boghozian
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada.,Department of Medical Microbiology & Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Brienne A McKenzie
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada
| | - Leina B Saito
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada
| | - Ninad Mehta
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada
| | - William G Branton
- Department of, Medicine, University of Alberta Edmonton, Alberta, Canada
| | - JianQiang Lu
- Department of Laboratory Medicine & Pathology, University of Alberta Edmonton, Alberta, Canada
| | - Glen B Baker
- Depatment of Psychiatry, University of Alberta Edmonton, Alberta, Canada
| | - Farshid Noorbakhsh
- Department of Medical Microbiology & Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Power
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada.,Department of, Medicine, University of Alberta Edmonton, Alberta, Canada.,Depatment of Psychiatry, University of Alberta Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Harvey S, Martinez-Moreno CG. Growth hormone and ocular dysfunction: Endocrine, paracrine or autocrine etiologies? Growth Horm IGF Res 2016; 29:28-32. [PMID: 27082451 DOI: 10.1016/j.ghir.2016.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 02/01/2023]
Abstract
The eye is a target site for GH action and growth hormone has been implicated in diabetic retinopathy and other ocular dysfunctions. However, while this could reflect the hypersecretion of pituitary GH, the expression of the GH gene is now known to occur in ocular tissues and it could thus also reflect excess GH production within the eye itself. The possibility that ocular dysfunctions might arise from endocrine, autocrine or paracrine etiologies of GH overexpression is therefore the focus of this brief review.
Collapse
Affiliation(s)
- Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6H 2H7, Canada.
| | | |
Collapse
|
8
|
Xu J, Nash RJ, Frey TK. Cellular responses to Sindbis virus infection of neural progenitors derived from human embryonic stem cells. BMC Res Notes 2014; 7:757. [PMID: 25343994 PMCID: PMC4307679 DOI: 10.1186/1756-0500-7-757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/10/2014] [Indexed: 11/12/2022] Open
Abstract
Background Sindbis virus (SINV) causes age-dependent encephalitis in mice, and therefore serves as a model to study viral encephalitis. SINV is used as a vector for the delivery of genes into selected neural stem cell lines; however, the toxicity and side effects of this vector have rarely been discussed. In this context, we investigated the cellular responses of human embryonic stem cell (hESCs) derived neural progenitors (hNPCs) to SINV infection by assessing susceptibility of the cells to SINV infection, analyzing the effect of infection on cell proliferation and cell death, and examining the impact of SINV infection on hNPCs markers of stemness. Findings We found that hNPCs are highly susceptible to SINV infection. Upon infection, the viruses induced apoptosis to hNPCs while not affecting the expression of cell proliferation markers. Lastly, SINV infections result in significant changes in the expression of key regulators of hNPCs’ plasticity and homeostasis. Conclusion The robust and versatile signaling, proliferation, and other cell responses of hESCs-derived hNPCs to virus infection demonstrated that it is a good model to study the pathogenesis of viral-induced neurodevelopmental and degenerative diseases. On the other hand, the toxicity of SINV to hNPCs cells cannot be ignored, and therefore extra care should be taken when using SINV as a vector to deliver genes into human stem cell lines.
Collapse
Affiliation(s)
| | | | - Teryl K Frey
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
9
|
Hauser KF, Knapp PE. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:231-313. [PMID: 25175867 PMCID: PMC4304845 DOI: 10.1016/b978-0-12-801284-0.00009-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Anatomy & Neurobiology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
10
|
Arce VM, Devesa P, Devesa J. Role of growth hormone (GH) in the treatment on neural diseases: from neuroprotection to neural repair. Neurosci Res 2013; 76:179-86. [PMID: 23602740 DOI: 10.1016/j.neures.2013.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/26/2013] [Accepted: 03/26/2013] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) is a pleiotropic hormone that exerts important functions in the control of brain development as well as in the regulation neuronal differentiation and function, together with several behavioral and psychological effects that have been linked to its modulatory actions on brain neurotransmitters. In addition, the possibility that GH may play a role on brain repair after injury has been also envisaged, and a number of reports have shown that GH administration following injury confers neuroprotection and accelerates the recovery of some neural functions. In this review we have analyzed the state of the art of GH administration in several neural diseases. Though more studies are still necessary in order to completely understand the importance of GH in these processes, the promising results obtained so far, together with the absence of untoward effects during GH therapy, encourages the development of clinical assays in order to further support the use GH treatment in neural diseases in which neuroprotection and/or neuroregeneration are involved.
Collapse
Affiliation(s)
- Víctor M Arce
- Departamento de Fisioloxía, Facultade de Medicina, Universidade de Santiago de Compostela, Spain.
| | | | | |
Collapse
|
11
|
Devesa J, Reimunde P, Devesa P, Barberá M, Arce V. Growth hormone (GH) and brain trauma. Horm Behav 2013; 63:331-44. [PMID: 22405763 DOI: 10.1016/j.yhbeh.2012.02.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/27/2022]
Abstract
Growth hormone (GH) is a pleiotropic hormone with known neurotrophic effects. We aimed to study whether GH administration might be useful together with rehabilitation in the recovery of TBI patients. 13 TBI patients (8 M, 5 F; age: 6-53 years old) were studied. Time after TBI: 2.5 months to 11 years; 5 patients showed acquired GH-deficiency (GHD). Disabilities observed: cognitive disorders; motor plegias; neurogenic dysphagia (n=5), vegetative coma (n=2) and amaurosis (n=1). All but one TBI patient followed intense rehabilitation for years. Treatment consisted of GH administration (maximal dose 1 mg/day, 5 days/week, resting 15-days every 2-months, until a maximum of 8 months) and clinical rehabilitation according to the individual needs (3-4 h/day, 5 days/week, during 6-12 months). Informed consent was obtained before commencing GH administration. GH significantly increased plasma IGF-1 values (ng.mL(-1)) in both GHD and no GHD patients, being then similar between both groups (GHD: 275.6±35.6 [p<0.01 vs. baseline], no GHD: 270.2±64 [p<0.05 vs. baseline]). In all the cases clear significant improvements were observed during and at the end of the combined treatment. Cognitive improvements appeared earlier and were more important than motor improvements. Swallowing improved significantly in all TBI patients with neurogenic dysphagia (2 of them in a vegetative state). Visual performance was ameliorated in the patient with amaurosis. No undesirable side-effects were observed. Our data indicate that GH can be combined with rehabilitation for improving disabilities in TBI patients, regardless of whether or not they are GHD.
Collapse
Affiliation(s)
- Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
12
|
Growth hormone and prolactin regulate human neural stem cell regenerative activity. Neuroscience 2011; 190:409-27. [PMID: 21664953 DOI: 10.1016/j.neuroscience.2011.05.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 12/18/2022]
Abstract
We have previously shown that the growth hormone (GH)/prolactin (PRL) axis has a significant role in regulating neuroprotective and/or neurorestorative mechanisms in the brain and that these effects are mediated, at least partly, via actions on neural stem cells (NSCs). Here, using NSCs with properties of neurogenic radial glia derived from fetal human forebrains, we show that exogenously applied GH and PRL promote the proliferation of NSCs in the absence of epidermal growth factor or basic fibroblast growth factor. When applied to differentiating NSCs, they both induce neuronal progenitor proliferation, but only PRL has proliferative effects on glial progenitors. Both GH and PRL also promote NSC migration, particularly at higher concentrations. Since human GH activates both GH and PRL receptors, we hypothesized that at least some of these effects may be mediated via the latter. Migration studies using receptor-specific antagonists confirmed that GH signals via the PRL receptor promote migration. Mechanisms of receptor signaling in NSC proliferation, however, remain to be elucidated. In summary, GH and PRL have complex stimulatory and modulatory effects on NSC activity and as such may have a role in injury-related recovery processes in the brain.
Collapse
|
13
|
Viral infection and neural stem/progenitor cell's fate: implications in brain development and neurological disorders. Neurochem Int 2011; 59:357-66. [PMID: 21354238 DOI: 10.1016/j.neuint.2011.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 01/08/2023]
Abstract
Viral infections in the prenatal (during pregnancy) and perinatal period have been a common cause of brain malformation. Besides the immediate neurological dysfunctions, virus infections may critically affect CNS development culminating in long-term cognitive deficits. Most of these neurotropic viruses are most damaging at a critical stage of the host, when the brain is in a dynamic stage of development. The neuropathology can be attributed to the massive neuronal loss induced by the virus as well as lack of CNS repair owing to a deficit in the neural stem/progenitor cell (NSPC) pool or aberrant formation of new neurons from NSPCs. Being one of the mitotically active populations in the post natal brain, the NSPCs have emerged as the potential targets of neurotropic viruses. The NSPCs are self-renewing and multipotent cells residing in the neurogenic niches of the brain, and, therefore, hampering the developmental fate of these cells may adversely affect the overall neurogenesis pattern. A number of neurotropic viruses utilize NSPCs as their cellular reservoirs and often establish latent and persistent infection in them. Both HIV and Herpes virus infect NSPCs over long periods of time and reactivation of the virus may occur later in life. The virus infected NSPCs either undergoes cell cycle arrest or impaired neuronal or glial differentiation, all of which leads to impaired neurogenesis. The disturbances in neurogenesis and CNS development following neurotropic virus infections have direct implications in the viral pathogenesis and long-term neurobehavioral outcome in infected individuals.
Collapse
|
14
|
Mishra M, Taneja M, Malik S, Khalique H, Seth P. Human immunodeficiency virus type 1 Tat modulates proliferation and differentiation of human neural precursor cells: implication in NeuroAIDS. J Neurovirol 2011; 16:355-67. [PMID: 20839920 DOI: 10.3109/13550284.2010.513028] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) and viral proteins affect neuronal survival and neuron-glial cell interactions, which culminate in neurological disorders. HIV-1 infects regions of neurogenesis in human adult and pediatric brain. However, little is known about the effect of HIV-1 or viral proteins on the properties of human neural precursor cells (hNPCs), particularly neurogenesis, hence a detailed investigation on these lines is warranted. Human neural precursor cells were cultured in presence and absence of HIV-1B transactivating protein Tat to investigate if HIV-1 viral protein alters the properties of human neural precursor cells. Cellular and molecular approaches were adopted to study the effect of HIV-1B transactivating protein Tat on proliferation and differentiation potential of human fetal brain-derived NPCs. Cell proliferation assays such as BrdU and Ki67 staining and pathway-specific cDNA and protein arrays were used in the study. Data reveal that HIV-1B Tat protein severely affects proliferation of hNPCs, as evident by lower incorporation of BrdU and Ki67 staining as well as neurosphere assay. HIV-1 Tat substantially attenuated neurogenesis, as evident by the smaller numbers of Tuj-1- and doublecortin-positive cells differentiated from hNPCs, without affecting their viability. These data suggest that HIV-1 Tat alters the properties of human neural precursor cells via attenuation of the cell cycle regulatory unit cyclin D1 and the mitogen-activated protein kinase (MAPK) pathway, particularly extracellular signal-related kinase 1/2 (ERK1/2). The study provides new insights into cellular and molecular mechanisms that may modulate human neural precursor cell properties in HIV/AIDS (acquired immunodeficiency syndrome) individuals. Validation with autopsy brain samples is necessary to further substantiate these important observations.
Collapse
Affiliation(s)
- Mamata Mishra
- Molecular and Cellular Neuroscience, National Brain Research Center, Manesar, Haryana, India
| | | | | | | | | |
Collapse
|
15
|
Kim M, Hansen KK, Davis L, van Marle G, Gill MJ, Fox JD, Hollenberg MD, Rancourt DE, Lee PWK, Yun CO, Johnston RN. Z-FA-FMK as a novel potent inhibitor of reovirus pathogenesis and oncolysis in vivo. Antivir Ther 2010; 15:897-905. [PMID: 20834102 DOI: 10.3851/imp1646] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Respiratory enteric orphan (reo)virus is a promising oncolytic viral candidate. Reoviral anticancer therapy is currently undergoing multiple clinical trials targeting various human cancers; however, there is no effective reoviral inhibitor that can be used to block unwanted reovirus replication during reoviral anticancer therapy. METHODS Studies were conducted with transformed or normal cells in vitro and in vivo to characterize viral replication in the presence or absence of chemical inhibitors. RESULTS We have identified a protease inhibitor that is very effective in the inhibition of viral replication. The dipeptide benzyloxycarbonyl-Phe-Ala-fluoromethyl ketone (Z-FA-FMK) effectively inhibited reovirus replication in a susceptible host and cured cells of a persistent infection with reovirus in vitro. Electron microscopic analysis of Z-FA-FMK-treated cells revealed that internalized reovirus virions, retained in a perinuclear localization, no longer undergo further processing into viral factories following Z-FA-FMK treatment, suggesting that Z-FA-FMK specifically affects a reovirus virion maturation step. Animal studies showed that reovirus infection of Ras oncogenic tumours and host heart tissues is completely blocked by Z-FA-FMK treatment in severe combined immunodeficiency mice. CONCLUSIONS Z-FA-FMK is a very effective viral inhibitor that can prevent reovirus replication in vitro and reovirus-mediated myocarditis, as well as reovirus-mediated oncolysis, in vivo. A potential application of this drug for inhibition of reovirus infection is suggested.
Collapse
Affiliation(s)
- Manbok Kim
- Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Solbrig MV, Fan Y, Hermanowicz N, Morgese MG, Giuffrida A. A synthetic cannabinoid agonist promotes oligodendrogliogenesis during viral encephalitis in rats. Exp Neurol 2010; 226:231-41. [PMID: 20832403 PMCID: PMC2981070 DOI: 10.1016/j.expneurol.2010.09.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 08/07/2010] [Accepted: 09/01/2010] [Indexed: 12/15/2022]
Abstract
Chronic CNS infection by several families of viruses can produce deficits in prefrontal cortex (PFC) and striatal function. Cannabinoid drugs have been long known for their anti-inflammatory properties and their ability to modulate adult neuro and gliogenesis. Therefore, we explored the effects of systemic administration of the cannabinoid agonist WIN55,212-2(WIN) on prefrontal cortex (PFC) and striatal cytogenesis in a viral model of CNS injury and inflammation based on Borna Disease (BD) virus encephalitis. Active BrdU(+) progenitor populations were significantly decreased 1 week after BrdU labeling in BD rats [p<0.001 compared to uninfected (NL) controls] while less than 5% of BrdU(+) cells colabeled for BDV protein. Systemic WIN (1mg/kg i.p. twice daily×7 days) increased the survival of BrdU(+) cells in striatum (p<0.001) and PFC of BD rats, with differential regulation of labeled oligodendroglia precursors vs microglia/macrophages. WIN increased the percentage of BrdU(+) oligodendrocyte precursor cells and decreased BrdU(+) ED-1-labeled phagocytic cells, without producing pro- or antiviral effects. BDV infection decreased the levels of the endocannabinoid anandamide (AEA) in striatum (p<0.05 compared to NL rats), whereas 2-AG levels were unchanged. Our findings indicate that: 1) viral infection is accompanied by alterations of AEA transmission in the striatum, but new cell protection by WIN appears independent of its effect on endocannabinoid levels; and 2) chronic WIN treatment alters the gliogenic cascades associated with CNS injury, promoting oligodendrocyte survival. Limiting reactive gliogenesis and macrophage activity in favor of oliogodendroglia development has significance for demyelinating diseases. Moreover, the ability of cannabinoids to promote the development of biologically supportive or symbiotic oligodendroglia may generalize to other microglia-driven neurodegenerative syndromes including NeuroAIDS and diseases of aging.
Collapse
Affiliation(s)
- Marylou V Solbrig
- Department of Medicine (Neurology), University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | |
Collapse
|
17
|
Maingat F, Viappiani S, Zhu Y, Vivithanaporn P, Ellestad KK, Holden J, Silva C, Power C. Regulation of lentivirus neurovirulence by lipopolysaccharide conditioning: suppression of CXCL10 in the brain by IL-10. THE JOURNAL OF IMMUNOLOGY 2009; 184:1566-74. [PMID: 20042580 DOI: 10.4049/jimmunol.0902575] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lentivirus infections including HIV and feline immunodeficiency virus (FIV) cause neurovirulence, which is largely mediated by innate immunity. To investigate the interactions between neurovirulence and repeated conditioning by innate immune activation, models of lentivirus infection were exposed to LPS. Gene expression in HIV-infected (HIV+) and control (HIV-) patient brains was compared by real time RT-PCR and immunocytochemistry. Supernatants from mock and HIV-infected monocyte-derived macrophages exposed to LPS were applied to human neurons. FIV-infected (FIV+) and control (FIV-) animals were exposed repeatedly to LPS postinfection together with concurrent neurobehavioral testing, viral load, and host gene analyses. Brains from HIV+ individuals exhibited induction of CD3epsilon, CXCL10, and granzyme A expression (p < 0.05). Supernatants from HIV+ monocyte-derived macrophages induced CXCL10 expression in neurons, which was diminished by IL-10 treatment (p < 0.05). LPS-exposed FIV+ animals demonstrated lower plasma and brain viral loads (p < 0.05). Neuronal CXCL10 expression was increased in FIV+ animals but was suppressed by LPS exposure, together with reduced brain CD3epsilon and granzyme A expression (p < 0.05). In conjunction with preserved NeuN-positive neuronal counts in parietal cortex (p < 0.05), FIV+ animals exposed to LPS also showed less severe neurobehavioral deficits (p < 0.05). Repeated LPS exposures suppressed CXCL10 in the brain and ensuing T cell infiltration with a concomitant reduction in neurovirulence. Thus, innate immune chronic conditioning exerted beneficial effects on neurovirulence through suppression of a specific chemotactic factor, CXCL10, mediated by IL-10, leading to reduced leukocyte infiltration and release of neurotoxic factors.
Collapse
|
18
|
Christophidis LJ, Gorba T, Gustavsson M, Williams CE, Werther GA, Russo VC, Scheepens A. Growth hormone receptor immunoreactivity is increased in the subventricular zone of juvenile rat brain after focal ischemia: a potential role for growth hormone in injury-induced neurogenesis. Growth Horm IGF Res 2009; 19:497-506. [PMID: 19524466 DOI: 10.1016/j.ghir.2009.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 04/30/2009] [Accepted: 05/14/2009] [Indexed: 02/05/2023]
Abstract
BACKGROUND During recovery from an ischemic brain injury, a cerebral growth hormone (GH) axis is activated. Whilst GH has been demonstrated to be neuroprotective both in vitro and in vivo, a role for GH in neuro-restorative processes after brain injury has yet to be studied. OBJECTIVE To explore a role for GH in injury-induced neurogenesis by examining GH receptor (GH-R) immunoreactivity within the subventricular zone (SVZ) of juvenile rats after brain injury and by testing the proliferative capacity of GH on embryonic mouse neural stem cells. DESIGN Twenty-one day old rats were subjected to unilateral hypoxic-ischemia of the brain and sacrificed 1-15days later. Coronal brain sections from these animals and age-matched naïve controls were immunostained for GH-R and cell markers of neurogenesis. The level of GH-R immunoreactivity in the ipsilateral and contralateral SVZ of each animal was semi-quantified both by independent blinded scoring by two examiners and blinded image analysis. To examine the effect of GH on proliferation of embryonic mouse neural stem cells, cells were treated with increasing concentrations of rat pituitary GH for 48h in the presence of 5'-bromo-2'-deoxyuridine. RESULTS The level of GH-R immunoreactivity in the ipsilateral SVZ was significantly increased 5days after injury vs. the contralateral SVZ, coinciding both spatially and temporally with injury-induced neurogenesis. The population of GH-R immunopositive cells in the ipsilateral SVZ at this time was found to include proliferating cells (Ki67 immunopositive), neural progenitor cells (nestin immunopositive) and post-proliferative migratory neuroblasts (doublecortin immunopositive). Stimulation of embryonic mouse NSCs with physiological concentrations of rat pituitary GH elicited a dose-dependent proliferative response. CONCLUSION These results indicate a novel role for GH and its receptor in injury-induced neurogenesis, and suggest that GH treatment may potentiate endogenous neuro-restorative processes after brain injury.
Collapse
|
19
|
Afkhami-Goli A, Liu SH, Zhu Y, Antony JM, Arab H, Power C. Dual lentivirus infection potentiates neuroinflammation and neurodegeneration: viral copassage enhances neurovirulence. J Neurovirol 2009; 15:139-52. [PMID: 19115133 DOI: 10.1080/13550280802534763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infection by multiple lentiviral strains is recognized as a major driving force in the human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, but the neuropathogenic consequences of multivirus infections remain uncertain. Herein, we investigated the neurovirulence and underlying mechanisms of dual lentivirus infections with distinct viral strains. Experimental feline immunodeficiency virus (FIV) infections were performed using cultured cells and an in vivo model of AIDS neuropathogenesis. Dual infections were comprised of two FIV strains (FIV-Ch and FIV-PPR) as copassaged or superinfected viruses, with subsequent outcome analyses of host immune responses, viral load, neuropathological features, and neurobehavioral performance. Dual infections of feline macrophages resulted in greater IL-1beta (interleukin-1beta), TNF-alpha (tumor necrosis factor alpha), and IDO (indoleamine 2,3-dioxygenase) expression and associated neurotoxic properties. FIV coinfection and sequential superinfection in vivo also induced greater IL-1beta, TNF-alpha, and IDO expression in the basal ganglia (BG) and cortex (CTX), compared to the monovirus- and mock-infected groups, although viral loads were similar in single virus- and dual virus-infected animals. Immunoblot analyses disclosed lower synaptophysin immunoreactivity in the CTX resulting from FIV super- and coinfections. Cholinergic and GABAergic neuronal injury was evident in the CTX of animals with dual FIV infections. With increased glial activation and neuronal loss in dual FIV-infected brains, immunohistochemical analysis also revealed elevated detection of cleaved caspase-3 in dysmorphic neurons, which was associated with worsened neurobehavioral abnormalities among animals infected with the copassaged viruses. Dual lentivirus infections caused an escalation in neuroinflammation and ensuing neurodegeneration, underscoring the contribution of infection by multiple viruses to neuropathogenesis.
Collapse
Affiliation(s)
- Amir Afkhami-Goli
- Departments of Medicine and Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Crews L, Patrick C, Achim CL, Everall IP, Masliah E. Molecular pathology of neuro-AIDS (CNS-HIV). Int J Mol Sci 2009; 10:1045-1063. [PMID: 19399237 PMCID: PMC2672018 DOI: 10.3390/ijms10031045] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 11/17/2022] Open
Abstract
The cognitive deficits in patients with HIV profoundly affect the quality of life of people living with this disease and have often been linked to the neuro-inflammatory condition known as HIV encephalitis (HIVE). With the advent of more effective anti-retroviral therapies, HIVE has shifted from a sub-acute to a chronic condition. The neurodegenerative process in patients with HIVE is characterized by synaptic and dendritic damage to pyramidal neurons, loss of calbindin-immunoreactive interneurons and myelin loss. The mechanisms leading to neurodegeneration in HIVE might involve a variety of pathways, and several lines of investigation have found that interference with signaling factors mediating neuroprotection might play an important role. These signaling pathways include, among others, the GSK3beta, CDK5, ERK, Pyk2, p38 and JNK cascades. Of these, GSK3beta has been a primary focus of many previous studies showing that in infected patients, HIV proteins and neurotoxins secreted by immune-activated cells in the brain abnormally activate this pathway, which is otherwise regulated by growth factors such as FGF. Interestingly, modulation of the GSK3beta signaling pathway by FGF1 or GSK3beta inhibitors (lithium, valproic acid) is protective against HIV neurotoxicity, and several pilot clinical trials have demonstrated cognitive improvements in HIV patients treated with GSK3beta inhibitors. In addition to the GSK3beta pathway, the CDK5 pathway has recently been implicated as a mediator of neurotoxicity in HIV, and HIV proteins might activate this pathway and subsequently disrupt the diverse processes that CDK5 regulates, including synapse formation and plasticity and neurogenesis. Taken together, the GSK3beta and CDK5 signaling pathways are important regulators of neurotoxicity in HIV, and modulation of these factors might have therapeutic potential in the treatment of patients suffering from HIVE. In this context, the subsequent sections will focus on reviewing the involvement of the GSK3beta and CDK5 pathways in neurodegeneration in HIV.
Collapse
Affiliation(s)
- Leslie Crews
- Department of Pathology, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
| | - Christina Patrick
- Department of Neurosciences, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
| | - Cristian L. Achim
- Department of Psychiatry, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mails:
(C.A.);
(I.E.)
| | - Ian P. Everall
- Department of Psychiatry, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mails:
(C.A.);
(I.E.)
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
- Department of Neurosciences, University of California, San Diego / 9500 Gilman Dr. La Jolla, CA 92093, U.S.A.; E-Mail:
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +1 (858) 534-8992; Fax: +1 (858) 534-6232
| |
Collapse
|
21
|
Crews L, Lentz MR, Gonzalez RG, Fox HS, Masliah E. Neuronal injury in simian immunodeficiency virus and other animal models of neuroAIDS. J Neurovirol 2009; 14:327-39. [PMID: 18780234 DOI: 10.1080/13550280802132840] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The success of antiretroviral therapy has reduced the incidence of severe neurological complication resulting from human immunodeficiency virus (HIV) infection. However, increased patient survival has been associated with an increased prevalence of protracted forms of HIV encephalitis leading to moderate cognitive impairment. NeuroAIDS remains a great challenge to patients, their families, and our society. Thus development of preclinical models that will be suitable for testing promising new compounds with neurotrophic and neuroprotective capabilities is of critical importance. The simian immunodeficiency virus (SIV)-infected macaque is the premiere model to study HIV neuropathogenesis. This model was central to the seminal work of Dr. Opendra "Bill" Narayan. Similar to patients with HIV encephalitis, in the SIV model there is injury to the synaptodendritic structure of excitatory pyramidal neurons and inhibitory calbindin-immunoreactive interneurons. This article, which is part of a special issue of the Journal of NeuroVirology in honor of Dr. Bill Narayan, discusses the most important neurodegenerative features in preclinical models of neuroAIDS and their potential for treatment development.
Collapse
Affiliation(s)
- Leslie Crews
- Department of Pathology, University of California San Diego, La Jolla, California 92093-0624, USA
| | | | | | | | | |
Collapse
|
22
|
Boissé L, Gill MJ, Power C. HIV infection of the central nervous system: clinical features and neuropathogenesis. Neurol Clin 2008; 26:799-819, x. [PMID: 18657727 DOI: 10.1016/j.ncl.2008.04.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Almost 65 million people worldwide have been infected with HIV since it was first identified in the early 1980s. Neurologic disorders associated with HIV type 1 affect between 40% and 70% of infected individuals. The most significant of these disorders include HIV-associated neurocognitive disorder, which comprises HIV-associated dementia, mild neurocognitive disorder, and asymptomatic neurocognitive impairment. Despite the availability of combination antiretroviral therapy, HIV-related central nervous system disorders continue to represent a substantial personal, economic, and societal burden. This review summarizes the clinical manifestations, diagnosis, treatment, and pathogenesis of the primary HIV-associated central nervous system disorders.
Collapse
Affiliation(s)
- Lysa Boissé
- Division of Neurology, Queen's University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| | | | | |
Collapse
|
23
|
Abstract
This literature review reflects current knowledge on the intermediate filament protein nestin, which most authors regard as a marker of "neural stem/progenitor cells." The structural-functional characteristics of nestin and its presence in various central nervous system cells at different stages of ontogenesis in normal and pathological conditions are discussed.
Collapse
Affiliation(s)
- A V Gilyarov
- Department of Morphology, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg
| |
Collapse
|
24
|
Deepak SA, Kottapalli KR, Rakwal R, Oros G, Rangappa KS, Iwahashi H, Masuo Y, Agrawal GK. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes. Curr Genomics 2007; 8:234-51. [PMID: 18645596 PMCID: PMC2430684 DOI: 10.2174/138920207781386960] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 02/27/2007] [Accepted: 03/02/2007] [Indexed: 02/06/2023] Open
Abstract
Invention of polymerase chain reaction (PCR) technology by Kary Mullis in 1984 gave birth to real-time PCR. Real-time PCR - detection and expression analysis of gene(s) in real-time - has revolutionized the 21(st) century biological science due to its tremendous application in quantitative genotyping, genetic variation of inter and intra organisms, early diagnosis of disease, forensic, to name a few. We comprehensively review various aspects of real-time PCR, including technological refinement and application in all scientific fields ranging from medical to environmental issues, and to plant.
Collapse
Affiliation(s)
- SA Deepak
- Department of Studies in Applied Botany and Biotechnology, University of Mysore, Manasagangotri, Mysore 570006,
India
| | - KR Kottapalli
- Plant Genome Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-
8602, Ibaraki, Japan
| | - R Rakwal
- Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan
- Research Laboratory for
Agricultural Biotechnology and Biochemistry (RLABB), GPO Box 8207, Kathmandu, Nepal
| | - G Oros
- Plant Protection Institute,
Hungarian Academy of Sciences, Budapest, Hungary
| | - KS Rangappa
- Department of Studies in Chemistry, University of Mysore,
Manasagangotri, Mysore 570006, India
| | - H Iwahashi
- Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan
| | - Y Masuo
- Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science
and Technology (AIST), Tsukuba West, 16-1 Onogawa, Tsukuba 305-8569, Ibaraki, Japan
| | - GK Agrawal
- Research Laboratory for
Agricultural Biotechnology and Biochemistry (RLABB), GPO Box 8207, Kathmandu, Nepal
| |
Collapse
|
25
|
Möderscheim TAE, Christophidis LJ, Williams CE, Scheepens A. Distinct neuronal growth hormone receptor ligand specificity in the rat brain. Brain Res 2007; 1137:29-34. [PMID: 17258692 DOI: 10.1016/j.brainres.2006.12.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 11/15/2006] [Accepted: 12/14/2006] [Indexed: 11/20/2022]
Abstract
A cerebral growth hormone axis is activated during recovery from brain injury and centrally administered growth hormone can rescue injured neurons. It remains unclear, however, whether this treatment effect occurs directly via neuronal growth hormone receptors. Immunohistochemistry confirmed growth hormone receptor protein on neuronal cell bodies in the rat cortex. Surprisingly, we found that central treatment with bovine growth hormone, which is equipotent to rat growth hormone in the rat periphery, failed to rescue cortical neurons following hypoxic ischemic injury. We further investigated the actions of rat and bovine growth hormone on primary neuron-enriched cultures of fetal rat cortex. In agreement with the in vivo treatment studies, rat but not bovine growth hormone rescued neurons from nutrient deprivation-induced cell death (p<0.05). This neuroprotective effect was inhibited by the selective growth hormone receptor antagonist G120D (p<0.001). Furthermore, rat but not bovine growth hormone had trophic effects on uninjured cultures (p<0.001). Immunocytochemistry showed growth hormone receptor on neurons within the neuron-enriched cultures. We show for the first time that the protective and trophic effects of rat growth hormone are mediated via growth hormone receptors on neurons and that the rodent neuronal growth hormone receptor exhibits unique ligand specificity.
Collapse
|
26
|
Power C, Noorbakhsh F. Central Nervous System Viral Infections: Clinical Aspects and Pathogenic Mechanisms. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50045-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
27
|
Hauser KF, El-Hage N, Stiene-Martin A, Maragos WF, Nath A, Persidsky Y, Volsky DJ, Knapp PE. HIV-1 neuropathogenesis: glial mechanisms revealed through substance abuse. J Neurochem 2006; 100:567-86. [PMID: 17173547 PMCID: PMC4305441 DOI: 10.1111/j.1471-4159.2006.04227.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuronal dysfunction and degeneration are ultimately responsible for the neurocognitive impairment and dementia manifest in neuroAIDS. Despite overt neuronal pathology, HIV-1 does not directly infect neurons; rather, neuronal dysfunction or death is largely an indirect consequence of disrupted glial function and the cellular and viral toxins released by infected glia. A role for glia in HIV-1 neuropathogenesis is revealed in experimental and clinical studies examining substance abuse-HIV-1 interactions. Current evidence suggests that glia are direct targets of substance abuse and that glia contribute markedly to the accelerated neurodegeneration seen with substance abuse in HIV-1 infected individuals. Moreover, maladaptive neuroplastic responses to chronic drug abuse might create a latent susceptibility to CNS disorders such as HIV-1. In this review, we consider astroglial and microglial interactions and dysfunction in the pathogenesis of HIV-1 infection and examine how drug actions in glia contribute to neuroAIDS.
Collapse
Affiliation(s)
- Kurt F. Hauser
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536
| | - Nazira El-Hage
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536
| | - Anne Stiene-Martin
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536
| | - William F. Maragos
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536
- Department of Neurology, University of Kentucky College of, Medicine, Lexington, KY 40536
| | - Avindra Nath
- Departments of Neurology and Neuroscience, The Johns Hopkins, University, Baltimore, MD, 21287
| | - Yuri Persidsky
- Department of Pathology, University of Nebraska, Omaha, NE, 68198
| | - David J. Volsky
- Molecular Virology Division, St Luke's–Roosevelt Hospital Center and Columbia University, College of Physicians and Surgeons, New York, NY 10019
| | - Pamela E. Knapp
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536
| |
Collapse
|