1
|
Wang J, Wang ZQ, Zong W. ADP-ribose hydrolases: biological functions and potential therapeutic targets. Expert Rev Mol Med 2024; 26:e21. [PMID: 39375922 PMCID: PMC11488344 DOI: 10.1017/erm.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 10/09/2024]
Abstract
ADP-ribosylation (ADPRylation), which encompasses poly(ADP-ribosyl)ation and mono(ADP-ribosyl)ation, is an important post-translational modification catalysed by the poly(ADP-ribose) polymerase (PARP) enzyme superfamily. The process involves writers (PARPs) and erasers (ADP-ribose hydrolases), which work together to precisely regulate diverse cellular and molecular responses. Although the PARP-mediated synthesis of ADP-ribose (ADPr) has been well studied, ADPr degradation by degrading enzymes deserves further investigation. Nonetheless, recent studies have provided important new insights into the biology and functions of ADPr hydrolases. Notably, research has illuminated the significance of the poly(ADP-ribose) degradation pathway and its activation by the coordinated actions of poly(ADP-ribose) glycohydrolase and other ADPr hydrolases, which have been identified as key components of ADPRylation signalling networks. The degradation pathway has been proposed to play crucial roles in key cellular processes, such as DNA damage repair, chromatin dynamics, transcriptional regulation and cell death. A deep understanding of these ADPr erasing enzymes provides insights into the biological roles of ADPRylation in human health and disease aetiology and paves the road for the development of novel therapeutic strategies. This review article provides a summary of current knowledge about the biochemical and molecular functions of ADPr erasers and their physiological implications in human pathology.
Collapse
Affiliation(s)
- Jingpeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Zhao-Qi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Jena 07743, Germany
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
2
|
Hao W, Jialong Z, Jiuzhi Y, Yang Y, Chongning L, Jincai L. ADP-ribosylation, a multifaceted modification: Functions and mechanisms in aging and aging-related diseases. Ageing Res Rev 2024; 98:102347. [PMID: 38815933 DOI: 10.1016/j.arr.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Aging, a complex biological process, plays key roles the development of multiple disorders referred as aging-related diseases involving cardiovascular diseases, stroke, neurodegenerative diseases, cancers, lipid metabolism-related diseases. ADP-ribosylation is a reversible modification onto proteins and nucleic acids to alter their structures and/or functions. Growing evidence support the importance of ADP-ribosylation and ADP-ribosylation-associated enzymes in aging and age-related diseases. In this review, we summarized ADP-ribosylation-associated proteins including ADP-ribosyl transferases, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. Furthermore, we outlined the latest knowledge about regulation of ADP-ribosylation in the pathogenesis and progression of main aging-related diseases, organism aging and cellular senescence, and we also speculated the underlying mechanisms to better disclose this novel molecular network. Moreover, we discussed current issues and provided an outlook for future research, aiming to revealing the unknown bio-properties of ADP-ribosylation, and establishing a novel therapeutic perspective in aging-related diseases and health aging via targeting ADP-ribosylation.
Collapse
Affiliation(s)
- Wu Hao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhao Jialong
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Jiuzhi
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Yang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Lv Chongning
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Lu Jincai
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
3
|
Sun Y, Shi Y, Liu H, Lv C, Zhang A. The role of poly (ADP-ribose) glycohydrolase in phosphatase and tensin homolog deficiency endometrial cancer. J Obstet Gynaecol Res 2023; 49:1244-1254. [PMID: 36759425 DOI: 10.1111/jog.15563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023]
Abstract
AIM To explore the relationship between poly(ADP-ribose) glycohydrolase (PARG) and the occurrence, development, and prognosis of endometrial carcinoma (EC), and investigate whether the PARG inhibitor PDD0017273 could increase the sensitivity of EC cells to cisplatin. METHODS The expression of PARG, phosphatase and tensin homolog (PTEN), and p53 in normal endometrial tissues (NE), endometrial hyperplasia without atypia (EH), atypical endometrial hyperplasia (AH), and EC was detected by immunohistochemistry. AN3CA EC cells with PTEN deficiency were treated with different cisplatin and PDD0017273, alone or in combination. Cell proliferation was detected by MTT method, apoptosis was detected by flow cytometry, and the expression of PARG in EC cells after treatment with different drugs was detected by western blot and immunohistochemistry. RESULTS Expression of PARG in NE, EH, AH, and EC increased gradually. In addition, compared with low PARG expression in PTEN-positive EC, patients who had high PARG expression in PTEN-negative EC had more advanced clinical stages (r = -0.399, p = 0.032) and shorter overall survival time (p = 0.037). A dose of 40 μM PDD0017273 effectively inhibited PARG expression, increased the sensitivity of AN3CA cells to cisplatin. CONCLUSIONS The findings suggest that PARG overexpression is a promising immunohistochemical marker to predict the occurrence and prognosis of EC. Moreover, PARG inhibition produced antitumor effects and increased the sensitivity of EC cells with PTEN deficiency to cisplatin.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Yi Shi
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Hui Liu
- Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Chunmei Lv
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Aihua Zhang
- Department of Gynecology, The Third Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|
4
|
Takeo M, Nishio A, Masuda M, Aoi K, Okazaki T, Fukui T, Uchida K, Naganuma M, Okazaki K. Repeated Stimulation of Toll-Like Receptor 2 and Dectin-1 Induces Chronic Pancreatitis in Mice Through the Participation of Acquired Immunity. Dig Dis Sci 2022; 67:3783-3796. [PMID: 34424458 DOI: 10.1007/s10620-021-07186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/20/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Stimulation of Toll-like receptor 3 (TLR3) induces autoimmune-mediated pancreatitis in susceptible mice, whereas stimulation of TLR4 causes nonautoimmune-mediated pancreatitis. However, the effects of TLR2 stimulation on the pancreas are unknown. AIMS We investigated the role of TLR2 stimulation on pancreatic damage by repeatedly stimulating mice with TLR2 ligands. METHODS Wild-type (WT) and interleukin 10-deficient (IL-10-knockout (KO)) mice were administered zymosan and lipoteichoic acid (LTA) intraperitoneally at various doses twice weekly for 4 weeks. Syngeneic T-cell-deficient mice, B-cell-deficient mice, recombination activating gene 2-deficient (RAG2-KO) mice and RAG2-KO mice that had been reconstituted with CD4+ or CD8+ T cells isolated from WT mice were treated with zymosan similarly. Mice were killed, the severity of pancreatitis was graded histologically, and serum cytokine levels were measured. RESULTS Repeated administration of zymosan induced pancreatitis dose dependently in both WT and IL-10-KO mice. Administration of LTA induced pancreatitis only in IL-10-KO mice. Adoptive transfer of splenocytes obtained from IL-10-KO mice with pancreatitis did not cause pancreatitis in recipient RAG2-KO mice. Pancreatitis was scarcely observed in RAG2-KO mice and was attenuated in T-cell-deficient and B-cell-deficient mice compared with WT mice. A single administration of zymosan significantly increased the serum level of monocyte chemoattractant protein 1 (MCP-1) in WT mice. CONCLUSIONS Repeated stimulation of TLR2 and dectin-1 induced nonautoimmune-mediated pancreatitis in mice. Participation of acquired immunity seems to play an important role in the pathogenesis of pancreatitis in association with the increase in serum MCP-1 level.
Collapse
Affiliation(s)
- Masahiro Takeo
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, Japan
| | - Akiyoshi Nishio
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, 10-15 Fumizono-cho, Moriguchi, Osaka, 570-8507, Japan.
| | - Masataka Masuda
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, Japan
| | - Kazunori Aoi
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, 10-15 Fumizono-cho, Moriguchi, Osaka, 570-8507, Japan
| | - Takashi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University Medical Center, 10-15 Fumizono-cho, Moriguchi, Osaka, 570-8507, Japan
| | - Toshiro Fukui
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, Japan
| | - Kazushige Uchida
- Department of Gastroenterology and Hepatology, Kochi Medical School, 185-1 Kohasu Okocho, Nankoku, Kochi, Japan
| | - Makoto Naganuma
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, Japan
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, Japan
| |
Collapse
|
5
|
Johnson S, Karpova Y, Guo D, Ghatak A, Markov DA, Tulin AV. PARG suppresses tumorigenesis and downregulates genes controlling angiogenesis, inflammatory response, and immune cell recruitment. BMC Cancer 2022; 22:557. [PMID: 35585513 PMCID: PMC9118775 DOI: 10.1186/s12885-022-09651-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
Chemokines are highly expressed in tumor microenvironment and play a critical role in all aspects of tumorigenesis, including the recruitment of tumor-promoting immune cells, activation of cancer-associated fibroblasts, angiogenesis, metastasis, and growth. Poly (ADP-ribose) polymerase (PARP) is a multi-target transcription regulator with high levels of poly(ADP-ribose) (pADPr) being reported in a variety of cancers. Furthermore, poly (ADP-ribose) glycohydrolase (PARG), an enzyme that degrades pADPr, has been reported to be downregulated in tumor tissues with abnormally high levels of pADPr. In conjunction to this, we have recently reported that the reduction of pADPr, by either pharmacological inhibition of PARP or PARG's overexpression, disrupts renal carcinoma cell malignancy in vitro. Here, we use 3 T3 mouse embryonic fibroblasts, a universal model for malignant transformation, to follow the effect of PARG upregulation on cells' tumorigenicity in vivo. We found that the overexpression of PARG in mouse allografts produces significantly smaller tumors with a delay in tumor onset. As downregulation of PARG has also been implicated in promoting the activation of pro-inflammatory genes, we also followed the gene expression profile of PARG-overexpressing 3 T3 cells using RNA-seq approach and observed that chemokine transcripts are significantly reduced in those cells. Our data suggest that the upregulation of PARG may be potentially useful for the tumor growth inhibition in cancer treatment and as anti-inflammatory intervention.
Collapse
Affiliation(s)
- Sarah Johnson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Yaroslava Karpova
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, 119334 Russia
| | - Danping Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Atreyi Ghatak
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| | - Dmitriy A. Markov
- Department of Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084 USA
| | - Alexei V. Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202 USA
| |
Collapse
|
6
|
Matanes E, López-Ozuna VM, Octeau D, Baloch T, Racovitan F, Dhillon AK, Kessous R, Raban O, Kogan L, Salvador S, Lau S, Gotlieb WH, Yasmeen A. Inhibition of Poly ADP-Ribose Glycohydrolase Sensitizes Ovarian Cancer Cells to Poly ADP-Ribose Polymerase Inhibitors and Platinum Agents. Front Oncol 2021; 11:745981. [PMID: 34778062 PMCID: PMC8578901 DOI: 10.3389/fonc.2021.745981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Background Poly ADP-ribose glycohydrolase (PARG) is responsible for the catabolism of PARP-synthesized PAR to free ADP-ribose. Inhibition of PARG leads to DNA repair interruption and consequently induces cell death. This study aims to evaluate the effect of a PARG inhibitor (PARGi) on epithelial ovarian cancer (OC) cell lines, alone and in combination with a PARP inhibitor (PARPi) and/or Cisplatin. Methods PARG mRNA levels were studied in three different OC datasets: TCGA, Hendrix, and Meyniel. PARG protein levels were assessed in 100 OC specimens from our bio-bank. The therapeutic efficacy of PARGi was assessed using cell migration and clonogenic formation assays. Flow cytometry was used to evaluate the cell apoptosis rate and the changes in the cell cycle. Results PARG protein was highly expressed in 34% of the OC tumors and low expression was found in another 9%. Similarly, Hendrix, Meyneil and TCGA databases showed a significant up-regulation in PARG mRNA expression in OC samples as compared to normal tissue (P=0.001, P=0.005, P=0.005, respectively). The use of PARGi leads to decreased cell migration. PARGi in combination with PARPi or Cisplatin induced decreased survival of cells as compared to each drug alone. In the presence of PARPi and Cisplatin, PARG knockdown cell lines showed significant G2/M cell cycle arrest and cell death induction. Conclusions PARG inhibition appears as a complementary strategy to PARP inhibition in the treatment of ovarian cancer, especially in the presence of homologous recombination defects.
Collapse
Affiliation(s)
- Emad Matanes
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Vanessa M López-Ozuna
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - David Octeau
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Tahira Baloch
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Florentin Racovitan
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Amandeep Kaur Dhillon
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Roy Kessous
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Oded Raban
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Liron Kogan
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Shannon Salvador
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Susie Lau
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Walter H Gotlieb
- Division of Gynecologic Oncology, Jewish General Hospital, Montreal, QC, Canada.,Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| | - Amber Yasmeen
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Szántó M, Gupte R, Kraus WL, Pacher P, Bai P. PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Hungary.
| |
Collapse
|
8
|
Tanuma SI, Shibui Y, Oyama T, Uchiumi F, Abe H. Targeting poly(ADP-ribose) glycohydrolase to draw apoptosis codes in cancer. Biochem Pharmacol 2019; 167:163-172. [PMID: 31176615 DOI: 10.1016/j.bcp.2019.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/04/2019] [Indexed: 12/30/2022]
Abstract
Poly(ADP-ribosyl)ation is a unique post-translational modification of proteins. The metabolism of poly(ADP-ribose) (PAR) is tightly regulated mainly by poly(ADP-ribose) polymerases (PARP) and poly(ADP-ribose) glycohydrolase (PARG). Accumulating evidence has suggested the biological functions of PAR metabolism in control of many cellular processes, such as cell proliferation, differentiation and death by remodeling chromatin structure and regulation of DNA transaction, including DNA repair, replication, recombination and transcription. However, the physiological roles of the catabolism of PAR catalyzed by PARG remain less understood than those of PAR synthesis by PARP. Noteworthy biochemical studies have revealed the importance of PAR catabolic pathway generating nuclear ATP via the coordinated actions of PARG and ADP-ribose pyrophosphorylase (ADPRPPL) for the driving of DNA repair and the maintenance of DNA replication apparatus while repairing DNA damage. Furthermore, genetic studies have shown the value of PARG as a therapeutic molecular target for PAR-mediated diseases, such as cancer, inflammation and many pathological conditions. In this review, we present the current knowledge of de-poly(ADP-ribosyl)ation catalyzed by PARG focusing on its role in DNA repair, replication and apoptosis. Furthermore, the induction of apoptosis code of DNA replication catastrophe by synthetic lethality of PARG inhibition and the recent progresses regarding the development of small molecule PARG inhibitors and their therapeutic potentials in cancer chemotherapy are highlighted in this review.
Collapse
Affiliation(s)
- Sei-Ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Yuto Shibui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takahiro Oyama
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideaki Abe
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| |
Collapse
|
9
|
Chen SH, Yu X. Targeting dePARylation selectively suppresses DNA repair-defective and PARP inhibitor-resistant malignancies. SCIENCE ADVANCES 2019; 5:eaav4340. [PMID: 30989114 PMCID: PMC6457938 DOI: 10.1126/sciadv.aav4340] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/20/2019] [Indexed: 05/17/2023]
Abstract
While poly(ADP-ribosyl)ation (PARylation) plays an important role in DNA repair, the role of dePARylation in DNA repair remains elusive. Here, we report that a novel small molecule identified from the NCI database, COH34, specifically inhibits poly(ADP-ribose) glycohydrolase (PARG), the major dePARylation enzyme, with nanomolar potency in vitro and in vivo. COH34 binds to the catalytic domain of PARG, thereby prolonging PARylation at DNA lesions and trapping DNA repair factors. This compound induces lethality in cancer cells with DNA repair defects and exhibits antitumor activity in xenograft mouse cancer models. Moreover, COH34 can sensitize tumor cells with DNA repair defects to other DNA-damaging agents, such as topoisomerase I inhibitors and DNA-alkylating agents, which are widely used in cancer chemotherapy. Notably, COH34 also efficiently kills PARP inhibitor-resistant cancer cells. Together, our study reveals the molecular mechanism of PARG in DNA repair and provides an effective strategy for future cancer therapies.
Collapse
|
10
|
Regulating Immunity via ADP-Ribosylation: Therapeutic Implications and Beyond. Trends Immunol 2019; 40:159-173. [PMID: 30658897 DOI: 10.1016/j.it.2018.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 01/12/2023]
Abstract
Innate immune cells express pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and endogenous danger-associated molecular patterns (DAMPs). Upon binding, PAMPs/DAMPs can initiate an immune response by activating lymphocytes, amplifying and modulating signaling cascades, and inducing appropriate effector responses. Protein ADP-ribosylation can regulate cell death, the release of DAMPs, as well as inflammatory cytokine expression. Inhibitors of ADP-ribosylation (i.e. PARP inhibitors) have been developed as therapeutic agents (in cancer), and are also able to dampen inflammation. We summarize here our most recent understanding of how ADP-ribosylation can regulate the different phases of an immune response. Moreover, we examine the potential clinical translation of pharmacological ADP-ribosylation inhibitors as putative treatment strategies for various inflammation-associated diseases (e.g. sepsis, chronic inflammatory diseases, and reperfusion injury).
Collapse
|
11
|
Carreras E, Velasco de Andrés M, Orta-Mascaró M, Simões IT, Català C, Zaragoza O, Lozano F. Discordant susceptibility of inbred C57BL/6 versus outbred CD1 mice to experimental fungal sepsis. Cell Microbiol 2019; 21:e12995. [PMID: 30577088 DOI: 10.1111/cmi.12995] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
Abstract
Individual susceptibility differences to fungal infection following invasive and/or immunosuppressive medical interventions are an important clinical issue. In order to explore immune response-related factors that may be linked to fungal infection susceptibility, we have compared the response of inbred C57BL/6J and outbred CD1 mouse strains to different experimental models of fungal sepsis. The challenge of animals with the zymosan-induced generalised inflammation model revealed poorer survival rates in C57BL/6J, consistent with lower Th1 cytokine interferon (IFN)-γ serum levels, compared with CD1 mice. Likewise, ex vivo exposure of C57BL/6J splenocytes to zymosan but also bacterial lipopolisaccharide or lipoteichoic acid, resulted in lower IFN-γ secretion compared with CD1 mice. C57BL/6J susceptibility could be reverted by rescue infusion of relative low IFN-γ doses (0.2 μg/kg) either alone or in combination with the ß-glucan-binding CD5 protein (0.7 mg/kg) leading to improved post zymosan-induced generalised inflammation survival. Similarly, low survival rates to systemic Candida albicans infection (2.86 × 104 CFU/gr) were ameliorated by low-dose IFN-γ infusion in C57BL/6J but not CD1 mice. Our results highlight the importance of strain choice in experimental fungal infection models and provide a susceptibility rationale for more specific antifungal immunotherapy designs.
Collapse
Affiliation(s)
- Esther Carreras
- Immunoreceptors of the Innate and Adaptive System team, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - María Velasco de Andrés
- Immunoreceptors of the Innate and Adaptive System team, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marc Orta-Mascaró
- Immunoreceptors of the Innate and Adaptive System team, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Inês T Simões
- Immunoreceptors of the Innate and Adaptive System team, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Cristina Català
- Immunoreceptors of the Innate and Adaptive System team, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Francisco Lozano
- Immunoreceptors of the Innate and Adaptive System team, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain.,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Mashimo M, Moss J. Functional Role of ADP-Ribosyl-Acceptor Hydrolase 3 in poly(ADP-Ribose) Polymerase-1 Response to Oxidative Stress. Curr Protein Pept Sci 2017; 17:633-640. [PMID: 27090906 DOI: 10.2174/1389203717666160419144603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/15/2016] [Indexed: 01/19/2023]
Abstract
Poly-ADP-ribosylation has been proposed to be a reversible protein modification, participating in diverse cellular functions including DNA repair, chromatin remodeling, genetic stability, mitosis, and cell death. Poly-ADP-ribosylation is initiated by the transfer of the ADP-ribose moiety of NAD+ primarily to the carboxyl groups of glutamate and aspartate and amino group of lysine residues in target proteins, followed by elongation of poly(ADP-ribose) (PAR) chains via α-O-glycosidic (C- 1"-C-2') ribose-ribose bonds. PAR consists of polymers of ADP-ribose (up to 200 units) with branching via α-O-glycosidic (C-1"'-C-2") ribose-ribose bonds. Further, the pyrophosphate group of each ADP-ribose has two negative charges. Therefore, in proteins modified by PAR, a complex structure with negative charges may lead to dynamic changes of functions. PAR formation is catalyzed by poly(ADP-ribose) polymerases (PARPs) and terminated by several types of enzymes with PAR-degrading activities; poly(ADP-ribose) glycohydrolase (PARG), ADP-ribosylacceptor hydrolase (ARH) 3, ARH1, and macrodomain-containing proteins. PARG has been thought to be primarily responsible for PAR degradation. In 2006, ARH3 was cloned and identified as another type of PAR-degrading protein. Although PAR-degrading activity of ARH3 is less than that of PARG, different mechanisms of PAR recognition and the cellular localization of ARH3 appear to be responsible for unique cellular roles of ARH3 involving PAR. In the present review, we focused on our findings regarding structure, biological properties, and cellular functions of ARH3. In addition, we describe the current knowledge of poly-ADP-ribosylation and cell death pathways regulated PARP1, PARG, and ARH3.
Collapse
Affiliation(s)
| | - Joel Moss
- Rm. 6D05, Bldg. 10, MSC 1590, National Institutes of Health, Bethesda, MD 20892-1590; USA.
| |
Collapse
|
13
|
Balza E, Piccioli P, Carta S, Lavieri R, Gattorno M, Semino C, Castellani P, Rubartelli A. Proton pump inhibitors protect mice from acute systemic inflammation and induce long-term cross-tolerance. Cell Death Dis 2016; 7:e2304. [PMID: 27441656 PMCID: PMC4973356 DOI: 10.1038/cddis.2016.218] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/10/2016] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
Incidence of sepsis is increasing, representing a tremendous burden for health-care systems. Death in acute sepsis is attributed to hyperinflammatory responses, but the underlying mechanisms are still unclear. We report here that proton pump inhibitors (PPIs), which block gastric acid secretion, selectively inhibited tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) secretion by Toll-like receptor (TLR)-activated human monocytes in vitro, in the absence of toxic effects. Remarkably, the oversecretion of IL-1β that represents a hallmark of monocytes from patients affected by cryopyrin-associated periodic syndrome is also blocked. Based on these propaedeutic experiments, we tested the effects of high doses of PPIs in vivo in the mouse model of endotoxic shock. Our data show that a single administration of PPI protected mice from death (60% survival versus 5% of untreated mice) and decreased TNF-α and IL-1β systemic production. PPIs were efficacious even when administered after lipopolysaccharide (LPS) injection. PPI-treated mice that survived developed a long-term cross-tolerance, becoming resistant to LPS- and zymosan-induced sepsis. In vitro, their macrophages displayed impaired TNF-α and IL-1β to different TLR ligands. PPIs also prevented sodium thioglycollate-induced peritoneal inflammation, indicating their efficacy also in a non-infectious setting independent of TLR stimulation. Lack of toxicity and therapeutic effectiveness make PPIs promising new drugs against sepsis and other severe inflammatory conditions.
Collapse
Affiliation(s)
- E Balza
- Cell Biology Unit, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| | - P Piccioli
- Cell Biology Unit, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| | - S Carta
- Cell Biology Unit, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| | - R Lavieri
- Cell Biology Unit, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| | - M Gattorno
- Pediatrics II Unit, G Gaslini Institute, 16147 Genoa, Italy
| | - C Semino
- Protein Transport Unit, Division of Cell and Molecular Biology, San Raffaele Institute, 20132 Milan, Italy
| | - P Castellani
- Cell Biology Unit, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| | - A Rubartelli
- Cell Biology Unit, IRCCS AOU San Martino-IST, 16132 Genoa, Italy
| |
Collapse
|
14
|
Rack JGM, Perina D, Ahel I. Macrodomains: Structure, Function, Evolution, and Catalytic Activities. Annu Rev Biochem 2016; 85:431-54. [PMID: 26844395 DOI: 10.1146/annurev-biochem-060815-014935] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent developments indicate that macrodomains, an ancient and diverse protein domain family, are key players in the recognition, interpretation, and turnover of ADP-ribose (ADPr) signaling. Crucial to this is the ability of macrodomains to recognize ADPr either directly, in the form of a metabolic derivative, or as a modification covalently bound to proteins. Thus, macrodomains regulate a wide variety of cellular and organismal processes, including DNA damage repair, signal transduction, and immune response. Their importance is further indicated by the fact that dysregulation or mutation of a macrodomain is associated with several diseases, including cancer, developmental defects, and neurodegeneration. In this review, we summarize the current insights into macrodomain evolution and how this evolution influenced their structural and functional diversification. We highlight some aspects of macrodomain roles in pathobiology as well as their emerging potential as therapeutic targets.
Collapse
Affiliation(s)
| | - Dragutin Perina
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb 10002, Croatia;
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; ,
| |
Collapse
|
15
|
ADP-ribosyl-acceptor hydrolase 3 regulates poly (ADP-ribose) degradation and cell death during oxidative stress. Proc Natl Acad Sci U S A 2013; 110:18964-9. [PMID: 24191052 DOI: 10.1073/pnas.1312783110] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poly (ADP ribose) (PAR) formation catalyzed by PAR polymerase 1 in response to genotoxic stress mediates cell death due to necrosis and apoptosis. PAR glycohydrolase (PARG) has been thought to be the only enzyme responsible for hydrolysis of PAR in vivo. However, we show an alternative PAR-degradation pathway, resulting from action of ADP ribosyl-acceptor hydrolase (ARH) 3. PARG and ARH3, acting in tandem, regulate nuclear and cytoplasmic PAR degradation following hydrogen peroxide (H2O2) exposure. PAR is responsible for induction of parthanatos, a mechanism for caspase-independent cell death, triggered by apoptosis-inducing factor (AIF) release from mitochondria and its translocation to the nucleus, where it initiates DNA cleavage. PARG, by generating protein-free PAR from poly-ADP ribosylated protein, makes PAR translocation possible. A protective effect of ARH3 results from its lowering of PAR levels in the nucleus and the cytoplasm, thereby preventing release of AIF from mitochondria and its accumulation in the nucleus. Thus, PARG release of PAR attached to nuclear proteins, followed by ARH3 cleavage of PAR, is essential in regulating PAR-dependent AIF release from mitochondria and parthanatos.
Collapse
|
16
|
Bisignano C, Esposito E, Filocamo A, Impellizeri D, Di Paola R, Mandalari G, Cuzzocrea S. Effect of Almond Skins on a Lung Injury Model Elicited by Multirug-Resistant Pseudomonas Aeruginosa. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- C. Bisignano
- Department of Drug Science and Health Products, University of Messina, Messina, Italy
| | - E. Esposito
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - A. Filocamo
- Department of Drug Science and Health Products, University of Messina, Messina, Italy
| | - D. Impellizeri
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - R. Di Paola
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - G. Mandalari
- Department of Drug Science and Health Products, University of Messina, Messina, Italy
- Model Gut Platform, Institute of Food Research, Norwich Research Park, Norwich, UK
| | - S. Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
- Department of Surgery, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Wang HW, Yang W, Lu JY, Tian G, Li F, Wang XH, Kang JR, Yang Y. Treatment with Fms-like tyrosine kinase 3 ligand reverses lung dendritic cell immunoparalysis and ameliorates zymosan-induced secondary lung injury in mice. Clin Exp Immunol 2013; 170:156-66. [PMID: 23039886 DOI: 10.1111/j.1365-2249.2012.04641.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Depletion and dysfunction of dendritic cells in the lung can induce local immunoparalysis, which often leads to multiple organ dysfunction syndrome (MODS)-associated mortality. A therapeutic strategy that reverses this immunoparalysis is required. In the present study, we examined the effects of in vivo Fms-like tyrosine kinase 3 ligand (Flt3L) treatment on zymosan (zym)-induced secondary lung injury and dendritic cell (DC) immunoparalysis. BALBc mice were divided randomly into four groups (20/group): (1) sham [intraperitoneal (i.p.) saline] + vehicle [subcutaneous (s.c.) 0·01% mouse serum albumin]; (2) sham + Flt3L (s.c.); (3) zym (i.p.) + vehicle; and (4) zym + Flt3L. Injections were for 9 consecutive days; 12 days later we examined: survival rate (monitored for 12 days); lung tissue histopathology (haematoxylin and eosin staining); plasma indices of lung function (pH, PaO(2) , PaCO(2) , HCO(3) (-) ); DC subsets in lung tissue; and lung DCs production of interleukin (IL)-12p70 and IL-10. Zym administration resulted in increased mortality associated with significant lung histopathological changes and abnormal blood gas indices; however, these pathological changes were ameliorated by Flt3L treatment. Zym injections also resulted in significant reductions in DC subsets recovered from lungs [CD11c(+) major histocompatibility complex (MHC)-II/I-A(d+) , CD11c(+) CD11b(+) and CD11c(+) B220(+) ]. Importantly, in-vivo Flt3L treatment reversed these trends for DC immunoparalysis by increasing the percentages of recovered DC subsets concomitant with increased DC production of IL-12 p70 and decreased IL-10 production. These results suggest that Flt3L may have therapeutic potential for reversing DC immunoparalysis and ameliorating lung injury secondary to MODS.
Collapse
Affiliation(s)
- H W Wang
- Department of Pathology, the First Affiliated Hospital of General Hospital of PLA, 51 Fucheng Road, Beijing 100048, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Feng X, Koh DW. Roles of poly(ADP-ribose) glycohydrolase in DNA damage and apoptosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:227-81. [PMID: 23809438 DOI: 10.1016/b978-0-12-407696-9.00005-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme that catalyzes the hydrolysis of poly(ADP-ribose) (PAR), an essential biopolymer that is synthesized by poly(ADP-ribose) polymerases (PARPs) in the cell. By regulating the hydrolytic arm of poly(ADP-ribosyl)ation, PARG participates in a number of biological processes, including the repair of DNA damage, chromatin dynamics, transcriptional regulation, and cell death. Collectively, the research investigating the roles of PARG in the cell has identified the importance of PARG and its value as a therapeutic target. However, the biological role of PARG remains less understood than the role of PAR synthesis by the PARPs. Further complicating the study of PARG is the existence of multiple PARG isoforms in the cell, the lack of optimal PARG inhibitors, and the lack of viable PARG-null animals. This review will present our current knowledge of PARG, with a focus on its roles in DNA-damage repair and cell death.
Collapse
Affiliation(s)
- Xiaoxing Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington, USA
| | | |
Collapse
|
19
|
Wang HW, Yang W, Lu JY, Li F, Sun JZ, Zhang W, Guo NN, Gao L, Kang JR. N-acetylcysteine Administration is Associated with Reduced Activation of NF-kB and Preserves Lung Dendritic Cells Function in a Zymosan-Induced Generalized Inflammation Model. J Clin Immunol 2012; 33:649-60. [DOI: 10.1007/s10875-012-9852-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/05/2012] [Indexed: 11/29/2022]
|
20
|
Bai P, Virág L. Role of poly(ADP-ribose) polymerases in the regulation of inflammatory processes. FEBS Lett 2012; 586:3771-7. [PMID: 23022557 DOI: 10.1016/j.febslet.2012.09.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/06/2012] [Accepted: 09/16/2012] [Indexed: 12/20/2022]
Abstract
PARP enzymes influence the immune system at several key points and thus modulate inflammatory diseases. PARP enzymes affect immune cell maturation and differentiation and regulate the expression of inflammatory mediators such as cytokines, chemokines, inducible nitric oxide synthase and adhesion molecules. Moreover, PARP enzymes are key regulators of cell death during inflammation-related oxidative and nitrosative stress. Here we provide an overview of the different inflammatory diseases regulated by PARP enzymes.
Collapse
Affiliation(s)
- Péter Bai
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen H-4032, Hungary.
| | | |
Collapse
|
21
|
Steffen JD, Coyle DL, Damodaran K, Beroza P, Jacobson MK. Discovery and structure-activity relationships of modified salicylanilides as cell permeable inhibitors of poly(ADP-ribose) glycohydrolase (PARG). J Med Chem 2011; 54:5403-13. [PMID: 21692479 DOI: 10.1021/jm200325s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metabolism of poly(ADP-ribose) (PAR) in response to DNA strand breaks, which involves the concerted activities of poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolase (PARG), modulates cell recovery or cell death depending upon the level of DNA damage. While PARP inhibitors show high promise in clinical trials because of their low toxicity and selectivity for BRCA related cancers, evaluation of the therapeutic potential of PARG is limited by the lack of well-validated cell permeable inhibitors. In this study, target-related affinity profiling (TRAP), an alternative to high-throughput screening, was used to identify a number of druglike compounds from several chemical classes that demonstrated PARG inhibition in the low-micromolar range. A number of analogues of one of the most active chemotypes were synthesized to explore the structure-activity relationship (SAR) for that series. This led to the discovery of a putative pharmacophore for PARG inhibition that contains a modified salicylanilide structure. Interestingly, these compounds also inhibit PARP-1, indicating strong homology in the active sites of PARG and PARP-1 and raising a new challenge for development of PARG specific inhibitors. The cellular activity of a lead inhibitor was demonstrated by the inhibition of both PARP and PARG activity in squamous cell carcinoma cells, although preferential inhibition of PARG relative to PARP was observed. The ability of inhibitors to modulate PAR metabolism via simultaneous effects on PARPs and PARG may represent a new approach for therapeutic development.
Collapse
Affiliation(s)
- Jamin D Steffen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85724, United States
| | | | | | | | | |
Collapse
|
22
|
Blenn C, Wyrsch P, Althaus FR. The ups and downs of tannins as inhibitors of poly(ADP-ribose)glycohydrolase. Molecules 2011; 16:1854-77. [PMID: 21343889 PMCID: PMC6259645 DOI: 10.3390/molecules16021854] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 02/17/2011] [Indexed: 01/21/2023] Open
Abstract
DNA damage to cells activates nuclear poly(ADP-ribose)polymerases (PARPs) and the poly(ADP-ribose) (PAR) synthesized is rapidly cleaved into ADP-ribose (ADPR) by PAR glycohydrolase (PARG) action. Naturally appearing tannin-like molecules have been implicated in specific inhibition of the PARG enzyme. This review deals with the in vitro and in vivo effects of tannins on PAR metabolism and their downstream actions in DNA damage signaling.
Collapse
Affiliation(s)
- Christian Blenn
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | | | | |
Collapse
|
23
|
Mazzon E, Esposito E, Di Paola R, Impellizzeri D, Bramanti P, Cuzzocrea S. Olprinone, a specific phosphodiesterase (PDE)-III inhibitor, reduces the development of multiple organ dysfunction syndrome in mice. Pharmacol Res 2010; 64:68-79. [PMID: 21193041 DOI: 10.1016/j.phrs.2010.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/20/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Olprinone is a specific phosphodiesterase (PDE)-III inhibitor, which has been found to have anti-inflammatory effects in addition to its main inotropic and peripheral vasodilatory effects. In the present study we investigated the effects of olprinone (0.2mg/kg, i.p.) on the development of zymosan-induced multiple organ failure in mice. Treatment with olprinone attenuated the peritoneal exudation and the migration of polymorphonuclear cells caused by zymosan. Olprinone also attenuated the lung, liver and pancreatic injury, renal dysfunction as well as the increased lung and intestine myeloperoxidase (MPO) activity caused by zymosan. Immunohistochemical analysis for inducible nitric oxide synthase (iNOS), nitrotyrosine, poly(ADP-ribose) (PAR), tumor necrosis factor-α (TNF-α) and interleuchin-1β (IL-1β) revealed positive staining in pancreatic and intestinal tissue obtained from zymosan-injected mice. The degree of staining for nitrotyrosine, iNOS, PAR, TNF-α and IL-1β was markedly reduced in tissue sections obtained from zymosan-injected mice, which had received olprinone. In addition, administration of zymosan caused a severe illness in the mice characterized by significant loss of body weight and a 60% of mortality at the end of observation period (7 days). Treatment with olprinone significantly reduced the development of systemic toxicity, loss in body weight and mortality, caused by zymosan. This study provides evidence that olprinone attenuates the degree of zymosan-induced shock in mice.
Collapse
Affiliation(s)
- Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", S.S. 113 Via Palermo, CTR Casazza, Messina, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Barrenschee M, Lex D, Uhlig S. Effects of the TLR2 agonists MALP-2 and Pam3Cys in isolated mouse lungs. PLoS One 2010; 5:e13889. [PMID: 21124967 PMCID: PMC2987752 DOI: 10.1371/journal.pone.0013889] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 10/15/2010] [Indexed: 11/22/2022] Open
Abstract
Background Gram-positive and Gram-negative bacteria are main causes of pneumonia or acute lung injury. They are recognized by the innate immune system via toll-like receptor-2 (TLR2) or TLR4, respectively. Among all organs, the lungs have the highest expression of TLR2 receptors, but little is known about the pulmonary consequences of their activation. Here we studied the effects of the TLR2/6 agonist MALP-2, the TLR2/1 agonist Pam3Cys and the TLR4 agonist lipopolysaccharide (LPS) on pro-inflammatory responses in isolated lungs. Methodology/Principal Findings Isolated perfused mouse lungs were perfused for 60 min or 180 min with MALP-2 (25 ng/mL), Pam3Cys (160 ng/mL) or LPS (1 µg/mL). We studied mediator release by enzyme linked immunosorbent assay (ELISA), the activation of mitogen activated protein kinase (MAPK) and AKT/protein kinase B by immunoblotting, and gene induction by quantitative polymerase chain reaction. All agonists activated the MAPK ERK1/2 and p38, but neither JNK or AKT kinase. The TLR ligands upregulated the inflammation related genes Tnf, Il1β, Il6, Il10, Il12, Ifng, Cxcl2 (MIP-2α) and Ptgs2. MALP-2 was more potent than Pam3Cys in inducing Slpi, Cxcl10 (IP10) and Parg. Remarkable was the strong induction of Tnc by MALP2, which was not seen with Pam3Cys or LPS. The growth factor related genes Areg and Hbegf were not affected. In addition, all three TLR agonists stimulated the release of IL-6, TNF, CXCL2 and CXCL10 protein from the lungs. Conclusions/Significance TLR2 and TLR4 activation leads to similar reactions in the lungs regarding MAPK activation, gene induction and mediator release. Several genes studied here have not yet been appreciated as targets of TLR2-activation in the lungs before, i.e., Slpi, tenascin C, Parg and Traf1. In addition, the MALP-2 dependent induction of Tnc may indicate the existence of TLR2/6-specific pathways.
Collapse
Affiliation(s)
- Martina Barrenschee
- Institute of Pharmacology and Toxicology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Dennis Lex
- Institute of Pharmacology and Toxicology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
25
|
Abstract
The development of therapeutic antibodies has evolved over the past decade into a mainstay of therapeutic options for patients with autoimmune and inflammatory diseases. Substantial advances in understanding the biology of human diseases have been made and tremendous benefit to patients has been gained with the first generation of therapeutic antibodies. The lessons learnt from these antibodies have provided the foundation for the discovery and development of future therapeutic antibodies. Here we review how key insights obtained from the development of therapeutic antibodies complemented by newer antibody engineering technologies are delivering a second generation of therapeutic antibodies with promise for greater clinical efficacy and safety.
Collapse
|
26
|
Fauzee NJS, Pan J, Wang YL. PARP and PARG inhibitors--new therapeutic targets in cancer treatment. Pathol Oncol Res 2010; 16:469-78. [PMID: 20383759 DOI: 10.1007/s12253-010-9266-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 03/29/2010] [Indexed: 02/06/2023]
Abstract
Today, the number of cancer patients throughout the world is increasing alarmingly and as per the World Health Organisation (WHO) data and statistics the prediction for the year 2020 will be 15 million new cases as compared to only 10 million cases in year 2000 leaving us dumbfounded. A lot of effort has been put in by researchers and scientists over decades to find drugs helpful in the treatment of cancers for the benefit of patients--the latest being the Poly ADP-ribose polymerase (PARP) and the Poly ADP-ribose glycohydrolase (PARG) inhibitors. This review highlights their mechanism of action under the rationale of their use and current development in the field of cancer.
Collapse
Affiliation(s)
- Nilufer Jasmine Selimah Fauzee
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | | | | |
Collapse
|
27
|
Chandak PG, Gaikwad AB, Tikoo K. Gallotannin ameliorates the development of streptozotocin-induced diabetic nephropathy by preventing the activation of PARP. Phytother Res 2009; 23:72-7. [PMID: 18693296 DOI: 10.1002/ptr.2559] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is known to be activated under conditions of oxidative stress and/or radiation exposure. The role of this enzyme has been well demonstrated in the streptozotocin (STZ) induced model of diabetes. Inhibition of PARP by specific inhibitors is known to prevent the development of STZ induced diabetic nephropathy by reduction in oxidative stress induced apoptosis. This study shows for the first time the role of poly(ADP-ribose) glycohydrolase (PARG) inhibitors as an alternative approach for inhibition of PARP. Gallotannin (20 mg/kg/day, i.p.) treatment for 4 weeks led to a significant reduction in the levels of plasma creatinine which is a well known marker for diabetic nephropathy. Treatment with gallotannin resulted in protection up to a certain level of glomerular damage, suggesting compensatory glomerular hypertrophy. As a PARG inhibitor gallotannin treatment also showed protection in PARP cleavage which is a hallmark for apoptotic cell death signifying the protective role of gallotannin in cell death signaling.
Collapse
Affiliation(s)
- Prakash Gopaldas Chandak
- Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar (Mohali) - 160 062, Punjab, India
| | | | | |
Collapse
|
28
|
The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome. Proc Natl Acad Sci U S A 2009; 106:1506-11. [PMID: 19141631 DOI: 10.1073/pnas.0805846106] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CD5 lymphocyte surface receptor is a group B member of the ancient and highly conserved scavenger receptor cysteine-rich superfamily. CD5 is expressed on mature T and B1a cells, where it is known to modulate lymphocyte activation and/or differentiation processes. Recently, the interaction of a few group B SRCR members (CD6, Spalpha, and DMBT1) with conserved microbial structures has been reported. Protein binding assays presented herein indicate that the CD5 ectodomain binds to and aggregates fungal cells (Schizosaccharomyces pombe, Candida albicans, and Cryptococcus neoformans) but not to Gram-negative (Escherichia coli) or Gram-positive (Staphylococcus aureus) bacteria. Accordingly, the CD5 ectodomain binds to zymosan but not to purified bacterial cell wall constituents (LPS, lipotheicoic acid, or peptidoglycan), and such binding is specifically competed by beta-glucan but not by mannan. The K(d) of the rshCD5/(1-->3)-beta-d-glucan phosphate interaction is 3.7 +/- 0.2 nM as calculated from tryptophan fluorescence data analysis of free and bound rshCD5. Moreover, zymosan binds to membrane-bound CD5, and this induces both MAPK activation and cytokine release. In vivo validation of the fungal binding properties of the CD5 ectodomain is deduced from its protective effect in a mouse model of zymosan-induced septic shock-like syndrome. In conclusion, the present results indicate that the CD5 lymphocyte receptor may sense the presence of conserved fungal components [namely, (1-->3)-beta-d-glucans] and support the therapeutic potential of soluble CD5 forms in fungal sepsis.
Collapse
|
29
|
Ethyl pyruvate reduces the development of zymosan-induced generalized inflammation in mice. Crit Care Med 2009; 37:270-82. [PMID: 19050619 DOI: 10.1097/ccm.0b013e318192fa63] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Abstract
PURPOSE OF REVIEW To overview the emerging data in the literature showing the role of poly(ADP-ribose) polymerase (PARP) in the pathogenesis of critical illness. RECENT FINDINGS PARP, an abundant nuclear enzyme involved in DNA repair and transcriptional regulation, is now recognized as a key regulator of cell survival and cell death in response to noxious stimuli in various forms of cardiovascular collapse. PARP becomes activated in response to oxidative DNA damage and depletes cellular energy pools, thus leading to cellular dysfunction in various tissues. The activation of PARP may also induce various cell death processes, and promotes an inflammatory response. In circulatory shock PARP plays a crucial role both in the development of early cardiovascular dysfunction and in the delayed systemic inflammatory response syndrome with associated multiple organ failure. Inhibition of PARP activity is protective in various models of circulatory shock. SUMMARY A solid body of literature supports the view that PARP is an important target for therapeutic intervention in critical illness.
Collapse
|
31
|
Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 2008; 10:179-206. [PMID: 18020963 DOI: 10.1089/ars.2007.1672] [Citation(s) in RCA: 1099] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence has suggested that NAD (including NAD+ and NADH) and NADP (including NADP+ and NADPH) could belong to the fundamental common mediators of various biological processes, including energy metabolism, mitochondrial functions, calcium homeostasis, antioxidation/generation of oxidative stress, gene expression, immunological functions, aging, and cell death: First, it is established that NAD mediates energy metabolism and mitochondrial functions; second, NADPH is a key component in cellular antioxidation systems; and NADH-dependent reactive oxygen species (ROS) generation from mitochondria and NADPH oxidase-dependent ROS generation are two critical mechanisms of ROS generation; third, cyclic ADP-ribose and several other molecules that are generated from NAD and NADP could mediate calcium homeostasis; fourth, NAD and NADP modulate multiple key factors in cell death, such as mitochondrial permeability transition, energy state, poly(ADP-ribose) polymerase-1, and apoptosis-inducing factor; and fifth, NAD and NADP profoundly affect aging-influencing factors such as oxidative stress and mitochondrial activities, and NAD-dependent sirtuins also mediate the aging process. Moreover, many recent studies have suggested novel paradigms of NAD and NADP metabolism. Future investigation into the metabolism and biological functions of NAD and NADP may expose fundamental properties of life, and suggest new strategies for treating diseases and slowing the aging process.
Collapse
Affiliation(s)
- Weihai Ying
- Department of Neurology, University of California at San Francisco, San Francisco, California 94121, USA.
| |
Collapse
|
32
|
Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:1-43. [PMID: 18038125 DOI: 10.1007/s00210-007-0183-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 08/01/2007] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Division of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|
33
|
Tikoo K, Bhatt DK, Gaikwad AB, Sharma V, Kabra DG. Differential effects of tannic acid on cisplatin induced nephrotoxicity in rats. FEBS Lett 2007; 581:2027-35. [PMID: 17470369 DOI: 10.1016/j.febslet.2007.04.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/31/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Cisplatin is a widely used antineoplastic drug. Major drawback of cisplatin therapy is its nephrotoxicity. The objective of this study was to check the effect of tannic acid on cisplatin induced nephrotoxicity. Post-treatment of tannic acid prevents cisplatin (5mg/kg) induced nephrotoxicity and decreases poly(ADP-ribose) polymerase cleavage, phosphorylation of p38 and hypoacetylation of histone H4. In contrast, co-treatment of tannic acid potentiates the nephrotoxicity. Comparative nephrotoxicity studies show that co-treatment of tannic acid with reduced dose of cisplatin (1.5mg/kg) developed almost similar nephrotoxicity. MALDI protein profiling of plasma samples provides indirect evidence that tannic acid co-treatment increases bioavailability of cisplatin.
Collapse
Affiliation(s)
- Kulbhushan Tikoo
- Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS. Nagar, Punjab 160 062, India.
| | | | | | | | | |
Collapse
|
34
|
Massullo P, Sumoza-Toledo A, Bhagat H, Partida-Sánchez S. TRPM channels, calcium and redox sensors during innate immune responses. Semin Cell Dev Biol 2006; 17:654-66. [PMID: 17178241 DOI: 10.1016/j.semcdb.2006.11.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Melastatin-related TRPM ion channels have emerged as novel therapeutic targets due to their potential ability to modulate the function and fate of immune cells during inflammation, innate, and adaptive immunity. Four family members, TRPM1, TRPM2, TRPM4 and TRPM7 have a strong presence in the immune system. TRPM channels regulate ion-homeostasis by sensing cellular redox status and cytoplasmic calcium levels. TRPM2 for example, is highly expressed in phagocytes. This channel is activated by intracellular ADP-ribose upon exposure to oxidative stress and induces cell death. Here we will review the functional links between TRPM-mediated ion conductance, chemotaxis, apoptosis, and innate immunity.
Collapse
Affiliation(s)
- Pam Massullo
- Columbus Children's Research Institute, Center for Microbial Pathogenesis, The Ohio State University, Columbus, OH 43205, USA
| | | | | | | |
Collapse
|
35
|
Gagné JP, Hendzel MJ, Droit A, Poirier GG. The expanding role of poly(ADP-ribose) metabolism: current challenges and new perspectives. Curr Opin Cell Biol 2006; 18:145-51. [PMID: 16516457 DOI: 10.1016/j.ceb.2006.02.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 02/08/2006] [Indexed: 12/22/2022]
Abstract
Recent discoveries have resulted in significant breakthroughs in the understanding of PARPs and PARG functions within a broad range of cellular processes. The novel and sometimes unexpected pathways that are regulated by poly(ADP-ribosylation) bring new questions and hypotheses, some of them being contentious. In this review, we highlight current areas of investigation such as the clinical potential of PARP and PARG inhibitors and the important mitotic regulatory functions of poly(ADP-ribose) in cell-cycle progression, a recent discovery that has broadened our knowledge regarding poly(ADP-ribose) functions. A special emphasis is placed on recent advances in relation to PARG that are stimulating new directions in future research. Noticeably, the existence of various PARG isoforms characterized by distinct cellular localizations and nucleocytoplasmic shuttling properties challenges our current comprehension of pADPr metabolism. Observations and suppositions towards functionally important regulatory elements in the N-terminal portion of PARG are also discussed.
Collapse
Affiliation(s)
- Jean-Philippe Gagné
- Health and Environment Unit, Laval University Medical Research Center, CHUQ, Faculty of Medicine, Laval University, 2705 Boulevard Laurier, Ste-Foy, Québec G1V 4G2, Canada
| | | | | | | |
Collapse
|
36
|
Tentori L, Leonetti C, Scarsella M, Muzi A, Vergati M, Forini O, Lacal PM, Ruffini F, Gold B, Li W, Zhang J, Graziani G. Poly(ADP-ribose) glycohydrolase inhibitor as chemosensitiser of malignant melanoma for temozolomide. Eur J Cancer 2005; 41:2948-57. [PMID: 16288862 DOI: 10.1016/j.ejca.2005.08.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/05/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
Disruption of poly(ADP-ribose) polymerase (PARP) pathways by inhibitors of PARP catalytic domain has been shown to increase the anti-tumour activity of temozolomide (TMZ). Since PARP is inhibited by poly(ADP)ribosylation, herein we tested whether inhibition of poly(ADP-ribose) glycohydrolase (PARG) might enhance TMZ efficacy. The PARG inhibitor N-bis-(3-phenyl-propyl)9-oxo-fluorene-2,7-diamide (GPI 16552) was administered in combination with TMZ to mice injected subcutaneously or intracranially with B16 melanoma cells. The ability of treatment to reduce melanoma metastatic spreading and invasion of the extracellular matrix was also tested. The results indicated that combined treatment with GPI 16552 and TMZ significantly reduced melanoma growth, increased life-span of mice bearing tumour at the CNS site, and decreased the ability of melanoma cells to form lung metastases and to invade the extracellular matrix. In conclusion, PARG inhibition represents an alternative strategy to enhance TMZ efficacy against melanoma in peripheral as well as at CNS site.
Collapse
Affiliation(s)
- Lucio Tentori
- Department of Neuroscience, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Erdèlyi K, Kiss A, Bakondi E, Bai P, Szabó C, Gergely P, Erdödi F, Virag L. Gallotannin inhibits the expression of chemokines and inflammatory cytokines in A549 cells. Mol Pharmacol 2005; 68:895-904. [PMID: 15976037 DOI: 10.1124/mol.105.012518] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tannins are plant-derived water-soluble polyphenols with wide-ranging biological activities. The mechanisms underlying the anti-inflammatory effect of tannins are not fully understood and may be the result of inhibition of poly(ADP-ribose) (PAR) glycohydrolase (PARG), the main catabolic enzyme of PAR metabolism. Therefore, we set out to investigate the mechanism of the anti-inflammatory effect of gallotannin (GT) in A549 cells with special regard to the role of poly(ADP-ribosyl)ation. Using an inflammation-focused low-density array and reverse transcription-polymerase chain reaction, we found that GT suppressed the expression of most cytokines and chemokines in cytokine-stimulated A549 cells, whereas the PARP inhibitor PJ-34 only inhibited few transcripts. Activation of the transcription factors, nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1), was blocked by GT, whereas PJ-34 only suppressed NF-kappaB activation but not AP-1 activation. GT also inhibited IkappaB phosphorylation and nuclear translocation of NF-kappaB, but PJ-34 had no effect on these upstream events. In the AP-1 pathway, GT treatment, even in the absence of cytokines, caused maximal phosphorylation of c-Jun N-terminal kinase and c-Jun. GT also caused a low-level phosphorylation of p38, extracellular signal-regulated kinases 1 and 2, activating transcription factor2, and cAMP-response element-binding protein but inhibited cytokine-induced phosphorylation of these kinases and transcription factors. GT inhibited protein phosphatases 1 and 2A, which may explain the increased phosphorylation of mitogen-activated protein kinase and their substrates. GT exerted potent antioxidant effect but failed to cause PAR accumulation. In summary, the potent inhibitory effects of GT on the transcription of cytokine and chemokine genes are probably not related to PARG inhibition. Inhibition of AP-1 activation and upstream signaling events may be responsible for the effects of GT.
Collapse
Affiliation(s)
- Katalin Erdèlyi
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Elettudományi Epület 3.311, Egyetem tér 1, H-4032 Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Cuzzocrea S, Wang ZQ. Role of poly(ADP-ribose) glycohydrolase (PARG) in shock, ischemia and reperfusion. Pharmacol Res 2005; 52:100-8. [PMID: 15911338 DOI: 10.1016/j.phrs.2005.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 02/01/2005] [Indexed: 11/15/2022]
Abstract
Poly(ADP-ribosyl)ation is regulated by the synthesizing enzyme poly(ADP-ribose) polymerase-1 (PARP-1) and the degrading enzyme poly(ADP-ribose) glycohydrolase (PARG). Homeostasis of poly(ADP-ribosyl)ation has been proposed to be an important regulator for pathogenesis in multi-cellular organisms. Although the role of PARP-1 in tissue damage, inflammation and ischemia has been extensively studied, the function of PARG in various cellular processes is largely unknown. Recent studies using chemical inhibitors of PARG and genetically engineered Drosophila and mouse models that carry a disrupted PARG gene have started to shed new light on the biological function of PARG in vivo. These animal models and cells isolated from them will be useful for further validation of PARG as a potential pharmaceutical target to intervene the pathogenesis induced by acute tissue injury, ischemia and inflammation.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, Torre Biologica, Policlinico Universitario, Via C. Valeria, Gazzi, 98123 Messina, Italy.
| | | |
Collapse
|
39
|
Virág L. Poly(ADP-ribosyl)ation in asthma and other lung diseases. Pharmacol Res 2005; 52:83-92. [PMID: 15911336 DOI: 10.1016/j.phrs.2005.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 02/01/2005] [Indexed: 12/17/2022]
Abstract
Inhibition of poly(ADP-ribosyl)ation in oxidative stress-related pathologies has recently emerged as a very effective anti-inflammatory intervention in animal models of arthritis, colitis, diabetes and shock. Recent data from three laboratories also support the role of poly(ADP-ribose) polymerase-1 (PARP-1) activation in asthma. Similarly to other inflammatory conditions, the protective effects of PARP inhibition and the PARP-1 knock out phenotype in asthma models have been attributed to inhibition of inflammatory signal transduction (mainly via NF-kappaB) and of oxidative stress-induced cell dysfunction and tissue injury. Here I discuss the complex role of poly(ADP-ribosyl)ation in the regulation of inflammatory cell migration, chemokine and cytokine production and expression of other inflammatory mediators (inducible nitric oxide synthase, matrix metalloproteinases) in asthma. The role of PARP-1 in other oxidative stress-related lung diseases such as asbestosis, silicosis, acute respiratory distress syndrome and ischemia-reperfusion injury is also reviewed.
Collapse
Affiliation(s)
- László Virág
- Department of Medical Chemistry, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, H-4026 Debrecen, Bem tér 18/B, Hungary.
| |
Collapse
|
40
|
Cuzzocrea S, Di Paola R, Mazzon E, Cortes U, Genovese T, Muià C, Li W, Xu W, Li JH, Zhang J, Wang ZQ. PARG activity mediates intestinal injury induced by splanchnic artery occlusion and reperfusion. FASEB J 2005; 19:558-66. [PMID: 15791006 DOI: 10.1096/fj.04-3117com] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Poly (ADP-ribosyl)ation, an early post-translational modification in response to DNA damage, is catalyzed by poly (ADP-ribose) polymerase (PARP-1) and catabolized by poly(ADP-ribose) glycohydrolase (PARG). The aim of this study was to investigate the role of PARG on the modulation of the inflammatory response caused by splanchnic ischemia and reperfusion. SAO shock in rats and wild-type (WT) mice was associated with a significant neutrophil infiltration in the ileum and production of tumor necrosis factor-alpha (TNF-alpha). Reperfused ileum tissue sections from SAO-shocked WT mice and rats showed positive staining for P-selectin and ICAM-1 localized mainly in the vascular endothelial cells. Genetic disruption of the PARG gene in mice or pharmacological inhibition of PARG by PARG inhibitors significantly improved the histological status of the reperfused tissues associated with reduced expression of P-selectin and ICAM-1, neutrophil infiltration into the reperfused intestine, and TNF-alpha production. These results suggest that PARG activity modulates the inflammatory response in ischemia/reperfusion and participates in end (target) organ damage under these conditions.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, Torre Biologica, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Patel NSA, Cortes U, Di Poala R, Mazzon E, Mota-Filipe H, Cuzzocrea S, Wang ZQ, Thiemermann C. Mice Lacking the 110-kD Isoform of Poly(ADP-Ribose) Glycohydrolase Are Protected against Renal Ischemia/Reperfusion Injury. J Am Soc Nephrol 2005; 16:712-9. [PMID: 15677308 DOI: 10.1681/asn.2004080677] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The role of poly(ADP-ribose) (PAR) glycohydrolase (PARG) in the pathophysiology of renal ischemia/reperfusion (I/R) injury is not known. Poly(ADP-ribosyl)ation is rapidly stimulated in cells after DNA damage caused by the generation of reactive oxygen and nitrogen species during I/R. Continuous or excessive activation of poly(ADP-ribose) polymerase-1 produces extended chains of ADP-ribose on nuclear proteins and results in a substantial depletion of intracellular NAD(+) and subsequently, ATP, leading to cellular dysfunction and, ultimately, cell death. The key enzyme involved in polymer turnover is PARG, which possesses mainly exoglycosidase activity but can remove olig(ADP-ribose) fragments via endoglycosidic cleavage. Thus, the aim of this study was to investigate whether the absence of PARG(110) reduced the renal dysfunction, injury, and inflammation caused by I/R of the mouse kidney. Here, the renal dysfunction and injury caused by I/R (bilateral renal artery occlusion [30 min] followed by reperfusion [24 h]) in mice lacking PARG(110), the major nuclear isoform of PARG, was investigated. The following markers of renal dysfunction and injury were measured: Plasma urea, creatinine, aspartate aminotransferase, and histology. The following markers of inflammation were also measured: Myeloperoxidase activity, malondialdehyde levels, and plasma nitrite/nitrate. The degree of renal injury and dysfunction caused by I/R was significantly reduced in PARG(110)-deficient mice when compared with their wild-type littermates, and there were no differences in any of the biochemical parameters measured between sham-operated PARG(110)(-/-) mice and sham-operated wild-type littermates. Thus, it is proposed that endogenous PARG(110) plays a pivotal role in the pathophysiology of I/R injury of the kidney.
Collapse
Affiliation(s)
- Nimesh S A Patel
- Centre for Experimental Medicine, Nephrology & Critical Care, William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | | | | | | | | |
Collapse
|