1
|
Kalashnikova IG, Nekrasova AI, Korobeynikova AV, Bobrova MM, Ashniev GA, Bakoev SY, Zagainova AV, Lukashina MV, Tolkacheva LR, Petryaikina ES, Nekrasov AS, Mitrofanov SI, Shpakova TA, Frolova LV, Bulanova NV, Snigir EA, Mukhin VE, Yudin VS, Makarov VV, Keskinov AA, Yudin SM. The Association between Gut Microbiota and Serum Biomarkers in Children with Atopic Dermatitis. Biomedicines 2024; 12:2351. [PMID: 39457662 PMCID: PMC11505256 DOI: 10.3390/biomedicines12102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background. Currently, it is known that the gut microbiota plays an important role in the functioning of the immune system, and a rebalancing of the bacterial community can arouse complex immune reactions and lead to immune-mediated responses in an organism, in particular, the development of atopic dermatitis (AD). Cytokines and chemokines are regulators of the innate and adaptive immune response and represent the most important biomarkers of the immune system. It is known that changes in cytokine profiles are a hallmark of many diseases, including atopy. However, it remains unclear how the bacterial imbalance disrupts the function of the immune response in AD. Objectives. We attempted to determine the role of gut bacteria in modulating cytokine pathways and their role in atopic inflammation. Methods. We sequenced the 16S rRNA gene from 50 stool samples of children aged 3-12 years who had confirmed atopic dermatitis, and 50 samples from healthy children to serve as a control group. To evaluate the immune status, we conducted a multiplex immunofluorescence assay and measured the levels of 41 cytokines and chemokines in the serum of all participants. Results. To find out whether changes in the composition of the gut microbiota were significantly associated with changes in the level of inflammatory cytokines, a correlation was calculated between each pair of bacterial family and cytokine. In the AD group, 191 correlations were significant (Spearman's correlation coefficient, p ≤ 0.05), 85 of which were positive and 106 which were negative. Conclusions. It has been demonstrated that intestinal dysbiosis is associated with alterations in cytokine profiles, specifically an increase in proinflammatory cytokine concentrations. This may indicate a systemic impact of these conditions, leading to an imbalance in the immune system's response to the Th2 type. As a result, atopic conditions may develop. Additionally, a correlation between known AD biomarkers (IL-5, IL-8, IL-13, CCL22, IFN-γ, TNF-α) and alterations in the abundance of bacterial families (Pasteurellaceae, Barnesiellaceae, Eubacteriaceae) was observed.
Collapse
Affiliation(s)
- Irina G. Kalashnikova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.I.N.); (A.V.K.); (M.M.B.); (G.A.A.); (S.Y.B.); (A.V.Z.); (M.V.L.); (L.R.T.); (E.S.P.); (A.S.N.); (S.I.M.); (T.A.S.); (L.V.F.); (N.V.B.); (E.A.S.); (V.E.M.); (V.S.Y.); (V.V.M.); (A.A.K.); (S.M.Y.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zhou X, Cai M, Yue M, Celedón JC, Wang J, Ding Y, Chen W, Li Y. Molecular group and correlation guided structural learning for multi-phenotype prediction. Brief Bioinform 2024; 25:bbae585. [PMID: 39541190 PMCID: PMC11562839 DOI: 10.1093/bib/bbae585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/09/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
We propose a supervised learning bioinformatics tool, Biological gRoup guIded muLtivariate muLtiple lIneAr regression with peNalizaTion (Brilliant), designed for feature selection and outcome prediction in genomic data with multi-phenotypic responses. Brilliant specifically incorporates genome and/or phenotype grouping structures, as well as phenotype correlation structures, in feature selection, effect estimation, and outcome prediction under a penalized multi-response linear regression model. Extensive simulations demonstrate its superior performance compared to competing methods. We applied Brilliant to two omics studies. In the first study, we identified novel association signals between multivariate gene expressions and high-dimensional DNA methylation profiles, providing biological insights for the baseline CpG-to-gene regulation patterns in a Puerto Rican children asthma cohort. The second study focused on cell-type deconvolution prediction using high-dimensional gene expression profiles. Using Brilliant, we improved the accuracy for cell-type fraction prediction and identified novel cell-type signature genes.
Collapse
Affiliation(s)
- Xueping Zhou
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15216, United States
| | - Manqi Cai
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15216, United States
| | - Molin Yue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15216, United States
| | - Juan C Celedón
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15216, United States
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15216, United States
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Yanming Li
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas, KS 66160, United States
| |
Collapse
|
3
|
Elgenidy A, Gad EF, Shabaan I, Abdelrhem H, Wassef PG, Elmozugi T, Abdelfattah M, Mousa H, Nasr M, Salah-Eldin M, Altaweel A, Hussein A, Bazzazeh M, Elganainy MA, Ali AM, Ezzat M, Elhoufey A, Alatram AA, Hammour A, Saad K. Examining the association between autism spectrum disorder and atopic eczema: meta-analysis of current evidence. Pediatr Res 2024:10.1038/s41390-024-03456-1. [PMID: 39128926 DOI: 10.1038/s41390-024-03456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVES This study aims to investigate the association between autism spectrum disorder (ASD) and atopic eczema (AE), shedding light on potential associations and underlying mechanisms. METHODS A comprehensive review of literature was conducted to identify relevant studies published up to August 2023. Various electronic databases, including PubMed, Embase, Scopus, Web of Science, and Cochrane, were searched using specific keywords related to ASD and AE. RESULTS The meta-analysis covered a total of 30 studies. The first analysis included 23 studies with a combined total of 147430 eczema patients in the ASD group and 8895446 eczema patients in non-ASD group. We calculated the risk ratio of eczema in ASD and non-ASD groups, which revealed a significantly higher risk of eczema in patients with ASD (RR 1.34; 95% CI 1.03, 1.76). The second analysis included seven studies with a combined total of 3570449 ASD patients in the AE group and 3253973 in the non-Eczema group. The risk ratio of ASD in the Eczema and Non-Eczema groups showed an insignificantly increased risk of ASD in patients with eczema (RR 1.67; 95% CI 0.91, 3.06). CONCLUSION This study underscores the possible link between ASD and atopic eczema, shedding light on their potential association. IMPACT Our study conducted a meta-analysis on the association between autism spectrum disorder (ASD) and atopic eczema (AE), shedding light on potential associations and underlying mechanisms. The review we conducted covered a total of 30 studies. This study underscores the possible link between ASD and atopic eczema, shedding light on their potential association.
Collapse
Affiliation(s)
| | - Eman F Gad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Islam Shabaan
- Department of Psychiatry, Faculty of Medicine, Al Azhar University, Assiut, Egypt
| | | | | | - Taher Elmozugi
- Faculty of Medicine, Benghazi University, Benghazi, Libya
| | | | - Hisham Mousa
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Nasr
- Faculty of Medicine, Al-Azhar University, New Damietta, Egypt
| | | | - Ahmed Altaweel
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | | | - Ahmed M Ali
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Mohamed Ezzat
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amira Elhoufey
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan, 45142, Saudi Arabia
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
| | - Abdulrahman A Alatram
- Department of Psychiatry, College of Medicine, Majmaah University, Al Majmaah, Saudi Arabia
| | - Ahmed Hammour
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Khaled Saad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
4
|
Choi KS, Shin TS, Ahn G, Kim SH, Chun J, Lee M, Kim DH, Choi HG, Lee KD, Shim SY. Bioactivity-Guided Fraction from Viscera of Abalone, Haliotis discus hannai Suppresses Cellular Basophils Activation and Anaphylaxis in Mice. J Microbiol Biotechnol 2024; 34:379-386. [PMID: 38037338 PMCID: PMC10940748 DOI: 10.4014/jmb.2310.10015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Basophils and mast cells are specialized effector cells in allergic reactions. Haliotis discus hannai (abalone), is valuable seafood. Abalone male viscera, which has a brownish color and has not been previously reported to show anti-allergic activities, was extracted with acetone. Six different acetone/hexane fractions (0, 10, 20, 30, 40, and 100%) were obtained using a silica column via β-hexosaminidase release inhibitory activity-guided selection in phorbol myristate acetate and a calcium ionophore, A23187 (PMACI)-induced human basophils, KU812F cells. The 40% acetone/hexane fraction (A40) exhibited the strongest inhibition of PMACI-induced-β-hexosaminidase release. This fraction dose-dependently inhibited reactive oxygen species (ROS) production and calcium mobilization without cytotoxicity. Western blot analysis revealed that A40 down-regulated PMACI-induced MAPK (ERK 1/2, p-38, and JNK) phosphorylation, and the NF-κB translocation from the cytosol to membrane. Moreover, A40 inhibited PMACI-induced interleukin (IL)-1β, IL-6, and IL-8 production. Anti-allergic activities of A40 were confirmed based on inhibitory effects on IL-4 and tumor necrosis factor alpha (TNF-α) production in compound (com) 48/80-induced rat basophilic leukemia (RBL)-2H3 cells. A40 inhibited β-hexosaminidase release and cytokine production such as IL-4 and TNF-α produced by com 48/80-stimulated RBL-2H3 cells. Furthermore, it's fraction attenuated the IgE/DNP-induced passive cutaneous anaphylaxis (PCA) reaction in the ears of BALB/c mice. Our results suggest that abalone contains the active fraction, A40 is a potent therapeutic and functional material to treat allergic diseases.
Collapse
Affiliation(s)
- Kap Seong Choi
- Department of Food Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Tai-Sun Shin
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Shin Hye Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jiyeon Chun
- Department of Food Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Dae Heon Kim
- Department of Biomedical Science, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Han-Gil Choi
- Faculty of Biological Science and Institute for Environmental Science, Wonkwang University, Iksan 54538, Republic of Korea
| | - Kyung-Dong Lee
- Department of Companion animal industry, College of Health & Welfare, Dongshin University. Naju 58245, Republic of Korea
| | - Sun-Yup Shim
- Department of Food Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
5
|
Bansal A, Kooi C, Kalyanaraman K, Gill S, Thorne A, Chandramohan P, Necker-Brown A, Mostafa MM, Milani A, Leigh R, Newton R. Synergy between Interleukin-1 β, Interferon- γ, and Glucocorticoids to Induce TLR2 Expression Involves NF- κB, STAT1, and the Glucocorticoid Receptor. Mol Pharmacol 2023; 105:23-38. [PMID: 37863662 DOI: 10.1124/molpharm.123.000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Glucocorticoids act via the glucocorticoid receptor (GR; NR3C1) to downregulate inflammatory gene expression and are effective treatments for mild to moderate asthma. However, in severe asthma and virus-induced exacerbations, glucocorticoid therapies are less efficacious, possibly due to reduced repressive ability and/or the increased expression of proinflammatory genes. In human A549 epithelial and primary human bronchial epithelial cells, toll-like receptor (TLR)-2 mRNA and protein were supra-additively induced by interleukin-1β (IL-1β) plus dexamethasone (IL-1β+Dex), interferon-γ (IFN-γ) plus dexamethasone (IFN-γ+Dex), and IL-1β plus IFN-γ plus dexamethasone (IL-1β+IFN-γ+Dex). Indeed, ∼34- to 2100-fold increases were apparent at 24 hours for IL-1β+IFN-γ+Dex, and this was greater than for any single or dual treatment. Using the A549 cell model, TLR2 induction by IL-1β+IFN-γ+Dex was antagonized by Org34517, a competitive GR antagonist. Further, when combined with IL-1β, IFN-γ, or IL-1β+IFN-γ, the enhancements by dexamethasone on TLR2 expression required GR. Likewise, inhibitor of κB kinase 2 inhibitors reduced IL-1β+IFN-γ+Dex-induced TLR2 expression, and TLR2 expression induced by IL-1β+Dex, with or without IFN-γ, required the nuclear factor (NF)-κB subunit, p65. Similarly, signal transducer and activator of transcription (STAT)-1 phosphorylation and γ-interferon-activated sequence-dependent transcription were induced by IFN-γ These, along with IL-1β+IFN-γ+Dex-induced TLR2 expression, were inhibited by Janus kinase (JAK) inhibitors. As IL-1β+IFN-γ+Dex-induced TLR2 expression also required STAT1, this study reveals cooperation between JAK-STAT1, NF-κB, and GR to upregulate TLR2 expression. Since TLR2 agonism elicits inflammatory responses, we propose that synergies involving TLR2 may occur within the cytokine milieu present in the immunopathology of glucocorticoid-resistant disease, and this could promote glucocorticoid resistance. SIGNIFICANCE STATEMENT: This study highlights that in human pulmonary epithelial cells, glucocorticoids, when combined with the inflammatory cytokines interleukin-1β (IL-1β) and interferon-γ (IFN-γ), can synergistically induce the expression of inflammatory genes, such as TLR2. This effect involved positive combinatorial interactions between NF-κB/p65, glucocorticoid receptor, and JAK-STAT1 signaling to synergistically upregulate TLR2 expression. Thus, synergies involving glucocorticoid enhancement of TLR2 expression may occur in the immunopathology of glucocorticoid-resistant inflammatory diseases, including severe asthma.
Collapse
Affiliation(s)
- Akanksha Bansal
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Cora Kooi
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Keerthana Kalyanaraman
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Sachman Gill
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Andrew Thorne
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Priyanka Chandramohan
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Amandah Necker-Brown
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Arya Milani
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Richard Leigh
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Robert Newton
- Departments of Physiology and Pharmacology (A.B., K.K., S.G., A.T., P.C., A.N.-B., M.M.M., A.M., R.N.) and Medicine (C.K., R.L.), Lung Health Research Group, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
6
|
Habashy NH, Olleak SA, Abu-Serie MM, Shaban NZ. A new approach for the treatment of bleomycin-induced rat pulmonary injury by combined protein fraction of major royal jelly protein 2 and its isoform X1. Biomed Pharmacother 2023; 167:115578. [PMID: 37742609 DOI: 10.1016/j.biopha.2023.115578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023] Open
Abstract
Nowadays, royal jelly (RJ) has gained great interest as a functional food due to its valuable pharmacological effects. We investigated the therapeutic potency of combined protein fraction (PF50) of major RJ protein 2 and its isoform X1 on bleomycin (Bleo)-induced pulmonary injury in rats. Our study examined the impact of PF50 on pulmonary oxidative and inflammatory stress as well as smooth muscle alpha-actin (α-SMA). In addition, the predicted impacts of this PF on the activity of matrix metalloproteinase (MMP)- 8 and 15-prostaglandin dehydrogenase (15-PGDH) and the E-type prostanoid 2 (EP2) and IL-13 α2 subunit (IL13α2R) receptors, were evaluated using molecular docking. The results showed that PF50 reduced pulmonary inflammatory cells and their secreted pro-inflammatory mediators, including NF-κB, IKK, IL-4, IL-6, and NO. Additionally, the levels of IgE and mucin were diminished after treatment with PF50. Moreover, PF50 treatment improved pulmonary oxidative stress indices such as lipid peroxidation, GSH, SOD, and GPX. The histopathological findings, chest conventional X-ray, and immunohistochemistry of α-SMA confirmed the ameliorating effect of PF50. The docking outcomes reported the probable competitive inhibitory influence of PF50 on MMP-8 and a postulated blocking effect on EP2 and IL13α2R. Thus, PF50 could be a novel approach for treating pulmonary injuries.
Collapse
Affiliation(s)
- Noha H Habashy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Shaimaa A Olleak
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering, and Biotechnology Research Institute, City for Scientific Research and Technology Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| | - Nadia Z Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Teramoto Y, Akagawa S, Hori SI, Tsuji S, Higasa K, Kaneko K. Dysbiosis of the gut microbiota as a susceptibility factor for Kawasaki disease. Front Immunol 2023; 14:1268453. [PMID: 38022552 PMCID: PMC10644744 DOI: 10.3389/fimmu.2023.1268453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Gut microbial imbalance (dysbiosis) has been reported in patients with acute Kawasaki disease (KD). However, no studies have analyzed the gut microbiota while focusing on susceptibility to KD. This study aimed to evaluate whether dysbiosis elevates susceptibility to KD by assessing children with a history of KD. Methods Fecal DNA was extracted from 26 children with a history of KD approximately 1 year prior (KD group, 12 boys; median age, 32.5 months; median time from onset, 11.5 months) and 57 age-matched healthy controls (HC group, 35 boys; median age, 36.0 months). 16S rRNA gene analysis was conducted with the Illumina Miseq instrument. Sequence reads were analyzed using QIIME2. Results For alpha diversity, Faith's phylogenetic diversity was significantly higher in the KD group. Regarding beta diversity, the two groups formed significantly different clusters based on Bray-Curtis dissimilarity. Comparing microbial composition at the genus level, the KD and HC groups were significantly different in the abundance of two genera with abundance over 1% after Benjamini-Hochberg false discovery rate correction for multiple comparisons. Compared with the HC group, the KD group had higher relative abundance of Ruminococcus gnavus group and lower relative abundance of Blautia. Discussion and conclusion Ruminococcus gnavus group reportedly includes pro-inflammatory bacteria. In contrast, Blautia suppresses inflammation via butyrate production. In the predictive functional analysis, the proportion of gut microbiota involved in several pathways was lower in the KD group. Therefore, dysbiosis characterized by distinct microbial diversity and decreased abundance of Blautia in parallel with increased abundance of Ruminococcus gnavus group might be a susceptibility factor for KD.
Collapse
Affiliation(s)
- Yoshiki Teramoto
- Department of Pediatrics, Kansai Medical University, Hirakata, Osaka, Japan
| | - Shohei Akagawa
- Department of Pediatrics, Kansai Medical University, Hirakata, Osaka, Japan
| | - Shin-ichiro Hori
- Department of Pediatrics, Kansai Medical University, Hirakata, Osaka, Japan
| | - Shoji Tsuji
- Department of Pediatrics, Kansai Medical University, Hirakata, Osaka, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
8
|
Lintomen L, Kluppel LM, Kitoko JZ, Montes-Cobos E, Vidal VM, Tan LB, de Farias JN, de Souza HS, Olsen PC, Bozza MT. MIF is essential to the establishment of house dust mite-induced airway inflammation and tissue remodeling in mice. Eur J Immunol 2023; 53:e2250016. [PMID: 37061852 DOI: 10.1002/eji.202250016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/17/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is present in high amounts in the BALF and serum of asthmatic patients, contributing to the pathogenesis of experimental asthma induced by OVA in mice. Whether MIF contributes to the physiopathology on a more complex and relevant asthma model has not been characterized. Mif-deficient (Mif-/- ) or WT mice treated with anti-MIF antibody were challenged multiple times using house dust mite (HDM) extract by the intranasal route. HDM-challenged Mif-/- mice presented decreased airway hyperresponsiveness, lung infiltration of eosinophils, mucus hypersecretion, and subepithelial fibrosis compared to HDM-challenged WT mice. Amounts of IL-4, IL-5, and IL-13 were decreased in the lungs of Mif-/- mice upon HDM challenges, but the increase of CCL11 was preserved, compared to HDM-challenged WT mice. We also observed increased numbers of group 2 innate lymphoid cells and Th2 cells in the BALF and mediastinal LNs (mLN)-induced challenged by HDM of WT mice, but not in HDM-challenged Mif-/- mice. Anti-MIF treatment abrogated the airway infiltration of eosinophils, mucus hypersecretion, and subepithelial fibrosis in the lungs of HDM-challenged mice. In conclusion, MIF ablation prevents the pathologic hallmarks of asthma in HDM-challenged mice, reinforcing the promising target of MIF for asthma therapy.
Collapse
Affiliation(s)
- Leticia Lintomen
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana M Kluppel
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jamil Z Kitoko
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elena Montes-Cobos
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius M Vidal
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis B Tan
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Nazioberto de Farias
- Departamento de Clínica Médica, Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor S de Souza
- Departamento de Clínica Médica, Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto D'Or de Pesquisa e Educação (IDOR), Rio de Janeiro, Brazil
| | - Priscilla C Olsen
- Laboratório de Estudos em Imunologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo T Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Song M, Hwang S, Son E, Yeo HJ, Cho WH, Kim TW, Kim K, Lee D, Kim YH. Geographical Differences of Risk of Asthma and Allergic Rhinitis according to Urban/Rural Area: a Systematic Review and Meta-analysis of Cohort Studies. J Urban Health 2023; 100:478-492. [PMID: 37191813 PMCID: PMC10323063 DOI: 10.1007/s11524-023-00735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
Several studies have demonstrated an association between the risk asthma/allergic rhinitis and the environment. However, to date, no systematic review or meta-analysis has investigated these factors. We conducted a systematic review and meta-analysis to assess the association between urban/rural living and the risk of asthma and allergic rhinitis. We searched the Embase and Medline databases for relevant articles and included only cohort studies to observe the effects of time-lapse geographical differences. Papers containing information on rural/urban residence and respiratory allergic diseases were eligible for inclusion. We calculated the relative risk (RR) and 95% confidence interval (CI) using a 2 × 2 contingency table and used random effects to pool data. Our database search yielded 8388 records, of which 14 studies involving 50,100,913 participants were finally included. The risk of asthma was higher in urban areas compared to rural areas (RR, 1.27; 95% CI, 1.12-1.44, p < 0.001), but not for the risk of allergic rhinitis (RR, 1.17; 95% CI, 0.87-1.59, p = 0.30). The risk of asthma in urban areas compared to rural areas was higher in the 0-6 years and 0-18 years age groups, with RRs of 1.21 (95% CI, 1.01-1.46, p = 0.04) and 1.35 (95% CI, 1.12-1.63, p = 0.002), respectively. However, there was no significant difference in the risk of asthma between urban and rural areas for children aged 0-2 years, with a RR of 3.10 (95% CI, 0.44-21.56, p = 0.25). Our study provides epidemiological evidence for an association between allergic respiratory diseases, especially asthma, and urban/rural living. Future research should focus on identifying the factors associated with asthma in children living in urban areas. The review was registered in PROSPERO (CRD42021249578).
Collapse
Affiliation(s)
- Mincheol Song
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seohyeon Hwang
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Eunjeong Son
- Division of Respiratory and Allergy, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Hye Ju Yeo
- Division of Respiratory and Allergy, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Woo Hyun Cho
- Division of Respiratory and Allergy, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Tae Woo Kim
- Department of Orthopaedic Surgery, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Kihun Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Yun Hak Kim
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
| |
Collapse
|
10
|
Li L, Mou X, Xie H, Zhang A, Li J, Wang R, Seid A, Tang LY, Wang L, Leung PC, Spielmann H, Wang CC, Fan X. In vitro tests to evaluate embryotoxicity and irritation of Chinese herbal medicine (Pentaherbs formulation) for atopic dermatitis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116149. [PMID: 36632857 DOI: 10.1016/j.jep.2023.116149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atopic dermatitis (AD) is a common chronic inflammatory skin disorder and its prevalence is increasing in the last few decades. No treatment can cure the condition. Pregnancy often worsens the clinical manifestation. There are considerable interests in Chinese Herbal Medicine (CHM) as an alternative treatment for AD. A well tolerated CHM formula (Pentaherbs formulation, PHF) has been proven efficacious in improving life quality and reducing topical corticosteroid use in children with moderate-to-severe AD. However, safety data of PHF are not available. AIM OF THE STUDY Our study aimed to evaluate the safety of PHF and its 5 individual herbal extracts, including embryotoxicity by Embryonic Stem Cell Test (EST) and irritation by Skin Irritation Test (SIT). MATERIALS AND METHODS Quality of 5 herbal extracts of PHF was confirmed by chromatography. In EST, mouse embryonic stem cell line (D3) and mouse fibroblast cell line (3T3) were used to study potential embryotoxicity. Three endpoints were assessed by concentration-response curves after 10 days' culture: 50% inhibition of D3 differentiation into beating cardiomyocytes (ID50D3), 50% cytotoxic effects on D3 (IC50D3) and on fibroblasts (IC503T3). A biostatistically based prediction model (PM) was applied to predict the embryotoxic potentials of each CHM. In SIT, epidermis equivalent commercially available kits (EpiDerm™) were used, and concentration-viability curves were obtained by MTT assay to detect skin irritations of each CHM. RESULTS Chemical authentication confirmed that 5 test herbal extracts contained their main active compounds. EST results indicated that the formula PHF and its individual CHMs were non-embryotoxic, except one CHM, Amur Corktree Bark (Huang Bai, Phellodendron chinense C.K.Schneid), was weakly embryotoxic. SIT results showed that cell viability was above 50% after treatment with different concentrations of all tested CHMs. CONCLUSIONS Our in vitro tests provided preliminary evidence for safety of the formula PHF in embryonic stem cell test and skin irritation model, but PHF shall be cautiously used in pregnant women with AD. Further studies are needed to support its clinical application as an alternative treatment for AD, especially to the patients who plan for pregnancy or at lactation stages.
Collapse
Affiliation(s)
- Lu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China; Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China; Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | - Xuan Mou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China.
| | - Hongliang Xie
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China.
| | - Aolin Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China.
| | - Junwei Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China.
| | - Rongyun Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - André Seid
- Institut für Pharmazie (Pharmakologie und Toxikologie), Freie Universität Berlin, Berlin, Germany.
| | - Ling Yin Tang
- Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | - Ling Wang
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | - Horst Spielmann
- Institut für Pharmazie (Pharmakologie und Toxikologie), Freie Universität Berlin, Berlin, Germany.
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology; Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Sichuan University-Chinese University of Hong Kong Joint Reproductive Medicine Laboratory, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
| |
Collapse
|
11
|
Chen YCS, Lee-Sarwar KA, Mirzakhani H, O'Connor GT, Bacharier LB, Zeiger RS, Knihtilä HM, Jha A, Kelly RS, Laranjo N, Fichorova RN, Luu N, Weiss ST, Litonjua AA. The Association of Prenatal C-Reactive Protein Levels With Childhood Asthma and Atopy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:3213-3219.e11. [PMID: 36108928 PMCID: PMC10088546 DOI: 10.1016/j.jaip.2022.08.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The pathogenesis of childhood asthma is complex, and determinants of risk may begin in utero. OBJECTIVE To describe the association of systemic prenatal inflammation, measured by plasma C-reactive protein (CRP), with childhood asthma, eczema, and allergic rhinitis. METHODS A total of 522 maternal-offspring pairs from the Vitamin D Antenatal Asthma Reduction Trial were included. Prenatal plasma CRP level was measured between 10 and 18 weeks of gestation and between 32 and 38 weeks of gestation. Offspring asthma, eczema, and allergic rhinitis were assessed quarterly between birth and age 6 years. We performed mediation analyses of prenatal CRP on the association between several maternal characteristics and offspring asthma. RESULTS Elevated early and late prenatal CRP and an increase in CRP from early to late pregnancy were associated with asthma by age 6 years (early: adjusted odds ratio [aOR], 1.76, 95% CI, 1.12-2.82, P = .02; late: aOR, 2.45, 95% CI, 1.47-4.18, P < .001; CRP increase: aOR, 2.06, 95% CI, 1.26-3.39, P < .004). Prenatal CRP and childhood asthma associations were strengthened among offspring with atopic asthma (early: aOR, 3.78, 95% CI, 1.49-10.64, P = .008; late: aOR, 4.84, 95% CI, 1.68-15.50, P = .005; CRP increase: aOR, 3.01, 95% CI, 1.06-9.16, P = .04). Early and late prenatal CRP mediated 96% and 86% of the association between maternal prepregnancy body mass index and offspring asthma, respectively. CONCLUSIONS Higher prenatal CRP and an increase in CRP from early to late pregnancy are associated with childhood asthma. Systemic inflammation during pregnancy associated with modifiable maternal characteristics may be an important determinant of childhood asthma risk.
Collapse
Affiliation(s)
- Yih-Chieh S Chen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Kathleen A Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Hooman Mirzakhani
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - George T O'Connor
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Leonard B Bacharier
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Robert S Zeiger
- Departments of Allergy and Research and Evaluation, Kaiser Permanente Southern California, San Diego and Pasadena, Calif; Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, Calif
| | - Hanna M Knihtilä
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Department of Pediatrics, Stanford University School of Medicine, Stanford, Calif
| | - Anjali Jha
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Nancy Laranjo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Ngan Luu
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital at Strong, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
12
|
Lunjani N, Walsh LJ, Venter C, Power M, MacSharry J, Murphy DM, O'Mahony L. Environmental influences on childhood asthma-The effect of diet and microbiome on asthma. Pediatr Allergy Immunol 2022; 33:e13892. [PMID: 36564884 PMCID: PMC10107834 DOI: 10.1111/pai.13892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
Early life dietary patterns and timely maturation of mucosa-associated microbial communities are important factors influencing immune development and for establishing robust immune tolerance networks. Microbial fermentation of dietary components in vivo generates a vast array of molecules, some of which are integral components of the molecular circuitry that regulates immune and metabolic functions. These in turn protect against aberrant inflammatory processes and promote effector immune responses that quickly eliminate pathogens. Multiple studies suggest that changes in dietary habits, altered microbiome composition, and microbial metabolism are associated with asthma risk and disease severity. While it remains unclear whether these microbiome alterations are a cause or consequence of dysregulated immune responses, there is significant potential for using diet in targeted manipulations of the gut microbiome and its metabolic functions in promoting immune health. In this article, we will summarize our knowledge to date on the role of dietary patterns and microbiome activities on immune responses within the airways. Given the malleability of the human microbiome, its integration into the immune system, and its responsiveness to diet, this makes it a highly attractive target for therapeutic and nutritional intervention in children with asthma.
Collapse
Affiliation(s)
- Nonhlanhla Lunjani
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Dermatology, University of Cape Town, Cape Town, South Africa
| | - Laura J Walsh
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| | - Carina Venter
- Section of Allergy and Immunology, University of Colorado School of Medicine, Colorado, USA.,Children's Hospital Colorado, Colorado, USA
| | - Matthew Power
- School of Microbiology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland
| | - John MacSharry
- School of Microbiology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland
| | - Desmond M Murphy
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland.,Clinical Research Facility, University College Cork, Cork, Ireland
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Sansone NMS, Valencise FE, Bredariol RF, Peixoto AO, Marson FAL. Profile of coronavirus disease enlightened asthma as a protective factor against death: An epidemiology study from Brazil during the pandemic. Front Med (Lausanne) 2022; 9:953084. [PMID: 36523782 PMCID: PMC9745079 DOI: 10.3389/fmed.2022.953084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/07/2022] [Indexed: 11/03/2023] Open
Abstract
INTRODUCTION The possibility that asthma is not a risk factor for the worst outcomes due to coronavirus disease (COVID-19) is encouraged. The increase in Th2 response dominance can downregulate the late phase of hyperinflammation, which is typically the hallmark of more severe respiratory viral infections, alongside lower angiotensin-converting enzyme receptors in patients with asthma due to chronic inflammation. Few studies associated asthma diagnosis and COVID-19 outcomes. In this context, we aimed to associate the asthma phenotype with the clinical signs, disease progression, and outcomes in patients with COVID-19. METHODS We performed an epidemiologic study using patients' characteristics from OpenDataSUS to verify the severity of COVID-19 among Brazilian hospitalized patients with and without the asthma phenotype according to the need for intensive care units, intubation, and deaths. We also evaluated the demographic data (sex, age, place of residence, educational level, and race), the profile of clinical signs, and the comorbidities. RESULTS Asthma was present in 43,245/1,129,838 (3.8%) patients. Among the patients with asthma, 74.7% who required invasive ventilatory support evolved to death. In contrast, 78.0% of non-asthmatic patients who required invasive ventilatory support died (OR = 0.83; 95% CI = 0.79-0.88). Also, 20.0% of the patients with asthma that required non-invasive ventilatory support evolved to death, while 23.5% of non-asthmatic patients evolved to death (OR = 0.81; 95% CI = 0.79-0.84). Finally, only 11.2% of the patients with asthma who did not require any ventilatory support evolved to death, while 15.8% of non-asthmatic patients evolved to death (OR = 0.67; 95% CI = 0.62-0.72). In our multivariate analysis, one comorbidity and one clinical characteristic stood out as protective factors against death during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Patients with asthma were less prone to die than other patients (OR = 0.79; 95% CI = 0.73-0.85), just like puerperal patients (OR = 0.74; 95% CI = 0.56-0.97) compared to other patients. CONCLUSION Asthma was a protective factor for death in hospitalized patients with COVID-19 in Brazil. Despite the study's limitations on patients' asthma phenotype information and corticosteroid usage, this study brings to light information regarding a prevalent condition that was considered a risk factor for death in COVID-19, being ultimately protective.
Collapse
Affiliation(s)
- Nathalia Mariana Santos Sansone
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, São Paulo, Brazil
| | - Felipe Eduardo Valencise
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, São Paulo, Brazil
| | - Rafael Fumachi Bredariol
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, São Paulo, Brazil
| | | | - Fernando Augusto Lima Marson
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, São Francisco University, São Paulo, Brazil
- Center for Pediatric Investigation, University of Campinas, São Paulo, Brazil
| |
Collapse
|
14
|
Alebiosu OS, Adekanmbi OH. Aerofloral studies and allergenicity of dominant pollen types in Taraba and Bauchi States of Northeastern Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157076. [PMID: 35780899 DOI: 10.1016/j.scitotenv.2022.157076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Pollen and spores have been identified as major airborne bio-particles inducing respiratory disorders including allergic rhinitis and atopic dermatitis among hypersensitive individuals. The present study was conducted with a view to investigating monthly depositional rate of atmospheric palynomorphs to determine the influence of the immediate vegetation on airborne pollen distribution; allergenic activities of dominant atmospheric pollen types at selected study locations in Taraba and Bauchi States, Northeastern Nigeria. Bioaerosols were collected using Tauber-like pollen traps and subjected to standard palynological treatment procedures, microscopy and photomicrography. Plant enumeration within the surrounding vegetation revealed that some airborne pollen types were produced by local plants at the study locations. Spores of Nephrolepis sp., Pteris sp. and a trilete fern, as well as diatoms were also recovered. Crude protein contents of some dominant pollen types; Borreria verticillata (L.) G.F.W. Meyer and Panicum maximum Jacq. for Taraba State; Leucaena leucocephala (Lam.) de Wit. and Terminalia catappa L. for Bauchi State, were quantified and extracted to sensitize Mus musculus mice for serology (ELISA) and haematology (differential and total white blood cell counts). Statistical significance was tested and recorded in the correlation between levels of serological and haematological parameters elicited by each test group; differences between levels of these parameters elicited by each test group and those of the control, as well as at varying sensitization periods. In the Leucaena leucocephala test group, swollen body and histopathological morbid features showing more extensive areas of inflammatory cells and alveoli filled with fluid in the lungs, were recorded in two dead M. musculus, respectively. The study revealed that all the tested pollen types are possible allergens at the study locations, establishing a complexity of interaction among allergy mediators at varied periods of mice sensitization and forming a paradigm of human immune response to the different pollen allergens.
Collapse
|
15
|
Won J, Jo A, Gil CH, Kim S, Shin H, Jik Kim H. Inhaled delivery of recombinant interferon-lambda restores allergic inflammation after development of asthma by controlling Th2- and Th17-cell-mediated immune responses. Int Immunopharmacol 2022; 112:109180. [PMID: 36030690 DOI: 10.1016/j.intimp.2022.109180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
Remarkable progress has recently been achieved to identify the biological function and potential value of novel therapeutic targets for the effective control of allergic asthma. Interferon (IFN)-λ has been suggested to restrict chronic inflammation in the lungs of asthmatic mice and we sought to determine the contribution of IFN-λ as an asthma therapeutic. We show that inhaled IFN-λ can restrict Th2 and Th17 inflammation in the lungs of asthmatic mice, accompanied with alteration of IL-10 secretion. BALB/C mice were used for an asthmatic mouse model with OVA. Recombinant IFN-λs (IFN-λ2: 2 μg, IFN-λ3: 2 μg) were inoculated into asthmatic mice after OVA challenge by intranasal delivery. Lungs of asthmatic mice were severely inflamed, with extensive inflammatory cell infiltration and increased goblet cell metaplasia with higher total lung resistance. Transcription of IL-4, IL-5, IL-13, and IL-17A was significantly higher until five days after the final OVA challenge. Asthmatic mice were administered recombinant IFN-λ via inhalation three times after the last challenge and the asthmatic mice showed improvement in lung histopathologic findings, and total lung resistance was maintained under normal range. IFN-λ inhalation exhibited significant decreases in Th2 and Th17 cytokine levels, and the populations of Th2 and Th17 cells were recovered from the lungs of asthmatic mice. Additionally, increase in IL-10 secretion from CD4 + Th cells population was observed in response to inhaled delivery of IFN-λ along with alterations in Th2 and Th17 cell-derived inflammation. Our findings show that inhaled delivery of IFN-λ can restrict airway inflammation in the lungs of asthmatic mice by controlling Th2- and Th17-mediated responses accompanied by regulation of IL-10 secretion even after asthma development.
Collapse
Affiliation(s)
- Jina Won
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ara Jo
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan Hee Gil
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sujin Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Haeun Shin
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea; Seoul National University Hospital, Seoul, Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center.
| |
Collapse
|
16
|
Tamayo JM, Rose D, Church JS, Schwartzer JJ, Ashwood P. Maternal Allergic Asthma Induces Prenatal Neuroinflammation. Brain Sci 2022; 12:brainsci12081041. [PMID: 36009104 PMCID: PMC9405898 DOI: 10.3390/brainsci12081041] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders characterized by impaired social interactions and communication skills and repetitive or stereotyped behaviors. Rates of ASD diagnosis continue to rise, with current estimates at 1 in 44 children in the US (Maenner 2021). Epidemiological studies have suggested a link between maternal allergic asthma and an increased likelihood of having a child diagnosed with ASD. However, a lack of robust laboratory models prevents mechanistic research from being carried out. We developed a novel mouse model of maternal asthma-allergy (MAA) and previously reported that offspring from these mothers exhibit behavioral deficits compared to controls. In addition, it was shown that epigenetic regulation of gene expression in microglia was altered in these offspring, including several autism candidate genes. To further elucidate if there is neuroinflammation in the fetus following MAA, we investigated how allergic asthma impacts the maternal environment and inflammatory markers in the placenta and fetal brain during gestation. Female C57Bl/6 mice were primed with ovalbumin (OVA) prior to allergic asthma induction during pregnancy by administering aerosolized ovalbumin or PBS control to pregnant dams at gestational days (GD)9.5, 12.5, and 17.5. Four hours after the final induction, placenta and fetal brains were collected and measured for changes in cytokines using a Luminex bead-based multiplex assay. Placental MAA tissue showed a decrease in interleukin (IL)-17 in male and female offspring. There was a sex-dependent decrease in female monocyte chemoattractant protein 1 (MCP-1). In male placentas, IL-4, C-X-C motif chemokine 10 (CXCL10)-also known as interferon γ-induced protein 10 kDa (IP-10)-and chemokine (C-C motif) ligand 5 (RANTES) were decreased. In fetal brains, elevated inflammatory cytokines were found in MAA offspring when compared to controls. Specifically, interferon-gamma (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 1α (IL-1α), IL-6, and tumor necrosis factor α (TNFα) were elevated in both males and females. In contrast, a decrease in the cytokine IL-9 was also observed. There were slight sex differences after OVA exposures. Male fetal brains showed elevated levels of macrophage inflammatory protein-2 (MIP-2), whereas female brains showed increased keratinocytes-derived chemokine (KC). In addition, IL-1𝛽 and IP-10 in male fetal brains were decreased. Together, these data indicate that repeated exposure to allergic asthma during pregnancy alters cytokine expression in the fetal environment in a sex-dependent way, resulting in homeostatic and neuroinflammatory alterations in the fetal brain.
Collapse
Affiliation(s)
- Juan M. Tamayo
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95817, USA
- The M.I.N.D. Institute, University of California Davis, Sacramento, CA 95817, USA
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95817, USA
- The M.I.N.D. Institute, University of California Davis, Sacramento, CA 95817, USA
| | - Jamie S. Church
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Jared J. Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95817, USA
- The M.I.N.D. Institute, University of California Davis, Sacramento, CA 95817, USA
- Correspondence:
| |
Collapse
|
17
|
Chang SJ, Kuo HC, Chou WJ, Tsai CS, Lee SY, Wang LJ. Cytokine Levels and Neuropsychological Function among Patients with Attention-Deficit/Hyperactivity Disorder and Atopic Diseases. J Pers Med 2022; 12:jpm12071155. [PMID: 35887652 PMCID: PMC9316989 DOI: 10.3390/jpm12071155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Since atopic disease and inflammatory cytokines are both involved in attention deficit hyperactivity disorder (ADHD), in this study, we examined the relationship among cytokine levels, neuropsychological function, and behavioral manifestations in patients with ADHD and atopic diseases. Participants were categorized into individuals with ADHD and atopic disease (n = 41), those with ADHD without allergy (n = 74), individuals without ADHD but with allergy (n = 23), and those without ADHD or allergy (n = 49). We used the Swanson, Nolan, and Pelham IV Scale (SNAP-IV), Conners’ Continuous Performance Test (Conners CPT), and Conners’ Continuous Auditory Test of Attention (CATA) to assess patients’ behavioral symptoms, visual attention, and auditory attention, respectively. Participants’ IFN-γ, IL-1B, IL-6, IL-10, IL-13, IL-17, MCP-1, and TNF-α plasma levels were assessed using multiplex assays. We found that the prevalence rates of atopic diseases (asthma, allergic rhinitis, or atopic dermatitis) were similar between individuals with ADHD and those without ADHD. ADHD behavioral symptoms (SNAP-IV), CPT omission scores, and CATA detectability scores demonstrated significant differences between individuals with ADHD and those without ADHD, regardless of atopic diseases. However, plasma levels of cytokines (TNF-α, IFN-γ, and IL-17) were negatively correlated with inattention symptoms. This study demonstrates a potential relationship between cytokine levels and neuropsychological function among patients with ADHD and atopic diseases.
Collapse
Affiliation(s)
- Shung-Jie Chang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-J.C.); (W.-J.C.); (C.-S.T.)
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-J.C.); (W.-J.C.); (C.-S.T.)
| | - Ching-Shu Tsai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-J.C.); (W.-J.C.); (C.-S.T.)
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung 83301, Taiwan;
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung 83301, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (S.-J.C.); (W.-J.C.); (C.-S.T.)
- Correspondence: ; Tel.: +886-7-7317123 (ext. 8753); Fax: +886-7-7326817
| |
Collapse
|
18
|
Kang SW, Kim KI, Bu Y, Lee BJ, Jung HJ. Therapeutic Potential of Chungsangboha-tang for the Treatment of Asthma: A Review of Preclinical and Clinical Studies. J Clin Med 2022; 11:jcm11144035. [PMID: 35887796 PMCID: PMC9320585 DOI: 10.3390/jcm11144035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023] Open
Abstract
In traditional Korean medicine, Chungsangboha-tang (CSBHT) and its modified forms are used to treat various respiratory disorders, including asthma. This study aimed to identify research trends, clarify the effectiveness of CSBHT and related prescriptions, and lay a foundation for future research. We conducted a literature review using PubMed, Embase, Google Scholar, Oriental Medicine Advanced Searching Integrated System, National Digital Science Links, Korean Medical Database, Wanfang Data, and Chinese National Knowledge Infrastructure databases. We analyzed 25 studies, including 5 in vitro studies, 6 animal studies, and 14 human studies. Many studies evaluated the efficacy of CSBHT and its related prescriptions, including experimental studies on its effectiveness in asthma. The main mechanism of action involves the anti-inflammatory effect caused by the regulation of various immune cells, cytokines, and chemokines. In addition, clinical trials on asthma reported the benefits of CSBHT and its related prescriptions. However, there has been no randomized controlled study of clinical trials on the clinical effectiveness of CSBHT in asthma. Therefore, large-scale randomized controlled studies should be conducted in the future.
Collapse
Affiliation(s)
- Sung-Woo Kang
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (S.-W.K.); (K.-I.K.)
| | - Kwan-Il Kim
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (S.-W.K.); (K.-I.K.)
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea;
| | - Beom-Joon Lee
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (S.-W.K.); (K.-I.K.)
- Department of Internal Medicine (Pulmonary & Allergy System), Kyung Hee University Medical Center, 23 Kyungheedae-ro, Seoul 02447, Korea
- Correspondence: (B.-J.L.); (H.-J.J.)
| | - Hee-Jae Jung
- Division of Allergy, Immune and Respiratory System, Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Korea; (S.-W.K.); (K.-I.K.)
- Department of Internal Medicine (Pulmonary & Allergy System), Kyung Hee University Medical Center, 23 Kyungheedae-ro, Seoul 02447, Korea
- Correspondence: (B.-J.L.); (H.-J.J.)
| |
Collapse
|
19
|
Ma C, Wang S, Cao Y, Tang W, Wuniqiemu T, Teng F, Zhu X, Wei Y, Dong J. Screening and Verification of Differentially Expressed Long Non-coding RNAs in the Peripheral Blood of Patients With asthma. Front Pharmacol 2022; 13:834009. [PMID: 35273507 PMCID: PMC8902465 DOI: 10.3389/fphar.2022.834009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Growing evidence suggests that long non-coding RNAs (lncRNAs) play a key role in the pathogenesis of asthma. Although some differentially expressed lncRNAs have been identified in asthmatic patients, many asthma-related lncRNAs have not been annotated. In the present study, six patients and three healthy subjects were randomly selected from 34 asthmatic patients and 17 healthy subjects. Second-generation high-throughput sequencing was performed on their peripheral blood samples. There were 1,137 differentially expressed lncRNAs in the asthma patients compared to in the healthy controls, of which 485 were upregulated and 652 were downregulated. The top 30 enriched GO and KEGG terms were identified, and the cytosolic ribosome (GO:0022626) and ribosome (hsa03010) were associated with the most differentially expressed lncRNAs. The top 10 differentially expressed lncRNAs associated with asthma were verified by an lncRNA-mRNA co-expression network and RT-qPCR. Seven of the these (NONHSAT015495.2, MSTRG.71212.2, NONHSAT163272.1, NONHSAT181891.1, NONHSAT190964.1, ENST00000564809, and NONHSAT076890.2) were down-regulated in the peripheral blood of asthmatic patients, which was consistent with the sequencing results. Three patients and three healthy subjects were randomly selected from the remaining subjects to verify these seven lncRNAs by RT-qPCR, which further confirmed the sequencing results. Public database GSE106230 was also in agreement with the FPKM (Fragments Per kilobase of exon model per Million mapped reads) trends of ENST00000564809, NONHSAT015495.2, NONHSAT181891.1, and NONHSAT190964.1. In conclusion, the present study identified seven lncRNAs that may serve as potential biological markers for asthma.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Shiyuan Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuxue Cao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Ghaffari S, Abbasi A, Somi MH, Moaddab SY, Nikniaz L, Kafil HS, Ebrahimzadeh Leylabadlo H. Akkermansia muciniphila: from its critical role in human health to strategies for promoting its abundance in human gut microbiome. Crit Rev Food Sci Nutr 2022; 63:7357-7377. [PMID: 35238258 DOI: 10.1080/10408398.2022.2045894] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Akkermansia muciniphila, a frequent colonizer in the gut mucous layer of individuals, has constantly been recognized as a promising candidate for the next generation of probiotics due to its biological advantages from in vitro and in vivo investigations. This manuscript comprehensively reviewed the features of A. muciniphila in terms of its function in host physiology and frequently utilized nutrition using the published peer-reviewed articles, which should present valuable and critical information to scientists, engineers, and even the general population. A. muciniphila is an important bacterium that shows host physiology. However, its physiological advantages in several clinical settings also have excellent potential to become a probiotic. Consequently, it can be stated that there is a coherent and direct relation between the biological activities of the gut microbiota, intestinal dysbiosis/eubiosis, and the population of A. muciniphila in the gut milieu, which is influenced by various genetical and nutritional factors. Current regulatory barriers, the need for large-scale clinical trials, and the feasibility of production must be removed before A muciniphila can be extensively used as a next-generation probiotic.
Collapse
Affiliation(s)
- Sima Ghaffari
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Nikniaz
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
21
|
Song Y, Wang ZZ, Wang L, Faybusovich P, Srivastava K, Liu C, Tversky J, Dunkin D, Busse P, Ren X, Miller R, Miao M, Li XM. Sophora flavescens Alkaloids and Corticosteroid Synergistically Augment IL-10/IL-5 Ratio with Foxp3-Gene-Epigenetic Modification in Asthma PBMCs. J Asthma Allergy 2022; 14:1559-1571. [PMID: 34992384 PMCID: PMC8711843 DOI: 10.2147/jaa.s321616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background It has been demonstrated that ASHMI (antiasthma-simplified herbal medicine intervention) can improve airway function and reduce inflammation in human asthmatic patients with high safety and tolerability. In addition, ASHMI significantly suppresses Th2 cytokine production and increases Th1 cytokine production in treating asthma. Objective Allergic asthma is associated with dysregulation of cytokines. We focused on IL-5 and IL-10 as signature Th2 and Treg cytokines to characterize ASHMI immunomodulatory components. Methods The effects of ASHMI and individual herbal constituents on IL-5 and IL-10 production by PBMCs from asthmatic subjects were determined ex vivo. Sophora flavescens (SF)-F2, containing alkaloid compounds, effects on PBMC IL-10 and IL-5 production in the presence or absence of dexamethasone (Dex), and on DNA methylation levels at the foxp3 gene promoter were determined. Results The ratio of anti-CD3/CD28 stimulated IL-10/IL-5 production by PBMCs from asthmatic subjects was significantly reduced compared to healthy subjects. In PBMCs from asthmatic subjects, ASHMI significantly reduced IL-5 production and increased IL-10 secretion in a dose-dependent manner (p < 0.05–0.01). SF-F2 was most effective in increasing IL-10, whereas SF-F4 (flavonoid compounds) was most effective in suppressing IL-5 production. Dex-treated PBMCs from asthma subjects showed a trend of increasing ratio of IL-10/IL-5 while demonstrating reduced levels in both IL-5 and IL-10 (p < 0.05). Co-culture with Dex and SF-F2 significantly prevented Dex suppression of IL-10, while retained Dex-suppression of IL-5 production, and increased IL-10/IL-5 ratio by Dex. Co-culture with SF-F2 and Dex significantly reduced DNA methylation levels at the foxp3 gene promoter at CpG−126. Conclusion The SF alkaloid-rich fraction may be responsible for ASHMI induction of IL-10 production by PBMCs and plays a synergistic effect with Dex for augmenting IL-10/IL-5 ratio.
Collapse
Affiliation(s)
- Ying Song
- Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhen-Zhen Wang
- Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Lixin Wang
- Integrated TCM & Western Medicine Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, People's Republic of China
| | - Paul Faybusovich
- Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kamal Srivastava
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,General Nutraceutical Technology LLC, Elmsford, NY, USA
| | - Changda Liu
- Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Department of Pediatrics, Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jody Tversky
- The Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland, USA
| | - David Dunkin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Busse
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianqing Ren
- The First Affiliated Hospital of Henan University of TCM, Zhengzhou, People's Republic of China
| | - Rachel Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mingsan Miao
- Academy of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,Department of Otolaryngology, New York Medical College, Ardsley, NY, USA
| |
Collapse
|
22
|
Li CQ, Sun QX, Xu SY, Li LD, Xiao H, Zhang QN. Nebulized Mycobacterium vaccae protects against asthma by attenuating the imbalance of IRF4/IRF8 expression in dendritic cells. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.363878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Chawes BL, Wolsk HM, Carlsson CJ, Rasmussen MA, Følsgaard N, Stokholm J, Bønnelykke K, Brix S, Schoos AM, Bisgaard H. Neonatal airway immune profiles and asthma and allergy endpoints in childhood. Allergy 2021; 76:3713-3722. [PMID: 33864271 DOI: 10.1111/all.14862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/11/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The immune system plays a key role in the pathogenesis of asthma and allergy, but the role of the airway cytokine and chemokine composition in vivo in early life prior to symptom development has not been described previously. Here, we aimed to examine whether the neonatal airway immune composition associates with development of allergy and asthma in childhood. METHODS We measured unstimulated levels of 20 immune mediators related to the Type 1, Type 2, Type 17, or regulatory immune pathways in the airway mucosal lining fluid of 620 one-month-old healthy neonates from the COPSAC2010 birth cohort. Allergy and asthma were diagnosed at our research clinic by predefined algorithms and objective assessments at age 6 years. Principal component analyses were used to describe the airway cytokine and chemokine composition. RESULTS A neonatal airway immune profile particularly characterized by enhanced IL-1β and reduced CCL26 was significantly associated with later development of elevated specific IgE to inhaled allergens, a positive skin prick test, and allergic rhinitis, but not with food sensitization. Conversely, reduced Type 17 immune-associated markers, including IL-1β and CXCL8, showed trend of association with development of early asthma endpoints. CONCLUSIONS Development of early asthma endpoints and inhalant allergy during the first 6 years of life seems associated with distinctly perturbed airway immune profiles in neonatal life, which is suggestive of an early origin and different pathogenesis of childhood asthma and allergy. These exploratory findings suggest pre- and perinatal life as an important window of opportunity for prevention of asthma and inhalant allergy.
Collapse
Affiliation(s)
- Bo L. Chawes
- COPSAC Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| | - Helene M. Wolsk
- COPSAC Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| | - Christian J. Carlsson
- COPSAC Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| | - Morten A. Rasmussen
- COPSAC Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
- Department of Food Science University of Copenhagen Frederiksberg C Denmark
| | - Nilofar Følsgaard
- COPSAC Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| | - Jakob Stokholm
- COPSAC Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| | - Klaus Bønnelykke
- COPSAC Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine Technical University of Denmark Lyngby Denmark
| | - Ann‐Marie M. Schoos
- COPSAC Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| | - Hans Bisgaard
- COPSAC Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital University of Copenhagen Copenhagen Denmark
| |
Collapse
|
24
|
Yang A, Liao Y, Zhu J, Zhang J, Wu Z, Li X, Tong P, Chen H, Wang S, Liu Z. Screening of anti-allergy Lactobacillus and its effect on allergic reactions in BALB/c mice sensitized by soybean protein. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Soni DK, Biswas R. Role of Non-Coding RNAs in Post-Transcriptional Regulation of Lung Diseases. Front Genet 2021; 12:767348. [PMID: 34819948 PMCID: PMC8606426 DOI: 10.3389/fgene.2021.767348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs), notably microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have recently gained increasing consideration because of their versatile role as key regulators of gene expression. They adopt diverse mechanisms to regulate transcription and translation, and thereby, the function of the protein, which is associated with several major biological processes. For example, proliferation, differentiation, apoptosis, and metabolic pathways demand fine-tuning for the precise development of a specific tissue or organ. The deregulation of ncRNA expression is concomitant with multiple diseases, including lung diseases. This review highlights recent advances in the post-transcriptional regulation of miRNAs and lncRNAs in lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. Further, we also discuss the emerging role of ncRNAs as biomarkers as well as therapeutic targets for lung diseases. However, more investigations are required to explore miRNAs and lncRNAs interaction, and their function in the regulation of mRNA expression. Understanding these mechanisms might lead to early diagnosis and the development of novel therapeutics for lung diseases.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
26
|
Baralić K, Bozic D, Živančević K, Milenković M, Javorac D, Marić Đ, Antonijević Miljaković E, Buha Djordjevic A, Vukomanović P, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Integrating in silico with in vivo approach to investigate phthalate and bisphenol A mixture-linked asthma development: Positive probiotic intervention. Food Chem Toxicol 2021; 158:112671. [PMID: 34793900 DOI: 10.1016/j.fct.2021.112671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
The aim of this study was to explore the mechanisms of bis(2- ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and bisphenol A (BPA) mixture-induced asthma development and test probiotic as a potential positive intervention. Comparative Toxicogenomics Database (CTD) and ToppGene Suite were used as the main tools for in silico analysis. In vivo 28-day experiment was conducted on rats - seven groups (n = 6): (1) Control: corn oil, (2) P: probiotic (8.78 * 108 CFU/kg/day); (3) DEHP: 50 mg/kg b.w./day, (4) DBP: 50 mg/kg b.w./day, (5) BPA: 25 mg/kg b.w./day; (6) MIX: DEHP + DBP + BPA; (7) MIX + P. Lungs, thymus and kidneys were extracted and prepared for redox status and essential metals analysis. By conducting additional in vitro experiment, probiotic phthalate and BPA binding ability was explored. There were 24 DEHP, DBP and BPA asthma-related genes, indicating the three most probable mechanisms - apoptosis, inflammation and oxidative stress. In vivo experiment confirmed that significant changes in redox status/essential metal parameters were either prominent, or only present in the MIX group, indicating possible additive effects. In vitro experiment confirmed the ability of the multy-strain probiotic to bind DEHP/DBP/BPA mixture, while probiotic administration ameliorated mixture-induced changes in rat tissue.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Dragica Bozic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Milan Milenković
- Department of Drug Analysis, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia; Institute of Public Health of Serbia Dr Milan Jovanovic Batut, dr Subotića 5, 112113, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Predrag Vukomanović
- Medical Sanitary School of Applied Sciences "Visan", 11080, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
27
|
Goudreau AD, Everest C, Nagpal TS, Puranda JL, Bhattacharjee J, Vasanthan T, Adamo KB. Elucidating the interaction between maternal physical activity and circulating myokines throughout gestation: A scoping review. Am J Reprod Immunol 2021; 86:e13488. [PMID: 34331363 DOI: 10.1111/aji.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Physical activity (PA) during pregnancy provides both maternal and fetal health benefits. It has been theorized that myokines, peptides secreted by contracting skeletal muscle, may play an important mechanistic role in facilitating the health benefits obtained from prenatal exercise. The objective of this review was to synthesize the current literature on the relationship between maternal PA and myokine response. A search strategy was developed using the terms pregnancy, PA, IL-6, IL-10, IL-13, and TNF-α. A systematic search was completed in July 2020, in Medline, SPORTDiscus, EMBASE, CENTRAL, and in November 2020 for unpublished dissertations (grey literature; Proquest). Both human- and animal-based studies of any design were included, while commentaries and editorial articles were excluded. Data were extracted by two independent reviewers and summarized narratively. Data were thematically summarized based on the myokine and whether findings were from human or animal studies. Ten studies were included in this review. Findings from studies that examined IL-6, IL-10, and TNF-α suggest a trimester-specific interaction between PA and myokine levels; no studies evaluated IL-13. Future research should investigate the PA-myokine relationship throughout all stages of gestation.
Collapse
Affiliation(s)
| | - Catherine Everest
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Taniya S Nagpal
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Society of Obstetricians and Gynaecologists of Canada, Ottawa, ON, Canada
| | - Jessica L Puranda
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jayonta Bhattacharjee
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Kristi B Adamo
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
Evaluating the Protective Properties of a Xyloglucan-Based Nasal Spray in a Mouse Model of Allergic Rhinitis. Int J Mol Sci 2021; 22:ijms221910472. [PMID: 34638811 PMCID: PMC8508723 DOI: 10.3390/ijms221910472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
A breached nasal epithelial barrier plays an important role in driving allergic rhinitis (AR). Corticosteroids remain the standard of care (SoC) but come with side effects, thus alternative safe and effective treatments able to avoid inflammation and restore barrier integrity are needed. The aim of the present study is to evaluate the barrier-forming capacity of a xyloglucan-based nasal spray (XG) and compare its efficacy to several SoC treatments (corticosteroid spray, oral mast-cell stabilizer and oral antihistamine) in reducing allergic responses in addition to its effect when concomitantly administered with an antihistamine. An ovalbumin (OVA)-induced mouse AR model was used. XG shows a significant efficacy in reducing histological damage in AR mice; improves nasal rubbing and histamine-induced hyper-responsiveness. Total and OVA-specific IgE as well as pro-inflammatory cytokines are significantly reduced compared to OVA challenged-mice, with im-proved efficacy when used as an add-on treatment. However, XG reduces mucous secreting cells (PAS-positive) and mucin mRNA expression similar to the corticosteroid-treated mice. XG-spray maintains tight junction protein expression (ZO-1) and conversely decreases HDAC1 significantly; the latter being highly expressed in AR patients. Moreover, the concomitant treatment showed in all of the endpoints a similar efficacy to the corticosteroids. This innovative approach may represent a novel therapeutic strategy for nasal respiratory diseases like AR, reducing undesirable side effects and improving the quality of life in patients.
Collapse
|
29
|
Bou Zerdan M, Moussa S, Atoui A, Assi HI. Mechanisms of Immunotoxicity: Stressors and Evaluators. Int J Mol Sci 2021; 22:8242. [PMID: 34361007 PMCID: PMC8348050 DOI: 10.3390/ijms22158242] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system defends the body against certain tumor cells and against foreign agents such as fungi, parasites, bacteria, and viruses. One of its main roles is to distinguish endogenous components from non-self-components. An unproperly functioning immune system is prone to primary immune deficiencies caused by either primary immune deficiencies such as genetic defects or secondary immune deficiencies such as physical, chemical, and in some instances, psychological stressors. In the manuscript, we will provide a brief overview of the immune system and immunotoxicology. We will also describe the biochemical mechanisms of immunotoxicants and how to evaluate immunotoxicity.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| | - Sara Moussa
- Faculty of Medicine, University of Balamand, 1100 Beirut, Lebanon;
| | - Ali Atoui
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| | - Hazem I. Assi
- Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, 1107 2020 Beirut, Lebanon; (M.B.Z.); (A.A.)
| |
Collapse
|
30
|
Liu G, Liu M, Wang J, Mou Y, Che H. The Role of Regulatory T Cells in Epicutaneous Immunotherapy for Food Allergy. Front Immunol 2021; 12:660974. [PMID: 34305893 PMCID: PMC8297384 DOI: 10.3389/fimmu.2021.660974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
In recent decades, a rapid increase in the prevalence of food allergies has led to extensive research on novel treatment strategies and their mechanisms. Mouse models have provided preliminary insights into the mechanism of epicutaneous immunotherapy (EPIT)-induced immune tolerance. In EPIT, antigen applied on the skin surface can be captured, processed, and presented in the lymph nodes (LNs) by Antigen-presenting cells (APCs). In the LNs, induction of regulatory T cells (Treg cells) requires both direct contact during antigen presentation and indirect mechanisms such as cytokines. Foxp3+CD62L+ Treg cells can exhibit the characteristics of hypomethylation of Foxp3 TSDR and Foxp3-LAP+ Treg cells, which increase the expression of surface tissue-specific homing molecules to exert further sustained systemic immune tolerance. Studies have shown that EPIT is a potential treatment for food allergies and can effectively induce immune tolerance, but its mechanism needs further exploration. Here, we review Treg cells' role in immune tolerance induced by EPIT and provide a theoretical basis for future research directions, such as the mechanism of EPIT and the development of more effective EPIT treatments.
Collapse
Affiliation(s)
| | | | | | | | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
OVA-Experienced CD4 + T Cell Transfer and Chicken Protein Challenge Affect the Immune Response to OVA in a Murine Model. Int J Mol Sci 2021; 22:ijms22126573. [PMID: 34207474 PMCID: PMC8234906 DOI: 10.3390/ijms22126573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chicken meat is often a major component of a modern diet. Allergy to chicken meat is relatively rare and occurs independently or in subjects allergic to ovalbumin (OVA). We examined the effect of adoptive transfer of OVA-CD4+ T cells on the immune response to OVA in mice fed chicken meat. Donor mice were injected intraperitoneally with 100 µg of OVA with Freund’s adjuvant two times over a week, and CD4+ T cells were isolated from them and transferred to naïve mice (CD4+/OVA/ChM group), which were then provoked with OVA with FA and fed freeze-dried chicken meat for 14 days. The mice injected with OVA and fed chicken meat (OVA/ChM group), and sensitized (OVA group) and healthy (PBS group) mice served as controls. Humoral and cellular response to OVA was monitored over the study. The CD4+/OVA/ChM group had lowered levels of anti-OVA IgG and IgA, and total IgE. There were significant differences in CD4+, CD4+CD25+, and CD4+CD25+Foxp3+ T cells between groups. OVA stimulation decreased the splenocyte proliferation index and IFN-γ secretion in the CD4+/OVA/ChM group compared to the OVA group. IL-4 was increased in the OVA/ChM mice, which confirms allergenic potential of the egg–meat protein combination. Transfer of OVA-experienced CD4+ T cells ameliorated the negative immune response to OVA.
Collapse
|
32
|
Quezada-Pinedo HG, Mensink-Bout SM, Reiss IK, Jaddoe VWV, Vermeulen MJ, Duijts L. Maternal iron status during early pregnancy and school-age, lung function, asthma, and allergy: The Generation R Study. Pediatr Pulmonol 2021; 56:1771-1778. [PMID: 33657279 PMCID: PMC8251584 DOI: 10.1002/ppul.25324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Iron deficiency during early life could affect the developing lung and immune system, and influence child's respiratory or allergy outcomes in later life. OBJECTIVE To examine the associations of maternal iron status during early pregnancy with child's lung function, asthma, inhalant allergic sensitization, and physician-diagnosed inhalant allergy at school-age. METHODS In a population-based cohort study, among 3825 mother-child pairs, ferritin, transferrin concentrations, and transferrin saturation were measured from maternal venous blood samples during early pregnancy. In children at the age of 10 years, spirometry was used to determine child's lung function, current asthma and physician-diagnosed inhalant allergy were assessed by questionnaires, and inhalant allergic sensitization was measured by skin prick tests. We used multivariable regression models to examine the associations. RESULTS After adjustment for gestational age at maternal iron status measurement and sociodemographic or lifestyle-related confounders, a higher maternal transferrin concentration was associated with a higher risk of physician-diagnosed inhalant allergy (odds ratio [95% confidence interval]: 1.13 [1.01 to1.26]), but not with lung function, asthma, or inhalant allergic sensitization. This association did not attenuate after further adjustment for maternal hemoglobin levels or early growth factors. We observed no consistent association of maternal ferritin concentrations or transferrin saturation with child's respiratory or allergy outcomes. CONCLUSION Higher maternal transferrin concentrations during pregnancy, reflecting lower serum iron levels, were associated with an increased risk of child's physician-diagnosed inhalant allergy but not lung outcomes. Underlying mechanisms and clinical implications need to be explored.
Collapse
Affiliation(s)
- Hugo G Quezada-Pinedo
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irwin K Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marijn J Vermeulen
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Abstract
IL-4 production is associated with low-avidity, poorly cytotoxic T cell induction that contributes to viral immune evasion and the failure of T cell-based vaccines. Yet, the precise mechanisms that regulate IL-4 signalling in T cells remain elusive. Mounting evidence indicates that cells can dynamically alter their IL-4/IL-13 receptor signature to modulate downstream immune outcomes upon pathogen encounter. Here, we describe how naïve (CD62L+CD44lo-mid) CD4 and CD8 T cells distinctly engage both STAT6 and STAT3 in response to IL-4. We further show that IL-4R⍺ expression is both time- and IL-4 concentration-dependent. Remarkably, our findings reveal that STAT3 inhibition can ablate IL-4R⍺ and affect transcriptional expression of other Stat and Jak family members. By extension, the loss of STAT3 lead to aberrant STAT6 phosphorylation, revealing an inter-regulatory relationship between the two transcription factors. Moreover, IL-4 stimulation down-regulated TGF-β1 and IFN-γR1 expression on naïve T cells, possibly signifying the broad regulatory implications of IL-4 in conditioning lineage commitment decisions during early infection. Surprisingly, naïve T cells were unresponsive to IL-13 stimulation, unlike dendritic cells. Collectively, these findings could be exploited to inform more efficacious vaccines, as well as design treatments against IL-4/IL-13-associated disease conditions.
Collapse
|
34
|
Zarobkiewicz MK, Wawryk-Gawda E, Kowalska W, Janiszewska M, Bojarska-Junak A. γδ T Lymphocytes in Asthma: a Complicated Picture. Arch Immunol Ther Exp (Warsz) 2021; 69:4. [PMID: 33661375 PMCID: PMC7932949 DOI: 10.1007/s00005-021-00608-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
A minor subset (approximately 5%) of peripheral T cells has their TCR build up from γ and δ chains instead of α and β-those are the γδ T lymphocytes. They can be functionally divided into subsets, e.g., Th1-, Th2-, Th9-, Th17-, Tfh-, and Treg-like γδ T cells. They share some specifics of both innate and adaptive immunity, and are capable of rapid response to a range of stimuli, including some viral and bacterial infections. Atopic diseases, including asthma, are one of major health-related problems of modern western societies. Asthma is one of the most common airway diseases, affecting people of all ages and having potential life-threatening consequences. In this paper, we review the current knowledge about the involvement of γδ T cells in the pathogenesis of asthma and its exacerbations. We summarize both the studies performed on human subjects as well as on the murine model of asthma. γδ T cells seem to be involved in the pathogenesis of asthma, different subsets probably perform opposite functions, e.g., symptom-exacerbating Vγ1 and symptom-suppressing Vγ4 in mice model of asthma.
Collapse
Affiliation(s)
- Michał K Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland.
| | - Ewelina Wawryk-Gawda
- Department of Paediatric Pulmonology and Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Mariola Janiszewska
- Department of Medical Informatics and Statistics With E-Learning Laboratory, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| |
Collapse
|
35
|
Kuang H, Li Z, Lv X, Wu P, Tan J, Wu Q, Li Y, Jiang W, Pang Q, Wang Y, Fan R. Exposure to volatile organic compounds may be associated with oxidative DNA damage-mediated childhood asthma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111864. [PMID: 33412282 DOI: 10.1016/j.ecoenv.2020.111864] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Volatile organic compounds (VOCs) are important and ubiquitous air pollutants, which may lead to a significant increase in the prevalence of respiratory diseases. To investigate the relationships between VOCs exposure and childhood asthma, 252 asthmatic children and 69 healthy children were recruited. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of oxidative DNA damage), trans-3'-hydroxycotinine (OH-Cot, a biomarker of passive smoking) and 27 VOC metabolites were simultaneously determined by an ultra-high-performance liquid chromatography-tandem mass spectrometer. Results showed that levels of 8-OHdG and most VOC metabolites in asthmatic children were significantly higher than those in healthy children. More than half of the VOC metabolites were significantly and positively associated with OH-Cot with maximal β coefficient of 0.169, suggesting that second-hand smoking is one important source of VOCs exposure for children in Guangzhou. Significant dose-response relationships between most VOC metabolites and 8-OHdG were observed. Each unit increase in ln-transformed VOC metabolite levels was significantly associated with 5.5-32% increase in ln-transformed 8-OHdG level. Moreover, each unit increase in ln-transformed 8-OHdG level was associated with an 896% increased odd ratios (OR) of asthma in children (OR = 9.96, 95% confidence intervals (CI): 4.75, 20.9), indicating that oxidative stress induced by VOCs exposure may have a significant impact on childhood asthma. Urinary 3-&4-Methylhippuric acid (3-&4-MHA, OR: 5.78, 95% CI: 3.50, 9.54), rac 2-Aminothiazoline-4-carboxylic acid (ATCA, OR: 2.90, 95% CI: 1.69, 4.99) and N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA, OR: 2.76, 95% CI: 1.73, 4.43) which may derive from m/p-xylene, cyanide and 1,3-butadiene exposure, respectively, could significantly and maximally increase the odds of asthma. Interestingly, they also had the strongest associations with 8-OHdG among all investigated VOC metabolites. Moreover, DHBMA strongly correlated with most VOC metabolites. Hence, DHBMA is a suitable biomarker to indicate not only VOCs exposure profile, but also the DNA damage-mediated asthma induced by VOCs.
Collapse
Affiliation(s)
- Hongxuan Kuang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School o f Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhilin Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xuejing Lv
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Peiqiong Wu
- Guangzhou Women and Children's Medical Center, Guangzhou 510120, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - Qiurong Wu
- Department of Mathematical Science, South China Normal University, Guangzhou 510631, China
| | - Yonghong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wenhui Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou 510120, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yaru Wang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou 511447, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School o f Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
36
|
Chen RX, Lu WM, Lu MP, Wang ML, Zhu XJ, Wu ZF, Tian HQ, Zhu LP, Zhang ZD, Cheng L. Polymorphisms in MicroRNA Target Sites of TGF-β Signaling Pathway Genes and Susceptibility to Allergic Rhinitis. Int Arch Allergy Immunol 2021; 182:399-407. [PMID: 33596578 PMCID: PMC8117390 DOI: 10.1159/000511975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The polymorphisms inside microRNA target sites locating in the 3'-UTR region may introduce the micro-RNA-binding changes, which may regulate the gene expression and correlate with the potential diseases. OBJECTIVES We aimed to investigate whether the polymorphisms in microRNA target sites of transforming growth factor beta (TGF-β) signaling pathway genes are associated with the susceptibility of mite-sensitized allergic rhinitis (AR) in a Han Chinese population. METHODS In this case-control study, 454 AR patients and 448 healthy controls were recruited. Three HapMap single-nucleotide polymorphisms (SNPs) were mapped to putative microRNA recognition sites and genotyped by TaqMan allelic discrimination assay. RESULTS The genotype and allele frequencies of 3 SNPs (rs1590 in TGFBR1; rs1434536 and rs17023107 in BMPR1B) showed lack of significant association with AR. However, in the subgroup analysis, the TG, GG, and TG/GG genotypes of rs1590 exhibited significantly increased risk of AR in the male subgroup (TG: adjusted OR = 1.57, 95% CI = 1.08-2.31; GG: adjusted OR = 1.76, 95% CI = 1.09-2.86; TG/GG: adjusted OR = 1.62, 95% CI = 1.13-2.33). The CT genotypes of rs17023107 might have potential to protect against AR in the patients age of <15 years (adjusted OR = 0.37, 95% CI = 0.14-0.95) and the males (adjusted OR = 0.48, 95% CI = 0.25-0.95). No significant association was found between SNPs and the total serum IgE level. CONCLUSIONS In a Han Chinese population, stratified by age and gender, susceptibility to mite-sensitized AR may be associated with 2 SNPs (rs1590 and rs17023107) in microRNA target sites of TGF-β signaling pathway genes.
Collapse
Affiliation(s)
- Ruo-Xi Chen
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Min Lu
- Department of Otorhinolaryngology, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Mei-Ping Lu
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mei-Lin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin-Jie Zhu
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhong-Fei Wu
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hui-Qin Tian
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lu-Ping Zhu
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng-Dong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China,
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China,
| |
Collapse
|
37
|
Xie Y, Meijer AH, Schaaf MJM. Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Front Cell Dev Biol 2021; 8:620984. [PMID: 33520995 PMCID: PMC7843790 DOI: 10.3389/fcell.2020.620984] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of the inflammatory response in humans can lead to various inflammatory diseases, like asthma and rheumatoid arthritis. The innate branch of the immune system, including macrophage and neutrophil functions, plays a critical role in all inflammatory diseases. This part of the immune system is well-conserved between humans and the zebrafish, which has emerged as a powerful animal model for inflammation, because it offers the possibility to image and study inflammatory responses in vivo at the early life stages. This review focuses on different inflammation models established in zebrafish, and how they are being used for the development of novel anti-inflammatory drugs. The most commonly used model is the tail fin amputation model, in which part of the tail fin of a zebrafish larva is clipped. This model has been used to study fundamental aspects of the inflammatory response, like the role of specific signaling pathways, the migration of leukocytes, and the interaction between different immune cells, and has also been used to screen libraries of natural compounds, approved drugs, and well-characterized pathway inhibitors. In other models the inflammation is induced by chemical treatment, such as lipopolysaccharide (LPS), leukotriene B4 (LTB4), and copper, and some chemical-induced models, such as treatment with trinitrobenzene sulfonic acid (TNBS), specifically model inflammation in the gastro-intestinal tract. Two mutant zebrafish lines, carrying a mutation in the hepatocyte growth factor activator inhibitor 1a gene (hai1a) and the cdp-diacylglycerolinositol 3-phosphatidyltransferase (cdipt) gene, show an inflammatory phenotype, and they provide interesting model systems for studying inflammation. These zebrafish inflammation models are often used to study the anti-inflammatory effects of glucocorticoids, to increase our understanding of the mechanism of action of this class of drugs and to develop novel glucocorticoid drugs. In this review, an overview is provided of the available inflammation models in zebrafish, and how they are used to unravel molecular mechanisms underlying the inflammatory response and to screen for novel anti-inflammatory drugs.
Collapse
|
38
|
Wawrzyniak A, Lipińska-Opałka A, Kalicki B, Kloc M. The Effect of Passive Exposure to Tobacco Smoke on the Immune Response in Children with Asthma. Subst Use Misuse 2021; 56:424-430. [PMID: 33427001 DOI: 10.1080/10826084.2020.1869263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: There are a few publications about the impact of tobacco smoke on the children's immune system. Material and Methods: The study group consisted of 43 children with asthma. The control group consisted of 37 healthy children. The exposure to tobacco smoke was assessed by the presence of the cotinine in the urine (metabolit of nicotine). Results: The group of children with asthma exposed to tobacco smoke had significantly higher levels of the IL-1 and lower levels IL-4 than children not exposed to the passive smoking. The children from the control group exposed to tobacco smoke had a significantly higher concentration of IL-4 than unexposed children. In the whole analyzed population, there was a significant positive correlation between cotinine-IL1 and cotinine-CRP. Conclusion: In this study we found that the passive exposure to tobacco smoke has the immunomodulatory effects on the immune system.
Collapse
Affiliation(s)
- Agata Wawrzyniak
- Department of Pediatrics, Nephrology, and Allergology, Military Institute of Medicine, Warsaw, Poland
| | - Agnieszka Lipińska-Opałka
- Department of Pediatrics, Nephrology, and Allergology, Military Institute of Medicine, Warsaw, Poland
| | - Bolesław Kalicki
- Department of Pediatrics, Nephrology, and Allergology, Military Institute of Medicine, Warsaw, Poland
| | - Małgorzata Kloc
- The Houston Methodist Research Institute, Houston, Texas, USA
- The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
39
|
Cernescu LD, Haidar L, Panaitescu C. Dendritic cell-CD4 + T cell interaction: The differential role of IL-4/IL-13 in serum IgE levels in house dust mite allergic patients. Exp Ther Med 2021; 21:95. [PMID: 33363606 PMCID: PMC7725010 DOI: 10.3892/etm.2020.9527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Allergic asthma is a chronic airway inflammatory disorder triggered by inhalant allergens. Interleukin (IL)-4 and IL-13 play a main role in the generation of T helper cell type 2 (Th2) immune response, induction of immunoglobulin E (IgE) synthesis and persistence of airway inflammation. The aim of the present study was to investigate the influence of Dermatophagoides pteronyssinus allergen Der p 1, the major allergen of house dust mite, on the synthesis of IL-4 and IL-13 by monocyte-derived dendritic cells (DCs) and naive CD4+ T cells cocultured with DCs, as well as their role in the production of serum IgE, in house dust mite (HDM) allergic patients. Peripheral blood mononuclear cells (PBMCs) were isolated from venous blood of patients allergic to HDM and healthy donors and incubated with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4 to generate immature DCs. The obtained cells were stimulated for 24 h with Der p 1 to induce DC maturation, washed, and afterwards cocultured for 24 h with autologous naive CD4+ T cells. Culture supernatants were harvested for IL-4, IL-13 and IFN-γ level measurements. DCs stimulation with Der p 1 induced higher synthesis of IL-4 and IL-13 in HDM allergic patients, compared to healthy donors. The allergic group showed significant correlation between IL-13 production by Der p 1-pulsed DCs, and total serum IgE and IL-4 production of the same cells and Der p-specific IgE. To conclude, IL-4 and IL-13 are critically related to the regulation of serum IgE production in patients with allergic asthma. The relevance of these two cytokines in the pathophysiology of Th2 asthma endotype makes them an appropriate target in its management.
Collapse
Affiliation(s)
- Luminita Daniela Cernescu
- Discipline of Dermatovenerology, Department XIV Microbiology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Timisoara RO-300041, Romania
| | - Laura Haidar
- Discipline of Physiology, Department III Functional Sciences, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Timisoara RO-300041, Romania
- County Emergency Clinical Hospital ‘Pius Brinzeu’ Timisoara-Centre for Gene and Cellular Therapies in The Treatment of Cancer OncoGen, Timisoara RO-300723, Romania
| | - Carmen Panaitescu
- Discipline of Physiology, Department III Functional Sciences, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Timisoara RO-300041, Romania
- County Emergency Clinical Hospital ‘Pius Brinzeu’ Timisoara-Centre for Gene and Cellular Therapies in The Treatment of Cancer OncoGen, Timisoara RO-300723, Romania
| |
Collapse
|
40
|
Cheng D, Xie MZ. A review of a potential and promising probiotic candidate-Akkermansia muciniphila. J Appl Microbiol 2020; 130:1813-1822. [PMID: 33113228 DOI: 10.1111/jam.14911] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
Akkermansia muciniphila, a common colonizer in the intestinal mucus layer of humans, has gradually been considered as promising candidate for the next-generation probiotic, given its physiological benefits from animal and human studies. This article comprehensively reviewed A. muciniphila from the published peer-reviewed articles in the aspects of its role in the host physiology and commonly consumed food that can boost its abundance, which should provide useful and fundamental information for scientists and engineers and even ordinary consumers. Akkermansia muciniphila is not only a crucial biomarker that indicates the physiology of human beings but also has huge potential to become a probiotic given its physiological benefits in various clinical scenarios. Current barriers in terms of regulations, necessity for large-scale clinical experiments and production feasibility need to be resolved before A. muciniphila can be widely applied as the next-generation probiotic.
Collapse
Affiliation(s)
- D Cheng
- Research and Development Center, Shanghai Lithy One-Health Group Technology Co., Ltd, Shanghai, China
| | - M Z Xie
- College of Food Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
Lee SY, Kim MH, Kim SH, Ahn T, Kim SW, Kwak YS, Cho IH, Nah SY, Cho SS, Park KM, Park DH, Bae CS. Korean Red Ginseng affects ovalbumin-induced asthma by modulating IL-12, IL-4, and IL-6 levels and the NF-κB/COX-2 and PGE 2 pathways. J Ginseng Res 2020; 45:482-489. [PMID: 34295208 PMCID: PMC8282494 DOI: 10.1016/j.jgr.2020.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022] Open
Abstract
Background Asthma is an incurable hyper-responsive disease of the pulmonary system that is caused by various allergens, including indoor and outdoor stimulators. According to the Global Asthma Network, 339 million people suffered from asthma in 2018, with particularly severe forms in children. Numerous treatments for asthma are available; however, they are frequently associated with adverse effects such as growth retardation, neurological disorders (e.g., catatonia, poor concentration, and insomnia), and physiological disorders (e.g., immunosuppression, hypertension, hyperglycemia, and osteoporosis). Methods Korean Red Ginseng has long been used to treat numerous diseases in many countries, and we investigated the anti-asthmatic effects and mechanisms of action of Korean Red Ginseng. Eighty-four BALB/c mice were assigned to 6 treatment groups: control, ovalbumin-induced asthma group, dexamethasone treatment group, and 3 groups treated with Korean Red Ginseng water extract (KRGWE) at 5, 25, or 50 mg/kg/day for 5 days. Anti-asthmatic effects of KRGWE were assessed based on biological changes, such as white blood cell counts and differential counts in the bronchoalveolar lavage fluid, serum IgE levels, and histopathological changes in the lungs, and by examining anti-asthmatic mechanisms, such as the cytokines associated with Th1, Th2, and Treg cells and inflammation pathways. Results KRGWE affected ovalbumin-induced changes, such as increased white blood cell counts, increased IgE levels, and morphological changes (mucous hypersecretion, epithelial cell hyperplasia, inflammatory cell infiltration) by downregulating cytokines such as IL-12, IL-4, and IL-6 via GATA-3 inactivation and suppression of inflammation via NF-κB/COX-2 and PGE2 pathways. Conclusion KRGWE is a promising drug for asthma treatment.
Collapse
Affiliation(s)
- Soon-Young Lee
- College of Korean Medicine, Dongshin University, Naju, Jeonnam, Republic of Korea
| | - Min-Hee Kim
- College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Hyun Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Won Kim
- Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Yi-Seong Kwak
- Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Ik-Hyun Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Jeonnam, Republic of Korea
| | - Kyung Mok Park
- College of Korean Medicine, Dongshin University, Naju, Jeonnam, Republic of Korea
| | - Dae-Hun Park
- College of Korean Medicine, Dongshin University, Naju, Jeonnam, Republic of Korea
- Corresponding author. College of Korean Medicine, Dongshin University, 67 Donsghindae-gil, Naju, Jeonnam, 58245, Republic of Korea.
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
- Corresponding author. College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
42
|
Commentary on: The potency of lncRNA MALAT1/miR-155 in altering asthmatic Th1/Th2 balance by modulation of CTLA4. Biosci Rep 2020; 40:222656. [PMID: 32292999 PMCID: PMC7199447 DOI: 10.1042/bsr20190768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 01/14/2023] Open
Abstract
Asthma is a common, allergic respiratory disorder affecting over 350 million people worldwide. One of the key features of asthma is skewing of CD4+ cells toward Th2 responses. This promotes the production of cytokines like IL-4 that induce IgE production resulting in the hypersecretion of mucus and airway smooth muscle contraction. Understanding the factors that favor Th2 expansion in asthma would provide important insights into the underlying pathogenesis of this disorder. Asthma research has focused on signaling pathways that control the transcription of key asthma-related genes. However, increasing evidence shows that post-transcriptional factors also determine CD4+ cell fate and the enhancement of allergic airway responses. A recent paper published by Liang et al. (Bioscience Reports (2020) 40, https://doi.org/10.1042/BSR20190397) highlights a novel role for the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in Th2 development in asthma. MALAT1 modulates several biological processes including alternative splicing, epigenetic modification and gene expression. It is one of the most highly expressed lncRNAs in normal tissues and MALAT1 levels correlate with poor clinical outcomes in cancer. The mechanisms of action of MALAT1 in tumor progression and metastasis remain unclear and even less is known about its effects in inflammatory disease states like asthma. The work of Liang et al. demonstrates heightened MALAT1 expression in asthma and further shows that this lncRNA targets miR-155 to promote Th2 differentiation in this disease. This insight sets the stage for future studies to examine how MALAT1 manipulation could deter allergic immune responses in asthmatic airways.
Collapse
|
43
|
Patel S, Dale RC, Rose D, Heath B, Nordahl CW, Rogers S, Guastella AJ, Ashwood P. Maternal immune conditions are increased in males with autism spectrum disorders and are associated with behavioural and emotional but not cognitive co-morbidity. Transl Psychiatry 2020; 10:286. [PMID: 32796821 PMCID: PMC7429839 DOI: 10.1038/s41398-020-00976-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Epidemiological and animal research shows that maternal immune activation increases the risk of autism spectrum disorders (ASD) in offspring. Emerging evidence suggests that maternal immune conditions may play a role in the phenotypic expression of neurodevelopmental difficulties in children with ASD and this may be moderated by offspring sex. This study aimed to investigate whether maternal immune conditions were associated with increased severity of adverse neurodevelopmental outcomes in children with ASD. Maternal immune conditions were examined as predictors of ASD severity, behavioural and emotional well-being, and cognitive functioning in a cohort of 363 children with ASD (n = 363; 252 males, 111 females; median age 3.07 [interquartile range 2.64-3.36 years]). We also explored whether these outcomes varied between male and female children. Results showed that maternal asthma was the most common immune condition reported in mothers of children with ASD. A history of maternal immune conditions (p = 0.009) was more common in male children with ASD, compared to female children. Maternal immune conditions were associated with increased behavioural and emotional problems in male and female children. By contrast, maternal immune conditions were not associated with decreased cognitive function. The findings demonstrate that MIA may influence the expression of symptoms in children with ASD and outcomes may vary between males and females.
Collapse
Affiliation(s)
- Shrujna Patel
- grid.1013.30000 0004 1936 834XAutism Clinic for Translational Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia
| | - Russell C. Dale
- grid.1013.30000 0004 1936 834XKids Neuroscience Centre, The Children’s Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Westmead, NSW Australia
| | - Destanie Rose
- grid.27860.3b0000 0004 1936 9684Department of Medical Microbiology and Immunology and MIND Institute, UC Davis, Davis, CA USA
| | - Brianna Heath
- grid.27860.3b0000 0004 1936 9684Department of Psychiatry and MIND Institute, UC Davis, Davis, CA USA
| | - Christine W. Nordahl
- grid.27860.3b0000 0004 1936 9684Department of Psychiatry and MIND Institute, UC Davis, Davis, CA USA
| | - Sally Rogers
- grid.27860.3b0000 0004 1936 9684Department of Psychiatry and MIND Institute, UC Davis, Davis, CA USA
| | - Adam J. Guastella
- grid.1013.30000 0004 1936 834XAutism Clinic for Translational Research, Brain and Mind Centre, Children’s Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology and MIND Institute, UC Davis, Davis, CA, USA.
| |
Collapse
|
44
|
Tang L, Chen Y, Xiang Q, Xiang J, Tang Y, Li J. The association between IL18, FOXP3 and IL13 genes polymorphisms and risk of allergic rhinitis: a meta-analysis. Inflamm Res 2020; 69:911-923. [PMID: 32529476 DOI: 10.1007/s00011-020-01368-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/12/2020] [Accepted: 05/23/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Allergic rhinitis (AR) is a chronic inflammatory disease of nasal mucosa. Loss of function of Th17 cells and regulatory T (Treg) cells plays a role in the pathogenesis of AR. IL18, FOXP3, and IL13 are key genes in the development of AR. However, the genetic associations between IL18, FOXP3 and IL13 genes polymorphisms and AR risk were inconclusive yet. METHODS A meta-analysis was performed by searching through Pubmed, EMBASE, web of science and CNKI databases. The ORs and 95%CIs were used to assess the genetic association between the allelic, dominant and recessive models of IL18, FOXP3 and IL13 genes polymorphisms and AR risk. RESULTS A total of 15 articles (6 for FOXP3, 5 for IL18, and 5 for IL13) were enrolled in the present study. No association was detected between the IL18 rs187238, rs1946518, rs360721, FOXP3 rs2232365, rs3761548 and IL13 rs1800925 polymorphisms and AR risk (p > 0.05). Significant associations were observed between the allelic (p = 0.001, OR 1.32, 95% CI 1.12-1.56), dominant (p = 0.005, OR 1.43, 95% CI 1.11-1.83) and recessive models (p = 0.01, OR 1.64, 95% CI 1.13, 2.40) of IL13 rs20541 and AR risk. Subgroup analysis based on ethnicity revealed that the IL13 rs20541 was significantly associated with AR risk in Asian population (allelic model: p = 0.009, OR 1.36, 95% CI 1.13-1.63, dominant model: p = 0.005, OR 1.43, 95% CI 1.11-1.83; recessive model: p = 0.01, OR 1.64, 95% CI 1.13-2.40). CONCLUSIONS IL13 rs20541 may contribute to the risk of AR in Asian population. To confirm these results, larger number of case-control study with more subjects is necessary in the future.
Collapse
Affiliation(s)
- Liang Tang
- Department of Anatomy, Changsha Medical University, Changsha, 410219, China.,Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha, 410100, China
| | - Yongjun Chen
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001, China
| | - Qin Xiang
- Department of Anatomy, Changsha Medical University, Changsha, 410219, China.,Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha, 410100, China
| | - Ju Xiang
- Department of Anatomy, Changsha Medical University, Changsha, 410219, China.,Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha, 410100, China
| | - Yonghong Tang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001, China.
| | - Jianming Li
- Department of Anatomy, Changsha Medical University, Changsha, 410219, China. .,Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha, 410100, China. .,Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001, China.
| |
Collapse
|
45
|
Sarithamol S, Pushpa VL, Divya V, Manoj KB. Comparative QSAR model generation using pyrazole derivatives for screening Janus kinase-1 inhibitors. Chem Biol Drug Des 2020; 95:503-519. [PMID: 32022397 DOI: 10.1111/cbdd.13667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 01/15/2023]
Abstract
Asthma is a multitargeted disease. IL-4-JAK-STAT signaling pathway is a promising route for the effective control of the disease. JAK inhibition by small molecules could effectively block the IL-4 signaling pathway. It was established that JAK1 is responsive toward IL-4-mediated signaling process. In the present study, three-dimensional QSAR analyses on a set of pyrazole derivatives against JAK1 and JAK2 enzyme inhibition had been executed. Molecular docking studies were conducted with the target JAK1 using the pyrazole derivative compounds and found out potential intermolecular interactions operating among them. The binding energy of all the derivative compounds with the target JAK1 has calculated and found out their affinity toward the target system. These models have predicted the JAK1 inhibitory activity of some five JAK1 active drugs and 50 structurally similar compounds. These models can, thus, suggestively be recommended for virtual screening of JAK1-selective candidates as a lead for immunomodulatory diseases like asthma.
Collapse
Affiliation(s)
| | | | - Vasanthakumari Divya
- Department of Chemistry, Sree Narayana College, Kollam, India.,Department of Chemistry, Milad-E-Sherief Memorial College, Kayamkulam, India
| | - Kanthimathi Bahuleyan Manoj
- Department of Chemistry, Sree Narayana College, Kollam, India.,Department of Chemistry, Sree Narayana College, Cherthala, India
| |
Collapse
|
46
|
Selected cytokine expression in dogs with alergic conjunctivitis: Correlation with disease activity. Res Vet Sci 2020; 130:33-40. [PMID: 32114248 DOI: 10.1016/j.rvsc.2020.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Canine allergic conjunctivitis (cAC) is described as the most frequent ocular manifestation associated with canine atopic dermatitis (cAD). OBJECTIVES Clinical and immunological characterization of cAD through IL-6, TNF-α and IL-12 mRNA expression quantification in canine conjunctivae. PROCEDURES Twenty client-owned dogs with both cAC and cAD and twenty-one healthy controls were enrolled and clinician assessed CADESI-04 and grade of ocular signs were calculated. Conjunctival biopsies were performed on all animals and relative quantification of the interleukins mRNA expression performed by qRT-PCR. The correlation between cytokine gene expression and cAC score was evaluated, as well as CADESI-04 values. RESULTS The qRT-PCR showed a significant gene upregulation of respectively 291.48 (p = 1.306e-09) and 4.85 (p = .00033) folds on IL-6 and IL-12 in dogs with allergic conjunctivitis compared to the control group. Regarding the average expression of TNF-α there were no statistical significant differences between both groups (p = .18). Higher cAC scores were associated with enhanced gene expression of TNF-α and IL-12. No correlation was found between the cytokine gene expression levels and the CADESI-04 values. CONCLUSION An increase of IL6 and IL12 in cAC was found in the studied population. These two cytokines may be potential immunotherapy targets cAC classification.
Collapse
|
47
|
Therapeutic Effects of Chinese Herbal Formula (PTQX) on NC/Nga Mice with Atopic Dermatitis-Like Skin Lesions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8359252. [PMID: 31885666 PMCID: PMC6925805 DOI: 10.1155/2019/8359252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/04/2019] [Indexed: 11/18/2022]
Abstract
Atopic dermatitis (AD), also known as atopic eczema, is a chronic pruritic inflammatory skin disease. The available systemic therapies for atopic dermatitis are inadequate. Objective. This study aimed to evaluate the effects of the Chinese herbal formula Pei Tu Qing Xin (PTQX) on dermatitis severity and ear swelling, immunomodulation, and the infiltration of mast cells in a mouse model of 1-chloro-2,4-dinitrobenzene- (DNCB-) induced AD. Methods. AD-like symptoms were induced by DNCB in NC/Nga mice. Skin lesions, dermatitis, ear swelling, and scratching behaviour were evaluated. Changes in the T-helper type 1 (Th1), Th2, Th17, and regulatory T (Treg) subtypes and immunoregulation in the spleen and lymph nodes were detected by flow cytometry. Results. Histopathological and immunohistochemical analyses demonstrated that PTQX decreased the DNCB-mediated induction of mast cells and infiltration of inflammatory cells in the ear and dorsal skin. PTQX also reduced the DNCB-induced increase in the serum immunoglobulin E level, pruritus, and dermatitis (red, flaky areas) on the dorsal skin. Furthermore, PTQX regulated the balance between the populations of Th1, Th2, Th17, and Treg cells (particularly the latter two) in the lymph nodes. Conclusions. Our results suggest that the Chinese herbal formula PTQX can alleviate symptoms of AD, such as epithelial damage, redness, swelling, and pruritus, and potentially be used to treat this condition.
Collapse
|
48
|
Hossain FMA, Choi JY, Uyangaa E, Park SO, Eo SK. The Interplay between Host Immunity and Respiratory Viral Infection in Asthma Exacerbation. Immune Netw 2019; 19:e31. [PMID: 31720042 PMCID: PMC6829071 DOI: 10.4110/in.2019.19.e31] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/16/2022] Open
Abstract
Asthma is one of the most common and chronic diseases characterized by multidimensional immune responses along with poor prognosis and severity. The heterogeneous nature of asthma may be attributed to a complex interplay between risk factors (either intrinsic or extrinsic) and specific pathogens such as respiratory viruses, and even bacteria. The intrinsic risk factors are highly correlated with asthma exacerbation in host, which may be mediated via genetic polymorphisms, enhanced airway epithelial lysis, apoptosis, and exaggerated viral replication in infected cells, resulting in reduced innate immune response and concomitant reduction of interferon (types I, II, and III) synthesis. The canonical features of allergic asthma include strong Th2-related inflammation, sensitivity to non-steroidal anti-inflammatory drugs (NSAIDs), eosinophilia, enhanced levels of Th2 cytokines, goblet cell hyperplasia, airway hyper-responsiveness, and airway remodeling. However, the NSAID-resistant non-Th2 asthma shows a characteristic neutrophilic influx, Th1/Th17 or even mixed (Th17-Th2) immune response and concurrent cytokine streams. Moreover, inhaled corticosteroid-resistant asthma may be associated with multifactorial innate and adaptive responses. In this review, we will discuss the findings of various in vivo and ex vivo models to establish the critical heterogenic asthmatic etiologies, host-pathogen relationships, humoral and cell-mediated immune responses, and subsequent mechanisms underlying asthma exacerbation triggered by respiratory viral infections.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
49
|
Kandhare AD, Liu Z, Mukherjee AA, Bodhankar SL. Therapeutic Potential of Morin in Ovalbumin-induced Allergic Asthma Via Modulation of SUMF2/IL-13 and BLT2/NF-kB Signaling Pathway. Curr Mol Pharmacol 2019; 12:122-138. [PMID: 30605067 DOI: 10.2174/1874467212666190102105052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/30/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Allergic asthma is a chronic immune-inflammatory disorder, characterized by airway inflammation and airway hyperresponsiveness (AHR). Morin is a natural flavonoid reported to exhibit inhibitory action against IgE-mediated allergic response. AIM To determine the efficacy of murine model of ovalbumin (OVA)-induced AHR inhibition by morin and decipher the molecular mechanism involved. MATERIALS AND METHODS Sprague-Dawley rats were sensitized and challenged with OVA to induce AHR. Rats received treatment with morin (10, 30 and 100 mg/kg, p.o.) for the next 28 days. RESULTS Morin (30 and 100 mg/kg) significantly and dose-dependently attenuated (p < 0.01 and p < 0.001) OVA-induced alterations in pulse oxy and lung function test, increased bronchoalveolar lavage fluid cell counts, elevated total protein and albumin levels in serum, BALF, and lungs, increased serum total and OVA-specific IgE levels and, elevated oxidative stress levels in the lung. RT-PCR analysis revealed that morin treatment (30 and 100 mg/kg) significantly (p < 0.001) up-regulated SUMF2 mRNA expression in lungs whereas mRNA expressions of BLT2, NF-κB, and Th2-cytokine (TNF-α, IL-1β, IL-4, IL-6, and IL-13) were down-regulated significantly and dose-dependently (p < 0.01 and p < 0.001). Also, histologic and ultrastructural studies showed that morin significantly inhibited (p < 0.001) OVAinduced perivascular and peribranchial inflammatory infiltration and interstitial fibrosis. CONCLUSION Morin exhibited inhibitory effect against OVA-induced allergic asthma by activation of SUMF2 which impeded IL-13 expression and in turn attenuated Th2-cytokines, BLT2, NF-κB, and IgE levels to ameliorate AHR. Thus, our findings suggested that morin could be considered as a potential alternative therapeutic agent for the management of allergic asthma.
Collapse
Affiliation(s)
- Amit D Kandhare
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| | - Zihao Liu
- Jiangxi Medical College, Nanchang University, Jiangxi 330006, China
| | - Anwesha A Mukherjee
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| | - Subhash L Bodhankar
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Paud Road, Pune-411 038, India
| |
Collapse
|
50
|
Sung YY, Kim SH, Yuk HJ, Yang WK, Lee YM, Son E, Kim DS. Siraitia grosvenorii residual extract attenuates ovalbumin-induced lung inflammation by down-regulating IL-4, IL-5, IL-13, IL-17, and MUC5AC expression in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152835. [PMID: 31035047 DOI: 10.1016/j.phymed.2019.152835] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Siraitia grosvenorii fruits are used in traditional medicine to treat cough, sore throat, bronchitis, and asthma. PURPOSE This study aimed to investigate the anti-inflammatory and anti-asthmatic effects of S. grosvenorii residual extract (SGRE) on ovalbumin (OVA)-induced asthma in mice. METHODS Asthma was induced in BALB/c mice by systemic sensitization to OVA, followed by intratracheal, intraperitoneal, and aerosol allergen challenges. SGRE was orally administered for four weeks. We investigated the effects of SGRE on airway hyper-responsiveness, OVA-specific IgE production, histological analysis of lung and trachea, immune cell phenotyping, Th1/Th2 cytokine production in bronchoalveolar lavage fluid (BAL) fluid and splenocytes, and gene expression in the lung. RESULTS SGRE ameliorated OVA-driven airway hyper-responsiveness, serum IgE production, and histopathological changes in the lung and trachea. SGRE reduced the total number of cells in the lung and BAL, the total number of lymphocytes, neutrophils, monocytes, and eosinophils in the lung and BAL, the absolute number of CD4+/CD69+ T cells in the lung, and the absolute number of CD4+/CD8+ T cells and CD11b+/Gr-1+ granulocytes in the lung and BAL. SGRE also reduced Th2 cytokines (IL-4, IL-5, and IL-13) and increased the Th1 cytokine IFN-γ in the BAL fluid and supernatant of splenocyte cultures. SGRE decreased the OVA-induced increase of IL-13, TARC, MUC5AC, TNF-α, and IL-17 expression in the lung. CONCLUSION SGRE exerts anti-asthmatic effects via the inhibition of Th2 and Th17 cytokines and the increase of Th1 cytokines, suggesting that SGRE may be a potential therapeutic agent for allergic lung inflammation, such as asthma.
Collapse
Affiliation(s)
- Yoon-Young Sung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Heung Joo Yuk
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Won-Kyung Yang
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Yun Mi Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Eunjung Son
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 305-811, Republic of Korea.
| |
Collapse
|