1
|
Beegam S, Al-Salam S, Zaaba NE, Elzaki O, Nemmar A. Prothrombotic State and Vascular Damage in Angiotensin II-Induced Hypertension: Influence of Waterpipe Smoke Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2025; 2025:2670738. [PMID: 39959581 PMCID: PMC11824600 DOI: 10.1155/omcl/2670738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/04/2025] [Indexed: 02/18/2025]
Abstract
Hypertension is a risk factor for vascular injury and thrombotic complications, and smoking tobacco is a risk factor for the development and exacerbation of hypertension. The influence of waterpipe smoke (WPS) on coagulation and vascular injury in hypertension is not fully understood. Here, we evaluated the effects of WPS in mice made hypertensive (HT) by infusing angiotensin II (Ang II) for 42 days. On day 14 of the infusion of Ang II or vehicle (normotensive; NT), mice were exposed either to air or WPS for four consecutive weeks. Each session was 30 min/day for 5 days/week. The concentrations of tissue factor, von Willebrand factor, fibrinogen, and plasminogen activator inhibitor-1 were elevated in the HT + WPS group versus either HT + air or NT + WPS groups. Similarly, in the HT + WPS group, thrombogenicity was increased both in vivo and in vitro, compared with either HT + air or NT + WPS groups. In aortic tissue, adhesion molecules including P-selectin, E-selectin, intercellular adhesion molecule-1, and vascular adhesion molecule-1 were increased in the HT + WPS group versus the controls. Likewise, various proinflammatory cytokines and markers of oxidative stress augmented in the HT + WPS group compared with either HT + air or NT + WPS. DNA damage, cleaved caspase-3, and cytochrome C were increased in the HT + WPS group versus the controls. The immunohistochemical expression of nuclear factor erythroid 2-related factor 2 was increased in the HT + WPS group versus either HT + air or NT + WPS. Taken together, our findings show that WPS exposure intensified thrombogenicity and vascular damage in experimentally induced hypertension. Our data suggest that vascular toxicity of WPS may be exaggerated in hypertensive patients.
Collapse
Affiliation(s)
- Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| |
Collapse
|
2
|
Mirowsky JE, Carraway MS, Dhingra R, Tong H, Neas L, Diaz-Sanchez D, Cascio WE, Case M, Crooks JL, Hauser ER, Dowdy ZE, Kraus WE, Devlin RB. Exposures to low-levels of fine particulate matter are associated with acute changes in heart rate variability, cardiac repolarization, and circulating blood lipids in coronary artery disease patients. ENVIRONMENTAL RESEARCH 2022; 214:113768. [PMID: 35780850 PMCID: PMC11969562 DOI: 10.1016/j.envres.2022.113768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Exposure to air pollution is a major risk factor for cardiovascular disease, disease risk factors, and mortality. Specifically, particulate matter (PM), and to some extent ozone, are contributors to these effects. In addition, exposures to these pollutants may be especially dangerous for susceptible populations. In this repeated-visit panel study, cardiovascular markers were collected from thirteen male participants with stable coronary artery disease. For 0-4 days prior to the health measurement collections, daily concentrations of fine PM (PM2.5) and ozone were obtained from local central monitoring stations located near the participant's homes. Then, single (PM2.5) and two-pollutant (PM2.5 and ozone) models were used to assess whether there were short-term changes in cardiovascular health markers. Per interquartile range increase in PM2.5, there were decrements in several heart rate variability metrics, including the standard deviation of the normal-to-normal intervals (lag 3, -5.8%, 95% confidence interval (CI) = -11.5, 0.3) and root-mean squared of successive differences (five day moving average, -8.1%, 95% CI = -15.0, -0.7). In addition, increases in PM2.5 were also associated with changes in P complexity (lag 1, 4.4%, 95% CI = 0.5, 8.5), QRS complexity (lag 1, 4.9%, 95% CI = 1.4, 8.5), total cholesterol (five day moving average, -2.1%, 95% CI = -4.1, -0.1), and high-density lipoprotein cholesterol (lag 2, -1.6%, 95% CI = -3.1, -0.1). Comparisons to our previously published work on ozone were conducted. We found that ozone affected inflammation and endothelial function, whereas PM2.5 influenced heart rate variability, repolarization, and lipids. All the health changes from these two studies were found at concentrations below the United States Environmental Protection Agency's National Ambient Air Quality Standards. Our results imply clear differences in the cardiovascular outcomes observed with exposure to the two ubiquitous air pollutants PM2.5 and ozone; this observation suggests different mechanisms of toxicity for these exposures.
Collapse
Affiliation(s)
- Jaime E Mirowsky
- Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA; Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC, USA.
| | - Martha Sue Carraway
- Department of Medicine, Pulmonary and Critical Care Medicine, Durham VA Medical Center, Durham, NC, USA
| | - Radhika Dhingra
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA; Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Haiyan Tong
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Lucas Neas
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - David Diaz-Sanchez
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Wayne E Cascio
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Martin Case
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - James L Crooks
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA; Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA; Cooperative Studies Program Epidemiology Center, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Z Elaine Dowdy
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
| | - Robert B Devlin
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Choi D, Choi S, Kim KH, Kim K, Chang J, Kim SM, Kim SR, Cho Y, Lee G, Son JS, Park SM. Combined Associations of Physical Activity and Particulate Matter With Subsequent Cardiovascular Disease Risk Among 5‐Year Cancer Survivors. J Am Heart Assoc 2022; 11:e022806. [PMID: 35491990 PMCID: PMC9238603 DOI: 10.1161/jaha.121.022806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The combined associations of physical activity and particulate matter (PM) with subsequent cardiovascular disease (CVD) risk is yet unclear. Methods and Results The study population consisted of 18 846 cancer survivors who survived for at least 5 years after initial cancer diagnosis from the Korean National Health Insurance Service database. Average PM levels for 4 years were determined in administrative district areas, and moderate‐to‐vigorous physical activity (MVPA) information was acquired from health examination questionnaires. A multivariable Cox proportional hazards model was used to evaluate the risk for CVD. Among patients with low PM with particles ≤2.5 µm (PM2.5; (19.8–25.6 μg/m3) exposure, ≥5 times per week of MVPA was associated with lower CVD risk (adjusted hazard ratio [aHR], 0.77; 95% CI, 0.60–0.99) compared with 0 times per week of MVPA. Also, a higher level of MVPA frequency was associated with lower CVD risk (P for trend=0.028) among cancer survivors who were exposed to low PM2.5 levels. In contrast, ≥5 times per week of MVPA among patients with high PM2.5 (25.8–33.8 μg/m3) exposure was not associated with lower CVD risk (aHR, 0.98; 95% CI, 0.79–1.21). Compared with patients with low PM2.5 and MVPA ≥3 times per week, low PM2.5 and MVPA ≤2 times per week (aHR, 1.26; 95% CI, 1.03–1.55), high PM2.5 and MVPA ≥3 times per week (aHR, 1.34; 95% CI, 1.07–1.67), and high PM2.5 and MVPA ≤2 times per week (aHR, 1.38; 95% CI, 1.12–1.70) was associated with higher CVD risk. Conclusions Cancer survivors who engaged in MVPA ≥5 times per week benefited from lower CVD risk upon low PM2.5 exposure. High levels of PM2.5 exposure may attenuate the risk‐reducing effects of MVPA on the risk of CVD.
Collapse
Affiliation(s)
- Daein Choi
- Department of Medicine Mount Sinai Beth IsraelIcahn School of Medicine at Mount Sinai New York NY
| | - Seulggie Choi
- Department of Biomedical Sciences Seoul National University Graduate School Seoul South Korea
| | - Kyae Hyung Kim
- Department of Family Medicine Seoul National University Hospital Seoul South Korea
| | - Kyuwoong Kim
- Division of Cancer Control and Policy National Cancer Control InstituteNational Cancer Center Goyang South Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences Seoul National University Graduate School Seoul South Korea
| | - Sung Min Kim
- Department of Biomedical Sciences Seoul National University Graduate School Seoul South Korea
| | - Seong Rae Kim
- Department of Dermatology Seoul National University Hospital Seoul South Korea
| | - Yoosun Cho
- Total Healthcare CenterKangbuk Samsung HospitalSungkyunkwan University School of Medicine Seoul South Korea
| | - Gyeongsil Lee
- Department of Biomedical Sciences Seoul National University Graduate School Seoul South Korea
- Department of Family Medicine Seoul National University Hospital Seoul South Korea
| | - Joung Sik Son
- Department of Family Medicine Korea University Guro Hospital South Korea
| | - Sang Min Park
- Department of Biomedical Sciences Seoul National University Graduate School Seoul South Korea
- Department of Family Medicine Seoul National University Hospital Seoul South Korea
| |
Collapse
|
4
|
Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. Gum Arabic Ameliorates Impaired Coagulation and Cardiotoxicity Induced by Water-Pipe Smoke Exposure in Mice. Front Physiol 2019; 10:53. [PMID: 30858803 PMCID: PMC6397852 DOI: 10.3389/fphys.2019.00053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Water-pipe smoking (WPS) is prevalent in the East and elsewhere. WPS exposure is known to induce thrombosis and cardiovascular toxicity involving inflammation and oxidative stress. Here, we have investigated the effect of Gum Arabic (GA), a prebiotic with anti-oxidant, anti-inflammatory and cytoprotective properties, on WPS exposure (30 min/day for 1 month) on coagulation and cardiac homeostasis, and their possible underlying mechanisms in mice. Animals received either GA in drinking water (15%, w/v) or water only for the entire duration of study. GA significantly mitigated thrombosis in pial microvessels in vivo, platelet aggregation in vitro, and the shortening of prothrombin time induced by WPS exposure. The increase in plasma concentrations of fibrinogen, plasminogen activator inhibitor-1 and markers of lipid peroxidation, 8-isoprostane and malondialdehyde, induced by WPS were significantly reduced by GA administration. Moreover, WPS exposure induced a significant increase in systolic blood pressure and the concentrations of the pro-inflammatory cytokines tumor necrosis factor-α and interleukin 1β in heart homogenates. GA significantly alleviated these effects, and prevented the decrease of reduced glutathione, catalase and total nitric oxide levels in heart homogenates. Immunohistochemical analysis of the hearts showed that WPS exposure increased nuclear factor erythroid-derived 2-like 2 (Nrf2) expressions by cardiac myocytes and endothelial cells, and these effects were potentiated by the combination of GA and WPS. WPS also increased DNA damage and cleaved caspase 3, and GA administration prevented these effects. Our data, obtained in experimental murine model of WPS exposure, show that GA ameliorates WPS-induced coagulation and cardiovascular inflammation, oxidative stress, DNA damage and apoptosis, through a mechanism involving Nrf2 activation.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
5
|
Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. Thrombosis and systemic and cardiac oxidative stress and DNA damage induced by pulmonary exposure to diesel exhaust particles and the effect of nootkatone thereon. Am J Physiol Heart Circ Physiol 2018; 314:H917-H927. [PMID: 29351455 DOI: 10.1152/ajpheart.00313.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adverse cardiovascular effects of particulate air pollution persist even at lower concentrations than those of the current air quality limit. Therefore, identification of safe and effective measures against particle-induced cardiovascular toxicity is needed. Nootkatone is a sesquiterpenoid in grapefruit with diverse bioactivities including anti-inflammatory and antioxidant effects. However, its protective effect on the cardiovascular injury induced by diesel exhaust particles (DEPs) has not been studied before. We assessed the possible protective effect of nootkatone (90 mg/kg) administered by gavage 1 h before intratracheal instillation of DEPs (30 μg/mouse). Twenty-four hours after the intratracheal administration of DEPs, various thrombotic and cardiac parameters were assessed. Nootkatone inhibited the prothrombotic effect induced by DEPs in pial arterioles and venules in vivo and platelet aggregation in whole blood in vitro. Also, nootkatone prevented the shortening of activated partial thromboplastin time and prothrombin time induced by DEPs. Nootkatone inhibited the increase of plasma concentration of fibrinogen, plasminogen activator inhibitor-1, interleukin-6, and lipid peroxidation induced by DEPs. Immunohistochemically, hearts showed an analogous increase in glutathione and nuclear factor erythroid-derived 2-like 2 expression by cardiac myocytes and endothelial cells after DEP exposure, and these effects were enhanced in mice treated with nootkatone + DEPs. Likewise, heme oxygenase-1 was increased in mice treated with nootkatone + DEPs compared with those treated with DEPs or nootkatone + saline. The DNA damage caused by DEPs was prevented by nootkatoone pretreatment. In conclusion, nootkatoone alleviates DEP-induced thrombogenicity and systemic and cardiac oxidative stress and DNA damage, at least partly, through nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 activation. NEW & NOTEWORTHY Nootkatoone, a sesquiterpenoid found in grapefruit, alleviates the thrombogenicity and systemic and cardiac oxidative stress and DNA damage in mice exposed to diesel exhaust particles. Nootkatone-induced boosting of nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 levels in the heart of mice exposed to diesel exhaust particles suggests that its protective effect is, at least partly, mediated through nuclear factor erythroid-derived 2-like 2 and heme oxygenase-1 activation.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khod, Sultanate of Oman
| |
Collapse
|
6
|
Gorr MW, Falvo MJ, Wold LE. Air Pollution and Other Environmental Modulators of Cardiac Function. Compr Physiol 2017; 7:1479-1495. [PMID: 28915333 PMCID: PMC7249238 DOI: 10.1002/cphy.c170017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in developed regions and a worldwide health concern. Multiple external causes of CVD are well known, including obesity, diabetes, hyperlipidemia, age, and sedentary behavior. Air pollution has been linked with the development of CVD for decades, though the mechanistic characterization remains unknown. In this comprehensive review, we detail the background and epidemiology of the effects of air pollution and other environmental modulators on the heart, including both short- and long-term consequences. Then, we provide the experimental data and current hypotheses of how pollution is able to cause the CVD, and how exposure to pollutants is exacerbated in sensitive states. Published 2017. Compr Physiol 7:1479-1495, 2017.
Collapse
Affiliation(s)
- Matthew W. Gorr
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner College of Medicine, Columbus, Ohio, USA
- College of Nursing, The Ohio State University, Columbus, Ohio, USA
| | - Michael J. Falvo
- War Related Illness and Injury Study Center, Department of Veterans Affairs, New Jersey Health Care System, East Orange, New Jersey, USA
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner College of Medicine, Columbus, Ohio, USA
- College of Nursing, The Ohio State University, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
The health effects of a forest environment on subclinical cardiovascular disease and heath-related quality of life. PLoS One 2014; 9:e103231. [PMID: 25068265 PMCID: PMC4113370 DOI: 10.1371/journal.pone.0103231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 06/30/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Assessment of health effects of a forest environment is an important emerging area of public health and environmental sciences. PURPOSE To demonstrate the long-term health effects of living in a forest environment on subclinical cardiovascular diseases (CVDs) and health-related quality of life (HRQOL) compared with that in an urban environment. MATERIALS AND METHODS This study included the detailed health examination and questionnaire assessment of 107 forest staff members (FSM) and 114 urban staff members (USM) to investigate the long-term health effects of a forest environment. Air quality monitoring between the forest and urban environments was compared. In addition, work-related factors and HRQOL were evaluated. RESULTS Levels of total cholesterol, low-density lipoprotein cholesterol, and fasting glucose in the USM group were significantly higher than those in the FSM group. Furthermore, a significantly higher intima-media thickness of the internal carotid artery was found in the USM group compared with that in the FSM group. Concentrations of air pollutants, such as NO, NO2, NOx, SO2, CO, PM2.5, and PM10 in the forest environment were significantly lower compared with those in the outdoor urban environment. Working hours were longer in the FSM group; however, the work stress evaluation as assessed by the job content questionnaire revealed no significant differences between FSM and USM. HRQOL evaluated by the World Health Organization Quality of Life-BREF questionnaire showed FSM had better HRQOL scores in the physical health domain. CONCLUSIONS This study provides evidence of the potential beneficial effects of forest environments on CVDs and HRQOL.
Collapse
|
8
|
Tang D, Lee J, Muirhead L, Li TY, Qu L, Yu J, Perera F. Molecular and neurodevelopmental benefits to children of closure of a coal burning power plant in China. PLoS One 2014; 9:e91966. [PMID: 24647528 PMCID: PMC3960155 DOI: 10.1371/journal.pone.0091966] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/17/2014] [Indexed: 12/12/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) are major toxic air pollutants released during incomplete combustion of coal. PAH emissions are especially problematic in China because of their reliance on coal-powered energy. The prenatal period is a window of susceptibility to neurotoxicants. To determine the health benefits of reducing air pollution related to coal-burning, we compared molecular biomarkers of exposure and preclinical effects in umbilical cord blood to neurodevelopmental outcomes from two successive birth cohorts enrolled before and after a highly polluting, coal-fired power plant in Tongliang County, China had ceased operation. Women and their newborns in the two successive cohorts were enrolled at the time of delivery. We measured PAH-DNA adducts, a biomarker of PAH-exposure and DNA damage, and brain-derived neurotrophic factor (BDNF), a protein involved in neuronal growth, in umbilical cord blood. At age two, children were tested using the Gesell Developmental Schedules (GDS). The two cohorts were compared with respect to levels of both biomarkers in cord blood as well as developmental quotient (DQ) scores across 5 domains. Lower levels of PAH-DNA adducts, higher concentrations of the mature BDNF protein (mBDNF) and higher DQ scores were seen in the 2005 cohort enrolled after closure of the power plant. In the two cohorts combined, PAH-DNA adducts were inversely associated with mBDNF as well as scores for motor (p = 0.05), adaptive (p = 0.022), and average (p = 0.014) DQ. BDNF levels were positively associated with motor (p = 0.018), social (p = 0.001), and average (p = 0.017) DQ scores. The findings indicate that the closure of a coal-burning plant resulted in the reduction of PAH-DNA adducts in newborns and increased mBDNF levels that in turn, were positively associated with neurocognitive development. They provide further evidence of the direct benefits to children's health as a result of the coal plant shut down, supporting clean energy and environmental policies in China and elsewhere.
Collapse
Affiliation(s)
- Deliang Tang
- Department of Environmental Health Sciences, Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Joan Lee
- Department of Environmental Health Sciences, Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Loren Muirhead
- Department of Environmental Health Sciences, Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Ting Yu Li
- Department of Pediatrics, Chongqing Medical University, Chongqing, China
| | - Lirong Qu
- Department of Environmental Health Sciences, Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Jie Yu
- Department of Environmental Health Sciences, Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Frederica Perera
- Department of Environmental Health Sciences, Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| |
Collapse
|
9
|
Su TC, Wu CF, Chan CC, Chen MF. C-reactive protein and particulate matter predict plasma fibrinogen levels. Int J Cardiol 2011; 153:100-1. [PMID: 21968076 DOI: 10.1016/j.ijcard.2011.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
|
10
|
Su TC, Chen SY, Chan CC. Progress of Ambient Air Pollution and Cardiovascular Disease Research in Asia. Prog Cardiovasc Dis 2011; 53:369-78. [PMID: 21414472 DOI: 10.1016/j.pcad.2010.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ta-Chen Su
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
11
|
Ohlson CG, Berg P, Bryngelsson IL, Elihn K, Ngo Y, Westberg H, Sjögren B. Inflammatory markers and exposure to occupational air pollutants. Inhal Toxicol 2010; 22:1083-90. [DOI: 10.3109/08958378.2010.520356] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Whitsel L, Kaufman JD. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010; 121:2331-78. [PMID: 20458016 DOI: 10.1161/cir.0b013e3181dbece1] [Citation(s) in RCA: 3981] [Impact Index Per Article: 265.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In 2004, the first American Heart Association scientific statement on "Air Pollution and Cardiovascular Disease" concluded that exposure to particulate matter (PM) air pollution contributes to cardiovascular morbidity and mortality. In the interim, numerous studies have expanded our understanding of this association and further elucidated the physiological and molecular mechanisms involved. The main objective of this updated American Heart Association scientific statement is to provide a comprehensive review of the new evidence linking PM exposure with cardiovascular disease, with a specific focus on highlighting the clinical implications for researchers and healthcare providers. The writing group also sought to provide expert consensus opinions on many aspects of the current state of science and updated suggestions for areas of future research. On the basis of the findings of this review, several new conclusions were reached, including the following: Exposure to PM <2.5 microm in diameter (PM(2.5)) over a few hours to weeks can trigger cardiovascular disease-related mortality and nonfatal events; longer-term exposure (eg, a few years) increases the risk for cardiovascular mortality to an even greater extent than exposures over a few days and reduces life expectancy within more highly exposed segments of the population by several months to a few years; reductions in PM levels are associated with decreases in cardiovascular mortality within a time frame as short as a few years; and many credible pathological mechanisms have been elucidated that lend biological plausibility to these findings. It is the opinion of the writing group that the overall evidence is consistent with a causal relationship between PM(2.5) exposure and cardiovascular morbidity and mortality. This body of evidence has grown and been strengthened substantially since the first American Heart Association scientific statement was published. Finally, PM(2.5) exposure is deemed a modifiable factor that contributes to cardiovascular morbidity and mortality.
Collapse
|
13
|
Huang YCT, Ghio AJ. Controlled human exposures to ambient pollutant particles in susceptible populations. Environ Health 2009; 8:33. [PMID: 19630984 PMCID: PMC2728708 DOI: 10.1186/1476-069x-8-33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 07/25/2009] [Indexed: 05/18/2023]
Abstract
Epidemiologic studies have established an association between exposures to air pollution particles and human mortality and morbidity at concentrations of particles currently found in major metropolitan areas. The adverse effects of pollution particles are most prominent in susceptible subjects, including the elderly and patients with cardiopulmonary diseases. Controlled human exposure studies have been used to confirm the causal relationship between pollution particle exposure and adverse health effects. Earlier studies enrolled mostly young healthy subjects and have largely confirmed the capability of particles to cause adverse health effects shown in epidemiological studies. In the last few years, more studies involving susceptible populations have been published. These recent studies in susceptible populations, however, have shown that the adverse responses to particles appear diminished in these susceptible subjects compared to those in healthy subjects. The present paper reviewed and compared control human exposure studies to particles and sought to explain the "unexpected" response to particle exposure in these susceptible populations and make recommendations for future studies. We found that the causes for the discrepant results are likely multifactorial. Factors such as medications, the disease itself, genetic susceptibility, subject selection bias that is intrinsic to many controlled exposure studies and nonspecificity of study endpoints may explain part of the results. Future controlled exposure studies should select endpoints that are more closely related to the pathogenesis of the disease and reflect the severity of particle-induced health effects in the specific populations under investigation. Future studies should also attempt to control for medications and genetic susceptibility. Using a different study design, such as exposing subjects to filtered air and ambient levels of particles, and assessing the improvement in biological endpoints during filtered air exposure, may allow the inclusion of higher risk patients who are likely the main contributors to the increased particle-induced health effects in epidemiological studies.
Collapse
Affiliation(s)
- Yuh-Chin T Huang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Andrew J Ghio
- Human Studies Division, National Health Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Polichetti G, Cocco S, Spinali A, Trimarco V, Nunziata A. Effects of particulate matter (PM(10), PM(2.5) and PM(1)) on the cardiovascular system. Toxicology 2009; 261:1-8. [PMID: 19379789 DOI: 10.1016/j.tox.2009.04.035] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/08/2009] [Accepted: 04/13/2009] [Indexed: 02/08/2023]
Abstract
Several studies have demonstrated that exposure to particulate matter (PM) of different size fractions is associated with an increased risk of cardiovascular disease (CVD). In this review, we have taken into consideration the possible correlation between the "short term" and "long term" effects of PM exposure and the onset of CVDs as well as the possible molecular mechanisms by which PM elicits the development of these events. Particularly, it is here underlined that these adverse health effects depend not only on the level of PM concentration in the air but also on its particular internal composition. Furthermore, we have also synthesized the findings gleaned from those few studies indicating that PM produced by tobacco smoke can give rise to cardiovascular injury.
Collapse
Affiliation(s)
- Giuliano Polichetti
- Department of Neuroscience, School of Medicine, Federico II University of Naples, Via S. Pansini 5, 80131 Naples, Italy.
| | | | | | | | | |
Collapse
|
15
|
Chan CC, Chuang KJ, Chen WJ, Chang WT, Lee CT, Peng CM. Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in Taiwan. ENVIRONMENTAL RESEARCH 2008; 106:393-400. [PMID: 17959168 DOI: 10.1016/j.envres.2007.09.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/28/2007] [Accepted: 09/12/2007] [Indexed: 05/22/2023]
Abstract
This study aims to explore whether Asian dust storms can affect health after 4000 km long-range transport from their origins to downwind areas. Asian dust storms reaching Taipei, Taiwan are tracked by satellite images and confirmed by backward trajectory analysis and ground air pollution monitoring between 1995 and 2002. Our outcome variables include emergency visits for ischaemic heart diseases (ICD-9-CM 410-411, 414), cerebrovascular diseases (ICD-9-CM 430-437), and chronic obstructive pulmonary diseases (COPD) (ICD-9-CM 493, 496) from the National Taiwan University Hospital (NTUH). We use simple paired t-test and Poisson regression models to compare difference in emergency visits, air pollution levels and meteorological conditions for the pairs of Asian dust events and pre-dust periods. There were 39 high dust events with PM(10) greater than 90 microg/m(3) and another 46 low dust events with PM(10) less than 90 microg/m(3). Compared to their pre-dust periods, PM(10) concentrations are significantly increased by 77 microg/m(3) per event for the high dust events. Asian dust storms increase cardiopulmonary emergency visits during storm-affecting periods in Taipei when ambient PM(10) concentrations are above 90 microg/m(3). Compared to their pre-dust periods, emergency visits for ischaemic heart diseases, cerebrovascular diseases, and COPD during high dust events are increased by 0.7 case (35%), 0.7 case (20%), and 0.9 case (20%) per event, respectively, by paired t-tests. By comparing the model-predicted to the observed emergency visits, we find emergency visits for cardiovascular diseases (ICD-9-CM 410-411, 414, 430-437) were significantly increased by 2.9 cases (67%) per event for the 39 high Asian dust events.
Collapse
Affiliation(s)
- Chang-Chuan Chan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, No. 17 Xu-Zhou Road, Taipei 100, Taiwan.
| | | | | | | | | | | |
Collapse
|
16
|
Franchini M, Mannucci PM. Short-term effects of air pollution on cardiovascular diseases: outcomes and mechanisms. J Thromb Haemost 2007; 5:2169-74. [PMID: 17958737 DOI: 10.1111/j.1538-7836.2007.02750.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of air pollution on health have been intensively studied in recent years. Acute exposure to environmental pollutants such as particulate and gaseous matters (carbon monoxide, nitrogen oxides, sulphur dioxide and ozone) was associated with an increased rate of events and mortality because of cardiovascular diseases. These effects were investigated in short-term studies, which related day-to-day variations in air pollution to disease, and in long-term studies, which have followed cohorts of exposed individuals over time. The evidence from the literature on the short-term cardiovascular effects of air pollutants is discussed from clinical and mechanistic points of view.
Collapse
Affiliation(s)
- M Franchini
- Transfusion and Hemophilia Center, City Hospital of Verona, Verona, Italy
| | | |
Collapse
|
17
|
Chuang KJ, Chan CC, Su TC, Lee CT, Tang CS. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am J Respir Crit Care Med 2007; 176:370-6. [PMID: 17463411 DOI: 10.1164/rccm.200611-1627oc] [Citation(s) in RCA: 477] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The biological mechanisms linking air pollution to cardiovascular events still remain largely unclear. OBJECTIVES To investigate whether biological mechanisms linking air pollution to cardiovascular events occurred concurrently in human subjects exposed to urban air pollutants. METHODS We recruited a panel of 76 young, healthy students from a university in Taipei. Between April and June of 2004 or 2005, three measurements were made in each participant of high-sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), plasminogen activator fibrinogen inhibitor-1 (PAI-1), tissue-type plasminogen activator (tPA) in plasma, and heart rate variability (HRV). Gaseous air pollutants were measured at one air-monitoring station inside their campus, and particulate air pollutants were measured at one particulate matter supersite monitoring station 1 km from their campus. We used linear mixed-effects models to associate biological endpoints with individual air pollutants averaged over 1- to 3-day periods before measurements were performed. MEASUREMENTS AND MAIN RESULTS We found that increases in hs-CRP, 8-OHdG, fibrinogen, and PAI-1, and decreases in HRV indices were associated with increases in levels of particles with aerodynamic diameters less than 10 microm and 2.5 microm, sulfate, nitrate, and ozone (O(3)) in single-pollutant models. The increase in 8-OHdG, fibrinogen, and PAI-1, and the reduction in HRV remained significantly associated with 3-day averaged sulfate and O(3) levels in two-pollutant models. There were moderate correlations (r = -0.3) between blood markers of hs-CRP, fibrinogen, PAI-1, and HRV indices. CONCLUSIONS Urban air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction simultaneously in healthy young humans, with sulfate and O(3) as two major traffic-related pollutants contributing to such effects.
Collapse
Affiliation(s)
- Kai-Jen Chuang
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, Taiwan
| | | | | | | | | |
Collapse
|