1
|
Jia X, Li J, Jiang Z. Association between thyroid disorders and extra-thyroidal cancers, a review. Clin Transl Oncol 2024; 26:2075-2083. [PMID: 38491294 DOI: 10.1007/s12094-024-03434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Thyroid hormone has been shown to have both tumor-promoting and tumor-suppressing actions, which has led to significant debate over its involvement in the development of cancer. Proliferation, apoptosis, invasiveness, and angiogenesis are all aspects of cancer that are affected by the thyroid hormones T3 and T4, according to research conducted in animal models and in vitro experiments. The effects of thyroid hormones on cancer cells are mediated by many non-genomic mechanisms, one of which involves the activation of the plasma membrane receptor integrin αvβ3. Typically, abnormal amounts of thyroid hormones are linked to a higher occurrence of cancer. Both benign and malignant thyroid disorders were found to be associated with an increased risk of extra-thyroidal malignancies, specifically colon, breast, prostate, melanoma, and lung cancers. The purpose of this review was to shed light on this link to define which types of cancer are sensitive to thyroid hormones and, as a result, are anticipated to respond favorably to treatment of the thyroid hormone axis.
Collapse
Affiliation(s)
- Xin Jia
- Department of Nursing, Zhengzhou Health Vocational College, Zhengzhou, 410005, China
| | - Jingru Li
- Department of Nursing, Zhengzhou Health Vocational College, Zhengzhou, 410005, China.
| | - Zongliang Jiang
- Department of Nursing, Zhengzhou Health Vocational College, Zhengzhou, 410005, China
| |
Collapse
|
2
|
Amin MF, Zubair MS, Ammar M. A short review on the role of thyroxine in fast wound healing and tissue regeneration. Tissue Cell 2023; 82:102115. [PMID: 37244096 DOI: 10.1016/j.tice.2023.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Wound healing is a multiplex interaction process that involves extracellular matrix, blood vessels, proteases, cytokines, and chemokine. So far, a number of studies have been performed to understand the basis of the wound-healing process and multiple wound-healing products have been designed. However, significant morbidity and mortality incidents still occurred due to poor wound healing. Thus, there is a dire need to understand the effects of topical applications of various therapeutic options that lead to fast wound healing. Thyroxine is one great panacea for wound healing that has been vigorously mooted throughout the years but a conclusive result regarding its effectiveness is still not achieved. This review is intended to find a rational basis for its positive role in wound healing. To accomplish the objective, this review highlights the different aspects of thyroxine's role in wound healing like keratin synthesis, skin thickening, and pro-angiogenesis, the basis of controversy on its wound healing ability and its potential to be used as a wound healing agent. This study will be helpful for researchers and surgeons to assess the importance of thyroxine as a candidate to comprehensively research to develop a potent, effective, and affordable wound healing drug.
Collapse
Affiliation(s)
| | | | - Muhammad Ammar
- Princess Royal University Hospital, King College Hospital Trust, United Kingdom.
| |
Collapse
|
3
|
Li J, Xu Y, Jiang Y, Li N, Li Z, Kong D, Guo X, Zhang J, Zuo R. Nongenomic effects and mechanistic study of butyl benzyl phthalate-induced thyroid disruption: Based on integrated in vitro, in silico assays and proteome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155715. [PMID: 35525365 DOI: 10.1016/j.scitotenv.2022.155715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Based on in vitro and in silico assays as well as proteome analysis, this study explored the nongenomic mechanism for butyl benzyl phthalate (BBP)-induced thyroid disruption. Molecular docking simulations showed that BBP could dock into the Arg-Gly-Asp (RGD) domain of integrin αvβ3 and form hydrogen bonds with a docking energy of -35.80 kcal/mol. This chemical enhanced rat pituitary tumor cell (GH3) proliferation and exhibited thyroid hormone-disrupting effects at 5-10 μmol/L. Meanwhile, BBP upregulated β3 gene expression and activated the downstream mitogen-activated protein kinase (MAPK) pathway in GH3 cells. Interestingly, GH3 cell proliferation was attenuated by integrin αvβ3 inhibitor (RGD peptide) or ERK1/2 inhibitor (PD98059), suggesting that the disruptions might be partly attributed to its interaction with integrin αvβ3 and activation of MAPK. Furthermore, quantitative proteomic analysis of zebrafish embryos exposed to BBP at an environmentally relevant concentration of 0.3 μmol/L revealed that BBP perturbed proteins and pathways related to cell communication (e.g., integrin binding) and signal transduction (e.g., MAPK signaling pathway). Taken together, our results supported that the biological effects of BBP-activated integrin αvβ3 mediated by the nongenomic pathway play an important role in its thyroid disruption. CAPSULE: The nongenomic pathway plays a vital role in the thyroid disruption-inducing actions of BBP.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhanjie Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xueru Guo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Vannuccini S, Clemenza S, Rossi M, Petraglia F. Hormonal treatments for endometriosis: The endocrine background. Rev Endocr Metab Disord 2022; 23:333-355. [PMID: 34405378 PMCID: PMC9156507 DOI: 10.1007/s11154-021-09666-w] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Endometriosis is a benign uterine disorder characterized by menstrual pain and infertility, deeply affecting women's health. It is a chronic disease and requires a long term management. Hormonal drugs are currently the most used for the medical treatment and are based on the endocrine pathogenetic aspects. Estrogen-dependency and progesterone-resistance are the key events which cause the ectopic implantation of endometrial cells, decreasing apoptosis and increasing oxidative stress, inflammation and neuroangiogenesis. Endometriotic cells express AMH, TGF-related growth factors (inhibin, activin, follistatin) CRH and stress related peptides. Endocrine and inflammatory changes explain pain and infertility, and the systemic comorbidities described in these patients, such as autoimmune (thyroiditis, arthritis, allergies), inflammatory (gastrointestinal/urinary diseases) and mental health disorders.The hormonal treatment of endometriosis aims to block of menstruation through an inhibition of hypothalamus-pituitary-ovary axis or by causing a pseudodecidualization with consequent amenorrhea, impairing the progression of endometriotic implants. GnRH agonists and antagonists are effective on endometriosis by acting on pituitary-ovarian function. Progestins are mostly used for long term treatments (dienogest, NETA, MPA) and act on multiple sites of action. Combined oral contraceptives are also used for reducing endometriosis symptoms by inhibiting ovarian function. Clinical trials are currently going on selective progesterone receptor modulators, selective estrogen receptor modulators and aromatase inhibitors. Nowadays, all these hormonal drugs are considered the first-line treatment for women with endometriosis to improve their symptoms, to postpone surgery or to prevent post-surgical disease recurrence. This review aims to provide a comprehensive state-of-the-art on the current and future hormonal treatments for endometriosis, exploring the endocrine background of the disease.
Collapse
Affiliation(s)
- Silvia Vannuccini
- Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Sara Clemenza
- Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Margherita Rossi
- Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Felice Petraglia
- Obstetrics and Gynecology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
5
|
Cioffi F, Giacco A, Goglia F, Silvestri E. Bioenergetic Aspects of Mitochondrial Actions of Thyroid Hormones. Cells 2022; 11:cells11060997. [PMID: 35326451 PMCID: PMC8947633 DOI: 10.3390/cells11060997] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023] Open
Abstract
Much is known, but there is also much more to discover, about the actions that thyroid hormones (TH) exert on metabolism. Indeed, despite the fact that thyroid hormones are recognized as one of the most important regulators of metabolic rate, much remains to be clarified on which mechanisms control/regulate these actions. Given their actions on energy metabolism and that mitochondria are the main cellular site where metabolic transformations take place, these organelles have been the subject of extensive investigations. In relatively recent times, new knowledge concerning both thyroid hormones (such as the mechanisms of action, the existence of metabolically active TH derivatives) and the mechanisms of energy transduction such as (among others) dynamics, respiratory chain organization in supercomplexes and cristes organization, have opened new pathways of investigation in the field of the control of energy metabolism and of the mechanisms of action of TH at cellular level. In this review, we highlight the knowledge and approaches about the complex relationship between TH, including some of their derivatives, and the mitochondrial respiratory chain.
Collapse
|
6
|
Incerpi S, Gionfra F, De Luca R, Candelotti E, De Vito P, Percario ZA, Leone S, Gnocchi D, Rossi M, Caruso F, Scapin S, Davis PJ, Lin HY, Affabris E, Pedersen JZ. Extranuclear effects of thyroid hormones and analogs during development: An old mechanism with emerging roles. Front Endocrinol (Lausanne) 2022; 13:961744. [PMID: 36213288 PMCID: PMC9540375 DOI: 10.3389/fendo.2022.961744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid hormones, T3 (triiodothyronine) and T4 (thyroxine), induce a variety of long-term effects on important physiological functions, ranging from development and growth to metabolism regulation, by interacting with specific nuclear or cytosolic receptors. Extranuclear or nongenomic effects of thyroid hormones are mediated by plasma membrane or cytoplasmic receptors, mainly by αvβ3 integrin, and are independent of protein synthesis. A wide variety of nongenomic effects have now been recognized to be elicited through the binding of thyroid hormones to this receptor, which is mainly involved in angiogenesis, as well as in cell cancer proliferation. Several signal transduction pathways are modulated by thyroid hormone binding to αvβ3 integrin: protein kinase C, protein kinase A, Src, or mitogen-activated kinases. Thyroid hormone-activated nongenomic effects are also involved in the regulation of Na+-dependent transport systems, such as glucose uptake, Na+/K+-ATPase, Na+/H+ exchanger, and amino acid transport System A. Of note, the modulation of these transport systems is cell-type and developmental stage-dependent. In particular, dysregulation of Na+/K+-ATPase activity is involved in several pathological situations, from viral infection to cancer. Therefore, this transport system represents a promising pharmacological tool in these pathologies.
Collapse
Affiliation(s)
- Sandra Incerpi
- Department of Sciences, University Roma Tre, Roma, Italy
- *Correspondence: Sandra Incerpi, ; Jens Z. Pedersen,
| | - Fabio Gionfra
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Roberto De Luca
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | | | - Paolo De Vito
- Department of Biology, University Tor Vergata, Rome, Italy
| | | | - Stefano Leone
- Department of Sciences, University Roma Tre, Roma, Italy
| | - Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari, School of Medicine, Bari, Italy
| | - Miriam Rossi
- Department of Chemistry, Vassar College, Poughkeepsie, NY, United States
| | - Francesco Caruso
- Department of Chemistry, Vassar College, Poughkeepsie, NY, United States
| | - Sergio Scapin
- Department of Cellular and Developmental Biology, Sapienza University, Rome, Italy
| | - Paul J. Davis
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Hung-Yun Lin
- Department of Medicine, Albany Medical College, Albany, NY, United States
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei, Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Jens Z. Pedersen
- Department of Biology, University Tor Vergata, Rome, Italy
- *Correspondence: Sandra Incerpi, ; Jens Z. Pedersen,
| |
Collapse
|
7
|
Godugu K, Rajabi M, Mousa SA. Anti-Cancer Activities of Thyrointegrin α vβ 3 Antagonist Mono- and Bis-Triazole Tetraiodothyroacetic Acid Conjugated via Polyethylene Glycols in Glioblastoma. Cancers (Basel) 2021; 13:2780. [PMID: 34204997 PMCID: PMC8199894 DOI: 10.3390/cancers13112780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/25/2022] Open
Abstract
Integrin αvβ3 receptors are overexpressed in different tumors and their associated neovascularization and hence, represent a potential cancer target. We previously synthesized a high affinity thyrointegrin αvβ3, P4000-bi-TAT (tetrac derivative), with potent anticancer properties. However, the long polydisperse PEG conjugate showed large scaleup and analytical/bioanalytical issues. Hence, in the present study, we synthesized a mono versus bi-triazole tetrac with discrete monodisperse PEG, which provided improvement in scaleup and bioanalysis. In the present study, we compared binding affinity and anticancer activates with a smaller PEG size (P1600-bi-TAT, Compound 2) and the removal of one TAT molecule (P1600-m-TAT, Compound 3) versus P4000-bi-TAT, Compound 1. The results of the selectivity and affinity of TATs showed greater affinity to integrin αvβ3. The xenograft weights and tumor cell viabilities were decreased by >90% at all doses compared to the control (ON Treatment, *** p < 0.001) in cells treated with Compounds 1, 2, and 3 in U87-Luc-treated mice. The in vivo luminescent signals of U87-luc cells reflect the proliferation and distribution of tumor cells in the animals and the maximum intensity corresponding to the maximum tumor cells that the animals could tolerate. We found that the three thyrointegrin αvβ3 antagonists exhibited optimal therapeutic efficacy against U87 or primary glioblastoma cells. Biological studies showed that decreasing the PEG linker size (1600 vs. 4000) or having mono-TAT or bi-TAT had no significant impact on their αvβ3 binding affinity, anti-angiogenesis, or overall anti-cancer efficacy.
Collapse
Affiliation(s)
| | | | - Shaker A. Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12208, USA; (K.G.); (M.R.)
| |
Collapse
|
8
|
Talhada D, Santos CRA, Gonçalves I, Ruscher K. Thyroid Hormones in the Brain and Their Impact in Recovery Mechanisms After Stroke. Front Neurol 2019; 10:1103. [PMID: 31681160 PMCID: PMC6814074 DOI: 10.3389/fneur.2019.01103] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Thyroid hormones are of fundamental importance for brain development and essential factors to warrant brain functions throughout life. Their actions are mediated by binding to specific intracellular and membranous receptors regulating genomic and non-genomic mechanisms in neurons and populations of glial cells, respectively. Among others, mechanisms include the regulation of neuronal plasticity processes, stimulation of angiogenesis and neurogenesis as well modulating the dynamics of cytoskeletal elements and intracellular transport processes. These mechanisms overlap with those that have been identified to enhance recovery of lost neurological functions during the first weeks and months after ischemic stroke. Stimulation of thyroid hormone signaling in the postischemic brain might be a promising therapeutic strategy to foster endogenous mechanisms of repair. Several studies have pointed to a significant association between thyroid hormones and outcome after stroke. With this review, we will provide an overview on functions of thyroid hormones in the healthy brain and summarize their mechanisms of action in the developing and adult brain. Also, we compile the major thyroid-modulated molecular pathways in the pathophysiology of ischemic stroke that can enhance recovery, highlighting thyroid hormones as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Talhada
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
- LUBIN Lab-Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Cecília Reis Alves Santos
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- LUBIN Lab-Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Peyneau M, Kavian N, Chouzenoux S, Nicco C, Jeljeli M, Toullec L, Reboul-Marty J, Chenevier-Gobeaux C, Reis FM, Santulli P, Doridot L, Chapron C, Batteux F. Role of thyroid dysimmunity and thyroid hormones in endometriosis. Proc Natl Acad Sci U S A 2019; 116:11894-11899. [PMID: 31142643 PMCID: PMC6575600 DOI: 10.1073/pnas.1820469116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endometriosis is characterized by the presence of ectopic endometrial cells outside the uterine cavity. Thyroid autoimmunity has been associated with endometriosis. This work investigated the potential pathophysiological link between endometriosis and thyroid disorders. Transcripts and proteins involved in thyroid metabolism are dysregulated in eutopic and ectopic endometrium of endometriotic patients, leading to resistance of ectopic endometrium to triiodothyronine (T3) action and local accumulation of thyroxine (T4). Thyroid-stimulating hormone (TSH) acts as a proliferative and prooxidative hormone on all endometria of endometriosis patients and controls, whereas T3 and T4 act to specifically increase ectopic endometrial cell proliferation and reactive oxygen species (ROS) production. Mouse studies confirmed the data gained in vitro since endometriotic implants were found to be bigger when thyroid hormones increased. A retrospective analysis of endometriosis patients with or without a thyroid disorder revealed an increased chronic pelvic pain and disease score in endometriotic patients with a thyroid disorder.
Collapse
Affiliation(s)
- Marine Peyneau
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
| | - Niloufar Kavian
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, 75679 Paris, France
- Service d'immunologie biologique, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
- HKU Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sandrine Chouzenoux
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
| | - Carole Nicco
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
| | - Mohamed Jeljeli
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, 75679 Paris, France
- Service d'immunologie biologique, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
| | - Laurie Toullec
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
| | - Jeanne Reboul-Marty
- Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, 75679 Paris, France
- Département d'Information Médicale, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
| | - Camille Chenevier-Gobeaux
- Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, 75679 Paris, France
- Service de Diagnostic Biologique Automatisé, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
| | - Fernando M Reis
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
| | - Pietro Santulli
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, 75679 Paris, France
- Département de Gynécologie Obstétrique II et Médecine de la Reproduction, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
| | - Ludivine Doridot
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
| | - Charles Chapron
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, 75679 Paris, France
- Département de Gynécologie Obstétrique II et Médecine de la Reproduction, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
| | - Frédéric Batteux
- Institut Cochin, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France;
- Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire Cochin, 75679 Paris, France
- Service d'immunologie biologique, Université Paris Descartes, Sorbonne Paris Cité, 75679 Paris, France
| |
Collapse
|
10
|
von Hafe M, Neves JS, Vale C, Borges-Canha M, Leite-Moreira A. The impact of thyroid hormone dysfunction on ischemic heart disease. Endocr Connect 2019; 8:R76-R90. [PMID: 30959486 PMCID: PMC6499922 DOI: 10.1530/ec-19-0096] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
Thyroid hormones have a central role in cardiovascular homeostasis. In myocardium, these hormones stimulate both diastolic myocardial relaxation and systolic myocardial contraction, have a pro-angiogenic effect and an important role in extracellular matrix maintenance. Thyroid hormones modulate cardiac mitochondrial function. Dysfunction of thyroid axis impairs myocardial bioenergetic status. Both overt and subclinical hypothyroidism are associated with a higher incidence of coronary events and an increased risk of heart failure progression. Endothelial function is also impaired in hypothyroid state, with decreased nitric oxide-mediated vascular relaxation. In heart disease, particularly in ischemic heart disease, abnormalities in thyroid hormone levels are common and are an important factor to be considered. In fact, low thyroid hormone levels should be interpreted as a cardiovascular risk factor. Regarding ischemic heart disease, during the late post-myocardial infarction period, thyroid hormones modulate left ventricular structure, function and geometry. Dysfunction of thyroid axis might even be more prevalent in the referred condition since there is an upregulation of type 3 deiodinase in myocardium, producing a state of local cardiac hypothyroidism. In this focused review, we summarize the central pathophysiological and clinical links between altered thyroid function and ischemic heart disease. Finally, we highlight the potential benefits of thyroid hormone supplementation as a therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- Madalena von Hafe
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Sergio Neves
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, Porto, Portugal
- Correspondence should be addressed to J S Neves:
| | - Catarina Vale
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marta Borges-Canha
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar São João, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Krashin E, Piekiełko-Witkowska A, Ellis M, Ashur-Fabian O. Thyroid Hormones and Cancer: A Comprehensive Review of Preclinical and Clinical Studies. Front Endocrinol (Lausanne) 2019; 10:59. [PMID: 30814976 PMCID: PMC6381772 DOI: 10.3389/fendo.2019.00059] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
Thyroid hormones take major part in normal growth, development and metabolism. Over a century of research has supported a relationship between thyroid hormones and the pathophysiology of various cancer types. In vitro studies as well as research in animal models demonstrated an effect of the thyroid hormones T3 and T4 on cancer proliferation, apoptosis, invasiveness and angiogenesis. Thyroid hormones mediate their effects on the cancer cell through several non-genomic pathways including activation of the plasma membrane receptor integrin αvβ3. Furthermore, cancer development and progression are affected by dysregulation of local bioavailability of thyroid hormones. Case-control and population-based studies provide conflicting results regarding the association between thyroid hormones and cancer. However, a large body of evidence suggests that subclinical and clinical hyperthyroidism increase the risk of several solid malignancies while hypothyroidism may reduce aggressiveness or delay the onset of cancer. Additional support is provided from studies in which dysregulation of the thyroid hormone axis secondary to cancer treatment or thyroid hormone supplementation was shown to affect cancer outcomes. Recent preclinical and clinical studies in various cancer types have further shown promising outcomes following chemical reduction of thyroid hormones or inhibition or their binding to the integrin receptor. This review provides a comprehensive overview of the preclinical and clinical research conducted so far.
Collapse
Affiliation(s)
- Eilon Krashin
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Martin Ellis
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Meir Medical Center, Hematology Institute and Blood Bank, Kfar-Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Hemato-Oncology Laboratory, Meir Medical Center, Kfar-Saba, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Osnat Ashur-Fabian
| |
Collapse
|
12
|
Schmidinger M, Danesi R. Management of Adverse Events Associated with Cabozantinib Therapy in Renal Cell Carcinoma. Oncologist 2018; 23:306-315. [PMID: 29146618 PMCID: PMC5905684 DOI: 10.1634/theoncologist.2017-0335] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022] Open
Abstract
Cabozantinib was recently approved for the treatment of advanced renal cell carcinoma (RCC) after treatment with vascular endothelial growth factor (VEGF)-targeted therapy. Cabozantinib is a multikinase inhibitor targeting VEGF receptor (VEGFR) 2, mesenchymal-epithelial transition receptor, and "anexelekto" receptor tyrosine kinase. A 60-mg daily dose led to improved overall survival and progression-free survival (PFS) versus everolimus in advanced RCC patients as a second- or later-line treatment in the METEOR trial. Improved PFS with cabozantinib versus sunitinib has also been demonstrated in the first-line setting in CABOSUN. However, cabozantinib, like other VEGFR inhibitors, is associated with toxicity that may affect the patient's quality of life. The most frequent adverse events (AEs) are diarrhea, fatigue, hypertension, hand-foot syndrome, weight loss, nausea, and stomatitis. This article summarizes the safety profile of cabozantinib in RCC patients and offers guidance for the management of these AEs. We discuss the underlying mechanisms of these AEs and, based on our experiences with cabozantinib and other multikinase inhibitors, we present approaches to manage toxicity. Prophylactic and therapeutic solutions are available to help with the management of toxicity associated with cabozantinib, and adequate interventions can ensure optimum adherence and maximize patient outcomes. IMPLICATIONS FOR PRACTICE Cabozantinib leads to improved survival outcomes in renal cell carcinoma patients compared with everolimus. However, management of the adverse event profile is crucial to achieve optimum adherence and outcomes with the use of cabozantinib. This review aims to provide appropriate guidance that will minimize the impact of adverse events and help to maximize the utility of this agent in patients with advanced renal cell carcinoma.
Collapse
Affiliation(s)
- Manuela Schmidinger
- Clinical Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Wang T, Chen W, Wu J. H2-P, a honokiol derivative, exerts anti-angiogenesis effects via c-MYC signaling pathway in glioblastoma. J Cell Biochem 2017; 119:3142-3148. [PMID: 29080353 DOI: 10.1002/jcb.26462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/24/2017] [Indexed: 11/05/2022]
Abstract
H2-P, a derivative of honokiol, was first synthesized in our laboratory. Compared with honokiol, H2-P has even high anti-tumor activity. In the present study, we evaluated the ability of H2-P to inhibit the survival rate in four gliomas cell lines. The result showed that H2-P could significantly inhibit proliferation of gliomas cells in a dose-dependent manner (IC50U251 = 9.03, IC50SHG-44 = 10.74, IC50U78 = 19.87, and IC50c6 = 22.56 nM). Furthermore, to determine the mechanism underlying the anti-gliomas effects of H2-P, six kinase activities was detected by Z'-LYTE™ system. The high-throughput screening shown that effect targets of H2-P were MEK and VEGFR2. We also studied the inhibition of H2-P vascular endothelial cells (EA.HY926). The data shown that H2-P could increase endothelial cells apoptosis rate, while inhibiting endothelial cell proliferation (IC50EA.hy926 = 16.11 nM) and migration. Besides, we investigated anti-angiogenesis of H2-P in the rat thoracic aorta rings, chicken chorioallantoic membrane (CAM), and capillary tube formation models. H2-P showed strong inhibition of angiogenesis. Moreover, we found that H2-P also could reduce tumor volume in mice significantly (P < 0.01), and downregulate gene expression level of VEGFR2, MEK, and c-MYC in tumor. These data suggest that H2-P have an excellent anti-tumor activity by exerting anti-angiogenesis effects via c-MYC signaling pathway in glioblastoma (GBM).
Collapse
Affiliation(s)
- Ting Wang
- School of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| | - Wei Chen
- Xinjiang Huashi Dan Pharmaceutical Co., Ltd, Urumqi, China
| | - Jialin Wu
- School of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
14
|
Goemann IM, Romitti M, Meyer ELS, Wajner SM, Maia AL. Role of thyroid hormones in the neoplastic process: an overview. Endocr Relat Cancer 2017; 24:R367-R385. [PMID: 28928142 DOI: 10.1530/erc-17-0192] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (TH) are critical regulators of several physiological processes, which include development, differentiation and growth in virtually all tissues. In past decades, several studies have shown that changes in TH levels caused by thyroid dysfunction, disruption of deiodinases and/or thyroid hormone receptor (TR) expression in tumor cells, influence cell proliferation, differentiation, survival and invasion in a variety of neoplasms in a cell type-specific manner. The function of THs and TRs in neoplastic cell proliferation involves complex mechanisms that seem to be cell specific, exerting effects via genomic and nongenomic pathways, repressing or stimulating transcription factors, influencing angiogenesis and promoting invasiveness. Taken together, these observations indicate an important role of TH status in the pathogenesis and/or development of human neoplasia. Here, we aim to present an updated and comprehensive picture of the accumulated knowledge and the current understanding of the potential role of TH status on the different hallmarks of the neoplastic process.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirian Romitti
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Erika L Souza Meyer
- Department of Internal MedicineUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Simone Magagnin Wajner
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Davis PJ, Leonard JL, Lin HY, Leinung M, Mousa SA. Molecular Basis of Nongenomic Actions of Thyroid Hormone. VITAMINS AND HORMONES 2017; 106:67-96. [PMID: 29407448 DOI: 10.1016/bs.vh.2017.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nongenomic actions of thyroid hormone are initiated by the hormone at receptors in the plasma membrane, in cytoplasm, or in mitochondria and do not require the interaction of nuclear thyroid hormone receptors (TRs) with their primary ligand, 3,5,3'-triiodo-l-thyronine (T3). Receptors involved in nongenomic actions may or may not have structural homologies with TRs. Certain nongenomic actions that originate at the plasma membrane may modify the state and function of intranuclear TRs. Reviewed here are nongenomic effects of the hormone-T3 or, in some cases, l-thyroxine (T4)-that are initiated at (a) truncated TRα isoforms, e.g., p30 TRα1, (b) cytoplasmic proteins, or (c) plasma membrane integrin αvβ3. p30 TRα1 is not transcriptionally competent, binds T3 at the cell surface, and consequently expresses a number of important functions in bone cells. Nongenomic hormonal control of mitochondrial respiration involves a TRα isoform, and another truncated TRα isoform nongenomically regulates the state of cellular actin. Cytoplasmic hormone-binding proteins involved in nongenomic actions of thyroid hormone include ketimine reductase, pyruvate kinase, and TRβ that shuttle among intracellular compartments. Functions of the receptor for T4 on integrin αvβ3 include stimulation of proliferation of cancer and endothelial cells (angiogenesis) and regulation of transcription of cancer cell survival pathway genes. T4 serves as a prohormone for T3 in genomic actions of thyroid hormone, but T4 is a hormone at αvβ3 and more important to cancer cell function than is T3. Thus, characterization of nongenomic actions of the hormone has served to broaden our understanding of the cellular roles of T3 and T4.
Collapse
Affiliation(s)
- Paul J Davis
- Albany Medical College, Albany, NY, United States; Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States.
| | - Jack L Leonard
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Hung-Yun Lin
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| |
Collapse
|
16
|
Rajabi M, Sudha T, Darwish NHE, Davis PJ, Mousa SA. Synthesis of MR-49, a deiodinated analog of tetraiodothyroacetic acid (tetrac), as a novel pro-angiogenesis modulator. Bioorg Med Chem Lett 2016; 26:4112-6. [PMID: 27381084 DOI: 10.1016/j.bmcl.2016.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 01/29/2023]
Abstract
The tyrosine-based hormones 3,3',5-triiodo-l-thyronine (l-T3) and l-thyroxine (l-T4) that are produced by the thyroid gland control metabolic functions. Iodothyronine deiodinase enzymes convert l-T4 to l-T3, the form of thyroid hormone critical to genomic actions within cells and regulation of metabolism, and to reverse-l-T3, a hormone isoform that is largely inactive. We used tertiary amines in a study of deiodination based on derivatives of tetraiodothyroacetic acid (tetrac)-a naturally occurring derivative of l-T4-to mimic the action of the iodothyronine deiodinases and deiodination of the outer ring iodines. Deiodinated tetrac, MR-49, was found to be pro-angiogenic, with this activity exceeding that of l-T3 and l-T4 in a hemoglobin Matrigel® plug assay of angiogenesis. Tetrac is anti-angiogenic via several nongenomic pathways, and the present studies of MR-49 reveal the critical contribution of outer ring iodines to the angiogenic properties of thyroid hormone analogues, which may have utility as pro-angiogenic pharmaceuticals.
Collapse
Affiliation(s)
- Mehdi Rajabi
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA
| | - Thangirala Sudha
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA
| | - Noureldien H E Darwish
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA; Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Paul J Davis
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA; Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA.
| |
Collapse
|
17
|
|
18
|
Abstract
The nongenomic actions of thyroid hormone begin at receptors in the plasma membrane, mitochondria or cytoplasm. These receptors can share structural homologies with nuclear thyroid hormone receptors (TRs) that mediate transcriptional actions of T3, or have no homologies with TR, such as the plasma membrane receptor on integrin αvβ3. Nongenomic actions initiated at the plasma membrane by T4 via integrin αvβ3 can induce gene expression that affects angiogenesis and cell proliferation, therefore, both nongenomic and genomic effects can overlap in the nucleus. In the cytoplasm, a truncated TRα isoform mediates T4-dependent regulation of intracellular microfilament organization, contributing to cell and tissue structure. p30 TRα1 is another shortened TR isoform found at the plasma membrane that binds T3 and mediates nongenomic hormonal effects in bone cells. T3 and 3,5-diiodo-L-thyronine are important to the complex nongenomic regulation of cellular respiration in mitochondria. Thus, nongenomic actions expand the repertoire of cellular events controlled by thyroid hormone and can modulate TR-dependent nuclear events. Here, we review the experimental approaches required to define nongenomic actions of the hormone, enumerate the known nongenomic effects of the hormone and their molecular basis, and discuss the possible physiological or pathophysiological consequences of these actions.
Collapse
Affiliation(s)
- Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy &Health Sciences, One Discovery Drive, Rennselaer, New York 12144, USA
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli studi del Sannio, Via Port'Arsa 11, 82100, Benevento, Italy
| | - Jack L Leonard
- Department of Microbiology &Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA
| |
Collapse
|
19
|
Davis PJ, Sudha T, Lin HY, Mousa SA. Thyroid Hormone, Hormone Analogs, and Angiogenesis. Compr Physiol 2015; 6:353-62. [PMID: 26756636 DOI: 10.1002/cphy.c150011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation by thyroid hormone and hormone analogs of angiogenesis in the heart after experimental infarction, and in other organs, has been appreciated for decades. Description of a plasma membrane receptor for thyroid hormone on the extracellular domain of integrin αvβ3 on endothelial cells has revealed the complexity of the nongenomic regulation of angiogenesis by the hormone. From αvβ3, the hormone directs transcription of specific vascular growth factor genes, regulates growth factor receptor/growth factor interactions and stimulates endothelial cell migration to a vitronectin cue; these actions are implicated experimentally in tumor-relevant angiogenesis and angioproliferative pulmonary hypertension. Derived from L-thyroxine (T4), tetraiodothyroacetic acid (tetrac) can be covalently bound to a polymer and as Nanotetrac acts exclusively at the hormone receptor on αvβ3 to block actions of T4 and 3,5,3'-triiodo-L-thyronine (T3) on angiogenesis. Other antiangiogenic actions of Nanotetrac include disruption of crosstalk between integrin αvβ3 and adjacent cell surface vascular growth factor receptors, resulting in disordered vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF; FGF2) actions at their respective plasma membrane receptors. From αvβ3, Nanotetrac also downregulates expression of VEGFA and epidermal growth factor receptor (EGFR) genes, upregulates transcription of the angiogenesis suppressor gene, thrombospondin 1 (THBS1; TSP1) and decreases cellular abundance of Ang-2 protein and matrix metalloproteinase-9. Existence of this receptor provides new insights into the multiple mechanisms by which thyroid hormone and hormone analogs may regulate angiogenesis at the molecular level. The receptor also offers pharmacological opportunities for interruption of pathological angiogenesis via integrin αvβ3.
Collapse
Affiliation(s)
- Paul J Davis
- Department of Medicine, Albany Medical College, Albany, New York, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| | - Thangirala Sudha
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA.,Institute of Cancer Biology and Drug Discovery, School of Medical Technology, Taipei Medical University, Taipei, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
20
|
Ma Q, Chen W, Chen W. Anti-tumor angiogenesis effect of a new compound: B-9-3 through interference with VEGFR2 signaling. Tumour Biol 2015; 37:6107-16. [DOI: 10.1007/s13277-015-4473-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/18/2015] [Indexed: 12/15/2022] Open
|
21
|
Davis PJ, Glinsky GV, Lin HY, Leith JT, Hercbergs A, Tang HY, Ashur-Fabian O, Incerpi S, Mousa SA. Cancer Cell Gene Expression Modulated from Plasma Membrane Integrin αvβ3 by Thyroid Hormone and Nanoparticulate Tetrac. Front Endocrinol (Lausanne) 2014; 5:240. [PMID: 25628605 PMCID: PMC4290672 DOI: 10.3389/fendo.2014.00240] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 12/18/2022] Open
Abstract
Integrin αvβ3 is generously expressed by cancer cells and rapidly dividing endothelial cells. The principal ligands of the integrin are extracellular matrix proteins, but we have described a cell surface small molecule receptor on αvβ3 that specifically binds thyroid hormone and thyroid hormone analogs. From this receptor, thyroid hormone (l-thyroxine, T4; 3,5,3'-triiodo-l-thyronine, T3) and tetraiodothyroacetic acid (tetrac) regulate expression of specific genes by a mechanism that is initiated non-genomically. At the integrin, T4 and T3 at physiological concentrations are pro-angiogenic by multiple mechanisms that include gene expression, and T4 supports tumor cell proliferation. Tetrac blocks the transcriptional activities directed by T4 and T3 at αvβ3, but, independently of T4 and T3, tetrac modulates transcription of cancer cell genes that are important to cell survival pathways, control of the cell cycle, angiogenesis, apoptosis, cell export of chemotherapeutic agents, and repair of double-strand DNA breaks. We have covalently bound tetrac to a 200 nm biodegradable nanoparticle that prohibits cell entry of tetrac and limits its action to the hormone receptor on the extracellular domain of plasma membrane αvβ3. This reformulation has greater potency than unmodified tetrac at the integrin and affects a broader range of cancer-relevant genes. In addition to these actions on intra-cellular kinase-mediated regulation of gene expression, hormone analogs at αvβ3 have additional effects on intra-cellular protein-trafficking (cytosol compartment to nucleus), nucleoprotein phosphorylation, and generation of nuclear coactivator complexes that are relevant to traditional genomic actions of T3. Thus, previously unrecognized cell surface-initiated actions of thyroid hormone and tetrac formulations at αvβ3 offer opportunities to regulate angiogenesis and multiple aspects of cancer cell behavior.
Collapse
Affiliation(s)
- Paul J. Davis
- Department of Medicine, Albany Medical College, Albany, NY, USA
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
- *Correspondence: Paul J. Davis, Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, One Discovery Drive, Rensselaer, NY 12144, USA e-mail:
| | | | | | - John T. Leith
- Rhode Island Nuclear Science Center, Narragansett, RI, USA
| | | | - Heng-Yuan Tang
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Osnat Ashur-Fabian
- Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel
- Department of Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
22
|
Schmidinger M. Understanding and managing toxicities of vascular endothelial growth factor (VEGF) inhibitors. EJC Suppl 2013; 11:172-91. [PMID: 26217127 PMCID: PMC4041401 DOI: 10.1016/j.ejcsup.2013.07.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
23
|
Davis PJ, Mousa SA, Cody V, Tang HY, Lin HY. Small Molecule Hormone or Hormone-Like Ligands of Integrin αVβ3: Implications for Cancer Cell Behavior. Discov Oncol 2013; 4:335-42. [DOI: 10.1007/s12672-013-0156-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022] Open
|
24
|
Rebbaa A, Patil G, Yalcin M, Sudha T, Mousa SA. OT-404, multi-targeted anti-cancer agent affecting tumor proliferation, chemo-resistance, and angiogenesis. Cancer Lett 2013; 332:55-62. [DOI: 10.1016/j.canlet.2013.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 11/28/2022]
|
25
|
Yalcin M, Lin HY, Sudha T, Bharali DJ, Meng R, Tang HY, Davis FB, Stain SC, Davis PJ, Mousa SA. Response of Human Pancreatic Cancer Cell Xenografts to Tetraiodothyroacetic Acid Nanoparticles. Discov Oncol 2013; 4:176-85. [DOI: 10.1007/s12672-013-0137-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/08/2013] [Indexed: 01/01/2023] Open
|
26
|
Puzianowska-Kuznicka M, Pawlik-Pachucka E, Owczarz M, Budzińska M, Polosak J. Small-molecule hormones: molecular mechanisms of action. Int J Endocrinol 2013; 2013:601246. [PMID: 23533406 PMCID: PMC3603355 DOI: 10.1155/2013/601246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/30/2012] [Accepted: 01/17/2013] [Indexed: 01/01/2023] Open
Abstract
Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30-60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes.
Collapse
Affiliation(s)
- Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
- *Monika Puzianowska-Kuznicka:
| | - Eliza Pawlik-Pachucka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Magdalena Owczarz
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Monika Budzińska
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Jacek Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
27
|
De Vito P, Balducci V, Leone S, Percario Z, Mangino G, Davis PJ, Davis FB, Affabris E, Luly P, Pedersen JZ, Incerpi S. Nongenomic effects of thyroid hormones on the immune system cells: New targets, old players. Steroids 2012; 77:988-95. [PMID: 22414628 DOI: 10.1016/j.steroids.2012.02.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/06/2012] [Accepted: 02/23/2012] [Indexed: 11/30/2022]
Abstract
It is now widely accepted that thyroid hormones, l-thyroxine (T(4)) and 3,3',5-triiodo-l-thyronine (T(3)), act as modulators of the immune response. Immune functions such as chemotaxis, phagocytosis, generation of reactive oxygen species, and cytokine synthesis and release, are altered in hypo- and hyper-thyroid conditions, even though for many immune cells no clear correlation has been found between altered levels of T(3) or T(4) and effects on the immune responses. Integrins are extracellular matrix proteins that are important modulators of many cellular responses, and the integrin αvβ3 has been identified as a cell surface receptor for thyroid hormones. Rapid signaling via this plasma membrane binding site appears to be responsible for many nongenomic effects of thyroid hormones, independent of the classic nuclear receptors. Through the integrin αvβ3 receptor the hormone can activate both the ERK1/2 and phosphatidylinositol 3-kinase pathways, with downstream effects including intracellular protein trafficking, angiogenesis and tumor cell proliferation. It has recently become clear that an important downstream target of the thyroid hormone nongenomic pathway may be the mammalian target of rapamycin, mTOR. New results demonstrate the capability of T(3) or T(4) to induce in the short time range important responses related to the immune function, such as reactive oxygen species production and cell migration in THP-1 monocytes. Thus thyroid hormones seem to be able to modulate the immune system by a combination of rapid nongenomic responses interacting with the classical nuclear response.
Collapse
Affiliation(s)
- Paolo De Vito
- Dept. of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bridoux A, Mousa SA, Samama MM. Pro- and anti-angiogenic agents. ACTA ACUST UNITED AC 2012; 37:132-9. [PMID: 22494976 DOI: 10.1016/j.jmv.2012.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/20/2012] [Indexed: 11/27/2022]
Abstract
The vascular endothelium has been characterized in every organ system, and is described as a selective permeable barrier and as a dynamic and disseminated organ with endocrine function. These activities have been shown to result from the interactions of ligands with membrane-bound receptors as well as through specific junctional proteins and receptors that govern cell-cell interactions. The endothelial cells' movement (e.g., angiogenesis) has been hypothesized to occur following the release of stimuli that could promote the formation of new blood vessels. Angiogenesis has also been reported to be the continued expansion of the vascular tree in avascular regions, as a result of the sprouting of endothelial cells from existing vessels. Most commonly, angiogenesis has been characterized during wound healing and tumour growth. Herein we summarize and discuss the latest results from fundamental laboratory research aimed at proving a link between the proliferation of cancer and angiogenesis, as well as the new rationale around novel pro- and anti-angiogenic molecules.
Collapse
Affiliation(s)
- A Bridoux
- Biomnis Laboratories R&D, 78, avenue de Verdun, 94200 Ivry-sur-Seine, France
| | | | | |
Collapse
|
29
|
Makino A, Wang H, Scott BT, Yuan JXJ, Dillmann WH. Thyroid hormone receptor-α and vascular function. Am J Physiol Cell Physiol 2012; 302:C1346-52. [PMID: 22322976 DOI: 10.1152/ajpcell.00292.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) treatment exerts beneficial effects on the cardiovascular system: it lowers cholesterol and LDL levels and enhances cardiac contractile function. However, little is known about the effect of TH on vascular function or the functional role of TH receptors (TRs) in the regulation of vascular tone. We have investigated the contribution of TRs to vascular contractility in the heart. Among different TR subtype-specific knockout (KO) mice, vascular contraction was significantly enhanced in coronary arteries isolated from TRα KO compared with wild-type mice, while chronic TH treatment significantly attenuated coronary vascular contraction. We found that TRα is the predominant TR in mouse coronary smooth muscle cells (SMCs). Coronary SMCs isolated from TRα KO mice exhibited a significant decrease in K(+) channel activity, whereas TH treatment increased K(+) channel activity in a dose-dependent manner. These data suggest that TRα in SMCs has prominent effects on regulation of vascular tone and TH treatment helps decrease coronary vascular tone by increasing K(+) channel activity through TRα in SMCs.
Collapse
Affiliation(s)
- Ayako Makino
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
30
|
Combined QM/MM study of thyroid and steroid hormone analogue interactions with αvβ3 integrin. J Biomed Biotechnol 2012; 2012:959057. [PMID: 22547930 PMCID: PMC3323866 DOI: 10.1155/2012/959057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 11/17/2022] Open
Abstract
Recent biochemical studies have identified a cell surface receptor for thyroid and steroid hormones that bind near the arginine-glycine-aspartate (RGD) recognition site on the heterodimeric αvβ3 integrin. To further characterize the intermolecular interactions for a series of hormone analogues, combined quantum mechanical and molecular mechanical (QM/MM) methods were used to calculate their interaction energies. All calculations were performed in the presence of either calcium (Ca(2+)) or magnesium (Mg(2+)) ions. These data reveal that 3,5'-triiodothyronine (T(3)) and 3,5,3',5'-tetraiodothyroacetic acid (T(4)ac) bound in two different modes, occupying two alternate sites, one of which is along the Arg side chain of the RGD cyclic peptide site. These orientations differ from those of the other ligands whose alternate binding modes placed the ligands deeper within the RGD binding pocket. These observations are consistent with biological data that indicate the presence of two discrete binding sites that control distinct downstream signal transduction pathways for T(3).
Collapse
|
31
|
Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY. Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 2011; 51:99-115. [PMID: 20868274 DOI: 10.1146/annurev-pharmtox-010510-100512] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasma membrane integrin αvβ3 is a cell surface receptor for thyroid hormone at which nongenomic actions are initiated. L-thyroxine (T₄) and 3,3',5-triiodo-L-thyronine (T₃) promote angiogenesis and tumor cell proliferation via the receptor. Tetraiodothyroacetic acid (tetrac), a deaminated T₄ derivative, blocks the nongenomic proliferative and proangiogenic actions of T₄ and T₃. Acting at the integrin independently of T₄ and T₃, tetrac and a novel nanoparticulate formulation of tetrac that acts exclusively at the cell surface have oncologically desirable antiproliferative actions on multiple tumor cell survival pathway genes. These agents also block the angiogenic activity of vascular growth factors. Volume and vascular support of xenografts of human pancreatic, kidney, lung, and breast cancers are downregulated by tetrac formulations. The integrin αvβ3 receptor site for thyroid hormone selectively regulates signal transduction pathways and distinguishes between unmodified tetrac and the nanoparticulate formulation. The receptor also mediates nongenomic thyroid hormone effects on plasma membrane ion transporters and on intracellular protein trafficking.
Collapse
Affiliation(s)
- Paul J Davis
- Ordway Research Institute, Albany, New York 12208, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Thyronamines (TAMs) are a newly identified class of endogenous signaling compounds. Their structure is identical to that of thyroid hormone and deiodinated thyroid hormone derivatives, except that TAMs do not possess a carboxylate group. Despite some initial publications dating back to the 1950s, TAMs did not develop into an independent area of research until 2004, when they were rediscovered as potential ligands to a class of G protein-coupled receptors called trace-amine associated receptors. Since this discovery, two representatives of TAMs, namely 3-iodothyronamine (3-T(1)AM) and thyronamine (T(0)AM), have been detected in vivo. Intraperitoneal or central injection of 3-T(1)AM or T(0)AM into mice, rats, or Djungarian hamsters caused various prompt effects, such as metabolic depression, hypothermia, negative chronotropy, negative inotropy, hyperglycemia, reduction of the respiratory quotient, ketonuria, and reduction of fat mass. Although their physiological function remains elusive, 3-T(1)AM and T(0)AM have already revealed promising therapeutic potential because they represent the only endogenous compounds inducing hypothermia as a prophylactic or acute treatment of stroke and might thus be expected to cause fewer side effects than synthetic compounds. This review article summarizes the still somewhat scattered data on TAMs obtained both recently and more than 20 yr ago to yield a complete and updated picture of the current state of TAM research.
Collapse
Affiliation(s)
- S Piehl
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Charité Campus Virchow-Klinikum (Südring 10), Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
33
|
|
34
|
Bridoux A, Cui H, Dyskin E, Schmitzer AR, Yalcin M, Mousa SA. Semisynthesis and pharmacological activities of thyroxine analogs: Development of new angiogenesis modulators. Bioorg Med Chem Lett 2010; 20:3394-8. [PMID: 20434332 DOI: 10.1016/j.bmcl.2010.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 04/03/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
Abstract
Novel thyroxine analogs with hindered phenol, amino and carboxylic acid groups have been synthesized and the effects of the synthesized compounds on angiogenesis using the chick chorioallantoic membrane and mouse matrigel models have been tested. Pharmacological profiles revealed that thyroxine tolerates numerous modifications on the amino group and remains active. These results provide the rationale for the selection of a novel thyroxine nanoparticle precursor.
Collapse
Affiliation(s)
- Alexandre Bridoux
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, One Discovery Drive, Rensselaer, NY 12144, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T(3) via transcriptional regulation. Two TR genes, alpha and beta, encode four T(3)-binding receptor isoforms (alpha1, beta1, beta2, and beta3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T(3), transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T(3) target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T(3)-dependent manner. In the absence of T(3), corepressors act to repress the basal transcriptional activity, whereas in the presence of T(3), coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRbeta gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T(3). Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin alphavbeta3 that activates ERK1/2 and culminate in local membrane actions on ion transport systems, such as the Na(+)/H(+) exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T(4) is an agonist at the plasma membrane without conversion to T(3). Tetraiodothyroacetic acid is a T(4) analog that inhibits the actions of T(4) and T(3) at the integrin, including angiogenesis and tumor cell proliferation. T(3) can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin alphavbeta3. Downstream consequences of phosphatidylinositol 3-kinase activation by T(3) include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T(3) and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T(4) and rT(3), but not T(3), is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRalpha1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton.
Collapse
Affiliation(s)
- Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
36
|
Yalcin M, Dyskin E, Lansing L, Bharali DJ, Mousa SS, Bridoux A, Hercbergs AH, Lin HY, Davis FB, Glinsky GV, Glinskii A, Ma J, Davis PJ, Mousa SA. Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid. J Clin Endocrinol Metab 2010; 95:1972-80. [PMID: 20133461 DOI: 10.1210/jc.2009-1926] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Tetraiodothyroacetic acid (tetrac) blocks angiogenic and tumor cell proliferation actions of thyroid hormone initiated at the cell surface hormone receptor on integrin alphavbeta3. Tetrac also inhibits angiogenesis initiated by vascular endothelial growth factor and basic fibroblast growth factor. OBJECTIVE We tested antiangiogenic and antiproliferative efficacy of tetrac and tetrac nanoparticles (tetrac NP) against human medullary thyroid carcinoma (h-MTC) implants in the chick chorioallantoic membrane (CAM) and h-MTC xenografts in the nude mouse. DESIGN h-MTC cells were implanted in the CAM model (n = 8 per group); effects of tetrac and tetrac NP at 1 microg/CAM were determined on tumor angiogenesis and tumor growth after 8 d. h-MTC cells were also implanted sc in nude mice (n = 6 animals per group), and actions on established tumor growth of unmodified tetrac and tetrac NP ip were determined. RESULTS In the CAM, tetrac and tetrac NP inhibited tumor growth and tumor-associated angiogenesis. In the nude mouse xenograft model, established 450-500 mm(3) h-MTC tumors were reduced in size over 21 d by both tetrac formulations to less than the initial cell mass (100 mm(3)). Tumor tissue hemoglobin content of xenografts decreased by 66% over the course of administration of each drug. RNA microarray and quantitative real-time PCR of tumor cell mRNAs revealed that both tetrac formulations significantly induced antiangiogenic thrombospondin 1 and apoptosis activator gene expression. CONCLUSIONS Acting via a cell surface receptor, tetrac and tetrac NP inhibit growth of h-MTC cells and associated angiogenesis in CAM and mouse xenograft models.
Collapse
Affiliation(s)
- M Yalcin
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu Y, Sherer BA, Redetzke RA, Gerdes AM. Regulation of arteriolar density in adult myocardium during low thyroid conditions. Vascul Pharmacol 2010; 52:146-50. [DOI: 10.1016/j.vph.2009.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 10/09/2009] [Indexed: 11/29/2022]
|
38
|
Yalcin M, Bharali DJ, Dyskin E, Dier E, Lansing L, Mousa SS, Davis FB, Davis PJ, Mousa SA. Tetraiodothyroacetic acid and tetraiodothyroacetic acid nanoparticle effectively inhibit the growth of human follicular thyroid cell carcinoma. Thyroid 2010; 20:281-6. [PMID: 20187783 DOI: 10.1089/thy.2009.0249] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Tetraiodothyroacetic acid (tetrac) is a deaminated analogue of L-thyroxine that blocks the actions of L-thyroxine and 3,5,3'-triiodo-L-thyronine at the cell surface receptor for thyroid hormone on integrin alpha v beta 3. Tetrac blocks the proliferative effects of thyroid hormone on tumor cells and the proangiogenesis actions of the hormone. In the absence of thyroid hormone, tetrac also blocks angiogenesis induced by various growth factors. Covalently linked to poly(lactide-co-glycolide), tetrac nanoparticles (tetrac NP) do not gain access to the cell interior and act exclusively at the integrin receptor. Here, the activity of tetrac and tetrac NP against follicular thyroid carcinoma (FTC)-236 cells was studied in two models: (1) tumor cell implants in the chick chorioallantoic membrane (CAM) system and (2) xenografts in the nude mouse. METHODS FTC-236 cells (10(6)) were implanted in the CAM (n = 8 each for control, and for tetrac and tetrac NP, both at 1 microg/CAM) and the actions of tetrac and tetrac NP were determined after 8 days on tumor-related angiogenesis and tumor growth. Xenografts of 10(7) FTC-236 cells were implanted in nude mice (n = 8 per group). Tetrac or tetrac NP was administered intraperitoneal (1 mg/kg and 1 mg tetrac equivalent/kg, respectively) every other day for 32 days beginning on day 10, when tumor volume was 200-250 mm(3). Animals were monitored after discontinuation of treatment up to day 40. RESULTS In the CAM paradigm, tetrac and tetrac NP arrested tumor-related angiogenesis and tumor growth. In the xenograft model, tetrac and tetrac NP promptly and progressively reduced tumor volume (p < 0.01) over 32 days. There was some regrowth of tumor after interruption of tetrac treatment, but at day 40, tumor volume and tumor weight at sacrifice were 45-55% below those of controls (p < 0.01). Animal weight gain was comparable in the control and treatment groups of animals. CONCLUSIONS Tetrac and tetrac NP effectively arrest FTC-236 cell tumor growth in the CAM and xenograft models, suggesting its potential utility against FTC.
Collapse
Affiliation(s)
- Murat Yalcin
- Albany College of Pharmacy and Health Sciences, Pharmaceutical Research Institute, Rensselaer, New York 12144, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Davis PJ, Davis FB, Lin HY, Mousa SA, Zhou M, Luidens MK. Translational implications of nongenomic actions of thyroid hormone initiated at its integrin receptor. Am J Physiol Endocrinol Metab 2009; 297:E1238-46. [PMID: 19755667 DOI: 10.1152/ajpendo.00480.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A thyroid hormone receptor on integrin alphavbeta3 that mediates cell surface-initiated nongenomic actions of thyroid hormone on tumor cell proliferation and on angiogenesis has been described. Transduction of the hormone signal into these recently recognized proliferative effects is by extracellular-regulated kinases 1/2 (ERK1/2). Other nongenomic actions of the hormone may be transduced by phosphatidylinositol 3-kinase (PI3K) and are initiated in cytoplasm or at the cell surface. PI3K-mediated effects are important to angiogenesis or other recently appreciated cell functions but apparently not to tumor cell division. For those actions of thyroid hormone [L-thyroxine (T(4)) and 3,3'-5-triiodo-L-thyronine (T(3))] that begin at the integrin receptor, tetraiodothyroacetic acid (tetrac) is an inhibitor of and probe for the participation of the receptor in downstream intracellular events. In addition, tetrac has actions initiated at the integrin receptor that are unrelated to inhibition of the effects of T(4) and T(3) but do involve gene transcription in tumor cells. Discussed here are the implications of translating these nongenomic mechanisms of thyroid hormone analogs into clinical cancer cell biology, tumor-related angiogenesis, and modulation of angiogenesis that is not related to cancer.
Collapse
Affiliation(s)
- Paul J Davis
- Signal Transduction Laboratory, Ordway Research Institute, Albany, NY 12208, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Kemp MM, Kumar A, Mousa S, Dyskin E, Yalcin M, Ajayan P, Linhardt RJ, Mousa SA. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. NANOTECHNOLOGY 2009; 20:455104. [PMID: 19822927 DOI: 10.1088/0957-4484/20/45/455104] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Melissa M Kemp
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mousa SS, Davis FB, Davis PJ, Mousa SA. Human platelet aggregation and degranulation is induced in vitro by L-thyroxine, but not by 3,5,3'-triiodo-L-thyronine or diiodothyropropionic acid (DITPA). Clin Appl Thromb Hemost 2009; 16:288-93. [PMID: 19903697 DOI: 10.1177/1076029609348315] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The endogenous thyroid hormones L-thyroxine (T(4)) and 3,5,3'-triiodo-L-thyronine (T(3)) induce angiogenesis via an endothelial cell iodothyronine receptor on integrin alphaVbeta3. This receptor also exists on platelets. Diiodothyropropionic acid (DITPA) and GC-1, a noniodinated thyroid hormone analog, also induce angiogenesis. Here we examined the effects of iodothyronines (L-T(4) vs L-T(3)) and analogs DITPA and GC-1 on human platelet function. Subthreshold aggregation of platelets obtained from healthy human donors was induced with collagen. Platelet activation (proaggregation) and adenosine triphosphate (ATP) secretion (degranulation) induced by L-T( 4), L-T(4)-agarose, L-T(3), DITPA, or GC-1 were determined simultaneously. Platelet aggregation and ATP secretion induced by a subthreshold level of collagen were enhanced 3-fold by either L-T(4) or L-T( 4)-agarose (0.01 micromol/L) as compared to control, whereas, L-T( 3), DITPA, or GC-1 had no effect under the same conditions. The platelet proaggregatory and degranulation effects of L-T(4) were blocked by the alphavbeta3 antagonist XT199 (0.1 micromol/ L) and by tetraiodothyroacetic acid (tetrac; 0.1 micromol/L). Tetrac inhibits binding of thyroid hormone analogs to the receptor on alphavbeta3 and lacks thyromimetic activity at this site; thus, the proaggregatory action of L-T(4) likely involves the cell surface receptor on integrin alphavbeta3. The thyroid hormone receptor (TR) on human platelets but not endothelial cells distinguishes among iodothyronines, reflecting quantitative differences in integrin sites on endothelial cells and platelets or qualitative differences in the phospholipids/protein microenvironment of endothelial and platelet membranes that can affect integrin function. Additional studies in different populations with larger sample sizes are warranted to determine the impact of the current findings on clinical interventions.
Collapse
Affiliation(s)
- Shaymaa S Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York 12144, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
In models of thyroid hormone-induced cardiac hypertrophy, there is appropriate, supportive angiogenesis. Twenty years ago in one such model, angiogenesis in response to the hormone was observed before hypertrophy developed and it is now understood that iodothyronines induce neovascularization in a variety of settings, including the heart, ischemic striated muscle and tumor beds. The molecular mechanism of the proangiogenic action of thyroid hormone is both nongenomic and genomic. It is initiated nongenomically at the cell surface receptor for the hormone on integrin alphavbeta3. Kinase transduction of the hormone signal and, ultimately, transcription of several anagiogenesis-relevant genes result. The genes include basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). In addition, the integrin receptor for thyroid hormone (l-thyroxine, T(4), and 3, 5, 3'-triiodo-l-thyronine, T(3)) engages in crosstalk with the VEGF and bFGF receptors. Occlusion with tetraiodothyroacetic acid (tetrac) of the hormone receptor on the integrin in the absence of T(4) and T(3) suppresses the angiogenic effects of VEGF and bFGF. Tetrac also blocks the proangiogenic actions of T(4) and T(3). Other thyroid hormone analogues that are angiogenic include diiodothyropropionic acid (DITPA) and the nuclear thyroid hormone receptor-beta-selective agonist, GC-1. Thyroid hormone sustains angiogenesis and coronary blood flow about infarcted heart tissue in experimental models and blocks deleterious heart remodeling that otherwise is predictable in such tissue. The hormone may also induce expression of the hypoxia-inducible factor 1alpha (HIF1alpha) gene, a transcription factor important to coronary artery collateralization in the setting of hypoxia. The hormone also causes transcription of the matrix Gla protein (MGP) gene that opposes vascular smooth muscle calcification.
Collapse
|
43
|
Yonkers MA, Ribera AB. Molecular components underlying nongenomic thyroid hormone signaling in embryonic zebrafish neurons. Neural Dev 2009; 4:20. [PMID: 19505305 PMCID: PMC2704202 DOI: 10.1186/1749-8104-4-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 06/08/2009] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Neurodevelopment requires thyroid hormone, yet the mechanisms and targets of thyroid hormone action during embryonic stages remain ill-defined. We previously showed that the thyroid hormone thyroxine (T4) rapidly increases voltage-gated sodium current in zebrafish Rohon-Beard cells (RBs), a primary sensory neuron subtype present during embryonic development. Here, we determined essential components of the rapid T4 signaling pathway by identifying the involved intracellular messengers, the targeted sodium channel isotype, and the spatial and temporal expression pattern of the nongenomic alphaVbeta3 integrin T4 receptor. RESULTS We first tested which signaling pathways mediate T4's rapid modulation of sodium current (I(Na)) by perturbing specific pathways associated with nongenomic thyroid hormone signaling. We found that pharmacological blockade of protein phosphatase 1 and the mitogen-activated protein kinase p38 isoform decreased and increased tonic sodium current amplitudes, respectively, and blockade of either occluded rapid responses to acute T4 application. We next tested for the ion channel target of rapid T4 signaling via morpholino knock-down of specific sodium channel isotypes. We found that selective knock-down of the sodium channel alpha-subunit Na(v)1.6a, but not Na(v)1.1la, occluded T4's acute effects. We also determined the spatial and temporal distribution of a nongenomic T4 receptor, integrin alphaVbeta3. At 24 hours post fertilization (hpf), immunofluorescent assays showed no specific integrin alphaVbeta3 immunoreactivity in wild-type zebrafish embryos. However, by 48 hpf, embryos expressed integrin alphaVbeta3 in RBs and primary motoneurons. Consistent with this temporal expression, T4 modulated RB I(Na) at 48 but not 24 hpf. We next tested whether T4 rapidly modulated I(Na) of caudal primary motoneurons, which express the receptor (alphaVbeta3) and target (Na(v)1.6a) of rapid T4 signaling. In response to T4, caudal primary motoneurons rapidly increased sodium current peak amplitude 1.3-fold. CONCLUSION T4's nongenomic regulation of sodium current occurs in different neuronal subtypes, requires the activity of specific phosphorylation pathways, and requires both integrin alphaVbeta3 and Na(v)1.6a. Our in vivo analyses identify molecules required for T4's rapid regulation of voltage-gated sodium current.
Collapse
Affiliation(s)
- Marc A Yonkers
- Department of Physiology and Biophysics, University of Colorado Denver at Anschutz Medical Center, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
44
|
Makino A, Suarez J, Wang H, Belke DD, Scott BT, Dillmann WH. Thyroid hormone receptor-beta is associated with coronary angiogenesis during pathological cardiac hypertrophy. Endocrinology 2009; 150:2008-15. [PMID: 19074585 PMCID: PMC2659277 DOI: 10.1210/en.2008-0634] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insufficient angiogenesis is one of the causes leading to tissue ischemia and dysfunction. In heart failure, there is increasing evidence showing decreased capillary density in the left ventricle (LV) myocardium, although the detailed mechanisms contributing to it are not clear. The goal of this study was to investigate the role of thyroid hormone receptors (TRs) in the coronary microvascular rarefaction under pathological cardiac hypertrophy. The LV from hypertrophied/failing hearts induced by ascending aortic constriction (AAC) exhibited severe microvascular rarefaction, and this phenomenon was restored by chronic T(3) administration. Coronary endothelial cells (ECs) isolated from AAC hearts expressed lower TRbeta mRNA than control ECs, and chronic T(3) administration restored TRbeta mRNA expression level in AAC hearts to the control level. Among different TR subtype-specific knockout mice, TRbeta knockout and TRalpha/TRbeta double-knockout mice both exhibited significantly less capillary density in LV compared with wild-type mice. In vitro, coronary ECs isolated from TRbeta knockout mice lacked the ability to form capillary networks. In addition, we identified that kinase insert domain protein receptor/fetal liver kinase-1 (vascular endothelial growth factor-2 receptor) was one of the angiogenic mediators controlled by T(3) administration in the AAC heart. These data suggest that TRbeta in the coronary ECs regulates capillary density during cardiac development, and down-regulation of TRbeta results in coronary microvascular rarefaction during pathological hypertrophy.
Collapse
Affiliation(s)
- Ayako Makino
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California 92093-0618, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M, Khwaja SI, Ahmad N, Cui H, Mousa SA, Mukhtar H. Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res 2009; 69:1712-6. [PMID: 19223530 DOI: 10.1158/0008-5472.can-08-3978] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemoprevention, especially through the use of naturally occurring phytochemicals capable of impeding the process of one or more steps of carcinogenesis process, is a promising approach for cancer management. Despite promising results in preclinical settings, its applicability to humans has met with limited success largely due to inefficient systemic delivery and bioavailability of promising chemopreventive agents. Here, we introduce the concept of nanochemoprevention, which uses nanotechnology for enhancing the outcome of chemoprevention. We encapsulated green tea polyphenol epigallocatechin-3-gallate (EGCG) in polylactic acid-polyethylene glycol nanoparticles and observed that encapsulated EGCG retains its biological effectiveness with over 10-fold dose advantage for exerting its proapoptotic and angiogenesis inhibitory effects, critically important determinants of chemopreventive effects of EGCG in both in vitro and in vivo systems. Thus, this study could serve as a basis for the use of nanoparticle-mediated delivery to enhance bioavailability and limit any unwanted toxicity of chemopreventive agents, such as EGCG.
Collapse
Affiliation(s)
- Imtiaz A Siddiqui
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Davis PJ, Davis FB, Mousa SA. Thyroid hormone-induced angiogenesis. Curr Cardiol Rev 2009; 5:12-6. [PMID: 20066142 PMCID: PMC2803282 DOI: 10.2174/157340309787048158] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 07/24/2008] [Accepted: 07/24/2008] [Indexed: 11/22/2022] Open
Abstract
A series of reports in the past decade have ascribed pro-angiogenic activity to several thyroid hormone analogues, including L-thyroxine (T(4)), 3,5,3-triiodo-L-thyronine (T(3)) and diiodothyropropionic acid (DITPA). Model systems of angiogenesis have demonstrated that thyroid hormone-induced neovascularization is initiated at a cell surface receptor for the hormone on an integrin. The hormone signal is transduced within the cell by extracellular regulated kinase 1/2 (ERK1/2) into secretion of basic fibroblast growth factor (bFGF) and other vascular growth factors and consequent angiogenesis. Intact animal studies have shown that endogenous thyroid hormone supports blood vessel density in heart and brain and that thyroid hormone administration can induce angiogenesis in ischemic limbs.
Collapse
Affiliation(s)
- Paul J Davis
- Address for correspondence to this author at the Signal Transduction Laboratory, Ordway Research Institute, Inc., 150 New Scotland Avenue, Albany, NY 12208 USA; Tel: 518 641 6410; Fax: 518 641 6303; E-mail:
| | | | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy, Albany, NY, USAOrdway Research Institute, Inc., Albany, New York
| |
Collapse
|
47
|
Scanlan TS. Sobetirome: a case history of bench-to-clinic drug discovery and development. Heart Fail Rev 2008; 15:177-82. [DOI: 10.1007/s10741-008-9122-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
|
48
|
Aljada A, O'Connor L, Fu YY, Mousa SA. PPAR gamma ligands, rosiglitazone and pioglitazone, inhibit bFGF- and VEGF-mediated angiogenesis. Angiogenesis 2008; 11:361-7. [PMID: 18810647 DOI: 10.1007/s10456-008-9118-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 09/02/2008] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To study the effect of peroxisome proliferator-activated receptor-gamma (PPAR gamma) agonists, pioglitazone and rosiglitazone, on vascular endothelial growth factor (VEGF)- and basic fibroblast growth factor (bFGF)-induced angiogenesis and on endothelial cell migration. METHODS Chick chorioallantoic membrane (CAM) model was used to evaluate the efficacy of pioglitazone and rosiglitazone on VEGF- and bFGF-induced angiogenesis. In addition, the effect of pioglitazone and rosiglitazone on endothelial cell migration was evaluated using 8 mm pore filter to a feeder layer containing vitronectin as chemoattractant. RESULTS Pioglitazone and rosiglitazone inhibited the pro-angiogenic effects of bFGF and VEGF in the CAM model significantly (P < 0.001) to the same extent. Endothelial cell migration was also inhibited by both pioglitazone and rosiglitazone (P < 0.001). CONCLUSIONS These results suggest that PPAR gamma ligands, pioglitazone and rosiglitazone, in addition to their important regulatory role in adipogenesis and inflammation, possess anti-angiogenic properties. Thus, PPAR gamma ligands may be useful in the treatment of diabetic retinopathy, macular degeneration, and other ocular disorders and may lower the risk to develop cancer in diabetic patients.
Collapse
Affiliation(s)
- Ahmad Aljada
- Department of Biomedical Sciences, Long Island University, C.W. Post., Brookville, NY, USA
| | | | | | | |
Collapse
|
49
|
Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D. Thyroid hormone and “cardiac metamorphosis”: Potential therapeutic implications. Pharmacol Ther 2008; 118:277-94. [DOI: 10.1016/j.pharmthera.2008.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
|
50
|
Davis PJ, Leonard JL, Davis FB. Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 2008; 29:211-8. [PMID: 17983645 DOI: 10.1016/j.yfrne.2007.09.003] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/13/2007] [Indexed: 12/18/2022]
Abstract
The nongenomic actions of thyroid hormone require a plasma membrane receptor or nuclear receptors located in cytoplasm. The plasma membrane receptor is located on integrin alphaVbeta3 at the Arg-Gly-Asp recognition site important to the binding by the integrin of extracellular matrix proteins. l-Thyroxine (T(4)) is bound with greater affinity at this site than 3,5,3'-triiodo-l-thyronine (T(3)). Mitogen-activated protein kinase (MAPK; ERK1/2) transduces the hormone signal into complex cellular/nuclear events including angiogenesis and tumor cell proliferation. Acting at the integrin receptor and without cell entry, thyroid hormone can foster ERK1/2-dependent serine phosphorylation of nuclear thyroid hormone receptor-beta1 (TRbeta1) and de-repress the latter. The integrin receptor also mediates actions of the hormone on intracellular protein trafficking and on plasma membrane ion pumps, including the sodium/protein antiporter. Tetraiodothyroacetic (tetrac) is a T(4) analog that inhibits binding of iodothyronines to the integrin receptor and is a probe for the participation of this receptor in cellular actions of the hormone. Tetrac blocks thyroid hormone effects on angiogenesis and cancer cell proliferation. Acting on a truncated form of nuclear TRalpha1 (TRDeltaalpha1) located in cytoplasm, T(4) and 3,3',5'-triiodothyronine (reverse T(3)), but not T(3), cause conversion of soluble actin to fibrous (F) actin that is important to cell motility, e.g., in cells such as glia and neurons. Normal development of the central nervous system requires such motility. TRbeta1 in cytoplasm mediates action of T(3) on expression of certain genes via phosphatidylinositol 3-kinase (PI 3-K) and the protein kinase B/Akt pathway. PI 3-K and, possibly, cytoplasmic TRbeta1 are involved in stimulation by T(3) of insertion of Na,K-ATPase in the plasma membrane and of increase in activity of this pump. Because ambient thyroid hormone levels are constant in the euthyroid intact organism, these nongenomic hormone actions are likely to be contributors to basal rate-setting of transcription of certain genes and of complex cellular events such as angiogenesis and cancer cell proliferation.
Collapse
Affiliation(s)
- Paul J Davis
- Ordway Research Institute, Inc., 150 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | |
Collapse
|