1
|
Al-Marsoummi S, Singhal S, Garrett SH, Somji S, Sens DA, Singhal SK. CD133+CD24+ Renal Tubular Progenitor Cells Drive Hypoxic Injury Recovery via Hypoxia-Inducible Factor-1A and Epidermal Growth Factor Receptor Expression. Int J Mol Sci 2025; 26:2472. [PMID: 40141116 PMCID: PMC11942380 DOI: 10.3390/ijms26062472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/01/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
CD133+CD24+ renal tubular progenitor cells play a crucial role in the repair and regeneration of renal tubules after acute kidney injury. The aim of this study is to investigate the responses of the human renal tubular precursor TERT (HRTPT) CD133+CD24+ cells and human renal epithelial cell 24 TERT (HREC24T) CD133-CD24+ cells to hypoxic stress, as well as their gene expression profiles. Whole transcriptome sequencing and functional network analysis identified distinct molecular characteristics of HRTPT cells as they were enriched with hypoxia-inducible factor-1A (HIF1A), epidermal growth factor (EGF), and endothelin-1 (EDN1). Our in vitro experiments demonstrated that, under hypoxia (2.5% oxygen), HRTPT cells showed minimal cell death and a 100-fold increase in HIF1A protein levels. In contrast, HREC24T cells exhibited significant cell death and only a two-fold increase in HIF1A protein level. These results indicate that CD133+CD24+ renal tubular progenitor cells have enhanced survival mechanisms under hypoxic stress, enabling them to survive and proliferate to replace damaged tubular cells. This study provides novel insights into the protective role of CD133+CD24+ renal tubular progenitor cells in hypoxic renal injury and identifies their potential survival mechanisms.
Collapse
Affiliation(s)
- Sarmad Al-Marsoummi
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (S.S.)
| | - Sonalika Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (S.S.)
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (S.S.)
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (S.S.)
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (S.S.)
| | - Sandeep K. Singhal
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (S.S.)
- Bioinformatics Division Adjunct Faculty, Pathology and Cell Biology, Columbia University Medical Centre, New York, NY 10032, USA
| |
Collapse
|
2
|
Hinze C, Lovric S, Halloran PF, Barasch J, Schmidt-Ott KM. Epithelial cell states associated with kidney and allograft injury. Nat Rev Nephrol 2024; 20:447-459. [PMID: 38632381 PMCID: PMC11660082 DOI: 10.1038/s41581-024-00834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
The kidney epithelium, with its intricate arrangement of highly specialized cell types, constitutes the functional core of the organ. Loss of kidney epithelium is linked to the loss of functional nephrons and a subsequent decline in kidney function. In kidney transplantation, epithelial injury signatures observed during post-transplantation surveillance are strong predictors of adverse kidney allograft outcomes. However, epithelial injury is currently neither monitored clinically nor addressed therapeutically after kidney transplantation. Several factors can contribute to allograft epithelial injury, including allograft rejection, drug toxicity, recurrent infections and postrenal obstruction. The injury mechanisms that underlie allograft injury overlap partially with those associated with acute kidney injury (AKI) and chronic kidney disease (CKD) in the native kidney. Studies using advanced transcriptomic analyses of single cells from kidney or urine have identified a role for kidney injury-induced epithelial cell states in exacerbating and sustaining damage in AKI and CKD. These epithelial cell states and their associated expression signatures are also observed in transplanted kidney allografts, suggesting that the identification and characterization of transcriptomic epithelial cell states in kidney allografts may have potential clinical implications for diagnosis and therapy.
Collapse
Affiliation(s)
- Christian Hinze
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Svjetlana Lovric
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
- Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan Barasch
- Division of Nephrology, Columbia University, New York City, NY, USA
| | - Kai M Schmidt-Ott
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Gui Y, Fu H, Palanza Z, Tao J, Lin YH, Min W, Qiao Y, Bonin C, Hargis G, Wang Y, Yang P, Kreutzer DL, Wang Y, Liu Y, Yu Y, Liu Y, Zhou D. Fibroblast expression of transmembrane protein smoothened governs microenvironment characteristics after acute kidney injury. J Clin Invest 2024; 134:e165836. [PMID: 38713523 PMCID: PMC11213467 DOI: 10.1172/jci165836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/02/2024] [Indexed: 05/09/2024] Open
Abstract
The smoothened (Smo) receptor facilitates hedgehog signaling between kidney fibroblasts and tubules during acute kidney injury (AKI). Tubule-derived hedgehog is protective in AKI, but the role of fibroblast-selective Smo is unclear. Here, we report that Smo-specific ablation in fibroblasts reduced tubular cell apoptosis and inflammation, enhanced perivascular mesenchymal cell activities, and preserved kidney function after AKI. Global proteomics of these kidneys identified extracellular matrix proteins, and nidogen-1 glycoprotein in particular, as key response markers to AKI. Intriguingly, Smo was bound to nidogen-1 in cells, suggesting that loss of Smo could affect nidogen-1 accessibility. Phosphoproteomics revealed that the 'AKI protector' Wnt signaling pathway was activated in these kidneys. Mechanistically, nidogen-1 interacted with integrin β1 to induce Wnt in tubules to mitigate AKI. Altogether, our results support that fibroblast-selective Smo dictates AKI fate through cell-matrix interactions, including nidogen-1, and offers a robust resource and path to further dissect AKI pathogenesis.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jianling Tao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yi-Han Lin
- National Center for Advancing Translational Sciences, Rockville, Maryland, USA
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | | | - Christopher Bonin
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Geneva Hargis
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Yuanyuan Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | | | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yanbao Yu
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Elshoff D, Mehta P, Ziouzenkova O. Chronic Kidney Disease Diets for Kidney Failure Prevention: Insights from the IL-11 Paradigm. Nutrients 2024; 16:1342. [PMID: 38732588 PMCID: PMC11085624 DOI: 10.3390/nu16091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Nearly every fifth adult in the United States and many older adults worldwide are affected by chronic kidney disease (CKD), which can progress to kidney failure requiring invasive kidney replacement therapy. In this review, we briefly examine the pathophysiology of CKD and discuss emerging mechanisms involving the physiological resolution of kidney injury by transforming growth factor beta 1 (TGFβ1) and interleukin-11 (IL-11), as well as the pathological consequences of IL-11 overproduction, which misguides repair processes, ultimately culminating in CKD. Taking these mechanisms into account, we offer an overview of the efficacy of plant-dominant dietary patterns in preventing and managing CKD, while also addressing their limitations in terms of restoring kidney function or preventing kidney failure. In conclusion, this paper outlines novel regeneration strategies aimed at developing a reno-regenerative diet to inhibit IL-11 and promote repair mechanisms in kidneys affected by CKD.
Collapse
Affiliation(s)
- Denise Elshoff
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA;
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Priyanka Mehta
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
5
|
Dominguez JH, Xie D, Kelly KJ. Renal, but not platelet or skin, extracellular vesicles decrease oxidative stress, enhance nascent peptide synthesis, and protect from ischemic renal injury. Am J Physiol Renal Physiol 2023; 325:F164-F176. [PMID: 37318988 PMCID: PMC10393335 DOI: 10.1152/ajprenal.00321.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
Acute kidney injury (AKI) is deadly and expensive, and specific, effective therapy remains a large unmet need. We have demonstrated the beneficial effects of transplanted adult tubular cells and extracellular vesicles (EVs; exosomes) derived from those renal cells on experimental ischemic AKI, even when administered after renal failure is established. To further examine the mechanisms of benefit with renal EVs, we tested the hypothesis that EVs from other epithelia or platelets (a rich source of EVs) might be protective, using a well-characterized ischemia-reperfusion model. When given after renal failure was present, renal EVs, but not those from skin or platelets, markedly improved renal function and histology. The differential effects allowed us to examine the mechanisms of benefit with renal EVs. We found significant decreases in oxidative stress postischemia in the renal EV-treated group with preservation of renal superoxide dismutase and catalase as well as increases in anti-inflammatory interleukin-10. In addition, we propose a novel mechanism of benefit: renal EVs enhanced nascent peptide synthesis following hypoxia in cells and in postischemic kidneys. Although EVs have been used therapeutically, these results serve as "proof of principle" to examine the mechanisms of injury and protection.NEW & NOTEWORTHY Acute kidney injury is common and deadly, yet the only approved treatment is dialysis. Thus, a better understanding of injury mechanisms and potential therapies is needed. We found that organ-specific, but not extrarenal, extracellular vesicles improved renal function and structure postischemia when given after renal failure occurred. Oxidative stress was decreased and anti-inflammatory interleukin-10 increased with renal, but not skin or platelet, exosomes. We also propose enhanced nascent peptide synthesis as a novel protective mechanism.
Collapse
Affiliation(s)
- Jesus H. Dominguez
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, United States
| | - Danhui Xie
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - K. J. Kelly
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, United States
| |
Collapse
|
6
|
Winfree S, Al Hasan M, El-Achkar TM. Profiling Immune Cells in the Kidney Using Tissue Cytometry and Machine Learning. KIDNEY360 2022; 3:968-978. [PMID: 36128490 PMCID: PMC9438423 DOI: 10.34067/kid.0006802020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/09/2021] [Indexed: 01/10/2023]
Abstract
The immune system governs key functions that maintain renal homeostasis through various effector cells that reside in or infiltrate the kidney. These immune cells play an important role in shaping adaptive or maladaptive responses to local or systemic stress and injury. We increasingly recognize that microenvironments within the kidney are characterized by a unique distribution of immune cells, the function of which depends on this unique spatial localization. Therefore, quantitative profiling of immune cells in intact kidney tissue becomes essential, particularly at a scale and resolution that allow the detection of differences between the various "nephro-ecosystems" in health and disease. In this review, we discuss advancements in tissue cytometry of the kidney, performed through multiplexed confocal imaging and analysis using the Volumetric Tissue Exploration and Analysis (VTEA) software. We highlight how this tool has improved our understanding of the role of the immune system in the kidney and its relevance in the pathobiology of renal disease. We also discuss how the field is increasingly incorporating machine learning to enhance the analytic potential of imaging data and provide unbiased methods to explore and visualize multidimensional data. Such novel analytic methods could be particularly relevant when applied to profiling immune cells. Furthermore, machine-learning approaches applied to cytometry could present venues for nonexhaustive exploration and classification of cells from existing data and improving tissue economy. Therefore, tissue cytometry is transforming what used to be a qualitative assessment of the kidney into a highly quantitative, imaging-based "omics" assessment that complements other advanced molecular interrogation technologies.
Collapse
Affiliation(s)
- Seth Winfree
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Mohammad Al Hasan
- Department of Computer Science, Indiana University–Purdue University, Indianapolis, Indiana
| | - Tarek M. El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, Indiana,Indianapolis Veterans Affairs Medical Center, Indianapolis, Indiana,Correspondence: Dr. Tarek M. El-Achkar (Ashkar), Division of Nephrology, Department of Medicine, Indiana University, 950 W Walnut St., R2-202, Indianapolis, IN 46202.
| |
Collapse
|
7
|
Lee PW, Wu BS, Yang CY, Lee OKS. Molecular Mechanisms of Mesenchymal Stem Cell-Based Therapy in Acute Kidney Injury. Int J Mol Sci 2021; 22:11406. [PMID: 34768837 PMCID: PMC8583897 DOI: 10.3390/ijms222111406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) causes a lot of harm to human health but is treated by only supportive therapy in most cases. Recent evidence shows that mesenchymal stem cells (MSCs) benefit kidney regeneration through releasing paracrine factors and extracellular vesicles (EVs) to the recipient kidney cells and are considered to be promising cellular therapy for AKI. To develop more efficient, precise therapies for AKI, we review the therapeutic mechanism of MSCs and MSC-derived EVs in AKI and look for a better understanding of molecular signaling and cellular communication between donor MSCs and recipient kidney cells. We also review recent clinical trials of MSC-EVs in AKI. This review summarizes the molecular mechanisms of MSCs' therapeutic effects on kidney regeneration, expecting to comprehensively facilitate future clinical application for treating AKI.
Collapse
Grants
- Yin Yen-Liang Foundation Development and Construction Plan (107F-M01-0504) National Yang-Ming University
- MOST 108-2923-B-010-002-MY3, MOST 109-2314-B-010-053-MY3, MOST 109-2811-B-010-532, MOST 109-2926-I-010-502, MOST 109-2823-8-010-003-CV, MOST 109-2622-B-010-006, MOST 109-2321-B-010-006, MOST 110-2923-B-A49A-501-MY3, and MOST 110-2321-B-A49-003 Ministry of Science and Technology, Taiwan
- V106D25-003-MY3, VGHUST107-G5-3-3, VGHUST109-V5-1-2, and V110C-194 Taipei Veterans General Hospital
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B) Ministry of Education
Collapse
Affiliation(s)
- Pei-Wen Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Hong Deh Clinic, Taipei 11251, Taiwan
| | - Bo-Sheng Wu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medicine, Division of Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
8
|
Lee MS, Yip HK, Yang CC, Chiang JY, Huang TH, Li YC, Chen KH, Sung PH. Overexpression of miR-19a and miR-20a in iPS-MSCs preserves renal function of chronic kidney disease with acute ischaemia-reperfusion injury in rat. J Cell Mol Med 2021; 25:7675-7689. [PMID: 34161651 PMCID: PMC8358869 DOI: 10.1111/jcmm.16613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
This study tested the hypothesis that therapy with double overexpression of miR‐19a‐3p and miR‐20a‐5p (miRDOE) to human inducible pluripotent stem cell–derived mesenchymal stem cells (iPS‐MSCs) was superior to iPS‐MSCs alone for preserving renal function in rat with pre‐existing chronic kidney disease (CKD), followed by ischaemia‐reperfusion (IR) injury. In vitro study demonstrated that the protein expressions of oxidative stress (NOX‐1/NOX‐2/NOX4/oxidized protein/p22phox), inflammatory downstream signalling (TLR2&4/MyD88/TRAF6/IKK‐ß/p‐NFκB/IL‐1ß/IL‐6/MMP‐9) and cell apoptosis/death signalling (cleaved caspase‐3/mitochondrial Bax/p‐ERKs/p‐JNK/p‐p38) at time‐points of 24‐hour/48‐hour cell cultures were significantly increased in p‐Cresol‐treated NRK‐52E cells than in the control that was significantly reversed by miR‐19a‐3p‐transfected iPS‐MSC (all P < .001). Animals were categorized into group 1 (sham‐operated control), group 2 (CKD‐IR), group 3 (CKD‐IR + oligo‐miRDOE of iPS‐MSCs/6.0 ×105/intra‐renal artery transfusion/3 hours after IR procedure), group 4 (CKD‐IR + iPS‐MSCs) and group 5 (CKD‐IR + miRDOE of iPS‐MSCs/6.0 ×105/intra‐renal artery transfusion/3 hour after IR procedure). By day 35, the creatinine/BUN levels were lowest in group 1, highest in group 2 and significantly lower in group 5 than in groups 3 and 4 (all P < .0001) but they showed no difference between the latter two groups. The protein expressions of oxidative stress, inflammatory downstream signalling and cell apoptosis/death signalling exhibited an identical pattern of creatinine level among the five groups (all P < .00001). Also, the microscopic findings demonstrated that the kidney injury score/fibrotic area/number of inflammatory cells (CD14+/CD68+) exhibited an identical pattern of creatine level (all P < .0001). The miRDOE of iPS‐MSCs was superior to iPS‐MSCs for preserving the residual kidney function and architecture in CKD‐IR rat.
Collapse
Affiliation(s)
- Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, China
| | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Sirtuins play critical and diverse roles in acute kidney injury. Pediatr Nephrol 2021; 36:3539-3546. [PMID: 33411071 PMCID: PMC7788193 DOI: 10.1007/s00467-020-04866-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/08/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is an extremely common medical affliction affecting both adult and pediatric patients resulting from hypoxic, nephrotoxic, and septic insults affecting approximately 20% of all hospital patients and up to 50% of patients in the intensive care unit. There are currently no therapeutics for patients who suffer AKI. Much recent work has focused on designing and implementing therapeutics for AKI. This review focuses on a family of enzymes known as sirtuins that play critical roles in regulating many cellular and biological functions. There are 7 mammalian sirtuins (SIRT1-7) that play roles in regulating the acylation of a wide variety of pathways. Furthermore, all but one of the mammalian sirtuins have been shown to play critical roles in mediating AKI based on preclinical studies. These diverse enzymes show exciting potential for therapeutic manipulation. This review will focus on the specific roles of each of the investigated sirtuins and the potential for manipulation of the various sirtuins and their effector pathways in mediating kidney injury.
Collapse
|
10
|
The Renal Extracellular Matrix as a Supportive Scaffold for Kidney Tissue Engineering: Progress and Future Considerations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:103-118. [PMID: 34582017 DOI: 10.1007/978-3-030-82735-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
During the past decades, diverse methods have been used toward renal tissue engineering in order to replace renal function. The goals of all these techniques included the recapitulation of renal filtration, re-absorptive, and secretary functions, and replacement of endocrine/metabolic activities. It is also imperative to develop a reliable, up scalable, and timely manufacturing process. Decellularization of the kidney with intact ECM is crucial for in-vivo compatibility and targeted clinical application. Contemporarily there is an increasing interest and research in the field of regenerative medicine including stem cell therapy and tissue bioengineering in search for new and reproducible sources of kidneys. In this chapter, we sought to determine the most effective method of renal decellularization and recellularization with emphasis on biologic composition and support of stem cell growth. Current barriers and limitations of bioengineered strategies will be also discussed, and strategies to overcome these are suggested.
Collapse
|
11
|
Lee EJ, Jain M, Alimperti S. Bone Microvasculature: Stimulus for Tissue Function and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:313-329. [PMID: 32940150 DOI: 10.1089/ten.teb.2020.0154] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone is a highly vascularized organ, providing structural support to the body, and its development, regeneration, and remodeling depend on the microvascular homeostasis. Loss or impairment of vascular function can develop diseases, such as large bone defects, avascular necrosis, osteoporosis, osteoarthritis, and osteopetrosis. In this review, we summarize how vasculature controls bone development and homeostasis in normal and disease cases. A better understanding of this process will facilitate the development of novel disease treatments that promote bone regeneration and remodeling. Specifically, approaches based on tissue engineering components, such as stem cells and growth factors, have demonstrated the capacity to induce bone microvasculature regeneration and mineralization. This knowledge will have relevant clinical implications for the treatment of bone disorders by developing novel pharmaceutical approaches and bone grafts. Finally, the tissue engineering approaches incorporating vascular components may widely be applied to treat other organ diseases by enhancing their regeneration capacity. Impact statement Bone vasculature is imperative in the process of bone development, regeneration, and remodeling. Alterations or disruption of the bone vasculature leads to loss of bone homeostasis and the development of bone diseases. In this study, we review the role of vasculature on bone diseases and how vascular tissue engineering strategies, with a detailed emphasis on the role of stem cells and growth factors, will contribute to bone therapeutics.
Collapse
Affiliation(s)
- Eun-Jin Lee
- American Dental Association Science and Research Institute, Gaithersburg, Maryland, USA
| | - Mahim Jain
- Kennedy Krieger Institute, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stella Alimperti
- American Dental Association Science and Research Institute, Gaithersburg, Maryland, USA
| |
Collapse
|
12
|
Moradzadeh K, Nassiri SM, Gheisari Y. Valproic acid restores the down-regulation of SDF-1 following kidney ischemia; experimental validation of a mathematical prediction. Res Pharm Sci 2020; 15:191-199. [PMID: 32582359 PMCID: PMC7306248 DOI: 10.4103/1735-5362.283819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 12/03/2019] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
Background and purpose Stromal-derived factor (SDF)-1, a chemokine recruiting leucocytes and stem cells, plays an essential role in tissue regeneration. In a previous study, we have unexpectedly found that the expression of this chemokine declines following kidney ischemia reperfusion (IR). To explain this observation, a mathematical model was constructed which proposed histone deacetylase (HDAC) as the main driver of SDF-1 down-regulation. To experimentally verify this prediction, the effect of valproic acid (VPA), a potent HDAC inhibitor, on the kinetics of kidney SDF-1 expression was here assessed. Experimental approach Adult mice were subjected to IR or sham operation and received VPA or vehicle. Next, SDF-1 expression as well as tissue repair indices were measured in a time course manner. Findings / Results The transcriptional expressions of Sdf-1 alpha, beta, and gamma isoforms were noisy in the sham groups but the fluctuations disappeared following IR where a continuous declining trend was observed. VPA induced the over-expression of gamma, but not alpha and beta mRNA in IR mice which was accompanied with protein upregulation. Remarkably, VPA deteriorated kidney injury. Conclusion and implications HDAC inhibition restores SDF-1 down-regulation following kidney IR. The present study is a classic example of the potential of computational modeling for the prediction of biomedical phenomena.
Collapse
Affiliation(s)
- Kobra Moradzadeh
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, I.R. Iran
| | - Yousof Gheisari
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
13
|
Sheu JJ, Sung PH, Wallace CG, Yang CC, Chen KH, Shao PL, Chu YC, Huang CR, Chen YL, Ko SF, Lee MS, Yip HK. Intravenous administration of iPS-MSC SPIONs mobilized into CKD parenchyma and effectively preserved residual renal function in CKD rat. J Cell Mol Med 2020; 24:3593-3610. [PMID: 32061051 PMCID: PMC7131913 DOI: 10.1111/jcmm.15050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
This study traced intravenously administered induced pluripotent stem cell (iPSC)‐derived mesenchymal stem cells (MSC) and assessed the impact of iPSC‐MSC on preserving renal function in SD rat after 5/6 nephrectomy. The results of in vitro study showed that FeraTrack™Direct contrast particles (ie intracellular magnetic labelling) in the iPSC‐MSC (ie iPS‐MSCSPIONs) were clearly identified by Prussian blue stain. Adult‐male SD rats (n = 40) were categorized into group 1 (SC), group 2 [SC + iPS‐MSCSPIONs (1.0 × 106cells)/intravenous administration post‐day‐14 CKD procedure], group 3 (CKD), group 4 [CKD + iPS‐MSCSPIONs (0.5 × 106cells)] and group 5 [CKD + iPS‐MSCSPIONs (1.0 × 106cells)]. By day‐15 after CKD induction, abdominal MRI demonstrated that iPS‐MSCSPIONs were only in the CKD parenchyma of groups 4 and 5. By day 60, the creatinine level/ratio of urine protein to urine creatinine/kidney injury score (by haematoxylin and eosin stain)/fibrotic area (Masson's trichrome stain)/IF microscopic finding of kidney injury molecule‐1 expression was lowest in groups 1 and 2, highest in group 3, and significantly higher in group 4 than in group 5, whereas IF microscopic findings of podocyte components (ZO‐1/synaptopodin) and protein levels of anti‐apoptosis ((Bad/Bcl‐xL/Bcl‐2) exhibited an opposite pattern to creatinine level among the five groups (all P < .0001). The protein expressions of cell‐proliferation signals (PI3K/p‐Akt/m‐TOR, p‐ERK1/2, FOXO1/GSK3β/p90RSK), apoptotic/DNA‐damage (Bax/caspases8‐10/cytosolic‐mitochondria) and inflammatory (TNF‐α/TNFR1/TRAF2/NF‐κB) biomarkers displayed an identical pattern to creatinine level among the five groups (all P < .0001). The iPS‐MSCSPIONs that were identified only in CKD parenchyma effectively protected the kidney against CKD injury.
Collapse
Affiliation(s)
- Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | - Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, Taiwan
| | - Yi-Ching Chu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Ruei Huang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mel S Lee
- Department of Orthopedics College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Medica D, Dellepiane S, Cantaluppi V. Regenerative Role of Stem Cell-Derived Extracellular Vesicles in Acute Kidney Injury. Nephron Clin Pract 2020; 144:638-643. [DOI: 10.1159/000511347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022] Open
Abstract
Acute kidney injury (AKI) is a frequent complication of hospital admission and worsens short- and long-term patients’ prognosis. Currently, AKI treatment remains supportive and no therapy has proven significant benefit in clinical trials. Stem cells (SCs) are a promising therapeutic option, but their translation to the clinical setting is limited by the risk of rejection or aberrant differentiation. Numerous studies have shown how SC effects are mediated by paracrine factors such as extracellular vesicles (EVs). In this review, we describe the preclinical evidence about EV efficacy in acute tubular and glomerular injury and the recently generated clinical data.
Collapse
|
15
|
Andrianova NV, Buyan MI, Zorova LD, Pevzner IB, Popkov VA, Babenko VA, Silachev DN, Plotnikov EY, Zorov DB. Kidney Cells Regeneration: Dedifferentiation of Tubular Epithelium, Resident Stem Cells and Possible Niches for Renal Progenitors. Int J Mol Sci 2019; 20:ijms20246326. [PMID: 31847447 PMCID: PMC6941132 DOI: 10.3390/ijms20246326] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
A kidney is an organ with relatively low basal cellular regenerative potential. However, renal cells have a pronounced ability to proliferate after injury, which undermines that the kidney cells are able to regenerate under induced conditions. The majority of studies explain yielded regeneration either by the dedifferentiation of the mature tubular epithelium or by the presence of a resident pool of progenitor cells in the kidney tissue. Whether cells responsible for the regeneration of the kidney initially have progenitor properties or if they obtain a “progenitor phenotype” during dedifferentiation after an injury, still stays the open question. The major stumbling block in resolving the issue is the lack of specific methods for distinguishing between dedifferentiated cells and resident progenitor cells. Transgenic animals, single-cell transcriptomics, and other recent approaches could be powerful tools to solve this problem. This review examines the main mechanisms of kidney regeneration: dedifferentiation of epithelial cells and activation of progenitor cells with special attention to potential niches of kidney progenitor cells. We attempted to give a detailed description of the most controversial topics in this field and ways to resolve these issues.
Collapse
Affiliation(s)
- Nadezda V. Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Marina I. Buyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, 119991 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: (E.Y.P.); (D.B.Z.); Tel.: +7-495-939-5944 (E.Y.P.)
| |
Collapse
|
16
|
Kannan N, Tang VW. Myosin-1c promotes E-cadherin tension and force-dependent recruitment of α-actinin to the epithelial cell junction. J Cell Sci 2018; 131:jcs.211334. [PMID: 29748378 DOI: 10.1242/jcs.211334] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Abstract
Actomyosin II contractility in epithelial cell plays an essential role in tension-dependent adhesion strengthening. One key unsettling question is how cellular contraction transmits force to the nascent cell-cell adhesion when there is no stable attachment between the nascent adhesion complex and actin filament. Here, we show that myosin-1c is localized to the lateral membrane of polarized epithelial cells and facilitates the coupling between actin and cell-cell adhesion. Knockdown of myosin-1c compromised the integrity of the lateral membrane, reduced the generation of tension at E-cadherin, decreased the strength of cell-cell cohesion in an epithelial cell monolayer and prevented force-dependent recruitment of junctional α-actinin. Application of exogenous force to cell-cell adhesions in a myosin-1c-knockdown cell monolayer fully rescued the localization defect of α-actinin, indicating that junction mechanoregulation remains intact in myosin-1c-depleted cells. Our study identifies a role of myosin-1c in force transmission at the lateral cell-cell interface and underscores a non-junctional contribution to tension-dependent junction regulation.
Collapse
Affiliation(s)
- Nivetha Kannan
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801 USA
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801 USA
| |
Collapse
|
17
|
Pevzner IB, Pavlenko TA, Popkov VA, Andrianova NV, Zorova LD, Brezgunova AA, Zorov SD, Yankauskas SS, Silachev DN, Zorov DB, Plotnikov EY. Comparative Study of the Severity of Renal Damage in Newborn and Adult Rats under Conditions of Ischemia/Reperfusion and Endotoxin Administration. Bull Exp Biol Med 2018; 165:189-194. [PMID: 29923010 DOI: 10.1007/s10517-018-4127-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 11/29/2022]
Abstract
Oxidative kidney injury was compared in newborn and adult rats under conditions of ischemia/reperfusion and in experimental model of systemic inflammation induced by endotoxin (LPS of bacterial cell wall) administration. Oxidative stress in the kidney accompanied both experimental models, but despite similar oxidative tissue damage, kidney dysfunction in neonates was less pronounced than in adult animals. It was found that neonatal kidney has a more potent regenerative potential with higher level of cell proliferation than adult kidney, where the level proliferating cell antigen (PCNA) increased only on day 2 after ischemia/reperfusion. The pathological process in the neonatal kidney developed against the background of active cell proliferation, and, as a result, proliferating cells could almost immediately replace the damaged structures. In the adult kidney, regeneration of the renal tissue was activated only after significant loss of functional nephrons and impairment of renal function.
Collapse
Affiliation(s)
- I B Pevzner
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.,V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - T A Pavlenko
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - V A Popkov
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - N V Andrianova
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - L D Zorova
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.,V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - A A Brezgunova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - S D Zorov
- Faculty of Bioengineering and Bioinformatics, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - S S Yankauskas
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - D N Silachev
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.,V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - D B Zorov
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.,V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, Russia
| | - E Yu Plotnikov
- Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
18
|
Corrò C, Moch H. Biomarker discovery for renal cancer stem cells. J Pathol Clin Res 2018; 4:3-18. [PMID: 29416873 PMCID: PMC5783955 DOI: 10.1002/cjp2.91] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/27/2017] [Accepted: 12/13/2017] [Indexed: 12/17/2022]
Abstract
Characterised by high intra- and inter-tumor heterogeneity, metastatic renal cell carcinoma (RCC) is resistant to chemo- and radiotherapy. Therefore, the development of new prognostic and diagnostic markers for RCC patients is needed. Cancer stem cells (CSCs) are a small population of neoplastic cells within a tumor which present characteristics reminiscent of normal stem cells. CSCs are characterised by unlimited cell division, maintenance of the stem cell pool (self-renewal), and capability to give rise to all cell types within a tumor; and contribute to metastasis in vivo (tumourigenicity), treatment resistance and recurrence. So far, many studies have tried to establish unique biomarkers to identify CSC populations in RCC. At the same time, different approaches have been developed with the aim to isolate CSCs. Consequently, several markers were found to be specifically expressed in CSCs and cancer stem-like cells derived from RCC such as CD105, ALDH1, OCT4, CD133, and CXCR4. However, the contribution of genetic and epigenetic mechanisms, and tumor microenvironment, to cellular plasticity have made the discovery of unique biomarkers a very difficult task. In fact, contrasting results regarding the applicability of such markers to the isolation of renal CSCs have been reported in the literature. Therefore, a better understanding of the mechanism underlying CSC may help dissecting tumor heterogeneity and drug treatment efficiency.
Collapse
Affiliation(s)
- Claudia Corrò
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichSwitzerland
| |
Collapse
|
19
|
Tögel F, Valerius MT, Freedman BS, Iatrino R, Grinstein M, Bonventre JV. Repair after nephron ablation reveals limitations of neonatal neonephrogenesis. JCI Insight 2017; 2:e88848. [PMID: 28138555 DOI: 10.1172/jci.insight.88848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The neonatal mouse kidney retains nephron progenitor cells in a nephrogenic zone for 3 days after birth. We evaluated whether de novo nephrogenesis can be induced postnatally beyond 3 days. Given the long-term implications of nephron number for kidney health, it would be useful to enhance nephrogenesis in the neonate. We induced nephron reduction by cryoinjury with or without contralateral nephrectomy during the neonatal period or after 1 week of age. There was no detectable compensatory de novo nephrogenesis, as determined by glomerular counting and lineage tracing. Contralateral nephrectomy resulted in additional adaptive healing, with little or no fibrosis, but did not also stimulate de novo nephrogenesis. In contrast, injury initiated at 1 week of age led to healing with fibrosis. Thus, despite the presence of progenitor cells and ongoing nephron maturation in the newborn mouse kidney, de novo nephrogenesis is not inducible by acute nephron reduction. This indicates that additional nephron progenitors cannot be recruited after birth despite partial renal ablation providing a reparative stimulus and suggests that nephron number in the mouse is predetermined at birth.
Collapse
Affiliation(s)
- Florian Tögel
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - M Todd Valerius
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Benjamin S Freedman
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Rossella Iatrino
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Mor Grinstein
- Center for Regenerative Medicine and Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Cherqui S, Courtoy PJ. The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives. Nat Rev Nephrol 2016; 13:115-131. [PMID: 27990015 DOI: 10.1038/nrneph.2016.182] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. It is caused by a defect in the lysosomal cystine transporter, cystinosin, which results in an accumulation of cystine in all organs. Despite the ubiquitous expression of cystinosin, a renal Fanconi syndrome is often the first manifestation of cystinosis, usually presenting within the first year of life and characterized by the early and severe dysfunction of proximal tubule cells, highlighting the unique vulnerability of this cell type. The current therapy for cystinosis, cysteamine, facilitates lysosomal cystine clearance and greatly delays progression to kidney failure but is unable to correct the Fanconi syndrome. This Review summarizes decades of studies that have fostered a better understanding of the pathogenesis of the renal Fanconi syndrome associated with cystinosis. These studies have unraveled some of the early molecular changes that occur before the onset of tubular atrophy and identified a role for cystinosin beyond cystine transport, in endolysosomal trafficking and proteolysis, lysosomal clearance, autophagy and the regulation of energy balance. These studies have also led to the identification of new potential therapeutic targets and here, we outline the potential role of stem cell therapy for cystinosis and provide insights into the mechanism of haematopoietic stem cell-mediated kidney protection.
Collapse
Affiliation(s)
- Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California San Diego, 9500 Gilman Drive, MC 0734, La Jolla, California 92093-0734, USA
| | - Pierre J Courtoy
- Cell biology, de Duve Institute and Université catholique de Louvain, UCL-Brussels, 75 Avenue Hippocrate, B-1200 Brussels, Belgium
| |
Collapse
|
21
|
Eymael J, Smeets B. Origin and fate of the regenerating cells of the kidney. Eur J Pharmacol 2016; 790:62-73. [DOI: 10.1016/j.ejphar.2016.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022]
|
22
|
Soranno DE, Rodell CB, Altmann C, Duplantis J, Andres-Hernando A, Burdick JA, Faubel S. Delivery of interleukin-10 via injectable hydrogels improves renal outcomes and reduces systemic inflammation following ischemic acute kidney injury in mice. Am J Physiol Renal Physiol 2016; 311:F362-72. [PMID: 26962109 DOI: 10.1152/ajprenal.00579.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/02/2016] [Indexed: 01/08/2023] Open
Abstract
Injectable hydrogels can be used to deliver drugs in situ over a sustained period of time. We hypothesized that sustained delivery of interleukin-10 (IL-10) following acute kidney injury (AKI) would mitigate the local and systemic proinflammatory cascade induced by AKI and reduce subsequent fibrosis. Wild-type C57BL/6 mice underwent ischemia-reperfusion AKI with avertin anesthesia. Three days later, mice were treated with either hyaluronic acid injectable hydrogel with or without IL-10, or IL-10 suspended in saline, injected under the capsule of the left kidney, or hydrogel with IL-10 injected subcutaneously. Untreated AKI served as controls. Serial in vivo optical imaging tracked the location and degradation of the hydrogel over time. Kidney function was assessed serially. Animals were killed 28 days following AKI and the following were evaluated: serum IL-6, lung inflammation, urine neutrophil gelatinase-associated lipocalin, and renal histology for fibroblast activity, collagen type III deposition and fibrosis via Picrosirius Red staining and second harmonic imaging. Our model shows persistent systemic inflammation, and renal inflammation and fibrosis 28 days following AKI. The hydrogels are biocompatible and reduced serum IL-6 and renal collagen type III 28 days following AKI even when delivered without IL-10. Treatment with IL-10 reduced renal and systemic inflammation, regardless of whether the IL-10 was delivered in a sustained manner via the injectable hydrogel under the left kidney capsule, as a bolus injection via saline under the left kidney capsule, or via the injectable hydrogel subcutaneously. Injectable hydrogels are suitable for local drug delivery following renal injury, are biocompatible, and help mitigate local and systemic inflammation.
Collapse
Affiliation(s)
- Danielle E Soranno
- Departments of Pediatrics and Bioengineering, University of Colorado, Aurora, Colorado;
| | - Christopher B Rodell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | | | - Jane Duplantis
- Departments of Pediatrics and Bioengineering, University of Colorado, Aurora, Colorado
| | | | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Sarah Faubel
- Department of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
23
|
|
24
|
Naphade S, Sharma J, Gaide Chevronnay HP, Shook MA, Yeagy BA, Rocca CJ, Ur SN, Lau AJ, Courtoy PJ, Cherqui S. Brief reports: Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem Cells 2015; 33:301-9. [PMID: 25186209 DOI: 10.1002/stem.1835] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/23/2014] [Indexed: 12/26/2022]
Abstract
Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multisystemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS gene). Addressing the cellular mechanisms, we here report vesicular cross-correction after HSC differentiation into macrophages. Upon coculture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin-bearing lysosomes into Ctns-deficient cells, which exploited the same route to retrogradely transfer cystine-loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins.
Collapse
Affiliation(s)
- Swati Naphade
- Division of Genetics, Department of Pediatrics, University of California, La Jolla, San Diego, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li Q, Tian SF, Guo Y, Niu X, Hu B, Guo SC, Wang NS, Wang Y. Transplantation of induced pluripotent stem cell-derived renal stem cells improved acute kidney injury. Cell Biosci 2015; 5:45. [PMID: 26294957 PMCID: PMC4541730 DOI: 10.1186/s13578-015-0040-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/06/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a severe disease with high morbidity and mortality. Methods that promote repair of the injured kidney have been extensively investigated. Cell-based therapy with mesenchymal stem cells or renal progenitor cells (RPCs) resident in the kidney has appeared to be an effective strategy for the treatment of AKI. Embryonic stem cells or induced pluripotent stem cells (iPSCs) are also utilized for AKI recovery. However, the therapeutic effect of iPSC-derived RPCs for AKI has yet to be determined. METHODS In this study, we induced iPSCs differentiation into RPCs using a nephrogenic cocktail of factors combined with the renal epithelial cell growth medium. We then established the rat ischemia-reperfusion injury (IR) model and transplanted the iPSC-derived RPCs into the injured rats in combination with the hydrogel. Next, we examined the renal function-related markers and renal histology to assess the therapeutic effect of the injected cells. Moreover, we investigated the mechanism by which iPSC-derived RPCs affect AKI caused by IR. RESULTS We showed that the differentiation efficiency of iPSCs to RPCs increased when cultured with renal epithelial cell growth medium after stimulation with a nephrogenic cocktail of factors. The transplantation of iPSC-derived RPCs decreased the levels of biomarkers indicative of renal injury and attenuated the necrosis and apoptosis of renal tissues, but resulted in the up-regulation of renal tubules formation, cell proliferation, and the expression of pro-renal factors. CONCLUSION Our results revealed that iPSC-derived RPCs can protect AKI rat from renal function impairment and severe tubular injury by up-regulating the renal tubules formation, promoting cell proliferation, reducing apoptosis, and regulating the microenvironment in the injured kidney.
Collapse
Affiliation(s)
- Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Shou-Fu Tian
- Department Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China.,Department of Integration of Traditional Chinese and Western Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Ye Guo
- Department of Neurosurgery, Shandong Jining No. 1 People's Hospital, Jining, 272011 China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Shang-Chun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Nian-Song Wang
- Department Nephrology and Rheumatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| |
Collapse
|
26
|
Kelly KJ, Zhang J, Han L, Kamocka M, Miller C, Gattone VH, Dominguez JH. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy. PLoS One 2015; 10:e0131677. [PMID: 26136112 PMCID: PMC4489886 DOI: 10.1371/journal.pone.0131677] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/04/2015] [Indexed: 01/07/2023] Open
Abstract
Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.
Collapse
Affiliation(s)
- K. J. Kelly
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- * E-mail:
| | - Jizhong Zhang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Ling Han
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Malgorzata Kamocka
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Caroline Miller
- Department of Anatomy, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Vincent H. Gattone
- Department of Anatomy, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jesus H. Dominguez
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Department of Medicine, Veterans Affairs Medical Center, Indianapolis IN, United States of America
| |
Collapse
|
27
|
Bi L, Wang G, Yang D, Li S, Liang B, Han Z. Effects of autologous bone marrow-derived stem cell mobilization on acute tubular necrosis and cell apoptosis in rats. Exp Ther Med 2015; 10:851-856. [PMID: 26622404 DOI: 10.3892/etm.2015.2592] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 12/01/2014] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to investigate the effects of stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) on bone marrow-derived stem cell (BMSC) mobilization in rat models of renal ischemia/reperfusion (I/R) injury. In addition, the effects of SCF and G-CSF on cellular apoptosis were explored in order to determine the protective mechanism of the two factors against renal I/R injury. A unilateral renal I/R injury model was established for the model and treatment groups. The treatment and treatment control groups were subcutaneously injected with SCF (200 µg/kg/day) and G-CSF (50 µg/kg/day) 24 h after the establishment of the model for five consecutive days. The total number of leukocytes in the peripheral blood and the cellular percentages of cluster of differentiation (CD)34+, renal CD34+ and apoptotic cells were detected. The total number of leukocytes in the peripheral blood and the percentages of CD34+ cells in the treatment and treatment control groups reached maximum levels on the fifth postoperative day and were significantly higher than those in the normal control and model groups. The number of renal CD34+ cells in the treatment group was significantly increased compared with that in the treatment control and model groups. The apoptotic indices (AIs) of the model and treatment groups were higher than those of the normal control and treatment control groups. The AI of the model group was significantly higher than that of the treatment group. In conclusion, the combined application of SCF and G-CSF can mobilize sufficient numbers of BMSCs and cause cellular 'homing' to the injured site, thus inhibiting apoptosis and promoting the repair of renal tubular injury.
Collapse
Affiliation(s)
- Lingyun Bi
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Guohong Wang
- Laboratory of Physiology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Dasheng Yang
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Shujun Li
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Bin Liang
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Ziming Han
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
28
|
Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration. Stem Cells Int 2015; 2015:547636. [PMID: 26089919 PMCID: PMC4451991 DOI: 10.1155/2015/547636] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022] Open
Abstract
The zebrafish is a useful animal model to study the signaling pathways that orchestrate kidney regeneration, as its renal nephrons are simple, yet they maintain the biological complexity inherent to that of higher vertebrate organisms including mammals. Recent studies have suggested that administration of the aminoglycoside antibiotic gentamicin in zebrafish mimics human acute kidney injury (AKI) through the induction of nephron damage, but the timing and details of critical phenotypic events associated with the regeneration process, particularly in existing nephrons, have not been characterized. Here, we mapped the temporal progression of cellular and molecular changes that occur during renal epithelial regeneration of the proximal tubule in the adult zebrafish using a platform of histological and expression analysis techniques. This work establishes the timing of renal cell death after gentamicin injury, identifies proliferative compartments within the kidney, and documents gene expression changes associated with the regenerative response of proliferating cells. These data provide an important descriptive atlas that documents the series of events that ensue after damage in the zebrafish kidney, thus availing a valuable resource for the scientific community that can facilitate the implementation of zebrafish research to delineate the mechanisms that control renal regeneration.
Collapse
|
29
|
Abdel-Rahman EM, Okusa MD. Effects of Aging on Renal Function and Regenerative Capacity. ACTA ACUST UNITED AC 2014; 127:15-20. [DOI: 10.1159/000363708] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Bach LA, Hale LJ. Insulin-like growth factors and kidney disease. Am J Kidney Dis 2014; 65:327-36. [PMID: 25151409 DOI: 10.1053/j.ajkd.2014.05.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/03/2014] [Indexed: 11/11/2022]
Abstract
Insulin-like growth factors (IGF-1 and IGF-2) are necessary for normal growth and development. They are related structurally to proinsulin and promote cell proliferation, differentiation, and survival, as well as insulin-like metabolic effects, in most cell types and tissues. In particular, IGFs are important for normal pre- and postnatal kidney development. IGF-1 mediates many growth hormone actions, and both growth hormone excess and deficiency are associated with perturbed kidney function. IGFs affect renal hemodynamics both directly and indirectly by interacting with the renin-angiotensin system. In addition to the IGF ligands, the IGF system includes receptors for IGF-1, IGF-2/mannose-6-phosphate, and insulin, and a family of 6 high-affinity IGF-binding proteins that modulate IGF action. Disordered regulation of the IGF system has been implicated in a number of kidney diseases. IGF activity is enhanced in early diabetic nephropathy and polycystic kidneys, whereas IGF resistance is found in chronic kidney failure. IGFs have a potential role in enhancing stem cell repair of kidney injury. Most IGF actions are mediated by the tyrosine kinase IGF-1 receptor, and inhibitors recently have been developed. Further studies are needed to determine the optimal role of IGF-based therapies in kidney disease.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, Victoria, Australia; Department of Medicine (Alfred), Monash University, Melbourne, Victoria, Australia.
| | - Lorna J Hale
- Baker-IDI Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Abstract
Acute kidney injury (AKI) is a common clinical problem and is associated with high mortality rates. It is accepted that after AKI cellular regeneration of the proximal tubule occurs from intrinsic tubule cells. Recently, scattered tubular cells (STCs) were discovered as a novel subpopulation of tubule cells involved in regeneration. STCs have a distinct morphology, unique protein expression profile resembling that of parietal epithelial cells, proliferate more than the remaining proximal tubule cells, and are less susceptible to injuries. In response to AKI, STCs become more numerous, independent of the primary insult (ischemic, acute obstruction, and so forth). STCs can be detected with the highest sensitivity and manipulated by the parietal epithelial cell-specific, doxycycline inducible transgenic mouse line PEC-rtTA. In cell fate tracing experiments it was shown that STCs are not a fixed progenitor population. Rather, STCs arise from any surviving proximal tubule cell. Thus, the STC phenotype is a transient, graded, and specific transcriptional program facilitating tubular regeneration. Understanding this program my open new approaches to prevent and/or treat AKI.
Collapse
Affiliation(s)
- Katja Berger
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfaelische Technische Hochschule (RWTH), Aachen, Germany
| | - Marcus J Moeller
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfaelische Technische Hochschule (RWTH), Aachen, Germany.
| |
Collapse
|
32
|
Report on ISN Forefronts, Florence, Italy, 12-15 September 2013: Stem cells and kidney regeneration. Kidney Int 2014; 86:23-7. [PMID: 24897031 DOI: 10.1038/ki.2014.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/02/2014] [Accepted: 01/09/2014] [Indexed: 02/07/2023]
Abstract
In recent years it has become clear that most organs and tissues, including kidney, contain resident stem/progenitor cells. Stem cells are undifferentiated, long-lived cells that are unique in their ability to produce differentiated daughter cells and to retain their stem cell identity by self-renewal. A primary goal of this meeting was to review the current understanding of kidney stem cells and mechanisms of kidney regeneration in both lower vertebrates and mammals. Presenters covered a broad range of topics including stem cell quiescence, epigenetics, transcriptional control circuits, dedifferentiation, pluripotent stem cells, renal progenitors, and novel imaging approaches in kidney regeneration. By the end of this highly interactive conference it was clear we are entering into very exciting times for regenerative medicine and the kidney.
Collapse
|