1
|
Grano de Oro A, Kumariya S, Mell B, Zubcevic J, Joe B, Osman I. Spontaneous vascular dysfunction in Dahl salt-sensitive male rats raised without a high-salt diet. Physiol Rep 2024; 12:e16165. [PMID: 39048525 PMCID: PMC11268988 DOI: 10.14814/phy2.16165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Dahl salt-sensitive (SS) rats fed a high-salt diet, but not low-salt, exhibit vascular dysfunction. Several substrains of SS rats exist that differ in their blood pressure phenotypes and salt sensitivity. The goal of this study was to investigate whether the John-Rapp-derived SS rat (SS/Jr), which exhibits spontaneous hypertension on a low-salt diet, presents with hallmarks of vascular dysfunction observed in another experimental model of hypertension independent of dietary salt, the spontaneously hypertensive rat (SHR). Endothelium-intact aortic rings and mesenteric resistance arteries were isolated from low-salt fed adult male SS/Jr rats and SHRs, or their respective controls, for isometric wire myography. Vessels were challenged with cumulative concentrations of various vasoactive substances, in the absence or presence of nitric oxide synthase or cyclooxygenase inhibitors. Despite showing some differences in their responses to various vasoactive substances, both SS/Jr rats and SHRs exhibited key features of vascular dysfunction, including endothelial dysfunction and hyperresponsiveness to vasocontractile agonists. In conclusion, this study provides evidence to support the utility of the SS/Jr rat strain maintained on a low-salt diet as a valid experimental model for vascular dysfunction, a key feature of human hypertension.
Collapse
Affiliation(s)
- Arturo Grano de Oro
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Sanjana Kumariya
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Blair Mell
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Bina Joe
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| | - Islam Osman
- Department of Physiology and Pharmacology, Center for Hypertension and Personalized MedicineUniversity of Toledo, College of Medicine and Life SciencesToledoOhioUSA
| |
Collapse
|
2
|
Khalil R, Bonnemaijer JDD, Kreutz R, Spaink HP, Hogendoorn PCW, Baelde HJ. Transmembrane protein 14A protects glomerular filtration barrier integrity. Physiol Rep 2023; 11:e15847. [PMID: 38054547 PMCID: PMC10698812 DOI: 10.14814/phy2.15847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
Transmembrane protein 14A (TMEM14A) is a relatively unknown protein that is now identified to be required for maintaining the integrity of the glomerular filtration barrier. It is an integral transmembrane protein of 99 amino acids with three transmembrane domains. TMEM14A has been implied to suppress Bax-mediated apoptosis in other studies. Other than that, little is currently known of its function. Here, we show that its expression is diminished before onset of proteinuria in a spontaneously proteinuric rat model. Knocking down tmem14a mRNA translation results in proteinuria in zebrafish embryos without affecting tubular reabsorption. Also, it is primarily expressed by podocytes. Lastly, an increase in glomerular TMEM14A expression is exhibited in various proteinuric renal diseases. Overall, these results suggest that TMEM14A is a novel factor in the protective mechanisms of the nephron to maintain glomerular filtration barrier integrity.
Collapse
Affiliation(s)
- Ramzi Khalil
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Reinhold Kreutz
- Institute of Clinical Pharmacology and ToxicologyCharité ‐ University MedicineBerlinGermany
| | - Herman P. Spaink
- Institute of Biology LeidenLeiden UniversityLeidenThe Netherlands
| | | | - Hans J. Baelde
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
3
|
Feng W, Guan Z, Ying WZ, Xing D, Ying KE, Sanders PW. Matrix metalloproteinase-9 regulates afferent arteriolar remodeling and function in hypertension-induced kidney disease. Kidney Int 2023; 104:740-753. [PMID: 37423509 PMCID: PMC10854403 DOI: 10.1016/j.kint.2023.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
This study tested if matrix metalloproteinase (MMP)-9 promoted microvascular pathology that initiates hypertensive (HT) kidney disease in salt-sensitive (SS) Dahl rats. SS rats lacking Mmp9 (Mmp9-/-) and littermate control SS rats were studied after one week on a normotensive 0.3% sodium chloride (Pre-HT SS and Pre-HT Mmp9-/-) or a hypertension-inducing diet containing 4.0% sodium chloride (HT SS and HT Mmp9-/-). Telemetry-monitored blood pressure of both the HT SS and HT Mmp9-/- rats increased and did not differ. Kidney microvessel transforming growth factor-beta 1 (Tgfb1) mRNA did not differ between Pre-HT SS and Pre-HT Mmp9-/- rats, but with hypertension and expression of Mmp9 and Tgfb1 increased in HT SS rats, along with phospho-Smad2 labeling of nuclei of vascular smooth muscle cells, and with peri-arteriolar fibronectin deposition. Loss of MMP-9 prevented hypertension-induced phenotypic transformation of microvascular smooth muscle cells and the expected increased microvascular expression of pro-inflammatory molecules. Loss of MMP-9 in vascular smooth muscle cells in vitro prevented cyclic strain-induced production of active TGF-β1 and phospho-Smad2/3 stimulation. Afferent arteriolar autoregulation was impaired in HT SS rats but not in HT Mmp9-/- rats or the HT SS rats treated with doxycycline, an MMP inhibitor. HT SS but not HT Mmp9-/- rats showed decreased glomerular Wilms Tumor 1 protein-positive cells (a marker of podocytes) along with increased urinary podocin and nephrin mRNA excretion, all indicative of glomerular damage. Thus, our findings support an active role for MMP-9 in a hypertension-induced kidney microvascular remodeling process that promotes glomerular epithelial cell injury in SS rats.
Collapse
Affiliation(s)
- Wenguang Feng
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhengrong Guan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wei-Zhong Ying
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dongqi Xing
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kai Er Ying
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul W Sanders
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham Veterans Affairs Health Care System, Birmingham, Alabama, USA.
| |
Collapse
|
4
|
Oshchepkov DY, Makovka YV, Ponomarenko MP, Redina OE, Markel AL. Age-Dependent Changes in the Relationships between Traits Associated with the Pathogenesis of Stress-Sensitive Hypertension in ISIAH Rats. Int J Mol Sci 2023; 24:10984. [PMID: 37446162 DOI: 10.3390/ijms241310984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Hypertension is one of the most significant risk factors for many cardiovascular diseases. At different stages of hypertension development, various pathophysiological processes can play a key role in the manifestation of the hypertensive phenotype and of comorbid conditions. Accordingly, it is thought that when diagnosing and choosing a strategy for treating hypertension, it is necessary to take into account age, the stage of disorder development, comorbidities, and effects of emotional-psychosocial factors. Nonetheless, such an approach to choosing a treatment strategy is hampered by incomplete knowledge about details of age-related associations between the numerous features that may contribute to the manifestation of the hypertensive phenotype. Here, we used two groups of male F2(ISIAHxWAG) hybrids of different ages, obtained by crossing hypertensive ISIAH rats (simulating stress-sensitive arterial hypertension) and normotensive WAG rats. By principal component analysis, the relationships among 21 morphological, physiological, and behavioral traits were examined. It was shown that the development of stress-sensitive hypertension in ISIAH rats is accompanied not only by an age-dependent (FDR < 5%) persistent increase in basal blood pressure but also by a decrease in the response to stress and by an increase in anxiety. The plasma corticosterone concentration at rest and its increase during short-term restraint stress in a group of young rats did not have a straightforward relationship with the other analyzed traits. Nonetheless, in older animals, such associations were found. Thus, the study revealed age-dependent relationships between the key features that determine hypertension manifestation in ISIAH rats. Our results may be useful for designing therapeutic strategies against stress-sensitive hypertension, taking into account the patients' age.
Collapse
Affiliation(s)
- Dmitry Yu Oshchepkov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Yulia V Makovka
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail P Ponomarenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Olga E Redina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Arcady L Markel
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Chivers JM, Whiles SA, Miles CB, Biederman BE, Ellison MF, Lovingood CW, Wright MH, Hoover DB, Raafey MA, Youngberg GA, Venkatachalam MA, Zheleznova NN, Yang C, Liu P, Kriegel AJ, Cowley AW, O'Connor PM, Picken MM, Polichnowski AJ. Brown-Norway chromosome 1 mitigates the upregulation of proinflammatory pathways in mTAL cells and subsequent age-related CKD in Dahl SS/JrHsdMcwi rats. Am J Physiol Renal Physiol 2023; 324:F193-F210. [PMID: 36475869 PMCID: PMC9886360 DOI: 10.1152/ajprenal.00145.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) has a strong genetic component; however, the underlying pathways are not well understood. Dahl salt-sensitive (SS)/Jr rats spontaneously develop CKD with age and are used to investigate the genetic determinants of CKD. However, there are currently several genetically diverse Dahl SS rats maintained at various institutions and the extent to which some exhibit age-related CKD is unclear. We assessed glomerulosclerosis (GS) and tubulointerstitial fibrosis (TIF) in 3- and 6-mo-old male and female SS/JrHsdMcwi, BN/NHsd/Mcwi [Brown-Norway (BN)], and consomic SS-Chr 1BN/Mcwi (SS.BN1) rats, in which chromosome 1 from the BN rat was introgressed into the genome of the SS/JrHsdMcwi rat. Rats were fed a 0.4% NaCl diet. GS (31 ± 3% vs. 7 ± 1%) and TIF (2.3 ± 0.2 vs. 0.5 ± 0.1) were significantly greater in 6-mo-old compared with 3-mo-old SS/JrHsdMcwi rats, and CKD was exacerbated in males. GS was minimal in 6- and 3-mo-old BN (3.9 ± 0.6% vs. 1.2 ± 0.4%) and SS.BN1 (2.4 ± 0.5% vs. 1.0 ± 0.3%) rats, and neither exhibited TIF. In SS/JrHsdMcwi and SS.BN1 rats, mean arterial blood pressure was significantly greater in 6-mo-old compared with 3-mo-old SS/JrHsdMcwi (162 ± 4 vs. 131 ± 2 mmHg) but not SS.BN1 (115 ± 2 vs. 116 ± 1 mmHg) rats. In 6-mo-old SS/JrHsdMcwi rats, blood pressure was significantly greater in females. RNA-sequencing analysis revealed that inflammatory pathways were upregulated in isolated medullary thick ascending tubules in 7-wk-old SS/JrHsdMcwi rats, before the development of tubule pathology, compared with SS.BN1 rats. In summary, SS/JrHsdMcwi rats exhibit robust age-related progression of medullary thick ascending limb abnormalities, CKD, and hypertension, and gene(s) on chromosome 1 have a major pathogenic role in such changes.NEW & NOTEWORTHY This study shows that the robust age-related progression of kidney disease in Dahl SS/JrHsdMcw rats maintained on a normal-salt diet is abolished in consomic SS.BN1 rats. Evidence that medullary thick ascending limb segments of SS/JrHsdMcw rats are structurally abnormal and enriched in proinflammatory pathways before the development of protein casts provides new insights into the pathogenesis of kidney disease in this model.
Collapse
Affiliation(s)
- Jacqueline M Chivers
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Shannon A Whiles
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Conor B Miles
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Brianna E Biederman
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Megan F Ellison
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Connor W Lovingood
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Marie H Wright
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Donald B Hoover
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| | - Muhammad A Raafey
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - George A Youngberg
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | | | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Maria M Picken
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois
| | - Aaron J Polichnowski
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
6
|
Chu PL, Gigliotti JC, Cechova S, Bodonyi-Kovacs G, Wang YT, Chen L, Wassertheil-Smoller S, Cai J, Isakson BE, Franceschini N, Le TH. Collectrin ( Tmem27) deficiency in proximal tubules causes hypertension in mice and a TMEM27 variant associates with blood pressure in males in a Latino cohort. Am J Physiol Renal Physiol 2023; 324:F30-F42. [PMID: 36264884 PMCID: PMC9762972 DOI: 10.1152/ajprenal.00176.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 02/04/2023] Open
Abstract
Collectrin (Tmem27), an angiotensin-converting enzyme 2 homologue, is a chaperone of amino acid transporters in the kidney and endothelium. Global collectrin knockout (KO) mice have hypertension, endothelial dysfunction, exaggerated salt sensitivity, and diminished renal blood flow. This phenotype is associated with altered nitric oxide and superoxide balance and increased proximal tubule (PT) Na+/H+ exchanger isoform 3 (NHE3) expression. Collectrin is located on the X chromosome where genome-wide association population studies have largely been excluded. In the present study, we generated PT-specific collectrin KO (PT KO) mice to determine the precise contribution of PT collectrin in blood pressure homeostasis. We also examined the association of human TMEM27 single-nucleotide polymorphisms with blood pressure traits in 11,926 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) Hispanic/Latino participants. PT KO mice exhibited hypertension, and this was associated with increased baseline NHE3 expression and diminished lithium excretion. However, PT KO mice did not display exaggerated salt sensitivity or a reduction in renal blood flow compared with control mice. Furthermore, PT KO mice exhibited enhanced endothelium-mediated dilation, suggesting a compensatory response to systemic hypertension induced by deficiency of collectrin in the PT. In HCHS/SOL participants, we observed sex-specific single-nucleotide polymorphism associations with diastolic blood pressure. In conclusion, loss of collectrin in the PT is sufficient to induce hypertension, at least in part, through activation of NHE3. Importantly, our model supports the notion that altered renal blood flow may be a determining factor for salt sensitivity. Further studies are needed to investigate the role of the TMEM27 locus on blood pressure and salt sensitivity in humans.NEW & NOTEWORTHY The findings of our study are significant in several ways: 1) loss of an amino acid chaperone in the proximal tubule is sufficient to cause hypertension, 2) the results in global and proximal tubule-specific collectrin knockout mice support the notion that vascular dysfunction is required for salt sensitivity or that impaired renal tubule function causes hypertension but is not sufficient to cause salt sensitivity, and 3) our study is the first to implicate a role of collectrin in human hypertension.
Collapse
Affiliation(s)
- Pei-Lun Chu
- Division of Nephrology, Fu Jen Catholic University Hospital, and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Joseph C Gigliotti
- Department of Integrated Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia
| | - Sylvia Cechova
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Gabor Bodonyi-Kovacs
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Yves T Wang
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| | - Luojing Chen
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center and Department of Molecular Physiology and Biophysics, University of Virginia Health System, Charlottesville, Virginia
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| |
Collapse
|
7
|
Redina OE, Smolenskaya SE, Markel AL. Genetic Control of the Behavior of ISIAH Rats in the Open Field Test. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422070146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Grigorova YN, Juhasz O, Long JM, Zernetkina VI, Hall ML, Wei W, Morrell CH, Petrashevskaya N, Morrow A, LaNasa KH, Bagrov AY, Rapp PR, Lakatta EG, Fedorova OV. Effect of Cardiotonic Steroid Marinobufagenin on Vascular Remodeling and Cognitive Impairment in Young Dahl-S Rats. Int J Mol Sci 2022; 23:4563. [PMID: 35562955 PMCID: PMC9101263 DOI: 10.3390/ijms23094563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
The hypertensive response in Dahl salt-sensitive (DSS) rats on a high-salt (HS) diet is accompanied by central arterial stiffening (CAS), a risk factor for dementia, and heightened levels of a prohypertensive and profibrotic factor, the endogenous Na/K-ATPase inhibitor marinobufagenin (MBG). We studied the effect of the in vivo administration of MBG or HS diet on blood pressure (BP), CAS, and behavioral function in young DSS rats and normotensive Sprague-Dawley rats (SD), the genetic background for DSS rats. Eight-week-old male SD and DSS rats were given an HS diet (8% NaCl, n = 18/group) or a low-salt diet (LS; 0.1% NaCl, n = 14-18/group) for 8 weeks or MBG (50 µg/kg/day, n = 15-18/group) administered via osmotic minipumps for 4 weeks in the presence of the LS diet. The MBG-treated groups received the LS diet. The systolic BP (SBP); the aortic pulse wave velocity (aPWV), a marker of CAS; MBG levels; spatial memory, measured by a water maze task; and tissue collection for the histochemical analysis were assessed at the end of the experiment. DSS-LS rats had higher SBP, higher aPWV, and poorer spatial memory than SD-LS rats. The administration of stressors HS and MBG increased aPWV, SBP, and aortic wall collagen abundance in both strains vs. their LS controls. In SD rats, HS or MBG administration did not affect heart parameters, as assessed by ECHO vs. the SD-LS control. In DSS rats, impaired whole-heart structure and function were observed after HS diet administration in DSS-HS vs. DSS-LS rats. MBG treatment did not affect the ECHO parameters in DSS-MBG vs. DSS-LS rats. The HS diet led to an increase in endogenous plasma and urine MBG levels in both SD and DSS groups. Thus, the prohypertensive and profibrotic effect of HS diet might be partially attributed to an increase in MBG. The prohypertensive and profibrotic functions of MBG were pronounced in both DSS and SD rats, although quantitative PCR revealed that different profiles of profibrotic genes in DSS and SD rats was activated after MBG or HS administration. Spatial memory was not affected by HS diet or MBG treatment in either SD or DSS rats. Impaired cognitive function was associated with higher BP, CAS, and cardiovascular remodeling in young DSS-LS rats, as compared to young SD-LS rats. MBG and HS had similar effects on the cardiovascular system and its function in DSS and SD rats, although the rate of change in SD rats was lower than in DSS rats. The absence of a cumulative effect of increased aPWV and BP on spatial memory can be explained by the cerebrovascular and brain plasticity in young rats, which help the animals to tolerate CAS elevated by HS and MBG and to counterbalance the profibrotic effect of heightened MBG.
Collapse
Affiliation(s)
- Yulia N. Grigorova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Ondrej Juhasz
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Jeffrey M. Long
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Valentina I. Zernetkina
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Mikayla L. Hall
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Wen Wei
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Natalia Petrashevskaya
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Audrey Morrow
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Katherine H. LaNasa
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Alexei Y. Bagrov
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (J.M.L.); (A.M.); (K.H.L.); (P.R.R.)
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| | - Olga V. Fedorova
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (Y.N.G.); (O.J.); (V.I.Z.); (M.L.H.); (W.W.); (C.H.M.); (N.P.); (A.Y.B.); (E.G.L.)
| |
Collapse
|
9
|
Kawarazaki W, Fujita T. Role of Rho in Salt-Sensitive Hypertension. Int J Mol Sci 2021; 22:ijms22062958. [PMID: 33803946 PMCID: PMC8001214 DOI: 10.3390/ijms22062958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
A high amount of salt in the diet increases blood pressure (BP) and leads to salt-sensitive hypertension in individuals with impaired renal sodium excretion. Small guanosine triphosphatase (GTP)ase Rho and Rac, activated by salt intake, play important roles in the pathogenesis of salt-sensitive hypertension as key switches of intracellular signaling. Focusing on Rho, high salt intake in the central nervous system increases sodium concentrations of cerebrospinal fluid in salt-sensitive subjects via Rho/Rho kinase and renin-angiotensin system activation and causes increased brain salt sensitivity and sympathetic nerve outflow in BP control centers. In vascular smooth muscle cells, Rho-guanine nucleotide exchange factors and Rho determine sensitivity to vasoconstrictors such as angiotensin II (Ang II), and facilitate vasoconstriction via G-protein and Wnt pathways, leading to increased vascular resistance, including in the renal arteries, in salt-sensitive subjects with high salt intake. In the vascular endothelium, Rho/Rho kinase inhibits nitric oxide (NO) production and function, and high salt amounts further augment Rho activity via asymmetric dimethylarginine, an endogenous inhibitor of NO synthetase, causing aberrant relaxation and increased vascular tone. Rho-associated mechanisms are deeply involved in the development of salt-sensitive hypertension, and their further elucidation can help in developing effective protection and new therapies.
Collapse
|
10
|
Keele GR, Prokop JW, He H, Holl K, Littrell J, Deal AW, Kim Y, Kyle PB, Attipoe E, Johnson AC, Uhl KL, Sirpilla OL, Jahanbakhsh S, Robinson M, Levy S, Valdar W, Garrett MR, Solberg Woods LC. Sept8/SEPTIN8 involvement in cellular structure and kidney damage is identified by genetic mapping and a novel human tubule hypoxic model. Sci Rep 2021; 11:2071. [PMID: 33483609 PMCID: PMC7822875 DOI: 10.1038/s41598-021-81550-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
Chronic kidney disease (CKD), which can ultimately progress to kidney failure, is influenced by genetics and the environment. Genes identified in human genome wide association studies (GWAS) explain only a small proportion of the heritable variation and lack functional validation, indicating the need for additional model systems. Outbred heterogeneous stock (HS) rats have been used for genetic fine-mapping of complex traits, but have not previously been used for CKD traits. We performed GWAS for urinary protein excretion (UPE) and CKD related serum biochemistries in 245 male HS rats. Quantitative trait loci (QTL) were identified using a linear mixed effect model that tested for association with imputed genotypes. Candidate genes were identified using bioinformatics tools and targeted RNAseq followed by testing in a novel in vitro model of human tubule, hypoxia-induced damage. We identified two QTL for UPE and five for serum biochemistries. Protein modeling identified a missense variant within Septin 8 (Sept8) as a candidate for UPE. Sept8/SEPTIN8 expression increased in HS rats with elevated UPE and tubulointerstitial injury and in the in vitro hypoxia model. SEPTIN8 is detected within proximal tubule cells in human kidney samples and localizes with acetyl-alpha tubulin in the culture system. After hypoxia, SEPTIN8 staining becomes diffuse and appears to relocalize with actin. These data suggest a role of SEPTIN8 in cellular organization and structure in response to environmental stress. This study demonstrates that integration of a rat genetic model with an environmentally induced tubule damage system identifies Sept8/SEPTIN8 and informs novel aspects of the complex gene by environmental interactions contributing to CKD risk.
Collapse
Affiliation(s)
| | - Jeremy W Prokop
- HudsonAlpha Institute, Huntsville, AL, USA
- Department of Pediatrics and Human Development, Department of Pharmacology, Michigan State University, Grand Rapids, MI, USA
| | - Hong He
- Departments of Pediatrics and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Katie Holl
- Departments of Pediatrics and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John Littrell
- Departments of Pediatrics and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aaron W Deal
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yunjung Kim
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick B Kyle
- Department of Pharmacology, Medicine (Nephrology), Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, MS, USA
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Esinam Attipoe
- Department of Pharmacology, Medicine (Nephrology), Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, MS, USA
| | - Ashley C Johnson
- Department of Pharmacology, Medicine (Nephrology), Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, MS, USA
| | - Katie L Uhl
- Department of Pediatrics and Human Development, Department of Pharmacology, Michigan State University, Grand Rapids, MI, USA
| | - Olivia L Sirpilla
- Department of Pediatrics and Human Development, Department of Pharmacology, Michigan State University, Grand Rapids, MI, USA
| | - Seyedehameneh Jahanbakhsh
- Department of Pediatrics and Human Development, Department of Pharmacology, Michigan State University, Grand Rapids, MI, USA
| | | | - Shawn Levy
- HudsonAlpha Institute, Huntsville, AL, USA
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael R Garrett
- Department of Pharmacology, Medicine (Nephrology), Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, MS, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
11
|
Nikolaienko O, Isaeva E, Levchenko V, Palygin O, Staruschenko A. Behavioral, metabolic, and renal outcomes of 1-month isolation in adolescent male Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol 2020; 319:R684-R689. [PMID: 33052061 DOI: 10.1152/ajpregu.00236.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Social contact deficit is considered a stressful circumstance associated with various neural, hormonal, genetic, immune, and behavioral effects. A growing body of clinical and basic science evidence suggests that social isolation is linked to a higher risk of various neurological, cardiovascular, and metabolic diseases, including hypertension, diabetes mellitus, and obesity. However, the impact of the deficit of social interaction on kidney function is not well established. The Dahl salt-sensitive (SS) rat is a classical model of salt-induced hypertension and associated kidney injury. In this study, we investigated the effect of 30 days of social isolation (SI) on blood and urine electrolytes and metabolic, physiological, and behavioral parameters in adolescent male Dahl SS rats fed a normal 0.4% NaCl diet. SI rats demonstrated increased behavioral excitability compared with rats kept in groups. We also observed increased food consumption and a decrease in plasma leptin levels in the SI group without differences in water intake and weight gain compared with grouped animals. No changes in the level of blood and urine electrolytes, 24-h urine output, creatinine clearance, and albumin/creatinine ratio were identified between the SI and grouped rats. These findings indicate that 30 days of social isolation of adolescent Dahl SS rats affects metabolic parameters but has no apparent influence on kidney function.
Collapse
Affiliation(s)
- Oksana Nikolaienko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Clement J. Zablocki Veteran Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
12
|
Turbeville HR, Johnson AC, Garrett MR, Dent EL, Sasser JM. Nitric oxide and oxidative stress pathways do not contribute to sex differences in renal injury and function in Dahl SS/Jr rats. Physiol Rep 2020; 8:e14440. [PMID: 32652814 PMCID: PMC7354091 DOI: 10.14814/phy2.14440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
The burden of hypertension in the United States is increasing and yields significant morbidity and mortality, and sex differences in hypertension are widely recognized. Reduced nitric oxide (NO) bioavailability and increased oxidative stress are known to contribute to the pathogenesis of hypertensive renal injury, and but their contributions to sex differences in injury progression of are undefined. Our purpose was to test the hypothesis that male hypertensive rats have accelerated renal injury compared to females and to determine the contributions of the nitric oxide pathway and oxidative stress in these differences. Male and female Dahl SS/Jr rats, a model that spontaneously develops hypertension with age, were allowed to age on a 0.3% NaCl diet until 3 or 6 months of age, at which points blood pressure was measured and plasma, tissue, and urine were collected. While no significant sex differences in blood pressure were present at either time point, renal injury measured by urine protein excretion was more severe (male = 44.9 ± 6; female = 15±3 mg/day/100 g bw, p = .0001), and renal function was reduced (male = 0.48 ± 0.02; female = 0.7 ± 0.03 ml min-1 g-1 kw, p = .001) in males compared to females with age. Both male and female rats exhibited reduced nitric oxide metabolites (3 months: male = 0.65 ± 0.1; female = 0.74 ± 0.3; 6 months: male = 0.16 ± 0.1; female = 0.41 ± 0.1 ml min-1 g-1 kw, p, age = 0.02, p, sex = 0.3). Levels of urinary TBARS were similar (3 months: male = 20±1.5; female = 23±1.8; 6 months: male = 26±4.8; female = 23±4.7µM day g-1 kw, p, age = 0.4, p, sex = 0.9), extracellular superoxide dismutase (EC SOD) mRNA was greater in females (3 months: male = 0.35 ± 0.03; female = 1.4 ± 0.2; 6 months: male = 0.4 ± 0.05; female = 1.3 ± 0.1 normalized counts, p, age = 0.7, p, sex < 0.0001), but EC SOD protein expression was not different (3 months: male = 0.01 ± 0.002; female = 0.01 ± 0.002; 6 months: male = 0.02 ± 0.004; female = 0.01 ± 0.002 relative density, p, age = 0.2, p, sex = 0.8). These data support the presence of significant sex differences in renal injury and function in the Dahl S rat and identify a need for further study into the mechanisms involved.
Collapse
Affiliation(s)
- Hannah R. Turbeville
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Ashley C. Johnson
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Michael R. Garrett
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Elena L. Dent
- Department Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMSUSA
| | - Jennifer M. Sasser
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMSUSA
| |
Collapse
|
13
|
Garrett MR, Korstanje R. Using Genetic and Species Diversity to Tackle Kidney Disease. Trends Genet 2020; 36:499-509. [PMID: 32362446 DOI: 10.1016/j.tig.2020.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Progress in the identification of causal genes and understanding of the mechanism underlying kidney disease is hindered by the almost exclusive use of a few animal models with restrictive monogenic backgrounds that may be more resistant to kidney disease compared with humans and, therefore, poor models. Exploring the large genetic diversity in classical animal models, such as mice and rats, and leveraging species diversity will allow us to use the genetic advantages of zebrafish, Drosophila, and other species, to develop both new animal models that are more relevant to the study of human kidney disease and potential therapies.
Collapse
Affiliation(s)
- Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS, USA; Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, MS, USA; Department of Pediatrics (Genetics), University of Mississippi Medical Center, Jackson, MS, USA
| | - Ron Korstanje
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, Maine, ME, USA; Mount Desert Island Biological Laboratory, Bar Harbor, Maine, ME, USA.
| |
Collapse
|
14
|
Johnson AC, Wu W, Attipoe EM, Sasser JM, Taylor EB, Showmaker KC, Kyle PB, Lindsey ML, Garrett MR. Loss of Arhgef11 in the Dahl Salt-Sensitive Rat Protects Against Hypertension-Induced Renal Injury. Hypertension 2020; 75:1012-1024. [PMID: 32148127 DOI: 10.1161/hypertensionaha.119.14338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arhgef11 is a Rho-guanine nucleotide exchange factor that was previously implicated in kidney injury in the Dahl salt-sensitive (SS) rat, a model of hypertension-related chronic kidney disease. Reduced Arhgef11 expression in an SS-Arhgef11SHR-minimal congenic strain (spontaneously hypertensive rat allele substituted for S allele) significantly decreased proteinuria, fibrosis, and improved renal hemodynamics, without impacting blood pressure compared with the control SS (SS-wild type). Here, SS-Arhgef11-/- and SS-wild type rats were placed on either low or elevated salt (0.3% or 2% NaCl) from 4 to 12 weeks of age. On low salt, starting at week 6 and through week 12, SS-Arhgef11-/- animals demonstrated a 3-fold decrease in proteinuria compared with SS-wild type. On high salt, beginning at week 6, SS-Arhgef11-/- animals demonstrated >2-fold lower proteinuria from weeks 8 to 12 and 30 mm Hg lower BP compared with SS-wild type. To better understand the molecular mechanisms of the renal protection from loss of Arhgef11, both RNA sequencing and discovery proteomics were performed on kidneys from week 4 (before onset of renal injury/proteinuria between groups) and at week 12 (low salt). The omics data sets revealed loss of Arhgef11 (SS-Arhgef11-/-) initiates early transcriptome/protein changes in the cytoskeleton starting as early as week 4 that impact a number of cellular functions, including actin cytoskeletal regulation, mitochondrial metabolism, and solute carrier transporters. In summary, in vivo phenotyping coupled with a multi-omics approach provides strong evidence that increased Arhgef11 expression in the Dahl SS rat leads to actin cytoskeleton-mediated changes in cell morphology and cell function that promote kidney injury, hypertension, and decline in kidney function.
Collapse
Affiliation(s)
- Ashley C Johnson
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Wenjie Wu
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Esinam M Attipoe
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Jennifer M Sasser
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Erin B Taylor
- Department of Physiology (E.B.T., M.L.L.), University of Mississippi Medical Center
| | - Kurt C Showmaker
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center
| | - Patrick B Kyle
- Department of Pathology (P.B.K.), University of Mississippi Medical Center
| | - Merry L Lindsey
- Department of Physiology (E.B.T., M.L.L.), University of Mississippi Medical Center
| | - Michael R Garrett
- From the Department of Pharmacology and Toxicology (A.C.J., W.W., E.M.A., J.M.S., M.R.G., K.C.S.), University of Mississippi Medical Center.,Department of Medicine (Nephrology) (M.R.G.), University of Mississippi Medical Center
| |
Collapse
|
15
|
Feng W, Guan Z, Xing D, Li X, Ying WZ, Remedies CE, Inscho EW, Sanders PW. Avian erythroblastosis virus E26 oncogene homolog-1 (ETS-1) plays a role in renal microvascular pathophysiology in the Dahl salt-sensitive rat. Kidney Int 2020; 97:528-537. [PMID: 31932071 PMCID: PMC7039742 DOI: 10.1016/j.kint.2019.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022]
Abstract
Prior studies reported that haploinsufficiency of the transcription factor ETS-1 is renoprotective in Dahl salt-sensitive rats, but the mechanism is unclear. Here, we tested whether ETS-1 is involved in hypertension-induced renal microvascular pathology and autoregulatory impairment. Hypertension was induced in salt-sensitive rats and salt-sensitive rats that are heterozygous with 1 wild-type or reference allele of Ets1 (SSEts1+/-) by feeding a diet containing 4% sodium chloride for 1 week. Increases in blood pressure did not differ. However, phosphorylated ETS-1 increased in afferent arterioles of hypertensive salt-sensitive rats, but not in hypertensive SSEts1+/- rats. Afferent arterioles of hypertensive salt-sensitive rats showed increased monocyte chemotactic protein-1 expression and infiltration of CD68 positive monocytes/macrophages. Isolated kidney microvessels showed increased mRNA expression of vascular cell adhesion molecule, intercellular adhesion molecule, P-selectin, fibronectin, transforming growth factor-β, and collagen I in hypertensive salt-sensitive rats compared with hypertensive SSEts1+/- rats. Using the in vitro blood-perfused juxtamedullary nephron preparation, pressure-mediated afferent arteriolar responses were significantly blunted in hypertensive salt-sensitive rats compared to hypertensive SSEts1+/- rats. Over a 65-170 mm Hg pressure range tested baseline arteriolar diameters averaged 15.1 μm and remained between 107% and 89% of baseline diameter in hypertensive salt-sensitive rats vs. 114% and 73% in hypertensive SSEts1+/- rats (significantly different). Thus, ETS-1 participates in renal arteriolar pathology and autoregulation and thereby is involved in hypertension-mediated kidney injury in salt-sensitive rats.
Collapse
Affiliation(s)
- Wenguang Feng
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Zhengrong Guan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dongqi Xing
- Division of Pulmonary, Allergy & Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xingsheng Li
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wei-Zhong Ying
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Colton E Remedies
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Veterans Affairs Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Chakraborty S, Galla S, Cheng X, Yeo JY, Mell B, Singh V, Yeoh B, Saha P, Mathew AV, Vijay-Kumar M, Joe B. Salt-Responsive Metabolite, β-Hydroxybutyrate, Attenuates Hypertension. Cell Rep 2019; 25:677-689.e4. [PMID: 30332647 PMCID: PMC6542293 DOI: 10.1016/j.celrep.2018.09.058] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/22/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Dietary salt reduction and exercise are lifestyle modifications for salt-sensitive hypertensives. While exercise has prominent metabolic effects, salt has an adverse effect on metabolic syndrome, of which hypertension is a hallmark. We hypothesized that dietary salt impacts metabolism in a salt-sensitive model of hypertension. An untargeted metabolomic approach demonstrates lower circulating levels of the ketone body, beta-hydroxybutyrate (βOHB), in high salt-fed hypertensive rats. Despite the high salt intake, specific rescue of βOHB levels by nutritional supplementation of its precursor, 1,3-butanediol, attenuates hypertension and protects kidney function. This beneficial effect of βOHB was likely independent of gut-microbiotal and Th17-mediated effects of salt and instead facilitated by βOHB inhibiting the renal Nlrp3 inflammasome. The juxtaposed effects of dietary salt and exercise on salt-sensitive hypertension, which decrease and increase βOHB respectively, indicate that nutritional supplementation of a precursor of βOHB provides a similar benefit to salt-sensitive hypertension as exercise. Chakraborty et al. report a link between dietary salt, a ketone, and experimental hypertension. Intake of a high salt diet lowers the ketone body betahydroxybutyrate (βOHB), produced by the liver, which functions to prevent Nlrp3-mediated kidney inflammation. Rescuing βOHB by nutritional supplementation of its precursor attenuates hypertension.
Collapse
Affiliation(s)
- Saroj Chakraborty
- Program in Physiological Genomics, Microbiome Consortium, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sarah Galla
- Program in Physiological Genomics, Microbiome Consortium, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xi Cheng
- Program in Physiological Genomics, Microbiome Consortium, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ji-Youn Yeo
- Program in Physiological Genomics, Microbiome Consortium, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Blair Mell
- Program in Physiological Genomics, Microbiome Consortium, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Vishal Singh
- Program in Physiological Genomics, Microbiome Consortium, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - BengSan Yeoh
- Program in Physiological Genomics, Microbiome Consortium, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Piu Saha
- Program in Physiological Genomics, Microbiome Consortium, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Anna V Mathew
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Matam Vijay-Kumar
- Program in Physiological Genomics, Microbiome Consortium, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Bina Joe
- Program in Physiological Genomics, Microbiome Consortium, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
17
|
Hassanzadeh Khayyat N, Kim EY, Dryer SE. TRPC6 inactivation does not protect against diabetic kidney disease in streptozotocin (STZ)-treated Sprague-Dawley rats. FASEB Bioadv 2019; 1:773-782. [PMID: 32123821 PMCID: PMC6996301 DOI: 10.1096/fba.2019-00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023] Open
Abstract
Canonical transient receptor potential-6 (TRPC6) channels have been implicated in the progression of several forms of kidney disease (1). While there is strong evidence that glomerular TRPC6 channels are dysregulated in diabetic nephropathy (DN), there is no consensus as to whether deletion or inactivation of TRPC6 is protective in animal models of DN. A previous study in Dahl salt-sensitive rats suggests that TRPC6 knockout has a modest protective effect in streptozotocin (STZ)-induced DN (2). In the present study, we examined whether inactivation of TRPC6 channels by CRISPR/Cas9 editing (Trpc6 del/del rats) affects progression of STZ-induced DN in Sprague-Dawley rats. Wild-type littermates (Trpc6 wt/wt rats) were used as controls. We observed that a single injection of STZ resulted in severe hyperglycemia that was sustained over a 10-week period, accompanied by a marked reduction in circulating C-peptide, dyslipidemia, and failure to gain weight compared to vehicle-treated animals. Those effects were equally severe in Trpc6 wt/wt and Trpc6 del/del rats. STZ treatment resulted in increased urine albumin excretion at 4, 8, and 10 weeks after injection, and this effect was equally severe in Trpc6 wt/wt and Trpc6 del/del rats. TRPC6 inactivation had no effect on blood urea nitrogen (BUN), plasma creatinine concentration, urine nephrin excretion, or kidney weight:body weight ratio measured 10 weeks after STZ injection. STZ treatment evoked modest and equivalent mesangial expansion in Trpc6 wt/wt and Trpc6 del/del rats. In summary, we observed no protective effect of TRPC6 inactivation on STZ-induced DN in rats on the Sprague-Dawley background.
Collapse
Affiliation(s)
| | - Eun Young Kim
- Department of Biology and BiochemistryUniversity of HoustonHoustonTXUSA
| | - Stuart E. Dryer
- Department of Biology and BiochemistryUniversity of HoustonHoustonTXUSA
- Department of Biomedical SciencesUniversity of Houston College of MedicineHoustonTXUSA
| |
Collapse
|
18
|
Abstract
Current understanding of the mechanisms underlying renal disease in humans is incomplete. Consequently, our ability to prevent the occurrence of renal disease or treat established kidney disease is limited. Investigating kidney disease directly in humans poses objective difficulties, which has led investigators to seek experimental animal models that simulate renal disease in humans. Animal models have thus become a tool of major importance in the study of renal physiology and have been crucial in shedding light on the complex mechanisms involved in kidney function and in our current understanding of the pathophysiology of renal disease. Among animal models, the rat has been the preferred and most commonly used species for the investigation of renal disease. This chapter reviews what has been achieved over the years, using the rat as a tool for the investigation of renal disease in humans, focusing on the contribution of rat genetics and genomics to the elucidation of the mechanisms underlying the pathophysiology of the major types of renal disease, including primary and secondary renal diseases.
Collapse
|
19
|
Rapp JP, Garrett MR. Will the real Dahl S rat please stand up? Am J Physiol Renal Physiol 2019; 317:F1231-F1240. [PMID: 31545925 PMCID: PMC6879929 DOI: 10.1152/ajprenal.00359.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022] Open
Affiliation(s)
- John P Rapp
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
20
|
Pai AV, West CA, de Souza AMA, Kadam PS, Pollner EJ, West DA, Li J, Ji H, Wu X, Zhu MJ, Baylis C, Sandberg K. Renal T cell infiltration occurs despite attenuation of development of hypertension with hydralazine in Envigo's female Dahl rat maintained on a low-Na + diet. Am J Physiol Renal Physiol 2019; 317:F572-F583. [PMID: 31241996 PMCID: PMC6766632 DOI: 10.1152/ajprenal.00512.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
Many studies have suggested that renal T cell infiltration contributes to the pathogenesis of salt-sensitive hypertension. To investigate this mechanism further, we determined T cell profiles in the kidney and lymphoid tissues as a function of blood pressure in the female Envigo Dahl salt-sensitive (SS) rat maintained on low-Na+ (LS) diet. Mean arterial pressure and heart rate were measured by telemetry in SS rats from 1 mo old (juvenile) to 4 mo old. Normotensive salt-resistant (SR) rats were included as controls. Frequencies of T helper (CD4+) cells were greater in the kidney, lymph nodes, and spleen in 4-mo-old hypertensive SS rats compared with normotensive SR animals and SS juvenile rats, suggesting that renal T cell infiltration contributes to hypertension in the SS rat on a LS diet. At 1.5 mo, half of the SS rats were treated with vehicle (Veh), and the rest received hydralazine (HDZ; 25 mg·kg-1·day-1) for 11 wk. HDZ impeded the development of hypertension compared with Veh-treated control rats [mean arterial pressure: 157 ± 4 mmHg in the Veh-treated group (n = 6) vs. 133 ± 3 mmHg in the HDZ-treated group (n = 7), P < 0.001] without impacting T helper cell frequencies in the tissues, suggesting that HDZ can overcome mechanisms of hypertension driven by renal T cell infiltration under the LS diet. Renal frequencies of CD4+CD25+ and CD4+CD25+FoxP3+ regulatory T cells were significantly higher in 4-mo-old hypertensive rats compared with normotensive SR rats and SS juvenile rats, suggesting that these T cell subpopulations play a compensatory role in the development of hypertension. Greater understanding of these T cell populations could lead to new therapeutic targets for treating inflammatory diseases associated with hypertension.
Collapse
Affiliation(s)
- Amrita V Pai
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia
| | - Crystal A West
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | | | - Parnika S Kadam
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia
| | - Emma J Pollner
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - David A West
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Jia Li
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Hong Ji
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Xie Wu
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Michelle J Zhu
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Chris Baylis
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Kathryn Sandberg
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia
- Department of Medicine, Georgetown University, Washington, District of Columbia
| |
Collapse
|
21
|
Atari E, Perry MC, Jose PA, Kumarasamy S. Regulated Endocrine-Specific Protein-18, an Emerging Endocrine Protein in Physiology: A Literature Review. Endocrinology 2019; 160:2093-2100. [PMID: 31294787 DOI: 10.1210/en.2019-00397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/04/2019] [Indexed: 01/10/2023]
Abstract
Regulated endocrine-specific protein-18 (RESP18), a novel 18-kDa protein, was first identified in neuroendocrine tissue. Subsequent studies showed that Resp18 is expressed in the adrenal medulla, brain, pancreas, pituitary, retina, stomach, superior cervical ganglion, testis, and thyroid and also circulates in the plasma. Resp18 has partial homology with the islet cell antigen 512, also known as protein tyrosine phosphatase, receptor type N (PTPRN), but does not have phosphatase activity. Resp18 might serve as an intracellular signal; however, its function is unclear. It is regulated by dopamine, glucocorticoids, and insulin. We recently reported that the targeted disruption of the Resp18 locus in Dahl salt-sensitive rats increased their blood pressure and caused renal injury. The aim of the present review was to provide a comprehensive summary of the reported data currently available, especially the expression and proposed organ-specific function of Resp18.
Collapse
Affiliation(s)
- Ealla Atari
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Mitchel C Perry
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Pedro A Jose
- Division of Kidney Diseases and Hypertension, Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC
- Department of Pharmacology and Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC
| | - Sivarajan Kumarasamy
- Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
22
|
Xue H, Zhang G, Geurts AM, Usa K, Jensen DM, Liu Y, Widlansky ME, Liang M. Tissue-specific effects of targeted mutation of Mir29b1 in rats. EBioMedicine 2018; 35:260-269. [PMID: 30120082 PMCID: PMC6156712 DOI: 10.1016/j.ebiom.2018.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND miR-29 is a master regulator of extracellular matrix genes, but conflicting data on its anti-fibrotic effect have been reported. miR-29 improves nitric oxide (NO) production in arterioles by targeting Lypla1. Mir29b1 targeted mutation exacerbates hypertension in a model derived from the Dahl salt-sensitive rat. We examined the effect of Mir29b1 mutation on tissue fibrosis and NO levels with a focus on kidney regions. METHODS Mir29b1 targeted mutant rats on the genetic background of SS-Chr13BN rats were studied. Masson trichrome staining, molecular and biochemical assays, metabolic cage studies, and bioinformatic analysis of human genomic data were performed. FINDINGS The abundance of miR-29b and the co-transcribed miR-29a was substantially lower in mutant rats. Tissue fibrosis was significantly increased in the renal outer medulla, but not in the renal cortex, heart or liver in mutant rats on a 0.4% NaCl diet. Lypla1 protein abundance was significantly higher and NO levels lower in the renal outer medulla, but not in the renal cortex. After 14 days of a 4% NaCl diet, 24 h urine volume and urinary sodium excretion was significantly lower in mutant rats, and tissue fibrosis became higher in the heart. NO levels were lower in the renal outer medulla and heart, but not in the renal cortex. Human miR-29 genes are located in proximity with blood pressure-associated single nucleotide polymorphisms. INTERPRETATION The renal outer medulla might be particularly susceptible to the injurious effects of a miR-29 insufficiency, which might contribute to the development of hypertension in Mir29b1 mutant rats.
Collapse
Affiliation(s)
- Hong Xue
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, PR China; Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Guangyuan Zhang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David M Jensen
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael E Widlansky
- Departments of Medicine and Pharmacology, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
23
|
Kumarasamy S, Waghulde H, Cheng X, Haller ST, Mell B, Abhijith B, Ashraf UM, Atari E, Joe B. Targeted disruption of regulated endocrine-specific protein ( Resp18) in Dahl SS/Mcw rats aggravates salt-induced hypertension and renal injury. Physiol Genomics 2018; 50:369-375. [PMID: 29570433 DOI: 10.1152/physiolgenomics.00008.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hypertension is a classic example of a complex polygenic trait, impacted by quantitative trait loci (QTL) containing candidate genes thought to be responsible for blood pressure (BP) control in mammals. One such mapped locus is on rat chromosome 9, wherein the proof for a positional candidate gene, regulated endocrine-specific protein-18 ( Resp18) is currently inadequate. To ascertain the status of Resp18 as a BP QTL, a custom targeted gene disruption model of Resp18 was developed on the Dahl salt-sensitive (SS) background. As a result of this zinc-finger nuclease (ZFN)-mediated disruption, a 7 bp deletion occurred within exon 3 of the Resp18 locus. Targeted disruption of Resp18 gene locus in SS rats decreases its gene expression in both heart and kidney tissues regardless of their dietary salt level. Under a high-salt dietary regimen, both systolic and diastolic BP of Resp18mutant rats were significantly increased compared with SS rats. Resp18mutant rats demonstrated increased renal damage, as evidenced by higher proteinuria and increased renal fibrosis compared with SS rats. Furthermore, under a high-salt diet regimen, the mean survival time of Resp18mutant rats was significantly reduced compared with SS rats. These findings serve as evidence in support of Resp18 as a gene associated with the development of hypertension and renal disease.
Collapse
Affiliation(s)
- Sivarajan Kumarasamy
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Harshal Waghulde
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Xi Cheng
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Steven T Haller
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio.,Department of Medicine, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Blair Mell
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Basrur Abhijith
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio.,Department of Food, Agricultural and Biological Engineering, The Ohio State University , Columbus, Ohio
| | - Usman M Ashraf
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Ealla Atari
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences , Toledo, Ohio
| |
Collapse
|
24
|
Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, Kim S, Sieber J, Wieder N, Jung JY, Andreeva S, Reichardt J, Dubois F, Hoffmann SC, Basgen JM, MontesinoS MS, Weins A, Johnson AC, Lander ES, Garrett MR, Hopkins CR, Greka A. A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 2017; 358:1332-1336. [PMID: 29217578 PMCID: PMC6014699 DOI: 10.1126/science.aal4178] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 07/14/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022]
Abstract
Progressive kidney diseases are often associated with scarring of the kidney's filtration unit, a condition called focal segmental glomerulosclerosis (FSGS). This scarring is due to loss of podocytes, cells critical for glomerular filtration, and leads to proteinuria and kidney failure. Inherited forms of FSGS are caused by Rac1-activating mutations, and Rac1 induces TRPC5 ion channel activity and cytoskeletal remodeling in podocytes. Whether TRPC5 activity mediates FSGS onset and progression is unknown. We identified a small molecule, AC1903, that specifically blocks TRPC5 channel activity in glomeruli of proteinuric rats. Chronic administration of AC1903 suppressed severe proteinuria and prevented podocyte loss in a transgenic rat model of FSGS. AC1903 also provided therapeutic benefit in a rat model of hypertensive proteinuric kidney disease. These data indicate that TRPC5 activity drives disease and that TRPC5 inhibitors may be valuable for the treatment of progressive kidney diseases.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Philip Castonguay
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eriene-Heidi Sidhom
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Abbe R. Clark
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Moran Dvela-Levitt
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sookyung Kim
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonas Sieber
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicolas Wieder
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ji Yong Jung
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Svetlana Andreeva
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jana Reichardt
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Frank Dubois
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sigrid C. Hoffmann
- Medical Research Center, Medical Faculty Mannheim, University Heidelberg, Germany
| | - John M. Basgen
- Life Sciences Institute, Charles R. Drew University of Science and Medicine, Los Angeles, CA 90059, USA
| | - Mónica S. MontesinoS
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Astrid Weins
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ashley C. Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Eric S. Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Corey R. Hopkins
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna Greka
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
25
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
26
|
Feng W, Chen B, Xing D, Li X, Fatima H, Jaimes EA, Sanders PW. Haploinsufficiency of the Transcription Factor Ets-1 Is Renoprotective in Dahl Salt-Sensitive Rats. J Am Soc Nephrol 2017; 28:3239-3250. [PMID: 28696249 DOI: 10.1681/asn.2017010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/22/2017] [Indexed: 11/03/2022] Open
Abstract
Studies using Dahl salt-sensitive (SS) rats identified specific quantitative trait loci that predispose animals to hypertension-associated albuminuria and kidney injury. We explored the hypothesis that kidney-specific expression of the transcription factor Ets-1, located within one of these loci on chromosome 8, mediates glomerular injury in SS hypertension. During the first week on a high-salt diet, SS rats and SS rats with only one functioning Ets-1 gene (ES rats) demonstrated similar increases in BP. However, serum creatinine concentration, albuminuria, and glomerular expression of ETS-1 and two ETS-1 targets, MCP-1 and MMP2, did not increase as substantially in ES rats as in SS rats. Mean BP subsequently increased further in SS rats and remained higher than that of ES rats for the rest of the study. After 4 weeks of high-salt intake, ES rats still showed a lower mean serum creatinine concentration and less albuminuria, as well as less histologic evidence of glomerular injury and kidney fibrosis, than SS rats did. To investigate the specific contribution of renal Ets-1, we transplanted kidneys from ES or SS rats into salt-resistant SS-Chr 13BN/McwiCrl (SS-13BN) rats. Within 10 days on a high-salt diet, BP increased similarly in ES and SS allograft recipients, becoming significantly higher than the BP of control isograft recipients. However, mean serum creatinine concentration and albuminuria remained lower in ES allograft recipients than in SS allograft recipients at 2 weeks, and ES allografts showed less glomerular injury and interstitial fibrosis. In conclusion, reduced renal expression of ETS-1 prevented hypertension-associated kidney injury in SS rats.
Collapse
Affiliation(s)
- Wenguang Feng
- Divisions of Nephrology and Cardiovascular Disease, Departments of Medicine,
| | - Bo Chen
- Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dongqi Xing
- Divisions of Nephrology and Cardiovascular Disease, Departments of Medicine
| | - Xingsheng Li
- Divisions of Nephrology and Cardiovascular Disease, Departments of Medicine
| | - Huma Fatima
- Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Edgar A Jaimes
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Paul W Sanders
- Divisions of Nephrology and Cardiovascular Disease, Departments of Medicine.,Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Medicine, Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
27
|
Haller ST, Kumarasamy S, Folt DA, Wuescher LM, Stepkowski S, Karamchandani M, Waghulde H, Mell B, Chaudhry M, Maxwell K, Upadhyaya S, Drummond CA, Tian J, Filipiak WE, Saunders TL, Shapiro JI, Joe B, Cooper CJ. Targeted disruption of Cd40 in a genetically hypertensive rat model attenuates renal fibrosis and proteinuria, independent of blood pressure. Kidney Int 2017; 91:365-374. [PMID: 27692815 PMCID: PMC5237403 DOI: 10.1016/j.kint.2016.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022]
Abstract
High blood pressure is a common cause of chronic kidney disease. Because CD40, a member of the tumor necrosis factor receptor family, has been linked to the progression of kidney disease in ischemic nephropathy, we studied the role of Cd40 in the development of hypertensive renal disease. The Cd40 gene was mutated in the Dahl S genetically hypertensive rat with renal disease by targeted-gene disruption using zinc-finger nuclease technology. These rats were then given low (0.3%) and high (2%) salt diets and compared. The resultant Cd40 mutants had significantly reduced levels of both urinary protein excretion (41.8 ± 3.1 mg/24 h vs. 103.7 ± 4.3 mg/24 h) and plasma creatinine (0.36 ± 0.05 mg/dl vs. 1.15 ± 0.19 mg/dl), with significantly higher creatinine clearance compared with the control S rats (3.04 ± 0.48 ml/min vs. 0.93 ± 0.15 ml/min), indicating renoprotection was conferred by mutation of the Cd40 locus. Furthermore, the Cd40 mutants had a significant attenuation in renal fibrosis, which persisted on the high salt diet. However, there was no difference in systolic blood pressure between the control and Cd40 mutant rats. Thus, these data serve as the first evidence for a direct link between Cd40 and hypertensive nephropathy. Hence, renal fibrosis is one of the underlying mechanisms by which Cd40 plays a crucial role in the development of hypertensive renal disease.
Collapse
Affiliation(s)
- Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| | - Sivarajan Kumarasamy
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - David A Folt
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Leah M Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Stanislaw Stepkowski
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Manish Karamchandani
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Harshal Waghulde
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Blair Mell
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Muhammad Chaudhry
- Department of Pharmacology, Physiology, and Toxicology, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Kyle Maxwell
- Department of Pharmacology, Physiology, and Toxicology, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Siddhi Upadhyaya
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Christopher A Drummond
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Jiang Tian
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Wanda E Filipiak
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Joseph I Shapiro
- Department of Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, USA
| | - Bina Joe
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Christopher J Cooper
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA; Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
28
|
Jia Z, Johnson AC, Wang X, Guo Z, Dreisbach AW, Lewin JR, Kyle PB, Garrett MR. Allelic Variants in Arhgef11 via the Rho-Rock Pathway Are Linked to Epithelial-Mesenchymal Transition and Contributes to Kidney Injury in the Dahl Salt-Sensitive Rat. PLoS One 2015; 10:e0132553. [PMID: 26172442 PMCID: PMC4501567 DOI: 10.1371/journal.pone.0132553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
Previously, genetic analyses identified that variants in Arhgef11 may influence kidney injury in the Dahl salt-sensitive (S) rat, a model of hypertensive chronic kidney disease. To understand the potential mechanism by which altered expression and/or protein differences in Arhgef11 could play a role in kidney injury, stably transduced Arhgef11 knockdown cell lines as well as primary cultures of proximal tubule cells were studied. Genetic knockdown of Arhgef11 in HEK293 and NRK resulted in reduced RhoA activity, decreased activation of Rho-ROCK pathway, and less stress fiber formation versus control, similar to what was observed by pharmacological inhibition (fasudil). Primary proximal tubule cells (PTC) cultured from the S exhibited increased expression of Arhgef11, increased RhoA activity, and up regulation of Rho-ROCK signaling compared to control (small congenic). The cells were also more prone (versus control) to TGFβ-1 induced epithelial-mesenchymal transition (EMT), a hallmark feature of the development of renal interstitial fibrosis, and characterized by development of spindle shape morphology, gene expression changes in EMT markers (Col1a3, Mmp9, Bmp7, and Ocln) and increased expression of N-Cadherin and Vimentin. S derived PTC demonstrated a decreased ability to uptake FITC-albumin compared to the small congenic in vitro, which was confirmed by assessment of albumin re-uptake in vivo by infusion of FITC-albumin and immunofluorescence imaging. In summary, these studies suggest that genetic variants in the S form of Arhgef11 via increased expression and/or protein activity play a role in promoting kidney injury in the S rat through changes in cell morphology (Rho-Rock and/or EMT) that impact the function of tubule cells.
Collapse
Affiliation(s)
- Zhen Jia
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Ashley C. Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Xuexiang Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Zibiao Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
- Molecular and Genomics Core Facility, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Albert W. Dreisbach
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Jack R. Lewin
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Patrick B. Kyle
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, MS, United States of America
- * E-mail:
| |
Collapse
|
29
|
Redina OE, Smolenskaya SE, Klimov LO, Markel AL. Candidate genes in quantitative trait loci associated with absolute and relative kidney weight in rats with Inherited Stress Induced Arterial Hypertension. BMC Genet 2015; 16 Suppl 1:S1. [PMID: 25707311 PMCID: PMC4331803 DOI: 10.1186/1471-2156-16-s1-s1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The kidney mass is significantly increased in hypertensive ISIAH rats with Inherited Stress Induced Arterial Hypertension as compared with normotensive WAG rats. The QTL/microarray approach was carried out to determine the positional candidate genes in the QTL for absolute and relative kidney weight. RESULTS Several known and predicted genes differentially expressed in ISIAH and WAG kidney were mapped to genetic loci associated with the absolute and relative kidney weight in 6-month old F2 hybrid (ISIAHxWAG) males. The knowledge-driven filtering of the list of candidates helped to suggest several positional candidate genes, which may be related to the structural and mass changes in hypertensive ISIAH kidney. CONCLUSIONS The further experimental validation of causative genes and detection of polymorphisms will provide opportunities to advance our understanding of the underlying nature of structural and mass changes in hypertensive ISIAH kidney.
Collapse
|
30
|
Gopalakrishnan K, Kumarasamy S, Mell B, Joe B. Genome-wide identification of long noncoding RNAs in rat models of cardiovascular and renal disease. Hypertension 2014; 65:200-10. [PMID: 25385761 DOI: 10.1161/hypertensionaha.114.04498] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) are an emerging class of genomic regulatory molecules reported in various species. In the rat, which is one of the major mammalian model organisms, discovery of lncRNAs on a genome-wide scale is lagging. Renal lncRNA sequencing and lncRNA transcriptome analysis were conducted in 3 rat strains that are widely used in cardiovascular and renal research: the Dahl salt-sensitive rat, the spontaneously hypertensive rat, and the Dahl salt-resistant rat. Through the RNA sequencing approach, 3273 transcripts were identified as rat lncRNAs. A majority of lncRNAs were without predicted target genes. Differential expression of 273 and 749 lncRNAs was detected between Dahl salt-sensitive versus Dahl salt-resistant and Dahl salt-sensitive versus spontaneously hypertensive rat comparisons, respectively. To couple the observed differential expression of lncRNAs with the status of mRNAs, an mRNA transcriptome analysis was conducted. Several cis mRNA genes were coregulated with lncRNAs. Of these, the protein expression status of 4 target genes, Asb3, Chac2, Pex11b, and Sp5, were differentially expressed between the relevant strain comparisons, thereby suggesting that the differentially expressed lncRNAs associated with these genes are candidate genetic determinants of blood pressure. This study serves as a first-generation catalog of rat lncRNAs and illustrates the prioritization of lncRNAs as candidates for complex polygenic traits.
Collapse
Affiliation(s)
- Kathirvel Gopalakrishnan
- From the Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH
| | - Sivarajan Kumarasamy
- From the Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH
| | - Blair Mell
- From the Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH
| | - Bina Joe
- From the Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, OH.
| |
Collapse
|
31
|
Abstract
BACKGROUND Spontaneously hypertensive rat (SHR) lines differ in their susceptibility to hypertensive end-organ disease and may provide an informative model of genetic risk of disease. Lines derived from the original SHR-B and SHR-C clades are highly resistant to hypertensive end-organ disease, whereas lines derived from the SHR-A clade were selected for stroke susceptibility and experience hypertensive renal disease. METHOD Here we characterize the temporal development of progressive renal injury in SHR-A3 animals consuming 0.3% sodium in the diet and drinking water. SHR-A3 rats demonstrate albuminuria, glomerular damage, tubulointerstitial injury, and renal fibrosis that emerge at 18 weeks of age and progress. RESULTS AND CONCLUSION Mortality of SHR-A3 animals was 50% at 40 weeks of age, and animals surviving to this age had reduced renal function. In contrast SHR-B2, which are 87% genetically identical to SHR-A3, are substantially protected from renal injury and demonstrate only moderate changes in albuminuria and renal histological injury over this time period. At 40 weeks of age, electron microscopy of the renal glomerulus revealed severe podocyte effacement in SHR-A3, but slit diaphragm architecture in SHR-B2 at this age was well preserved. Renal injury traits in the F1 and F2 progeny of an intercross between SHR-A3 and SHR-B2 were measured to determine heritability of renal injury in this model. Heritability of albuminuria, glomerular injury, and tubulointerstitial injury were estimated at 48.9, 66.5 and 58.6%, respectively. We assessed the relationship between blood pressure and renal injury measures in the F2 animals and found some correlation between these variables that explain up to 26% of the trait variation. Quantitative trait locus (QTL) mapping was performed using over 200 single nucleotide polymorphism markers distributed across the 13% of the genome that differs between these two closely related lines. Mapping of albuminuria, tubulointerstitial injury, and renal fibrosis failed to identify loci linked with disease susceptibility, suggesting a complex inheritance of disease risk. We detected a single QTL conferring susceptibility to glomerular injury that was confined to a small haplotype block at chromosome 14:70-76Mb.
Collapse
|
32
|
Westbrook L, Johnson AC, Regner KR, Williams JM, Mattson DL, Kyle PB, Henegar JR, Garrett MR. Genetic susceptibility and loss of Nr4a1 enhances macrophage-mediated renal injury in CKD. J Am Soc Nephrol 2014; 25:2499-510. [PMID: 24722447 DOI: 10.1681/asn.2013070786] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nuclear hormone receptors of the NR4A subgroup have been implicated in cancer, atherosclerosis, and metabolic disease. However, little is known about the role of these receptors in kidney health or disease. Nr4a1-deficient rats (Nr4a1(-/-)) developed on a genetic background susceptible to kidney injury (fawn-hooded hypertensive rat [FHH]) were evaluated for BP, proteinuria, renal function, and metabolic parameters from 4 to 24 weeks-of-age. By week 24, Nr4a1(-/-) rats exhibited significantly higher proteinuria (approximately 4-fold) and decreased GFR compared with FHH controls. The severity of tubular atrophy, tubular casts, and interstitial fibrosis increased significantly in Nr4a1(-/-) rats and was accompanied by a large increase in immune cell infiltration, predominantly macrophages and to a lesser extent T cells and B cells. Global transcriptome and network analyses at weeks 8, 16, and 24 identified several proinflammatory genes and pathways differentially regulated between strains. Bone marrow crosstransplantation studies demonstrated that kidney injury in Nr4a1(-/-) rats was almost completely rescued by bone marrow transplanted from FHH controls. In vitro, macrophages isolated from Nr4a1(-/-) rats demonstrated increased immune activation compared with FHH-derived macrophages. In summary, the loss of Nr4a1 in immune cells appears to cause the increased kidney injury and reduced renal function observed in the Nr4a1(-/-) model.
Collapse
Affiliation(s)
| | | | | | - Jan M Williams
- Departments of Pharmacology and Toxicology, Medicine, and
| | - David L Mattson
- Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Patrick B Kyle
- Pathology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jeffery R Henegar
- Pathology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | | |
Collapse
|
33
|
He X, Liu Y, Usa K, Tian Z, Cowley AW, Liang M. Ultrastructure of mitochondria and the endoplasmic reticulum in renal tubules of Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2014; 306:F1190-7. [PMID: 24694587 DOI: 10.1152/ajprenal.00073.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metabolic and functional abnormalities in the kidney precede or coincide with the initiation of overt hypertension in the Dahl salt-sensitive (SS) rat. However, renal histological injury in SS rats is mild before the development of overt hypertension. We performed electron microscopy analysis in 7-wk-old SS rats and salt-insensitive consomic SS.13(BN) rats and Sprague-Dawley (SD) rats fed a 4% NaCl diet for 7 days. Long mitochondria (>2 μm) accounted for a significantly smaller fraction of mitochondria in medullary thick ascending limbs in SS rats (4% ± 1%) than in SS.13(BN) rats (8% ± 1%, P < 0.05 vs. SS rats) and SD rats (9% ± 1%, P < 0.01 vs. SS rats), consistent with previous findings of mitochondrial functional insufficiency in the medulla of SS rats. Long mitochondria in proximal tubules, however, were more abundant in SS rats than in SS.13(BN) and SD rats. The width of the endoplasmic reticulum, an index of endoplasmic reticulum stress, was significantly greater in medullary thick ascending limbs of SS rats (107 ± 1 nm) than in SS.13(BN) rats (95 ± 2 nm, P < 0.001 vs. SS rats) and SD rats (74 ± 3 nm, P < 0.01 vs. SS or SS.13(BN) rats). The tubules examined were indistinguishable between rat strains under light microscopy. These data indicate that ultrastructural abnormalities occur in the medullary thick ascending limbs of SS rats before the development of histological injury in renal tubules, providing a potential structural basis contributing to the subsequent development of overt hypertension.
Collapse
Affiliation(s)
- Xiaofeng He
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China; and
| | - Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kristie Usa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| |
Collapse
|
34
|
Grabowski K, Koplin G, Aliu B, Schulte L, Schulz A, Kreutz R. Mapping and confirmation of a major left ventricular mass QTL on rat chromosome 1 by contrasting SHRSP and F344 rats. Physiol Genomics 2013; 45:827-33. [PMID: 23901062 DOI: 10.1152/physiolgenomics.00067.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An abnormal increase in left ventricular (LV) mass, i.e., LV hypertrophy (LVH), represents an important target organ damage in arterial hypertension and has been associated with poor clinical outcome. Genetic factors are contributing to variation in LV mass in addition to blood pressure and other factors such as dietary salt intake. We set out to map quantitative trait loci (QTL) for LV mass by comparing the spontaneously hypertensive stroke-prone (SHRSP) rat with LVH and normotensive Fischer rats (F344) with contrasting low LV mass. To this end we performed a genome-wide QTL mapping analysis in 232 F2 animals derived from SHRSP and F344 exposed to high-salt (4% in chow) intake for 8 wk. We mapped one major QTL for LV mass on rat chromosome 1 (RNO1) that demonstrated strong linkage (peak logarithm of odds score 8.4) to relative LV weight (RLVW) and accounted for ∼19% of the variance of this phenotype in F2 rats. We therefore generated a consomic SHRSP-1(F344) strain in which RNO1 from F344 was introgressed into the SHRSP background. Consomic and SHRSP animals showed similar blood pressures during conventional intra-arterial measurements, while RLVW was already significantly lower (-17.7%, P<0.05) in SHRSP-1(F344) in response to a normal-salt diet; a similar significant reduction of LV mass was also observed in consomic rats after high-salt intake (P<0.05 vs. SHRSP). Thus, a major QTL on RNO1 was confirmed with significant impact on LV mass in the hypertensive background of SHRSP.
Collapse
Affiliation(s)
- Katja Grabowski
- Department of Clinical Pharmacology and Toxicology, CharitéCentrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Johnson AC, Lee JW, Harmon AC, Morris Z, Wang X, Fratkin J, Rapp JP, Gomez-Sanchez E, Garrett MR. A mutation in the start codon of γ-crystallin D leads to nuclear cataracts in the Dahl SS/Jr-Ctr strain. Mamm Genome 2013; 24:95-104. [PMID: 23404175 PMCID: PMC3628938 DOI: 10.1007/s00335-013-9447-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
Cataracts are a major cause of blindness. The most common forms of cataracts are age- and UV-related and develop mostly in the elderly, while congenital cataracts appear at birth or in early childhood. The Dahl salt-sensitive (SS/Jr) rat is an extensively used model of salt-sensitive hypertension that exhibits concomitant renal disease. In the mid-1980s, cataracts appeared in a few animals in the Dahl S colony, presumably the result of a spontaneous mutation. The mutation was fixed and bred to establish the SS/Jr-Ctr substrain. The SS/Jr-Ctr substrain has been used exclusively by a single investigator to study the role of steroids and hypertension. Using a classical positional cloning approach, we localized the cataract gene with high resolution to a less than 1-Mbp region on chromosome 9 using an F1(SS/Jr-Ctr × SHR) × SHR backcross population. The 1-Mbp region contained only 13 genes, including 4 genes from the γ-crystallins (Cryg) gene family, which are known to play a role in cataract formation. All of the γ-crystallins were sequenced and a novel point mutation in the start codon (ATG → GTG) of the Crygd gene was identified. This led to the complete absence of the CRYGD protein in the eyes of the SS/Jr-Ctr strain. In summary, the identification of the genetic cause in this novel cataract model may provide an opportunity to better understand the development of cataracts, particularly in the context of hypertension.
Collapse
Affiliation(s)
- Ashley C. Johnson
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Jonathan W. Lee
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Ashlyn C. Harmon
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Zaliya Morris
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Xuexiang Wang
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Jonathan Fratkin
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216
| | | | - Elise Gomez-Sanchez
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216
- GV(Sonny) Montgomery VAMC
| | - Michael R. Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216
- Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
36
|
Spradley FT, Kang KT, Pollock JS. Short-term hypercaloric diet induces blunted aortic vasoconstriction and enhanced vasorelaxation via increased nitric oxide synthase 3 activity and expression in Dahl salt-sensitive rats. Acta Physiol (Oxf) 2013; 207:358-68. [PMID: 23176108 DOI: 10.1111/apha.12025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 09/02/2012] [Accepted: 09/27/2012] [Indexed: 02/03/2023]
Abstract
AIM To elucidate the role of the O(2)(-), H(2)O(2) or NO pathways in aortic angiotensin (Ang)II-induced vasoconstriction in Dahl salt-sensitive (SS) rats compared with control SS-13(BN) rats on a normal or hypercaloric diet. METHODS Aortic function was assessed using wire myography in 16-week-old rats maintained on a normal diet or a 4-week hypercaloric diet. Nitric oxide synthase (NOS) activity and expression was determined by the conversion of radio-labelled arginine to citrulline and Western blot analysis respectively. RESULTS On normal diet, AngII-induced vasoconstriction was greater in SS than SS-13(BN) rats. Polyethylene glycol superoxide dismutase (PEG-SOD) reduced the aortic AngII response similarly in both strains on normal diet. Catalase blunted, whereas N(ω)-Nitro-L-arginine methyl ester (L-NAME) did not affect the AngII response in SS rats. In SS-13(BN) rats, catalase had no effect and L-NAME enhanced AngII response. On hypercaloric diet, aortic AngII responsiveness was reduced in SS but unaltered in SS-13(BN) rats compared with their normal diet counterparts. PEG-SOD reduced the AngII response in both rats on hypercaloric diet. Catalase treatment did not alter aortic AngII response, while L-NAME increased the response in SS rats on hypercaloric diet. In SS-13(BN) rats on hypercaloric diet, catalase reduced and L-NAME did not alter the AngII response. Furthermore, aortic endothelial-dependent vasorelaxation was increased in SS rats on hypercaloric diet compared with normal diet and aortic NOS3 activity and expression was increased. CONCLUSION A short-term hypercaloric diet induces a blunted vasoconstrictive and enhanced vasodilatory phenotype in SS rats, but not in SS-13(BN) rats, via reduced H(2)O(2) and increased NOS3 function.
Collapse
Affiliation(s)
| | - K.-T. Kang
- Vascular Biology Center; Medical College of Georgia; Georgia Health Sciences University; Augusta; GA; USA
| | - J. S. Pollock
- Section of Experimental Medicine; Department of Medicine; Medical College of Georgia; Georgia Health Sciences University; Augusta; GA; USA
| |
Collapse
|
37
|
Redina OE, Smolenskaya SE, Maslova LN, Markel AL. The Genetic Control of Blood Pressure and Body Composition in Rats with Stress-Sensitive Hypertension. Clin Exp Hypertens 2013; 35:484-95. [DOI: 10.3109/10641963.2012.758274] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Williams JM, Johnson AC, Stelloh C, Dreisbach AW, Franceschini N, Regner KR, Townsend RR, Roman RJ, Garrett MR. Genetic variants in Arhgef11 are associated with kidney injury in the Dahl salt-sensitive rat. Hypertension 2012; 60:1157-68. [PMID: 22987919 DOI: 10.1161/hypertensionaha.112.199240] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A previous genetic analysis comparing the Dahl salt-sensitive (S) rat with the spontaneously hypertensive rat identified a major locus on chromosome 2 that influences proteinuria in the S rat. In the present study, blood pressure, proteinuria, and renal hemodynamics were evaluated in congenic strains with small segments of the protective spontaneously hypertensive rat genome on the S background. Proteinuria and renal function were significantly improved in the congenic strains compared with the S. The causative locus interval was narrowed to <375 kb on the basis of congenic strains, haplotype data, comparative mapping, and concordance with human genetic studies. Sequencing of the coding region of genes in this region identified 36 single nucleotide polymorphisms (13 nonsynonymous and 23 synonymous). Gene expression profiling indicated that only a few genes exhibited differential expression. Arhgef11, Pear1, and Sh2d2 were identified as important candidate genes that may be linked to kidney injury in the S rat. In particular, Arhgef11 plays an important role in the activation of the Rho-ROCK signaling pathway. Inhibition of this pathway using fasudil resulted in a significant reduction of proteinuria in treated S rats (compared with untreated S). However, no difference was observed between treated or untreated spontaneously hypertensive rat or congenic strains. The homologous region in humans was found to be associated with estimated glomerular filtration rate in the Candidate Gene Association Resource population. In summary, these findings demonstrate that allelic variants in Arhgef11, acting through the Rho-ROCK pathway, could influence kidney injury in the S as well as provide insight into human kidney disease.
Collapse
Affiliation(s)
- Jan M Williams
- University of Mississippi Medical Center, Department of Pharmacology and Toxicology, 2500 North State St, Jackson, MS 39216, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gopalakrishnan K, Kumarasamy S, Yan Y, Liu J, Kalinoski A, Kothandapani A, Farms P, Joe B. Increased Expression of Rififylin in A < 330 Kb Congenic Strain is Linked to Impaired Endosomal Recycling in Proximal Tubules. Front Genet 2012; 3:138. [PMID: 22891072 PMCID: PMC3413941 DOI: 10.3389/fgene.2012.00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 07/11/2012] [Indexed: 11/13/2022] Open
Abstract
Cell surface proteins are internalized into the cell through endocytosis and either degraded within lysosomes or recycled back to the plasma membrane. While perturbations in endosomal internalization are known to modulate renal function, it is not known whether similar alterations in recycling affect renal function. Rififylin is a known regulator of endocytic recycling with E3 ubiquitin protein ligase activity. In this study, using two genetically similar strains, the Dahl Salt-sensitive rat and an S.LEW congenic strain, which had allelic variants within a < 330 kb segment containing rififylin, we tested the hypothesis that alterations in endosomal recycling affect renal function. The congenic strain had 1.59-fold higher renal expression of rififylin. Transcriptome analysis indicated that components of both endocytosis and recycling were upregulated in the congenic strain. Transcription of Atp1a1 and cell surface content of the protein product of Atp1a1, the alpha subunit of Na+K+ATPase were increased in the proximal tubules from the congenic strain. Because rififylin does not directly regulate endocytosis and it is also a differentially expressed gene within the congenic segment, we reasoned that the observed alterations in the transcriptome of the congenic strain constitute a feedback response to the primary functional alteration of recycling caused by rififylin. To test this, recycling of transferrin was studied in isolated proximal tubules. Recycling was significantly delayed within isolated proximal tubules of the congenic strain, which also had a higher level of polyubiquitinated proteins and proteinuria compared with S. These data provide evidence to suggest that delayed endosomal recycling caused by excess of rififylin indirectly affects endocytosis, enhances intracellular protein polyubiquitination and contributes to proteinuria.
Collapse
Affiliation(s)
- Kathirvel Gopalakrishnan
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Schulz A, Kreutz R. Mapping genetic determinants of kidney damage in rat models. Hypertens Res 2012; 35:675-94. [DOI: 10.1038/hr.2012.77] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Regner KR, Harmon AC, Williams JM, Stelloh C, Johnson AC, Kyle PB, Lerch-Gaggl A, White SM, Garrett MR. Increased susceptibility to kidney injury by transfer of genomic segment from SHR onto Dahl S genetic background. Physiol Genomics 2012; 44:629-37. [PMID: 22548739 DOI: 10.1152/physiolgenomics.00015.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Dahl salt-sensitive (S) rat is a widely studied model of salt-sensitive hypertension and develops proteinuria, glomerulosclerosis, and renal interstitial fibrosis. An earlier genetic analysis using a population derived from the S and spontaneously hypertensive rat (SHR) identified eight genomic regions linked to renal injury in the S rat and one protective locus on chromosome 11. The "protective" locus in the S rat was replaced with the SHR genomic segment conferring "susceptibility" to kidney injury. The progression of kidney injury in the S.SHR(11) congenic strain was characterized in the present study. Groups of S and S.SHR(11) rats were followed for 12 wk on either a low-salt (0.3% NaCl) or high-salt (2% NaCl) diet. By week 12 (low-salt), S.SHR(11) demonstrated a significant decline in kidney function compared with the S. Blood pressure was significantly elevated in both strains on high salt. Despite similar blood pressure, the S.SHR(11) exhibited a more significant decline in kidney function compared with the S. The decline in S.SHR(11) kidney function was associated with more severe kidney injury including tubular loss, immune cell infiltration, and tubulointerstitial fibrosis compared with the S. Most prominently, the S.SHR(11) exhibited a high degree of medullary fibrosis and a significant increase in renal vascular medial hypertrophy. In summary, genetic modification of the S rat generated a model of accelerated renal disease that may provide a better system to study progression to renal failure as well as lead to the identification of genetic variants involved in kidney injury.
Collapse
Affiliation(s)
- Kevin R Regner
- Department of Medicine (Nephrology), Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kumarasamy S, Gopalakrishnan K, Toland EJ, Yerga-Woolwine S, Farms P, Morgan EE, Joe B. Refined mapping of blood pressure quantitative trait loci using congenic strains developed from two genetically hypertensive rat models. Hypertens Res 2011; 34:1263-70. [PMID: 21814219 DOI: 10.1038/hr.2011.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previously linkage and substitution mapping were conducted between the Dahl Salt-sensitive (S) rat and the Spontaneously Hypertensive Rat (SHR) to address the hypothesis that genetic contributions to blood pressure (BP) in two genetically hypertensive rat strains are different. Among the BP quantitative trait loci (QTLs) detected, two are located on chromosome 9 within large genomic segments. The goal of the current study was to develop new iterations of congenic substrains, to further resolve both of these BP QTLs on chromosome 9 as independent congenic segments. A total of 10 new congenic substrains were developed and characterized. The newly developed congenic substrains S.SHR(9)x8Ax11A and S.SHR(9)x10Ax1, with introgressed segments of 2.05 and 6.14 Mb, represented the shortest genomic segments. Both of these congenic substrains, S.SHR(9)x8Ax11A and S.SHR(9)x10Ax1 lowered BP of the S rat by 56 mm Hg (P<0.001) and 15 mm Hg (P<0.039), respectively. The BP measurements were corroborated by radiotelemetry. Urinary protein excretion was significantly lowered by SHR alleles within S.SHR(9)x10Ax1 but not by S.SHR(9)x8Ax11A. The shorter of the two congenic segments, 2.05 Mb was further characterized and found to contain a single differentially expressed protein-coding gene, Tomoregulin-2 (Tmeff2). The protein expression of Tmeff2 was higher in the S rat compared with S.SHR(9)x8Ax11A, which also had lower cardiac hypertrophy as measured by echocardiography. Tmeff2 is known to be upregulated in patients from multiple cohorts with cardiac hypertrophy. Taken together, Tmeff2 can be prioritized as a candidate gene for hypertension and associated cardiac hypertrophy in both rats and in humans.
Collapse
Affiliation(s)
- Sivarajan Kumarasamy
- Physiological Genomics Laboratory, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Brown LM, Hansen CT, Huberty AF, Castonguay T. Traits of the metabolic syndrome alter corpulent obesity in LAN, SHR and DSS rats: Behavioral and metabolic interactions with adrenalectomy. Physiol Behav 2011; 103:98-103. [DOI: 10.1016/j.physbeh.2010.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/02/2010] [Accepted: 12/20/2010] [Indexed: 11/30/2022]
|
44
|
Yagil Y, Hessner M, Schulz H, Gosele C, Lebedev L, Barkalifa R, Sapojnikov M, Hubner N, Yagil C. Geno-transcriptomic dissection of proteinuria in the uninephrectomized rat uncovers a molecular complexity with sexual dimorphism. Physiol Genomics 2010; 42A:301-16. [PMID: 20876844 DOI: 10.1152/physiolgenomics.00149.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Investigation of proteinuria, whose pathophysiology remains incompletely understood, is confounded by differences in the phenotype between males and females. We initiated a sex-specific geno-transcriptomic dissection of proteinuria in uninephrectomized male and female Sabra rats that spontaneously develop focal and segmental glomerulosclerosis, testing the hypothesis that different mechanisms might underlie the pathophysiology of proteinuria between the sexes. In the genomic arm, we scanned the genome of 136 male and 111 female uninephrectomized F2 populations derived from crosses between SBH/y and SBN/y. In males, we identified proteinuria-related quantitative trait loci (QTLs) on RNO2 and 20 and protective QTLs on RNO6 and 9. In females, we detected proteinuria-related QTLs on RNO11, 13, and 20. The only QTL overlap between the sexes was on RNO20. Using consomic strains, we confirmed the functional significance of this QTL in both sexes. In the transcriptomic arm, we searched on a genomewide scale for genes that were differentially expressed in kidneys of SBH/y and SBN/y with and without uninephrectomy. These studies identified within each sex differentially expressed genes of relevance to proteinuria. Integrating genomics with transcriptomics, we identified differentially expressed genes that mapped within the boundaries of the proteinuria-related QTLs, singling out 24 transcripts in males and 30 in females, only 4 of which (Tubb5, Ubd, Psmb8, and C2) were common to both sexes. Data mining revealed that these transcripts are involved in multiple molecular mechanisms, including immunity, inflammation, apoptosis, matrix deposition, and protease activity, with no single molecular pathway predominating in either sex. These results suggest that the pathophysiology of proteinuria is highly complex and that some of the underlying mechanisms are shared between the sexes, while others are sex specific and may account for the difference in the proteinuric phenotype between males and females.
Collapse
Affiliation(s)
- Yoram Yagil
- Laboratory for Molecular Medicine and Israeli Rat Genome Center, Faculty of Health Sciences, Ben-Gurion University, Barzilai Medical Center Campus, Ashkelon, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Solberg Woods LC, Stelloh C, Regner KR, Schwabe T, Eisenhauer J, Garrett MR. Heterogeneous stock rats: a new model to study the genetics of renal phenotypes. Am J Physiol Renal Physiol 2010; 298:F1484-91. [PMID: 20219828 PMCID: PMC2886820 DOI: 10.1152/ajprenal.00002.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/09/2010] [Indexed: 11/22/2022] Open
Abstract
Chronic kidney disease is a growing medical concern, with an estimated 25.6 million people in the United States exhibiting some degree of kidney injury and/or decline in kidney function. Animal models provide great insight into the study of the genetics of complex diseases. In particular, heterogeneous stock (HS) rats represent a unique genetic resource enabling rapid fine-mapping of complex traits. However, they have not been explored as a model to study renal phenotypes. To evaluate the usefulness of HS rats in the genetics of renal traits, a time course evaluation (weeks 8-40) was performed for several renal phenotypes. As expected, a large degree of variation was seen for most renal traits. By week 24, three (of 40) rats exhibited marked proteinuria that increased gradually until week 40 and ranged from 33.7 to 80.2 mg/24 h. Detailed histological analysis confirmed renal damage in these rats. In addition, several rats consistently exhibited significant hematuria (5/41). Interestingly, these rats were not the same rats that exhibited proteinuria, indicating that susceptibility to different types of kidney injury is likely segregating within the HS population. One HS rat exhibited unilateral renal agenesis (URA), which was accompanied by a significant degree of proteinuria and glomerular and tubulointerstitial injury. The parents of this HS rat were identified and bred further. Additional offspring of this pair were observed to exhibit URA at frequency between 40% and 60%. In summary, these novel data demonstrate that HS rats exhibit variation in proteinuria and other kidney-related traits, confirming that the model harbors susceptibility alleles for kidney injury and providing the basis for further genetic studies.
Collapse
Affiliation(s)
- Leah C Solberg Woods
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
46
|
Schulz A, Schütten S, Schulte L, Kossmehl P, Nyengaard JR, Vetter R, Huber M, Kreutz R. Genetic locus on MWF rat chromosome 6 affects kidney damage in response to L-NAME treatment in spontaneously hypertensive rats. Physiol Genomics 2010; 42:126-33. [PMID: 20388842 DOI: 10.1152/physiolgenomics.00036.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major quantitative trait locus (QTL) on rat chromosome (RNO)6 was linked to albuminuria in Munich Wistar Frömter rats (MWF). We tested whether transfer of MWF RNO6 into the background of albuminuria-resistant spontaneously hypertensive rats (SHR) induces albuminuria in consomic SHR-6(MWF) animals. Male MWF, SHR, and SHR-6(MWF) were sham operated and treated between 6 and 24 wk of age with normal water (Sham) or with water containing 20 mg/l N(G)-nitro-L-arginine methyl ester (L-NAME) or unilaterally nephrectomized (Nx). Compared with SHR albuminuria was not increased in SHR-6(MWF) in both Sham and Nx groups. All animals survived the observation period in Sham and Nx groups, while premature mortality occurred from 12-14 wk on in L-NAME-treated SHR and SHR-6(MWF) compared with MWF L-NAME animals, in which survival was not affected (P < 0.005, respectively). Subsequent further analysis of L-NAME-treated animals at 12 wk of age showed significantly increased arterial blood pressures in both SHR and SHR-6(MWF) compared with control (P < 0.05), with higher levels in SHR compared with consomics (P < 0.05). However, L-NAME-treated consomic animals demonstrated increased albuminuria compared with SHR (12.7 +/- 3.5 vs. 0.8 +/- 0.2 mg/24 h; P < 0.05) and an induction of tubulointerstitial structural injury and expression of neutrophil gelatinase-associated lipocalin mRNA (P < 0.05 vs. other strains). Our study demonstrates that isolation of the RNO6 albuminuria QTL from the MWF background and transfer into SHR fails to induce an albuminuria phenotype during normal conditions or after nephron reduction. Moreover, our data indicate that genes on RNO6 contribute to the development of L-NAME-induced renal damage in the SHR strain.
Collapse
Affiliation(s)
- Angela Schulz
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Current understanding of the mechanisms underlying renal disease in humans is incomplete. Consequently, our ability to prevent the occurrence of renal disease or treat kidney disease once it develops is limited. There are objective difficulties in investigating kidney disease directly in humans, leading investigators to resort to experimental animal models that simulate renal disease in humans. Animal models have thus been a tool of major importance in the study of normal renal physiology and have been crucial in shedding light on the complex mechanisms involved in normal kidney function and in our current understanding of and ability to treat renal disease. Among the animal models, rat has been the preferred and most commonly used species for the investigation of renal disease. This chapter reviews what has been achieved over the years, using rat as a tool for the investigation of renal disease in humans, focusing on the contribution of rat genetics and genomics to the elucidation of the mechanisms underlying the pathophysiology of the major types of renal disease, including primary and secondary renal diseases.
Collapse
|
48
|
Stadnicka A, Contney SJ, Moreno C, Weihrauch D, Bosnjak ZJ, Roman RJ, Stekiel TA. Mechanism of differential cardiovascular response to propofol in Dahl salt-sensitive, Brown Norway, and chromosome 13-substituted consomic rat strains: role of large conductance Ca2+ and voltage-activated potassium channels. J Pharmacol Exp Ther 2009; 330:727-35. [PMID: 19541907 PMCID: PMC2729794 DOI: 10.1124/jpet.109.154104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 06/17/2009] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular sensitivity to general anesthetics is highly variable among individuals in both human and animal models, but little is known about the genetic determinants of drug response to anesthetics. Recently, we reported that propofol (2,6-diisopropylphenol) causes circulatory instability in Dahl salt-sensitive SS/JRHsdMcwi (SS) rats but not in Brown Norway BN/NHsdMcwi (BN) rats and that these effects are related to genes on chromosome 13. Based on the hypothesis that propofol does target mesenteric circulation, we investigated propofol modulation of mesenteric arterial smooth muscle cells (MASMC) in SS and BN rats. The role of chromosome 13 was tested using SS-13(BN)/Mcwi and BN-13(SS)/Mcwi consomic strains with chromosome 13 substitution. Propofol (5 microM) produced a greater in situ hyperpolarization of MASMC membrane potential in SS than BN rats, and this effect was abrogated by iberiotoxin, a voltage-activated potassium (BK) channel blocker. In inside-out patches, the BK channel number, P(o), and apparent Ca(2+) sensitivity, and propofol sensitivity all were significantly greater in MASMC of SS rats. The density of whole-cell BK current was increased by propofol more in SS than BN myocytes. Immunolabeling confirmed higher expression of BK alpha subunit in MASMC of SS rats. Furthermore, the hyperpolarization produced by propofol, the BK channel properties, and propofol sensitivity were modified in MASMC of SS-13(BN)/Mcwi and BN-13(SS)/Mcwi strains toward the values observed in the background SS and BN strains. We conclude that differential function and expression of BK channels, resulting from genetic variation within chromosome 13, contribute to the enhanced propofol sensitivity in SS and BN-13(SS)/Mcwi versus BN and SS-13(BN)/Mcwi strains.
Collapse
Affiliation(s)
- Anna Stadnicka
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Solberg Woods LC, Ahmadiyeh N, Baum A, Shimomura K, Li Q, Steiner DF, Turek FW, Takahashi JS, Churchill GA, Redei EE. Identification of genetic loci involved in diabetes using a rat model of depression. Mamm Genome 2009; 20:486-97. [PMID: 19697080 PMCID: PMC2775460 DOI: 10.1007/s00335-009-9211-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 07/22/2009] [Indexed: 11/29/2022]
Abstract
While diabetic patients often present with comorbid depression, the underlying mechanisms linking diabetes and depression are unknown. The Wistar Kyoto (WKY) rat is a well-known animal model of depression and stress hyperreactivity. In addition, the WKY rat is glucose intolerant and likely harbors diabetes susceptibility alleles. We conducted a quantitative trait loci (QTL) analysis in the segregating F(2) population of a WKY x Fischer 344 (F344) intercross. We previously published QTL analyses for depressive behavior and hypothalamic-pituitary-adrenal (HPA) activity in this cross. In this study we report results from the QTL analysis for multiple metabolic phenotypes, including fasting glucose, post-restraint stress glucose, postprandial glucose and insulin, and body weight. We identified multiple QTLs for each trait and many of the QTLs overlap with those previously identified using inbred models of type 2 diabetes (T2D). Significant correlations were found between metabolic traits and HPA axis measures, as well as forced swim test behavior. Several metabolic loci overlap with loci previously identified for HPA activity and forced swim behavior in this F(2) intercross, suggesting that the genetic mechanisms underlying these traits may be similar. These results indicate that WKY rats harbor diabetes susceptibility alleles and suggest that this strain may be useful for dissecting the underlying genetic mechanisms linking diabetes, HPA activity, and depression.
Collapse
Affiliation(s)
- Leah C Solberg Woods
- Department of Psychiatry and Behavioral Science, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nobrega MA, Solberg Woods LC, Fleming S, Jacob HJ. Distinct genetic regulation of progression of diabetes and renal disease in the Goto-Kakizaki rat. Physiol Genomics 2009; 39:38-46. [PMID: 19584172 DOI: 10.1152/physiolgenomics.90389.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Goto-Kakizaki (GK) rats develop early-onset type 2 diabetes (T2D) symptoms, with signs of diabetic nephropathy becoming apparent with aging. To determine whether T2D and renal disease share similar genetic architecture, we ran a quantitative trait locus (QTL) analysis in the F2 progeny of a GK x Brown Norway (BN) rat cross. Further, to determine whether genetic components change over time, we ran the QTL analysis on phenotypes collected longitudinally, at 3, 6, 9 and 12 mo, from the same animals. We confirmed three chromosomal regions that are linked to early diabetes phenotypes (chromosomes 1, 5, and 10) and a single region involved in the late progression of the disorder (chromosome 4). A single region was identified for the onset of the renal phenotype proteinuria (chromosome 5). This region overlaps the diabetic QTL, although it is not certain whether similar genes are involved in both phenotypes. A second QTL linked to the progression of the renal phenotype was found on chromosome 7. Linkage for triglyceride and cholesterol levels were also identified (chromosomes 7 and 8, respectively). These results demonstrate that, in general, different genetic components control diabetic and renal phenotypes in a diabetic nephropathy model. Furthermore, these results demonstrate that, over time, different genetic components are involved in progression of disease from those that were involved in disease onset. This observation would suggest that clinical studies collecting participants over a wide age distribution may be diluting genetic effects and reducing power to detect true effects.
Collapse
Affiliation(s)
- Marcelo A Nobrega
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53266, USA.
| | | | | | | |
Collapse
|