1
|
Eissa H, Abdelsalam EM, Mokbel SA, Elhadedy NH, Khalil RM, AbdElfattah AAM, Abdel Ghaffar DM, El Nashar EM, Hassan AH, Al-Zahrani NS, Aldahhan RA, Yassin NAE. Vitamin D supplementation as a prophylactic therapy in the management of pre-eclampsia: Focus on VEGF, Ki67, oxidative stress markers in correlation to placental ultra structure. Life Sci 2025; 372:123605. [PMID: 40194761 DOI: 10.1016/j.lfs.2025.123605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Pre-eclampsia (PE) is a progressive hypertension condition that manifests in the second or third trimester of pregnancy and causes significant proteinuria. A lack of vitamin D (Vit. D) is linked to different pregnancy problems, including impaired placental development. Vitamin D has been shown to enhance fetal growth and lower the incidence of PE. AIM OF THE WORK To better understand the pathophysiological mechanisms behind the PE disease and the therapeutic approaches used to manage it, this study examines the role of Vit. D in placental ischemia and its regulatory effects in Nitro L-arginine Methyl Ester (L-NAME) animal model of PE. METHODS Fifty female rats in the estrus stage were mated with 30 male rats. Thirty female rats were pregnant and divided into three equal groups: control, Preeclampsia group (PE); using L-NAME for induction of PE, and Vit. D group from 7th day then induction by L-NAME at 10th day till end of pregnancy. Mean arterial Bp, proteinuria, oxidative stress markers, histological structure and immunohistochemical expression of Ki67 and VEGF, Morphometric study, and transmission electron microscopy(TEM) were assessed. The results of the current study suggested that, Vit. D supplementation could lower blood pressure, reduce oxidative stress, and restore angiogenic balance through vascular endothelial growth factor (VEGF) and Ki67. CONCLUSION For the first time, we conclude that vitamin D supplementation may not only have direct effects on blood pressure regulation and angiogenic hemostasis but also recover placental function, actually contributing to the prevention or management of PE.
Collapse
Affiliation(s)
- Hanan Eissa
- Department of Clinical Pharmacology, Mansoura University, Mansoura, Egypt.
| | | | - Somaia A Mokbel
- Department of Clinical Pharmacology, Mansoura University, Mansoura, Egypt.
| | - Nada H Elhadedy
- Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Rania M Khalil
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Amany AbdElfattah Mohamed AbdElfattah
- Department of Medical Histology & Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, King Salman International University, South Sinai, Egypt.
| | - Dalia M Abdel Ghaffar
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Eman Mohamad El Nashar
- Department of Anatomy, College Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Alshehri Hanan Hassan
- Endocrinology and Diabetes Section, Internal Medicine Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam 31451, Saudi Arabia.
| | | |
Collapse
|
2
|
Jhade SK, Kalidoss K, Pathak PK, Shrivastava R. Artemisinin's molecular symphony: illuminating pathways for cancer therapy. Mol Biol Rep 2024; 52:95. [PMID: 39739138 DOI: 10.1007/s11033-024-10202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Artemisinin (ART), a sesquiterpene lactone derived from the sweet wormwood plant (Artemisia annua), exhibits potent anti-malarial and anti-microbial properties, with emerging evidence suggesting its anticancer potential. This review delves into the molecular intricacies underlying ART's anticancer effects, elucidating its modulation of cell signaling pathways, induction of apoptosis and autophagy, and inhibition of angiogenesis crucial for cancer progression. Additionally, the review highlights ART's impact on oxidative stress and DNA damage within cancer cells, along with its potential synergistic effects with conventional cancer drugs to mitigate side effects. Despite notable strides, further elucidation of ART's mechanisms and clinical validation across diverse cancer types are necessary. Conclusively, this review provides a brief overview of the molecular foundation that makes ART a promising candidate for future cancer therapeutic strategies and emphasises the need for further research to fully comprehend the molecular complexity of ART-mediated cancer therapies.
Collapse
Affiliation(s)
- Sandeep Kumar Jhade
- Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Karthik Kalidoss
- Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Poonam Kumari Pathak
- Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rahul Shrivastava
- Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
3
|
Wang W, Zhan Y, Peng L, Gao D, Chen Y, Zhuang X. Artemisinin counteracts Edwardsiella tarda-induced liver inflammation and metabolic changes in juvenile fat greenling Hexagrammos otakii. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109012. [PMID: 37604265 DOI: 10.1016/j.fsi.2023.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Emerging evidence suggests that artemisinin (ART) can modulate pathogen-induced immune responses and metabolic dysregulation. However, whether this modulation is associated with metabolic pathways related to oxidative stress and inflammation remains unclear. The aim of this study was to investigate the antioxidant and anti-inflammatory effects on the ART-fed juvenile fat greenling Hexagrammos otakii and the associated metabolic pathways in response to ART administration using an integrated biochemical and metabolomic approach. Biochemical analysis and histological examination showed that ART significantly increased body weight gain and improved tissue structure. ART effectively attenuated reactive oxygen species (ROS), malondialdehyde (MDA) and inflammatory responses (NFκB, TNF-α, IL-6, and MCP-1) in the Edwardsiella tarda-induced H. otakii model. Liver metabolomics analysis revealed that twenty-nine metabolites were up-regulated and twenty-one metabolites were down-regulated after ART administration compared to those in pathogen-induced fish. Pathway analysis indicated that ART alleviated the E. tarda-induced inflammation and oxidative stress through two major pathways, namely lipid metabolism and amino acid metabolism. Taken together, ART showed great potential as a natural feed additive against pathogen-induced oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Yu Zhan
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Lei Peng
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Dongxu Gao
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xue Zhuang
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
4
|
Ding D, Yan J, Feng G, Zhou Y, Ma L, Jin Q. Dihydroartemisinin attenuates osteoclast formation and bone resorption via inhibiting the NF‑κB, MAPK and NFATc1 signaling pathways and alleviates osteoarthritis. Int J Mol Med 2022; 49:4. [PMID: 34738623 PMCID: PMC8589459 DOI: 10.3892/ijmm.2021.5059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive and degenerative disease, and its incidence is increasing on a yearly basis. However, the pathological mechanism of OA at each stage is still unclear. The present study aimed to explore the underlying mechanism of dihydroartemisinin (DHA) in terms of its ability to inhibit osteoclast activation, and to determine its effects on OA in rats. Bone marrow‑derived macrophages were isolated as osteoclast precursors. In the presence or absence of DHA, osteoclast formation was assessed by tartrate‑resistant acid phosphatase (TRAP) staining, cell viability was assessed by Cell Counting Kit‑8 assay, the presence of F‑actin rings was assessed by immunofluorescence, bone resorption was determined by bone slices, luciferase activities of NF‑κB and nuclear factor of activated T cell cytoplasmic 1 (NFATc1) were determined using luciferase assay kits, the protein levels of biomolecules associated with the NF‑κB, MAPK and NFATc1 signaling pathways were determined using western blotting, and the expression of genes involved in osteoclastogenesis were measured using reverse transcription‑quantitative PCR. A knee OA rat model was designed by destabilizing the medial meniscus (DMM). A total of 36 rats were assigned to three groups, namely the sham‑operated, DMM + vehicle and DMM + DHA groups, and the rats were administered DHA or DMSO. At 4 and 8 weeks postoperatively, the microarchitecture of the subchondral bone was analyzed using micro‑CT, the thickness of the cartilage layers was calculated using H&E staining, the extent of cartilage degeneration was scored using Safranin O‑Fast Green staining, TRAP‑stained osteoclasts were counted, and the levels of receptor activator of NF‑κB ligand (RANKL), C‑X‑C‑motif chemokine ligand 12 (CXCL12) and NFATc1 were measured using immunohistochemistry. DHA was found to inhibit osteoclast formation without cytotoxicity, and furthermore, it did not affect bone formation. In addition, DHA suppressed the expression levels of NF‑κB, MAPK, NFATc1 and genes involved in osteoclastogenesis. Progressive cartilage loss was observed at 8 weeks postoperatively. Subchondral bone remodeling was found to be dominated by bone resorption accompanied by increases in the levels of RANKL, CXCL12 and NFATc1 during the first 4 weeks. DHA was found to delay OA progression by inhibiting osteoclast formation and bone resorption during the early phase of OA. Taken together, the results of the present study demonstrated that the mechanism through which DHA could inhibit osteoclast activation may be associated with the NF‑κB, MAPK and NFATc1 signaling pathways, thereby indicating a potential novel strategy for OA treatment.
Collapse
Affiliation(s)
- Dong Ding
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jiangbo Yan
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Gangning Feng
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yong Zhou
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qunhua Jin
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
5
|
Charlie-Silva I, Feitosa NM, Fukushima HCS, Borra RC, Foglio MA, Xavier RMP, de Melo Hoyos DC, de Oliveira Sousa IM, de Souza GG, Bailone RL, de Andrade Belo MA, Correia SAM, Junior JDC, Pierezan F, Malafaia G. Effects of nanocapsules of poly-ε-caprolactone containing artemisinin on zebrafish early-life stages and adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143851. [PMID: 33257061 DOI: 10.1016/j.scitotenv.2020.143851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Artemisinin extracted from Artemisia annua L. plants has a range of properties that qualifies it to treat several diseases, such as malaria and cancer. However, it has short half-life, which requires making continuous use of it, which has motivated the association of artemisinin (ART) with polymeric nanoparticles to increase its therapeutic efficiency. However, the ecotoxicological safety of this association has been questioned, given the scarcity of studies in this area. Thus, in this work the toxicity of Poly (ε-Caprolactone) nanocapsules added with ART (ART-NANO) in zebrafish (Danio rerio), embryos and adults was studied. Different endpoints were analyzed in organisms exposed to ART-NANO, including those predictive of embryotoxicity and histopatoxicity. Embryotoxicity was analyzed based on Organization for Economic Co-operation and Development (OECD) test guideline (236) for fish embryo acute toxicity applied to zebrafish (Danio rerio) at 96 hpf under five nominal logarithmic concentrations (0.125 to 2.0 mg/ L). Our results demonstrate, mainly, that fertilized eggs presented increased coagulation, lack of heart rate, vitelline sac displacement and lack of somite formation. On the other hand, adult individuals (exposed to the same concentrations and evaluated after 24 and 96 h of exposure) have shown increased pericarditis. Therefore, the treatment based on ART, poly (ε-caprolactone) nanocapsules and on their combination at different concentrations have shown toxic effects on zebrafish embryos and adult individuals.
Collapse
Affiliation(s)
- Ives Charlie-Silva
- Pharmacology Department, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Natália Martins Feitosa
- Integrated Translational Biosciences Laboratory (LIBT), Biodiversity and Sustainability Institute (NUPEM), Federal University of Rio de Janeiro (UFRJ)- Macaé, RJ, Brazil
| | | | - Ricardo Carneiro Borra
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Mary Ann Foglio
- Pharmaceutical Sciences School, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | - Ricardo Lacava Bailone
- Ministry of Agriculture, Livestock and Supply, São Carlos, SP, Brazil; São Paulo State University, Botucatu, SP, Brazil
| | - Marco Antonio de Andrade Belo
- Ministry of Agriculture, Livestock and Supply, São Carlos, SP, Brazil; São Paulo State University, Botucatu, SP, Brazil
| | | | | | | | - Guilherme Malafaia
- Biological Sciences Department, Goiano Federal Institute, Urutaí, GO, Brazil.
| |
Collapse
|
6
|
Augustin Y, Staines HM, Krishna S. Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing. Pharmacol Ther 2020; 216:107706. [PMID: 33075360 PMCID: PMC7564301 DOI: 10.1016/j.pharmthera.2020.107706] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Artemisinins are a unique class of antimalarial drugs with significant potential for drug repurposing for a wide range of diseases including cancer. Cancer is a leading cause of death globally and the majority of cancer related deaths occur in Low and Middle Income Countries (LMICs) where conventional treatment options are often limited by financial cost. Drug repurposing can significantly shorten new therapeutic discovery pathways, ensuring greater accessibility and affordability globally. Artemisinins have an excellent safety and tolerability profile as well as being affordable for deployment in Low and Middle Class Income Countries at around USD1 per daily dose. Robust, well designed clinical trials of artemisinin drug repurposing are indicated for a variety of different cancers and treatment settings.
Collapse
Affiliation(s)
- Yolanda Augustin
- Institute of Infection & Immunity, St George's University of London, United Kingdom
| | - Henry M Staines
- Institute of Infection & Immunity, St George's University of London, United Kingdom
| | - Sanjeev Krishna
- Institute of Infection & Immunity, St George's University of London, United Kingdom.
| |
Collapse
|
7
|
Lu BW, Xie LK. Potential applications of artemisinins in ocular diseases. Int J Ophthalmol 2019; 12:1793-1800. [PMID: 31741871 DOI: 10.18240/ijo.2019.11.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Artemisinin, also named qinghaosu, is a family of sesquiterpene trioxane lactone originally derived from the sweet wormwood plant (Artemisia annua), which is a traditional Chinese herb that has been universally used as anti-malarial agents for many years. Evidence has accumulated during the past few years which demonstrated the protective effects of artemisinin and its derivatives (artemisinins) in several other diseases beyond malaria, including cancers, autoimmune disorders, inflammatory diseases, viral and other parasite-related infections. Recently, this long-considered anti-malarial agent has been proved to possess anti-oxidant, anti-inflammatory, anti-apoptotic and anti-excitotoxic properties, which make it a potential treatment option for the ocular environment. In this review, we first described the overview of artemisinins, highlighting the activity of artemisinins to other diseases beyond malaria and the mechanisms of these actions. We then emphasized the main points of published results of using artemisinins in targeting ocular disorders, including uveitis, retinoblastoma, retinal neurodegenerative diseases and ocular neovascularization. To conclude, we believe that artemisinins could also be used as a promising therapeutic drug for ocular diseases, especially retinal vascular diseases in the near future.
Collapse
Affiliation(s)
- Bing-Wen Lu
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100400, China
| | - Li-Ke Xie
- Department of Ophthalmology, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100400, China
| |
Collapse
|
8
|
The Antimalarial Drug Artesunate Attenuates Cardiac Injury in A Rodent Model of Myocardial Infarction. Shock 2018; 49:675-681. [PMID: 29757923 DOI: 10.1097/shk.0000000000000963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Zyad A, Tilaoui M, Jaafari A, Oukerrou MA, Mouse HA. More insights into the pharmacological effects of artemisinin. Phytother Res 2017; 32:216-229. [PMID: 29193409 DOI: 10.1002/ptr.5958] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Artemisinin is one of the most widely prescribed drugs against malaria and has recently received increased attention because of its other potential biological effects. The aim of this review is to summarize recent discoveries of the pharmaceutical effects of artemisinin in basic science along with its mechanistic action, as well as the intriguing results of recent clinical studies, with a focus on its antitumor activity. Scientific evidence indicates that artemisinin exerts its biological activity by generating reactive oxygen species that damage the DNA, mitochondrial depolarization, and cell death. In the present article review, scientific evidence suggests that artemisinin is a potential therapeutic agent for various diseases. Thus, this review is expected to encourage interested scientists to conduct further preclinical and clinical studies to evaluate these biological activities.
Collapse
Affiliation(s)
- Abdelmajid Zyad
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Mounir Tilaoui
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Abdeslam Jaafari
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Moulay Ali Oukerrou
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Hassan Ait Mouse
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| |
Collapse
|
10
|
The Effects of Artemisinin on the Cytolytic Activity of Natural Killer (NK) Cells. Int J Mol Sci 2017; 18:ijms18071600. [PMID: 28737711 PMCID: PMC5536087 DOI: 10.3390/ijms18071600] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 01/14/2023] Open
Abstract
Artemisinin, a chemical compound used for the treatment of malaria, has been known to show anti-cancer activity. However, the effect of this chemical on natural killer (NK) cells, which are involved in tumor killing, remains unknown. Here, we demonstrate that artemisinin exerts a potent anti-cancer effect by activating NK cells. NK-92MI cells pre-treated with artemisinin were subjected to a cytotoxicity assay using K562 cells. The results showed that artemisinin significantly enhances the cytolytic activity of NK cells in a dose-dependent manner. Additionally, the artemisinin-enhanced cytotoxic effect of NK-92MI cells on tumor cells was accompanied by the stimulation of granule exocytosis, as evidenced by the detection of CD107a expression in NK cells. Moreover, this enhancement of cytotoxicity by artemisinin was also observed in human primary NK cells from peripheral blood. Our results suggest that artemisinin enhances human NK cell cytotoxicity and degranulation. This is the first evidence that artemisinin exerts antitumor activity by enhancing NK cytotoxicity. Therefore, these results provide a deeper understanding of the action of artemisinin and will contribute to the development and application of this class of compounds in cancer treatment strategies.
Collapse
|
11
|
Artemisinin and its derivatives in cancer therapy: status of progress, mechanism of action, and future perspectives. Cancer Chemother Pharmacol 2017; 79:451-466. [DOI: 10.1007/s00280-017-3251-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022]
|
12
|
Gomes C, Boareto AC, Dalsenter PR. Clinical and non-clinical safety of artemisinin derivatives in pregnancy. Reprod Toxicol 2016; 65:194-203. [PMID: 27506918 DOI: 10.1016/j.reprotox.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Malaria in pregnancy is a clinically wasting infectious disease, where drug therapy has to be promptly initiated. Currently, the treatment of this infection depends on the use of artemisinin derivatives. The World Health Organization does not recommend the use of these drugs in the first trimester of pregnancy due to non-clinical findings that have shown embryolethality and teratogenic effects. Nevertheless, until now, this toxicity has not been proved in humans. Artemisinin derivatives mechanisms of embryotoxicity are related to depletion of circulating embryonic primitive erythroblasts. Species differences in this sensitive period for toxicity and the presence of malaria infection, which could reduce drug distribution to the fetus, are significant to the risk assessment of artemisinin derivatives treatment to pregnant women. In this review we aimed to assess the results of non-clinical and clinical studies with artemisinin derivatives, their mechanisms of embryotoxicity and discuss the safety of their use during pregnancy.
Collapse
Affiliation(s)
- Caroline Gomes
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Ana Cláudia Boareto
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | | |
Collapse
|
13
|
Mondal A, Chatterji U. Artemisinin Represses Telomerase Subunits and Induces Apoptosis in HPV-39 Infected Human Cervical Cancer Cells. J Cell Biochem 2016; 116:1968-81. [PMID: 25755006 DOI: 10.1002/jcb.25152] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/02/2015] [Indexed: 12/18/2022]
Abstract
Artemisinin, a plant-derived antimalarial drug with relatively low toxicity on normal cells in humans, has selective anticancer activities in various types of cancers, both in vitro and in vivo. In the present study, we have investigated the anticancer effects of artemisinin in human cervical cancer cells, with special emphasis on its role in inducing apoptosis and repressing cell proliferation by inhibiting the telomerase subunits, ERα which is essential for maintenance of the cervix, and downstream components like VEGF, which is known to activate angiogenesis. Effects of artemisinin on apoptosis of ME-180 cells were measured by flow cytometry, DAPI, and annexin V staining. Expression of genes and proteins related to cell proliferation and apoptosis was quantified both at the transcriptional and translational levels by semi-quantitative RT-PCR and western blot analysis, respectively. Our findings demonstrated that artemisinin significantly downregulated the expression of ERα and its downstream component, VEGF. Antiproliferative activity was also supported by decreased telomerase activity and reduced expression of hTR and hTERT subunits. Additionally, artemisinin reduced the expression of the HPV-39 viral E6 and E7 components. Artemisinin-induced apoptosis was confirmed by FACS, nuclear chromatin condensation, annexin V staining. Increased expression of p53 with concomitant decrease in expression of the p53 inhibitor Mdm2 further supported that artemisinin-induced apoptosis was p53-dependent. The results clearly indicate that artemisinin induces antiproliferative and proapoptotic effects in HPV-39-infected ME-180 cells, and warrants further trial as an effective anticancer drug.
Collapse
Affiliation(s)
- Anushree Mondal
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, India.,Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| |
Collapse
|
14
|
Abdolmaleki Z, Arab HA, Amanpour S, Muhammadnejad S. Anti-angiogenic effects of ethanolic extract of Artemisia sieberi compared to its active substance, artemisinin. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2015.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Wang Q, Wu S, Zhao X, Zhao C, Zhao H, Huo L. Mechanisms of Dihydroartemisinin and Dihydroartemisinin/Holotransferrin Cytotoxicity in T-Cell Lymphoma Cells. PLoS One 2015; 10:e0137331. [PMID: 26502166 PMCID: PMC4621048 DOI: 10.1371/journal.pone.0137331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/15/2015] [Indexed: 12/26/2022] Open
Abstract
The validated therapeutic effects of dihydroartemisinin (DHA) in solid tumors have encouraged us to explore its potential in treating T-cell lymphoma. We found that Jurkat cells (a T-cell lyphoma cell line) were sensitive to DHA treatment with a IC50 of dihydroartemisinin. The cytotoxic effect of DHA in Jurkat cells showed a dose- and time- dependent manner. Interestingly, the cytotoxic effect of DHA was further enhanced by holotransferrin (HTF) due to the high expression of transferrin receptors in T-cell lymphoma. Mechanistically, DHA significantly increased the production of intracellular reactive oxygen species, which led to cell cycle arrest and apoptosis. The DHA treatment also inhibited the expression of protumorgenic factors including VEGF and telomerase catalytic subunit. Our results have proved the therapeutic effect of DHA in T-cell lymphoma. Especially in combination with HTF, DHA may provide a novel efficient approach in combating the deadly disease.
Collapse
Affiliation(s)
- Qiuyan Wang
- Department of Hematology, Affiliated hospital, Qingdao University, Shandong, P.R. China
| | - Shaoling Wu
- Department of Hematology, Affiliated hospital, Qingdao University, Shandong, P.R. China
- * E-mail:
| | - Xindong Zhao
- Department of Hematology, Medical College of Qingdao University, Qingdao, Shandong, P.R. China
| | - Chunting Zhao
- Department of Hematology, Affiliated hospital, Qingdao University, Shandong, P.R. China
| | - Hongguo Zhao
- Department of Hematology, Affiliated hospital, Qingdao University, Shandong, P.R. China
| | - Lanfen Huo
- Department of Hematology, Affiliated hospital, Qingdao University, Shandong, P.R. China
| |
Collapse
|
16
|
Desai KR, Rajput DK, Patel PB, Highland HN. Ameliorative Effects of Curcumin on Artesunate-Induced Subchronic Toxicity in Testis of Swiss Albino Male Mice. Dose Response 2015; 13:1559325815592393. [PMID: 26673878 PMCID: PMC4674183 DOI: 10.1177/1559325815592393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
India is one of the endemic areas where control of malaria has become a formidable task. Artesunate is the current antimalarial drug used to treat malaria, especially chloroquine resistant. The objective of the present study was to investigate the dose-dependent effect of oral administration of artesunate on the oxidative parameters in testes of adult male Swiss albino mice and ameliorative efficacy of curcumin, a widely used antioxidant. An oral dose of 150 mg/kg body weight (bwt; low dose) and 300 mg/kg bwt (high dose) of artesunate was administered for a period of 45 days to male mice, and ameliorative efficacy of curcumin was also assessed. The results revealed that artesunate caused significant alteration in oxidative parameters in dose-dependent manner. Administration of artesunate brought about significant decrease in activities of superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase, whereas lipid peroxidation and glutathione-S-transferase activity were found to be significantly increased. The results obtained show that oxidative insult is incurred upon the intracellular antioxidant system of testis tissue by artesunate treatment. Further, administration of curcumin at the dose level of 80 mg/kg bwt along with both doses of artesunate attenuated adverse effects in male mice.
Collapse
Affiliation(s)
- Ketaki R Desai
- Department of Zoology and BMT, Gujarat University, Ahmedabad, Gujarat, India
| | | | - Pragnesh B Patel
- Department of Zoology and BMT, Gujarat University, Ahmedabad, Gujarat, India
| | - Hyacinth N Highland
- Department of Zoology and BMT, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
17
|
Cao Q, Jiang Y, Shi J, Liu X, Chen J, Niu T, Li X. Artemisinin inhibits tumour necrosis factor-α-induced vascular smooth muscle cell proliferationin vitroand attenuates balloon injury-induced neointima formation in rats. Clin Exp Pharmacol Physiol 2015; 42:502-9. [PMID: 25707499 DOI: 10.1111/1440-1681.12375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/27/2015] [Accepted: 02/15/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Qian Cao
- Department of Cardiology; Shengjing Hospital of China Medical University; Shenyang China
| | - Yan Jiang
- Department of Emergency Medicine; Shengjing Hospital of China Medical University; Shenyang China
| | - Jin Shi
- Department of Cardiology; Shengjing Hospital of China Medical University; Shenyang China
| | - Xue Liu
- Department of Cardiology; Shengjing Hospital of China Medical University; Shenyang China
| | - Jie Chen
- Department of Cardiology; Shengjing Hospital of China Medical University; Shenyang China
| | - Tiesheng Niu
- Department of Cardiology; Shengjing Hospital of China Medical University; Shenyang China
| | - Xiaodong Li
- Department of Cardiology; Shengjing Hospital of China Medical University; Shenyang China
| |
Collapse
|
18
|
Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials 2014; 35:5591-604. [DOI: 10.1016/j.biomaterials.2014.03.049] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/20/2014] [Indexed: 11/22/2022]
|
19
|
Artemisinins: Pharmacological actions beyond anti-malarial. Pharmacol Ther 2014; 142:126-39. [DOI: 10.1016/j.pharmthera.2013.12.001] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/26/2013] [Indexed: 12/23/2022]
|
20
|
Polimeni M, Prato M. Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood-brain barrier integrity? Fluids Barriers CNS 2014; 11:1. [PMID: 24467887 PMCID: PMC3905658 DOI: 10.1186/2045-8118-11-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/24/2014] [Indexed: 12/23/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM.
Collapse
Affiliation(s)
| | - Mauro Prato
- Dipartimento di Neuroscienze, Università di Torino, C,so Raffaello 30, 10125 Torino, Italy.
| |
Collapse
|
21
|
Ba Q, Duan J, Tian JQ, Wang ZL, Chen T, Li XG, Chen PZ, Wu SJ, Xiang L, Li JQ, Chu RA, Wang H. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish. Acta Pharmacol Sin 2013; 34:1101-7. [PMID: 23708556 DOI: 10.1038/aps.2013.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/02/2013] [Indexed: 11/09/2022]
Abstract
AIM To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. METHODS The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. RESULTS Exposure to DHA (1-10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. CONCLUSION DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA.
Collapse
|
22
|
Chao HM, Chuang MJ, Liu JH, Liu XQ, Ho LK, Pan WHT, Zhang XM, Liu CM, Tsai SK, Kong CW, Lee SD, Chen MM, Chao FP. Baicalein protects against retinal ischemia by antioxidation, antiapoptosis, downregulation of HIF-1α, VEGF, and MMP-9 and upregulation of HO-1. J Ocul Pharmacol Ther 2013; 29:539-49. [PMID: 23537149 DOI: 10.1089/jop.2012.0179] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Retinal ischemia-associated ocular disorders are vision threatening. This study examined whether the flavonoid baicalein is able to protect against retinal ischemia/reperfusion. METHODS Using rats, the intraocular pressure was raised to 120 mmHg for 60 min to induce retinal ischemia. In vitro, an ischemic-like insult, namely oxidative stress, was established by incubating dissociated retinal cells with 100 μM ascorbate and 5 μM FeSO4 (iron) for 1 h. The rats or the dissociated cells had been pretreated with baicalein (in vivo: 0.05 or 0.5 nmol; in vitro: 100 μM), vehicle (1% ethanol), or trolox (in vivo: 5 nmol; in vitro: 100 μM or 1 mM). The effects of these treatments on the retina or the retinal cells were evaluated by electrophysiology, immunohistochemistry, terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL) staining, Western blotting, or in vitro dichlorofluorescein assay. In addition, real-time-polymerase chain reaction was used to assess the retinal expression of hypoxia-inducible factor-1α (HIF-1α), matrix metalloproteinase-9 (MMP-9), vascular endothelium growth factor (VEGF), and heme oxygenase-1 (HO-1). RESULTS The retinal changes after ischemia included a decrease in the electroretinogram b-wave amplitude, a loss of choline acetyltransferase immunolabeling amacrine cell bodies/neuronal processes, an increase in vimentin immunoreactivity, which is a marker for Müller cells, an increase in apoptotic cells in the retinal ganglion cell layer linked to a decrease in the Bcl-2 protein, and changes in the mRNA levels of HIF-1α, VEGF, MMP-9, and HO-1. Of clinical importance, the ischemic detrimental effects were concentration dependently and/or significantly (0.05 nmol and/or 0.5 nmol) altered when baicalein was applied 15 min before retinal ischemia. Most of all, 0.5 nmol baicalein significantly reduced the upregulation of MMP-9; in contrast, 5 nmol trolox only had a weak attenuating effect. In dissociated retinal cells subjected to ascorbate/iron, there was an increase in the levels of reactive oxygen species, which had been significantly attenuated by 100 μM baicalein and trolox (100 μM or 1 mM; a stronger antioxidative effect at 1 mM). CONCLUSIONS Baicalein would seem to protect against retinal ischemia via antioxidation, antiapoptosis, upregulation of HO-1, and downregulation of HIF-1α, VEGF, and MMP-9. The antioxidative effect of baicalein would appear to play a minor role in downregulation of MMP-9.
Collapse
Affiliation(s)
- Hsiao-Ming Chao
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Snyder MR. Commentary on "Inhibitory effect of the antimalarial agent artesunate on collagen-induced arthritis in rats through nuclear factor kappa B and mitogen-activated protein kinase signaling pathway". Transl Res 2013; 161:85-8. [PMID: 23138104 DOI: 10.1016/j.trsl.2012.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Melissa R Snyder
- Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|
24
|
Development of artemisinin compounds for cancer treatment. Invest New Drugs 2012; 31:230-46. [DOI: 10.1007/s10637-012-9873-z] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/21/2012] [Indexed: 11/30/2022]
|
25
|
Ba Q, Zhou N, Duan J, Chen T, Hao M, Yang X, Li J, Yin J, Chu R, Wang H. Dihydroartemisinin exerts its anticancer activity through depleting cellular iron via transferrin receptor-1. PLoS One 2012; 7:e42703. [PMID: 22900042 PMCID: PMC3416848 DOI: 10.1371/journal.pone.0042703] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 07/10/2012] [Indexed: 11/19/2022] Open
Abstract
Artemisinin and its main active metabolite dihydroartemisinin, clinically used antimalarial agents with low host toxicity, have recently shown potent anticancer activities in a variety of human cancer models. Although iron mediated oxidative damage is involved, the mechanisms underlying these activities remain unclear. In the current study, we found that dihydroartemisinin caused cellular iron depletion in time- and concentration-dependent manners. It decreased iron uptake and disturbed iron homeostasis in cancer cells, which were independent of oxidative damage. Moreover, dihydroartemisinin reduced the level of transferrin receptor-1 associated with cell membrane. The regulation of dihydroartemisinin to transferrin receptor-1 could be reversed by nystatin, a cholesterol-sequestering agent but not the inhibitor of clathrin-dependent endocytosis. Dihydroartemisinin also induced transferrin receptor-1 palmitoylation and colocalization with caveolin-1, suggesting a lipid rafts mediated internalization pathway was involved in the process. Also, nystatin reversed the influences of dihydroartemisinin on cell cycle and apoptosis related genes and the siRNA induced downregulation of transferrin receptor-1 decreased the sensitivity to dihydroartemisinin efficiently in the cells. These results indicate that dihydroartemisinin can counteract cancer through regulating cell-surface transferrin receptor-1 in a non-classical endocytic pathway, which may be a new action mechanism of DHA independently of oxidative damage.
Collapse
Affiliation(s)
- Qian Ba
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Naiyuan Zhou
- China National Center for Biotechnology Development, Beijing, China
| | - Juan Duan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Miao Hao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinying Yang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junyang Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruiai Chu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
26
|
Zhu C, Xiong Z, Chen X, Peng F, Hu X, Chen Y, Wang Q. Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-κB pathway in microglia cells. PLoS One 2012; 7:e35125. [PMID: 22514713 PMCID: PMC3325975 DOI: 10.1371/journal.pone.0035125] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/13/2012] [Indexed: 02/01/2023] Open
Abstract
Microglial activation plays an important role in neuroinflammation, which contributes to neuronal damage, and inhibition of microglial activation may have therapeutic benefits that could alleviate the progression of neurodegeneration. Recent studies have indicated that the antimalarial agent artemisinin has the ability to inhibit NF-κB activation. In this study, the inhibitory effects of artemisinin on the production of proinflammatory mediators were investigated in lipopolysaccharide (LPS)-stimulated primary microglia. Our results show that artemisinin significantly inhibited LPS-induced production of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1) and nitric oxide (NO). Artemisinin significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) and increased the protein levels of IκB-α, which forms a cytoplasmic inactive complex with the p65-p50 heterodimeric complex. Artemisinin treatment significantly inhibited basal and LPS-induced migration of BV-2 microglia. Electrophoretic mobility shift assays revealed increased NF-κB binding activity in LPS-stimulated primary microglia, and this increase could be prevented by artemisinin. The inhibitory effects of artemisinin on LPS-stimulated microglia were blocked after IκB-α was silenced with IκB-α siRNA. Our results suggest that artemisinin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The data provide direct evidence of the potential application of artemisinin for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Cansheng Zhu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
27
|
D’Alessandro S, Basilico N, Corbett Y, Scaccabarozzi D, Omodeo-Salè F, Saresella M, Marventano I, Vaillant M, Olliaro P, Taramelli D. Hypoxia modulates the effect of dihydroartemisinin on endothelial cells. Biochem Pharmacol 2011; 82:476-84. [DOI: 10.1016/j.bcp.2011.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 02/03/2023]
|
28
|
Matrix Metalloproteinase-9 and Haemozoin: Wedding Rings for Human Host and Plasmodium falciparum Parasite in Complicated Malaria. J Trop Med 2011; 2011:628435. [PMID: 21760809 PMCID: PMC3134216 DOI: 10.1155/2011/628435] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/07/2011] [Indexed: 11/17/2022] Open
Abstract
It is generally accepted that the combination of both Plasmodium falciparum parasite and human host factors is involved in the pathogenesis of complicated severe malaria, including cerebral malaria (CM). Among parasite products, the malarial pigment haemozoin (HZ) has been shown to impair the functions of mononuclear and endothelial cells. Different CM models were associated with enhanced levels of matrix metalloproteinases (MMPs), a family of proteolytic enzymes able to disrupt subendothelial basement membrane and tight junctions and shed, activate, or inactivate cytokines, chemokines, and other MMPs through cleavage from their precursors. Among MMPs, a good candidate for targeted therapy might be MMP-9, whose mRNA and protein expression enhancement as well as direct proenzyme activation by HZ have been recently investigated in a series of studies by our group and others. In the present paper the role of HZ and MMP-9 in complicated malaria, as well as their interactions, will be discussed.
Collapse
|
29
|
Wang SJ, Sun B, Cheng ZX, Zhou HX, Gao Y, Kong R, Chen H, Jiang HC, Pan SH, Xue DB, Bai XW. Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway. Cancer Chemother Pharmacol 2011; 68:1421-30. [PMID: 21479633 DOI: 10.1007/s00280-011-1643-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Dihydroartemisinin (DHA) has recently shown antitumor activity in human pancreatic cancer cells. However, its effect on antiangiogenic activity in pancreatic cancer is unknown, and the mechanism is unclear. This study was aimed to investigate whether DHA would inhibit angiogenesis in human pancreatic cancer. METHODS Cell viability and proliferation, tube formation of human umbilical vein endothelial cells (HUVECs), nuclear factor (NF)-κB DNA-binding activity, expressions of vascular endothelial growth factor (VEGF), interleukin (IL)-8, cyclooxygenase (COX)-2, and matrix metalloproteinase (MMP)-9 were examined in vitro. The effect of DHA on antiangiogenic activity in pancreatic cancer was also assessed using BxPC-3 xenografts subcutaneously established in BALB/c nude mice. RESULTS DHA inhibited cell proliferation and tube formation of HUVECs in a time- and dose-dependent manner and also reduced cell viability in pancreatic cancer cells. DHA significantly inhibited NF-κB DNA-binding activity, so as to tremendously decrease the expression of NF-κB-targeted proangiogenic gene products: VEGF, IL-8, COX-2, and MMP-9 in vitro. In vivo studies, DHA remarkably reduced tumor volume, decreased microvessel density, and down-regulated the expression of NF-κB-related proangiogenic gene products. CONCLUSIONS Inhibition of NF-κB activation is one of the mechanisms that DHA inhibits angiogenesis in human pancreatic cancer. We also suggest that DHA could be developed as a novel agent against pancreatic cancer.
Collapse
Affiliation(s)
- Shuang-Jia Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 23 Youzheng Str, Nangang, Harbin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu JH, Wann H, Chen MM, Pan WHT, Chen YC, Liu CM, Yeh MY, Tsai SK, Young MS, Chuang HY, Chao FP, Chao HM. Baicalein significantly protects human retinal pigment epithelium cells against H₂O₂-induced oxidative stress by scavenging reactive oxygen species and downregulating the expression of matrix metalloproteinase-9 and vascular endothelial growth factor. J Ocul Pharmacol Ther 2011; 26:421-9. [PMID: 20879805 DOI: 10.1089/jop.2010.0063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Age-related macular degeneration is a leading cause of blindness in the elderly. At a later stage, neovascular or exudative age-related macular degeneration can lead to severe central vision loss that is related to aging-associated cumulative oxidative stress of the human retinal pigment epithelium (hRPE) cells. Early prevention with antioxidants is mandatory. The aim of this study was to determine whether and how baicalein can act as an antioxidant. METHODS The methods used included lactate dehydrogenase, 2′,7′-dichloro-fluorescein diacetate, or enzyme-linked immunosorbent assay to measure cell viability, oxygen free radical levels, or the levels of vascular endothelial growth factor (VEGF)/matrix metalloproteinase-9 (MMP-9), respectively. RESULTS H₂O₂ dose-dependently reduced the cell viability of hRPE cells. This negative effect was dose-dependently (with a lower effect at 20µM) and significantly counteracted by pretreatment with baicalein (50µM). Treatment with H₂O₂ significantly stimulated the formation of oxygen free radicals. This increase was dose-dependently and significantly blunted by baicalein. Further, treatment with a sublethal dose of H₂O₂ was associated with an upregulation in the levels of VEGF and MMP-9. The increases in these proteins were also dose-dependently (with a lower effect at 20µM) and significantly (50µM) blunted by pretreatment with baicalein. CONCLUSION This study supports an antioxidative role for baicalein whereby it protects hRPE cells against H₂O₂-induced oxidative stress by downregulating the levels of VEGF and MMP-9, which are increased by H₂O₂.
Collapse
Affiliation(s)
- Jorn-Hon Liu
- Department of Ophthalmology, Cheng Hsin General Hospital , Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Islam MM, Basu A, Hossain M, Sureshkumar G, Hotha S, Suresh Kumar G. Enhanced DNA Binding of 9-ω-Amino Alkyl Ether Analogs from the Plant Alkaloid Berberine. DNA Cell Biol 2011; 30:123-33. [DOI: 10.1089/dna.2010.1109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Md. Maidul Islam
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (CSIR), Kolkata, India
| | - Anirban Basu
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (CSIR), Kolkata, India
| | - Maidul Hossain
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (CSIR), Kolkata, India
| | | | - Srinivas Hotha
- Division of Organic Chemistry, National Chemical Laboratory (CSIR), Pune, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (CSIR), Kolkata, India
| |
Collapse
|
32
|
Ricci J, Kim M, Chung WY, Park KK, Jung M. Discovery of Artemisinin-Glycolipid Hybrids as Anti-oral Cancer Agents. Chem Pharm Bull (Tokyo) 2011; 59:1471-5. [DOI: 10.1248/cpb.59.1471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Minkyu Kim
- Department of Chemistry, Yonsei University
| | - Won-Yoon Chung
- Department of Oral Biology, College of Dentistry, Yonsei University
| | - Kwang-Kyun Park
- Department of Oral Biology, College of Dentistry, Yonsei University
| | | |
Collapse
|
33
|
Zheng R, Jia Z, Li J, Huang S, Mu P, Zhang F, Wang C, Yuan C. Fast repair of DNA radicals in the earliest stage of carcinogenesis suppresses hallmarks of cancer. RSC Adv 2011. [DOI: 10.1039/c1ra00523e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
34
|
Xiong Z, Sun G, Zhu C, Cheng B, Zhang C, Ma Y, Dong Y. Artemisinin, an anti-malarial agent, inhibits rat cardiac hypertrophy via inhibition of NF-κB signaling. Eur J Pharmacol 2010; 649:277-84. [DOI: 10.1016/j.ejphar.2010.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 08/22/2010] [Accepted: 09/09/2010] [Indexed: 12/01/2022]
|
35
|
In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents. Cancer Chemother Pharmacol 2010; 67:569-77. [DOI: 10.1007/s00280-010-1355-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 04/30/2010] [Indexed: 11/25/2022]
|
36
|
Rasheed SAK, Efferth T, Asangani IA, Allgayer H. First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases. Int J Cancer 2010; 127:1475-85. [DOI: 10.1002/ijc.25315] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Efferth T, Kaina B. Toxicity of the antimalarial artemisinin and its dervatives. Crit Rev Toxicol 2010; 40:405-21. [DOI: 10.3109/10408441003610571] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Abstract
Artemisinin, a sesquiterpene lactone derived from the sweet wormwood plant Artemisia annua, and its bioactive derivatives exhibit potent anticancer effects in a variety of human cancer cell model systems. The pleiotropic response in cancer cells includes growth inhibition by cell cycle arrest, apoptosis, inhibition of angiogenesis, disruption of cell migration, and modulation of nuclear receptor responsiveness. These effects of artemisinin and its derivatives result from perturbations of many cellular signalling pathways. This review provides a comprehensive discussion of these cellular responses, and considers the ramifications for the potential development of artemisinin-based compounds in anticancer therapeutic and preventative strategies.
Collapse
|
39
|
The anti-malaria agent artesunate inhibits expression of vascular endothelial growth factor and hypoxia-inducible factor-1α in human rheumatoid arthritis fibroblast-like synoviocyte. Rheumatol Int 2009; 31:53-60. [DOI: 10.1007/s00296-009-1218-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
|
40
|
Artemisinin reduces human melanoma cell migration by down-regulating αVβ3 integrin and reducing metalloproteinase 2 production. Invest New Drugs 2008; 27:412-8. [DOI: 10.1007/s10637-008-9188-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
|
41
|
Cuzzocrea S, Saadat F, Di Paola R, Mirshafiey A. Artemether: A New Therapeutic Strategy in Experimental Rheumatoid Arthritis. Immunopharmacol Immunotoxicol 2008; 27:615-30. [PMID: 16435580 DOI: 10.1080/08923970500418786] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The current research was designed to determine the effect of artemether in treatment of experimental rheumatoid arthritis. Collagen-induced arthritis was induced in Lewis rats. The intramusculary administration of artemether (ART) and intraperitoneally injection of methotrexate (MTX) were started on day 25 postimmunization and continued until final assessment on day 35. During this period, clinical examination was taken intermittently. The anticollagen type II antibody (CII Ab) and nitric oxide synthesis were measured. The paws and kness were then removed for histopathology and radiography assay. The biocompatibility of ART and MTX were assessed using fibrosarcoma cell line. Data showed that i.m. injection of ART to arthritic rats induced a significant reduction in paw edema. This beneficial effect was associated with a significant decrease in anti-CII antibody response compared with untreated rats. Histopathological assessment showed a reduced inflammatory cell infiltrate in joints of treated rats; tissue edema, and bone erosion in the paws were markedly reduced following ART therapy. Furthermore, our radiography results paralleled our histological findings. Cytotoxicity analysis of ART showed greater tolerability compared with MTX. Treatment with ART significantly diminished NO formation in treated rats compared with nontreated controls. Our data shed light on the therapeutic efficacy of artemether in experimental rheumatoid arthritis compared with a choice drug (methotrexate), and it may be offered as a second-line drug in treatment of rheumatoid arthritis.
Collapse
MESH Headings
- Animals
- Antibodies/blood
- Antimalarials/administration & dosage
- Antimalarials/therapeutic use
- Antirheumatic Agents/administration & dosage
- Antirheumatic Agents/therapeutic use
- Artemether
- Artemisinins/administration & dosage
- Artemisinins/therapeutic use
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/pathology
- Bone and Bones/drug effects
- Bone and Bones/pathology
- Cell Line, Tumor/enzymology
- Cell Survival/drug effects
- Collagen Type II/immunology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Edema/prevention & control
- Injections, Intramuscular
- Injections, Intraperitoneal
- Joints/drug effects
- Joints/pathology
- Male
- Matrix Metalloproteinase 2/metabolism
- Methotrexate/administration & dosage
- Methotrexate/therapeutic use
- Mice
- Nitric Oxide/blood
- Rats
- Rats, Inbred Lew
- Time Factors
Collapse
|
42
|
Krishna S, Bustamante L, Haynes RK, Staines HM. Artemisinins: their growing importance in medicine. Trends Pharmacol Sci 2008; 29:520-7. [PMID: 18752857 PMCID: PMC2758403 DOI: 10.1016/j.tips.2008.07.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/11/2008] [Accepted: 07/16/2008] [Indexed: 11/30/2022]
Abstract
Artemisinins are derived from extracts of sweet wormwood (Artemisia annua) and are well established for the treatment of malaria, including highly drug-resistant strains. Their efficacy also extends to phylogenetically unrelated parasitic infections such as schistosomiasis. More recently, they have also shown potent and broad anticancer properties in cell lines and animal models. In this review, we discuss recent advances in defining the role of artemisinins in medicine, with particular focus on their controversial mechanisms of action. This safe and cheap drug class that saves lives at risk from malaria can also have important potential in oncology.
Collapse
Affiliation(s)
- Sanjeev Krishna
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK.
| | | | | | | |
Collapse
|
43
|
Evans AL, Bryant J, Skepper J, Smith SK, Print CG, Charnock-Jones DS. Vascular development in embryoid bodies: quantification of transgenic intervention and antiangiogenic treatment. Angiogenesis 2007; 10:217-26. [PMID: 17577673 DOI: 10.1007/s10456-007-9076-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
It has become increasingly clear that the investigation of vascular development is best considered in the context of a whole tissue environment since in vivo endothelial cells interact closely with other cell types. Murine embryoid bodies have been used as a model for the early development of a vascular network and are amenable to genetic manipulation and treatment with soluble modulators. However, quantifying morphological changes in these complex three-dimensional structures is challenging. In this paper we describe protocols to culture embryoid bodies on a large scale to study vascular development together with methods to quantify changes seen when antiangiogenic agents or endothelial cell-specific transgenes are introduced.
Collapse
Affiliation(s)
- Amanda Lisabeth Evans
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QP, UK
| | | | | | | | | | | |
Collapse
|
44
|
Lai H, Sasaki T, Singh NP. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds. Expert Opin Ther Targets 2007; 9:995-1007. [PMID: 16185154 DOI: 10.1517/14728222.9.5.995] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Artemisinin is a chemical compound that reacts with iron to form free radicals which can kill cells. Cancer cells require and uptake a large amount of iron to proliferate. They are more susceptible to the cytotoxic effect of artemisinin than normal cells. Cancer cells express a large concentration of cell surface transferrin receptors that facilitate uptake of the plasma iron-carrying protein transferrin via endocytosis. By covalently tagging artemisinin to transferrin, artemisinin could be selectively picked up and concentrated by cancer cells. Futhermore, both artemisinin and iron would be transported into the cell in one package. Once an artemisinin-tagged transferrin molecule is endocytosed, iron is released and reacts with artemisinin moieties tagged to transferrin. Formation of free radicals kills the cancer cell. The authors have found that artemisinin-tagged transferrin is highly selective and potent in killing cancer cells. Thus, artemisinin and artemisinin-tagged iron-carrying compounds could be developed into powerful anticancer drugs.
Collapse
Affiliation(s)
- Henry Lai
- University of Washington, Department of Bioengineering, Box 357962, Seattle, Washington 98195-7962, USA.
| | | | | |
Collapse
|
45
|
Qutub AA, Popel AS. A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1 alpha. J Cell Sci 2006; 119:3467-80. [PMID: 16899821 PMCID: PMC2129128 DOI: 10.1242/jcs.03087] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hypoxia-inducible factor-1, HIF1, transcriptionally activates over 200 genes vital for cell homeostasis and angiogenesis. We developed a computational model to gain a detailed quantitative understanding of how HIF1 acts to sense oxygen and respond to hypoxia. The model consists of kinetic equations describing the intracellular variation of 17 compounds, including HIF1, iron, prolyl hydroxylase, oxygen, ascorbate, 2-oxoglutarate, von Hippel Lindau protein and associated complexes. We tested an existing hypothesis of a switch-like change in HIF1 expression in response to a gradual decrease in O2 concentration. Our model predicts that depending on the molecular environment, such as intracellular iron levels, the hypoxic response varies considerably. We show HIF1-activated cellular responses can be divided into two categories: a steep, switch-like response to O2 and a gradual one. Discovery of this dual response prompted comparison of two therapeutic strategies, ascorbate and iron supplementation, and prolyl hydroxylase targeting, to predict under what microenvironments either effectively increases HIF1alpha hydroxylation. Results provide crucial insight into the effects of iron and prolyl hydroxylase on oxygen sensing. The model advances quantitative molecular level understanding of HIF1 pathways--an endeavor that will help elucidate the diverse responses to hypoxia found in cancer, ischemia and exercise.
Collapse
Affiliation(s)
- Amina A Qutub
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 613 Traylor Bldg, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | |
Collapse
|
46
|
Anfosso L, Efferth T, Albini A, Pfeffer U. Microarray expression profiles of angiogenesis-related genes predict tumor cell response to artemisinins. THE PHARMACOGENOMICS JOURNAL 2006; 6:269-78. [PMID: 16432535 DOI: 10.1038/sj.tpj.6500371] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Artemisinin (ARS) and its derivatives are used for the second-line therapy of malaria infections with Plasmodium falciparum and P. vivax. ARSs also reveal profound antitumor activity in vitro and in vivo. In the present investigation, we correlated the mRNA expression data of 89 angiogenesis-related genes obtained by microarray hybridization from the database of the US National Cancer Institute with the 50% growth inhibition concentration values for eight ARSs (ARS, arteether (ARE), artesunate (ART), artemisetene, arteanuine B, dihydroartemisinylester stereoisomers 1 and 2). The constitutive expression of 30 genes correlated significantly with the cellular response to ARSs. By means of hierarchical cluster analysis and cluster image mapping expression, profiles were identified that determined significantly the cellular response to ART, ARE, artemether and dihydroartemisinylester stereoisomer 1. We have exemplarily validated the microarray data of six out of these 30 genes by real-time RT-PCR in seven cell lines. The fact that sensitivity and resistance of tumor cells could be predicted by the mRNA expression of angiogenesis-related genes indicate that ARSs reveal their antitumor effects at least in part by inhibition of tumor angiogenesis. As many chemopreventive drugs exert antiangiogenic features, ARSs might also be chemopreventive in addition to their cytotoxic effects.
Collapse
Affiliation(s)
- L Anfosso
- Experimental Oncology A, National Cancer Research Institute, Genova, Italy
| | | | | | | |
Collapse
|
47
|
Lai H, Singh NP. Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat. Cancer Lett 2006; 231:43-8. [PMID: 16356830 DOI: 10.1016/j.canlet.2005.01.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2004] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
Artemisinin, a compound isolated from the sweet wormwood Artemisia annua L., has previously been shown to have selective toxicity towards cancer cells in vitro. In the present experiment, we studied the potential of artemisinin to prevent breast cancer development in rats treated with a single oral dose (50mg/kg) of 7,12-dimethylbenz[a]anthracene (DMBA), known to induce multiple breast tumors. Starting from the day immediately after DMBA treatment, one group of rats was provided with a powdered rat-chow containing 0.02% artemisinin, whereas a control group was provided with plain powdered food. For 40 weeks, both groups of rats were monitored for breast tumors. Oral artemisinin significantly delayed (P<.002) and in some animals prevented (57% of artemisinin-fed versus 96% of the controls developed tumors, P<.01) breast cancer development in the monitoring period. In addition, breast tumors in artemisinin-fed rats were significantly fewer (P<.002) and smaller in size (P<.05) when compared with controls. Since artemisinin is a relatively safe compound that causes no known side effects even at high oral doses, the present data indicate that artemisinin may be a potent cancer-chemoprevention agent.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Box 357962, Seattle, WA 98195-7962, USA.
| | | |
Collapse
|
48
|
Sauer H, Wartenberg M. Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal 2005; 7:1423-34. [PMID: 16356105 DOI: 10.1089/ars.2005.7.1423] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Besides the well known pathophysiological impact of oxidative stress in cardiovascular disease, reactive oxygen species (ROS) generated at low concentrations exert a role as signaling molecules that are involved in signal transduction cascades of numerous growth factor-, cytokine-, and hormone-mediated pathways, and regulate biological effects such as apoptosis, cell proliferation, and differentiation. Embryonic stem cells have the capacity to differentiate into the cardiovascular cell lineage. Furthermore, upon confrontation culture with tumor tissue, they form blood vessel-like structures that induce tumor-induced angiogenesis within tumor tissues. The role of ROS in cardiovascular differentiation of embryonic stem cells appears to be antagonistic. Whereas continuous exposure to ROS results in inhibition of cardiomyogenesis and vasculogenesis, pulse chase exposure to low-level ROS enhances differentiation toward the cardiomyogenic as well as vascular cell lineage. This review summarizes the current knowledge of ROS-induced cardiovascular differentiation of embryonic stem cells as well as the role of ROS in tumor-induced angiogenesis.
Collapse
Affiliation(s)
- Heinrich Sauer
- Department of Physiology, Justus-Liebig-University Giessen, Giessen, Germany.
| | | |
Collapse
|
49
|
Roy S, Khanna S, Shah H, Rink C, Phillips C, Preuss H, Subbaraju GV, Trimurtulu G, Krishnaraju AV, Bagchi M, Bagchi D, Sen CK. Human genome screen to identify the genetic basis of the anti-inflammatory effects of Boswellia in microvascular endothelial cells. DNA Cell Biol 2005; 24:244-55. [PMID: 15812241 DOI: 10.1089/dna.2005.24.244] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inflammatory disorders represent a substantial health problem. Medicinal plants belonging to the Burseraceae family, including Boswellia, are especially known for their anti-inflammatory properties. The gum resin of Boswellia serrata contains boswellic acids, which inhibit leukotriene biosynthesis. A series of chronic inflammatory diseases are perpetuated by leukotrienes. Although Boswellia extract has proven to be anti-inflammatory in clinical trials, the underlying mechanisms remain to be characterized. TNF alpha represents one of the most widely recognized mediators of inflammation. One mechanism by which TNFalpha causes inflammation is by potently inducing the expression of adhesion molecules such as VCAM-1. We sought to test the genetic basis of the antiinflammatory effects of BE (standardized Boswellia extract, 5-Loxin) in a system of TNF alpha-induced gene expression in human microvascular endothelial cells. We conducted the first whole genome screen for TNF alpha- inducible genes in human microvascular cells (HMEC). Acutely, TNF alpha induced 522 genes and downregulated 141 genes in nine out of nine pairwise comparisons. Of the 522 genes induced by TNF alpha in HMEC, 113 genes were clearly sensitive to BE treatment. Such genes directly related to inflammation, cell adhesion, and proteolysis. The robust BE-sensitive candidate genes were then subjected to further processing for the identification of BE-sensitive signaling pathways. The use of resources such as GenMAPP, KEGG, and gene ontology led to the recognition of the primary BE-sensitive TNF alpha-inducible pathways. BE prevented the TNF alpha-induced expression of matrix metalloproteinases. BE also prevented the inducible expression of mediators of apoptosis. Most strikingly, however, TNF alpha-inducible expression of VCAM-1 and ICAM-1 were observed to be sensitive to BE. Realtime PCR studies showed that while TNF alpha potently induced VCAM-1 gene expression, BE completely prevented it. This result confirmed our microarray findings and built a compelling case for the anti-inflammatory property of BE. In an in vivo model of carrageenan-induced rat paw inflammation, we observed a significant antiinflammatory property of BE consistent with our in vitro findings. These findings warrant further research aimed at identifying the signaling mechanisms by which BE exerts its anti-inflammatory effects.
Collapse
Affiliation(s)
- Sashwati Roy
- Laboratory of Molecular Medicine, Department of Surgery, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sauer H, Bekhite MM, Hescheler J, Wartenberg M. Redox control of angiogenic factors and CD31-positive vessel-like structures in mouse embryonic stem cells after direct current electrical field stimulation. Exp Cell Res 2005; 304:380-90. [PMID: 15748885 DOI: 10.1016/j.yexcr.2004.11.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 11/11/2004] [Accepted: 11/13/2004] [Indexed: 10/25/2022]
Abstract
The molecular mechanisms driving angiogenesis in tissues derived from embryonic stem (ES) cells are currently unknown. Herein we investigated the effects of direct current (DC) electrical field treatment on endothelial cell differentiation and angiogenesis of mouse ES cells. Treatment of ES cell-derived embryoid bodies with field strengths ranging from 250 V/m to 750 V/m, applied for 60 s, dose-dependently increased the capillary area staining positive for the endothelial-specific marker platelet endothelial cell adhesion molecule-1 (PECAM-1), indicating stimulation of endothelial cell differentiation and angiogenesis. Consequently, increased expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) within 24 h was observed. Electric field treatment raised reactive oxygen species (ROS) generation for at least 48 h, which was blunted by NADPH-oxidase inhibitors diphenylen iodonium chloride (DPI) as well as 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), and increased the expression of NADPH-oxidase subunits p22-phox, p47-phox, p67-phox, and gp91-phox within 24 h. Electrical field treatment resulted in activation of extracellular regulated kinase 1,2 (ERK1,2), p38, as well as c-Jun NH2-terminal kinase (JNK). Pretreatment with the JNK inhibitor SP600125 resulted in a significant decrease in capillary areas under control conditions as well as under conditions of electrical field treatment, whereas the p38 inhibitor SB203580 was without effects. By contrast, the ERK1,2 antagonist UO126 inhibited electrical field-induced angiogenesis, whereas angiogenesis under control conditions was unimpaired. The increase in capillary areas and VEGF expression as well as activation of JNK and ERK1,2 was significantly inhibited in the presence of the free radical scavenger vitamin E underscoring the role of ROS in electrical field-induced angiogenesis of ES cells.
Collapse
Affiliation(s)
- Heinrich Sauer
- Department of Physiology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|