1
|
Kim JP, Heo SC, Lee DH, Bae JS, Shin YK, Son SH, Park IY, Kim HW, Lee JH, Kim KW. Efficacy of cold and cryo-preserved nerve allografts with low-dose FK506 for motor nerve regeneration: a preclinical study. J Orthop Surg Res 2024; 19:859. [PMID: 39702298 DOI: 10.1186/s13018-024-05343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Despite their ability to regenerate as well as autografts, the use of nerve allografts is limited by the need for immunosuppression and the risk of disease transmission. Further, decellularized allografts lacking Schwann cells limit axonal regeneration in long nerve defects. This study evaluated sciatic nerve regeneration in rats implanted with cold- or cryopreserved allografts, and examined the effects of FK506, an immunosuppressant that targets calcineurin function, on motor recovery. METHODS Sixty-five male Lewis rats were divided into five groups of 13, each with a 10-mm sciatic nerve gap. Group I received an autograft, whereas Groups II and III received allografts pretreated with cryopreservation and cold preservation, respectively. Groups IV and V were also implanted with cryo- and cold-preserved allografts, but were treated with a low dose of FK506. Motor regeneration was assessed at 20 weeks by the measurement of ankle contracture, compound muscle action potential, maximal isometric tetanic force, wet muscle weight of the tibialis anterior, peroneal nerve histomorphometry, and immunohistochemistry of the reconstructed sciatic nerve. RESULTS Similar motor recovery was observed between the autografts and both types of allografts. The groups treated with FK506 showed improved recovery, particularly in terms of ankle angle and tibialis anterior muscle weight. Histomorphometry revealed a superior myelinated fiber area and nerve ratio in the cold-preserved allograft group, while Group II displayed a less well-organized morphology. CONCLUSION This study demonstrates that cold- or cryopreserved nerve allografts represent effective alternatives to autografts for peripheral nerve reconstruction, with low-dose FK506 enhancing motor recovery without necessitating immunosuppression. LEVEL OF EVIDENCE I Basic Science Level I.
Collapse
Affiliation(s)
- Jong Pil Kim
- Department of Orthopaedic Surgery, Naeunpil Hospital, Cheonan, Republic of Korea
| | - Soon Chul Heo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dae Hee Lee
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Jun Sang Bae
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea
| | - Young Kwang Shin
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Su Hyeok Son
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Il Yong Park
- Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Kyung Wook Kim
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea.
| |
Collapse
|
2
|
Azapagic A, Agarwal J, Gale B, Shea J, Wojtalewicz S, Sant H. A tacrolimus-eluting nerve guidance conduit enhances regeneration in a critical-sized peripheral nerve injury rat model. Biomed Microdevices 2024; 26:34. [PMID: 39102047 DOI: 10.1007/s10544-024-00717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Critical-sized peripheral nerve injuries pose a significant clinical challenge and lead to functional loss and disability. Current regeneration strategies, including autografts, synthetic nerve conduits, and biologic treatments, encounter challenges such as limited availability, donor site morbidity, suboptimal recovery, potential immune responses, and sustained stability and bioactivity. An obstacle in peripheral nerve regeneration is the immune response that can lead to inflammation and scarring that impede the regenerative process. Addressing both the immunological and regenerative needs is crucial for successful nerve recovery. Here, we introduce a novel biodegradable tacrolimus-eluting nerve guidance conduit engineered from a blend of poly (L-lactide-co-caprolactone) to facilitate peripheral nerve regeneration and report the testing of this conduit in 15-mm critical-sized gaps in the sciatic nerve of rats. The conduit's diffusion holes enable the local release of tacrolimus, a potent immunosuppressant with neuro-regenerative properties, directly into the injury site. A series of in vitro experiments were conducted to assess the ability of the conduit to maintain a controlled tacrolimus release profile that could promote neurite outgrowth. Subsequent in vivo assessments in rat models of sciatic nerve injury revealed significant enhancements in nerve regeneration, as evidenced by improved axonal growth and functional recovery compared to controls using placebo conduits. These findings indicate the synergistic effects of combining a biodegradable conduit with localized, sustained delivery of tacrolimus, suggesting a promising approach for treating peripheral nerve injuries. Further optimization of the design and long-term efficacy studies and clinical trials are needed before the potential for clinical translation in humans can be considered.
Collapse
Affiliation(s)
- Azur Azapagic
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA.
| | - Jayant Agarwal
- Department of Surgery, Division of Plastic Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Bruce Gale
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| | - Jill Shea
- Department of Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132 , USA
- Department of Biomedical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| | - Susan Wojtalewicz
- Department of Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132 , USA
| | - Himanshu Sant
- Department of Chemical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| |
Collapse
|
3
|
Khaled MM, Ibrahium AM, Abdelgalil AI, El-Saied MA, El-Bably SH. Regenerative Strategies in Treatment of Peripheral Nerve Injuries in Different Animal Models. Tissue Eng Regen Med 2023; 20:839-877. [PMID: 37572269 PMCID: PMC10519924 DOI: 10.1007/s13770-023-00559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Peripheral nerve damage mainly resulted from traumatic or infectious causes; the main signs of a damaged nerve are the loss of sensory and/or motor functions. The injured nerve has limited regenerative capacity and is recovered by the body itself, the recovery process depends on the severity of damage to the nerve, nowadays the use of stem cells is one of the new and advanced methods for treatment of these problems. METHOD Following our review, data are collected from different databases "Google scholar, Springer, Elsevier, Egyptian Knowledge Bank, and PubMed" using different keywords such as Peripheral nerve damage, Radial Nerve, Sciatic Nerve, Animals, Nerve regeneration, and Stem cell to investigate the different methods taken in consideration for regeneration of PNI. RESULT This review contains tables illustrating all forms and types of regenerative medicine used in treatment of peripheral nerve injuries (PNI) including different types of stem cells " adipose-derived stem cells, bone marrow stem cells, Human umbilical cord stem cells, embryonic stem cells" and their effect on re-constitution and functional recovery of the damaged nerve which evaluated by physical, histological, Immuno-histochemical, biochemical evaluation, and the review illuminated the best regenerative strategies help in rapid peripheral nerve regeneration in different animal models included horse, dog, cat, sheep, monkey, pig, mice and rat. CONCLUSION Old surgical attempts such as neurorrhaphy, autogenic nerve transplantation, and Schwann cell implantation have a limited power of recovery in cases of large nerve defects. Stem cell therapy including mesenchymal stromal cells has a high potential differentiation capacity to renew and form a new nerve and also restore its function.
Collapse
Affiliation(s)
- Mona M Khaled
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt.
| | - Asmaa M Ibrahium
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Ahmed I Abdelgalil
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Samah H El-Bably
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| |
Collapse
|
4
|
Abstract
ABSTRACT Peripheral nerve injury is a common injury disease. Understanding of the mechanisms of periphery nerve repair and regeneration after injury is an essential prerequisite for treating related diseases. Although the biological mechanisms of peripheral nerve injury and regeneration have been studied comprehensively, the clinical treatment methods are still limited. The bottlenecks of the treatments are the shortage of donor nerves and the limited surgical precision. Apart from the knowledge regarding the fundamental characteristics and physical processes of peripheral nerve injury, numerous studies have found that Schwann cells, growth factors, and extracellular matrix are main factors affecting the repair and regeneration process of injured nerves. At present, the therapeutical methods of the disease include microsurgery, autologous nerve transplantation, allograft nerve transplantation and tissue engineering technology. Tissue engineering technology, which combines seed cells, neurotrophic factors, and scaffold materials together, is promising for treating the patients with long-gapped and large nerve damage. With the development of neuron science and technology, the treatment of peripheral nerve injury diseases will continue being improved.
Collapse
|
5
|
Koplay TG, Yildiran G, Dursunoglu D, Aktan M, Duman S, Akdag O, Karamese M, Tosun Z. The Effects of Adipose-Derived Mesenchymal Stem Cells and Adipose-Derived Mesenchymal Stem Cell-Originating Exosomes on Nerve Allograft Regeneration: An Experimental Study in Rats. Ann Plast Surg 2023; 90:261-266. [PMID: 36796049 DOI: 10.1097/sap.0000000000003414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
INTRODUCTION Nerve regeneration has been the subject of many studies because of its complex mechanism and functional outcome. Mesenchymal stem cells and exosomes are promising factors in regeneration in many areas. Reconstruction of nerve defects is a controversial issue, and nerve allografts are promising alternatives with many advantages. In this study, it is aimed to evaluate the nerve regeneration in cellularized and decellularized nerve allografts and whether it is possible to accelerate this process with adipose-derived mesenchymal stem cells (ad MSC) or ad MSC-originating exosomes. METHOD This study was performed with 36 Lewis and 18 Brown Norway isogenic male rats aged 10 to 12 weeks and weighing 300 to 350 g. The Lewis rats were divided into 6 groups. Nerve allografts at a length of 12 mm that were obtained from the Brown Norway rats' proximal portion of both sciatic nerve branching points were coapted as cellularized in group A and decellularized in group B to the sciatic nerve defects of the Lewis rats. Group A received oral tacrolimus (0.2 mg/kg) for 30 days. Perineural saline (A1-B1), ad MSC (A2-B2), or ad MSC-originating exosomes (A3-B3) were applied to these groups. Walking track analysis, pinch-prick test and electromyelography were applied at the 8th and 16th weeks following surgery. Nerves were examined histopathologically at the 16th week. RESULTS Between cellularized groups, better results were shown in A3 about axon-myelin regeneration/organization (P = 0.001), endoneural connective tissue (P = 0.005), and inflammation (P = 0.004). Better results were shown in the B2 and B3 groups electromyelographicaly about latency period (P = 0.033) and action potential (P = 0.008) at late period, and histomorphologicaly at vascularization (P = 0.012). DISCUSSION It is argued that regeneration is accelerated with decellularization of nerve allografts by removing the chondroidin sulfate proteoglycans. The positive effects of stem cells are derived by exosomes without the cell-related disadvantages. In this study, better results were obtained by decellularization and perineural application of ad MSC and/or ad MSC exosome.
Collapse
Affiliation(s)
- Tugba Gun Koplay
- From the Department of Plastic Reconstructive and Aesthetic Surgery, Konya City Hospital
| | | | - Duygu Dursunoglu
- Department of Histology and Embriology, Selcuk University Medical Faculty
| | - Murad Aktan
- Department of Histology and Embriology, Necmettin Erbakan University Medical Faculty
| | - Selcuk Duman
- Department of Histology and Embriology, Necmettin Erbakan University Medical Faculty
| | - Osman Akdag
- Department of Plastic, Reconstructive and Aesthetic Surgery, Selcuk University Medical Faculty, Konya, Turkey
| | - Mehtap Karamese
- Department of Plastic, Reconstructive and Aesthetic Surgery, Selcuk University Medical Faculty, Konya, Turkey
| | - Zekeriya Tosun
- Department of Plastic, Reconstructive and Aesthetic Surgery, Selcuk University Medical Faculty, Konya, Turkey
| |
Collapse
|
6
|
Davis B, Wojtalewicz S, Erickson S, Veith J, Simpson A, Sant H, Shea J, Gale B, Agarwal J. Local delivery of FK506 to a nerve allograft is comparable to systemic delivery at suppressing allogeneic graft rejection. PLoS One 2023; 18:e0281911. [PMID: 36881592 PMCID: PMC9990949 DOI: 10.1371/journal.pone.0281911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/18/2023] [Indexed: 03/08/2023] Open
Abstract
The objective of this study was to determine if locally delivered FK506 could prevent allogeneic nerve graft rejection long enough to allow axon regeneration to pass through the nerve graft. An 8mm mouse sciatic nerve gap injury repaired with a nerve allograft was used to assess the effectiveness of local FK506 immunosuppressive therapy. FK506-loaded poly(lactide-co-caprolactone) nerve conduits were used to provide sustained local FK506 delivery to nerve allografts. Continuous and temporary systemic FK506 therapy to nerve allografts, and autograft repair were used as control groups. Serial assessment of inflammatory cell and CD4+ cell infiltration into the nerve graft tissue was performed to characterize the immune response over time. Nerve regeneration and functional recovery was serially assessed by nerve histomorphometry, gastrocnemius muscle mass recovery, and the ladder rung skilled locomotion assay. At the end of the study, week 16, all the groups had similar levels of inflammatory cell infiltration. The local FK506 and continuous systemic FK506 groups had similar levels of CD4+ cell infiltration, however, it was significantly greater than the autograft control. In terms of nerve histmorphometry, the local FK506 and continunous systemic FK506 groups had similar amounts of myelinated axons, although they were significantly lower than the autograft and temporary systemic FK506 group. The autograft had significantly greater muscle mass recovery than all the other groups. In the ladder rung assay, the autograft, local FK506, and continuous systemic FK506 had similar levels of skilled locomotion performance, whereas the temporary systemic FK506 group had significanty better performance than all the other groups. The results of this study suggest that local delivery of FK506 can provide comparable immunosuppression and nerve regeneration outcomes as systemically delivered FK506.
Collapse
Affiliation(s)
- Brett Davis
- Department of Surgery, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| | - Susan Wojtalewicz
- Department of Surgery, University of Utah, Salt Lake City, Utah, United States of America
| | - Sierra Erickson
- Department of Surgery, University of Utah, Salt Lake City, Utah, United States of America
| | - Jacob Veith
- Department of Surgery, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew Simpson
- Department of Surgery, University of Utah, Salt Lake City, Utah, United States of America
| | - Himanshu Sant
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Jill Shea
- Department of Surgery, University of Utah, Salt Lake City, Utah, United States of America
| | - Bruce Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Jay Agarwal
- Department of Surgery, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
7
|
Smith DH, Burrell JC, Browne KD, Katiyar KS, Ezra MI, Dutton JL, Morand JP, Struzyna LA, Laimo FA, Chen HI, Wolf JA, Kaplan HM, Rosen JM, Ledebur HC, Zager EL, Ali ZS, Cullen DK. Tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs. SCIENCE ADVANCES 2022; 8:eabm3291. [PMID: 36332027 PMCID: PMC9635828 DOI: 10.1126/sciadv.abm3291] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Functional restoration following major peripheral nerve injury (PNI) is challenging, given slow axon growth rates and eventual regenerative pathway degradation in the absence of axons. We are developing tissue-engineered nerve grafts (TENGs) to simultaneously "bridge" missing nerve segments and "babysit" regenerative capacity by providing living axons to guide host axons and maintain the distal pathway. TENGs were biofabricated using porcine neurons and "stretch-grown" axon tracts. TENG neurons survived and elicited axon-facilitated axon regeneration to accelerate regrowth across both short (1 cm) and long (5 cm) segmental nerve defects in pigs. TENG axons also closely interacted with host Schwann cells to maintain proregenerative capacity. TENGs drove regeneration across 5-cm defects in both motor and mixed motor-sensory nerves, resulting in dense axon regeneration and electrophysiological recovery at levels similar to autograft repairs. This approach of accelerating axon regeneration while maintaining the pathway for long-distance regeneration may achieve recovery after currently unrepairable PNIs.
Collapse
Affiliation(s)
- Douglas H. Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical LLC, Philadelphia, PA, USA
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Kritika S. Katiyar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical LLC, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Mindy I. Ezra
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John L. Dutton
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph P. Morand
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A. Struzyna
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Franco A. Laimo
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - H. Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Hilton M. Kaplan
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, USA
| | - Joseph M. Rosen
- Division of Plastic Surgery, Dartmouth Hitchcock Medical Center, Dartmouth College, Lebanon, NH, USA
| | | | - Eric L. Zager
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zarina S. Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical LLC, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Barham M, Streppel M, Guntinas-Lichius O, Fulgham-Scott N, Vogt J, Neiss WF. Treatment With Nimodipine or FK506 After Facial Nerve Repair Neither Improves Accuracy of Reinnervation Nor Recovery of Mimetic Function in Rats. Front Neurosci 2022; 16:895076. [PMID: 35645727 PMCID: PMC9136327 DOI: 10.3389/fnins.2022.895076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Nimodipine and FK506 (Tacrolimus) are drugs that have been reported to accelerate peripheral nerve regeneration. We therefore tested these substances aiming to improve the final functional outcome of motoric reinnervation after facial nerve injury. Methods In 18 female rats, the transected facial nerve was repaired by an artificial nerve conduit. The rats were then treated with either placebo, nimodipine, or FK506, for 56 days. Facial motoneurons were pre-operatively double-labeled by Fluoro-Gold and again 56 days post-operation by Fast-Blue to measure the cytological accuracy of reinnervation. The whisking motion of the vibrissae was analyzed to assess the quality of functional recovery. Results On the non-operated side, 93–97% of those facial nerve motoneurons innervating the vibrissae were double-labeled. On the operated side, double-labeling only amounted to 38% (placebo), 40% (nimodipine), and 39% (FK506), indicating severe misdirection of reinnervation. Regardless of post-operative drug or placebo therapy, the whisking frequency reached 83–100% of the normal value (6.0 Hz), but whisking amplitude was reduced to 33–48% while whisking velocity reached 39–66% of the normal values. Compared to placebo, statistically neither nimodipine nor FK506 improved accuracy of reinnervation and function recovery. Conclusion Despite previous, positive data on the speed and quantity of axonal regeneration, nimodipine and FK506 do not improve the final functional outcome of motoric reinnervation in rats.
Collapse
Affiliation(s)
- Mohammed Barham
- Department II of Anatomy, Faculty of Medicine, University of Cologne and University Hospital of Cologne, Cologne, Germany
- *Correspondence: Mohammed Barham,
| | - Michael Streppel
- Department of Ear, Nose and Throat-Department (ENT), PAN-Clinic at Neumarkt, Cologne, Germany
| | | | - Nicole Fulgham-Scott
- Department I of Anatomy, Faculty of Medicine, University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - Johannes Vogt
- Department II of Anatomy, Faculty of Medicine, University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - Wolfram F. Neiss
- Department I of Anatomy, Faculty of Medicine, University of Cologne and University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Reconstruction of Critical Nerve Defects Using Allogenic Nerve Tissue: A Review of Current Approaches. Int J Mol Sci 2021; 22:ijms22073515. [PMID: 33805321 PMCID: PMC8036990 DOI: 10.3390/ijms22073515] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Regardless of the nerve defect length, nerve injury is a debilitating condition for the affected patient that results in loss of sensory and motor function. These functional impairments can have a profound impact on the patient’s quality of life. Surgical approaches for the treatment of short segment nerve defects are well-established. Autologous nerve transplantation, considered the gold standard, and the use of artificial nerve grafts are safe and successful procedures for short segment nerve defect reconstruction. Long segment nerve defects which extend 3.0 cm or more are more problematic for repair. Methods for reconstruction of long defects are limited. Artificial nerve grafts often fail to regenerate and autologous nerve grafts are limited in length and number. Cadaveric processed/unprocessed nerve allografts are a promising alternative in nerve surgery. This review gives a systematic overview on pre-clinical and clinical approaches in nerve allograft transplantation.
Collapse
|
10
|
Zuo KJ, Shafa G, Chan K, Zhang J, Hawkins C, Tajdaran K, Gordon T, Borschel GH. Local FK506 drug delivery enhances nerve regeneration through fresh, unprocessed peripheral nerve allografts. Exp Neurol 2021; 341:113680. [PMID: 33675777 DOI: 10.1016/j.expneurol.2021.113680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/29/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Nerve allografts offer many advantages in the reconstruction of peripheral nerve gaps: they retain their native microstructure, contain pro-regenerative Schwann cells, are widely available, and avoid donor site morbidity. Unfortunately, clinical use of nerve allografts is limited by the need for systemic immunosuppression and its adverse effects. To eliminate the toxicity of the systemic immunosuppressant FK506, we developed a local FK506 drug delivery system (DDS) to provide drug release over 28 days. The study objective was to investigate if the local FK506 DDS enhances nerve regeneration in a rodent model of nerve gap defect reconstruction with immunologically-disparate nerve allografts. METHODS In male Lewis rats, a common peroneal nerve gap defect was reconstructed with either a 20 mm nerve isograft from a donor Lewis rat or a 20 mm fresh, unprocessed nerve allograft from an immunologically incompatible donor ACI rat. After 4 weeks of survival, nerve regeneration was evaluated using retrograde neuronal labelling, quantitative histomorphometry, and serum cytokine profile. RESULTS Treatment with both systemic FK506 and the local FK506 DDS significantly improved motor and sensory neuronal regeneration, as well as histomorphometric indices including myelinated axon number. Rats with nerve allografts treated with either systemic or local FK506 had significantly reduced serum concentrations of the pro-inflammatory cytokine IL-12 compared to untreated vehicle control rats with nerve allografts. Serum FK506 levels were undetectable in rats with local FK506 DDS. INTERPRETATION The local FK506 DDS improved motor and sensory nerve regeneration through fresh nerve allografts to a level equal to that of either systemic FK506 or nerve isografting. This treatment may be clinically translatable in peripheral nerve reconstruction or vascularized composite allotransplantation.
Collapse
Affiliation(s)
- Kevin J Zuo
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Canada.
| | - Golsa Shafa
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada.
| | - Katelyn Chan
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Canada.
| | - Jennifer Zhang
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada.
| | - Cynthia Hawkins
- Division of Pathology, The Hospital for Sick Children, Toronto, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada.
| | - Kasra Tajdaran
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada.
| | - Tessa Gordon
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Canada; Program in Neuroscience, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada.
| | - Gregory H Borschel
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Canada; Program in Neuroscience, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
11
|
D. Alvites R, V. Branquinho M, Sousa AC, Zen F, Maurina M, Raimondo S, Mendonça C, Atayde L, Geuna S, Varejão AS, Maurício AC. Establishment of a Sheep Model for Hind Limb Peripheral Nerve Injury: Common Peroneal Nerve. Int J Mol Sci 2021; 22:ijms22031401. [PMID: 33573310 PMCID: PMC7866789 DOI: 10.3390/ijms22031401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Thousands of people worldwide suffer from peripheral nerve injuries and must deal daily with the resulting physiological and functional deficits. Recent advances in this field are still insufficient to guarantee adequate outcomes, and the development of new and compelling therapeutic options require the use of valid preclinical models that effectively replicate the characteristics and challenges associated with these injuries in humans. In this study, we established a sheep model for common peroneal nerve injuries that can be applied in preclinical research with the advantages associated with the use of large animal models. The anatomy of the common peroneal nerve and topographically related nerves, the functional consequences of its injury and a neurological examination directed at this nerve have been described. Furthermore, the surgical protocol for accessing the common peroneal nerve, the induction of different types of nerve damage and the application of possible therapeutic options were described. Finally, a preliminary morphological and stereological study was carried out to establish control values for the healthy common peroneal nerves regarding this animal model and to identify preliminary differences between therapeutic methods. This study allowed to define the described lateral incision as the best to access the common peroneal nerve, besides establishing 12 and 24 weeks as the minimum periods to study lesions of axonotmesis and neurotmesis, respectively, in this specie. The post-mortem evaluation of the harvested nerves allowed to register stereological values for healthy common peroneal nerves to be used as controls in future studies, and to establish preliminary values associated with the therapeutic performance of the different applied options, although limited by a small sample size, thus requiring further validation studies. Finally, this study demonstrated that the sheep is a valid model of peripheral nerve injury to be used in pre-clinical and translational works and to evaluate the efficacy and safety of nerve injury therapeutic options before its clinical application in humans and veterinary patients.
Collapse
Affiliation(s)
- Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (C.M.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Mariana V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (C.M.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana C. Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (C.M.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Federica Zen
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy; (F.Z.); (M.M.); (S.R.); (S.G.)
| | - Monica Maurina
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy; (F.Z.); (M.M.); (S.R.); (S.G.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy; (F.Z.); (M.M.); (S.R.); (S.G.)
| | - Carla Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (C.M.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (C.M.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy; (F.Z.); (M.M.); (S.R.); (S.G.)
| | - Artur S.P. Varejão
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (C.M.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Correspondence: or
| |
Collapse
|
12
|
Burrell JC, Browne KD, Dutton JL, Laimo FA, Das S, Brown DP, Roberts S, Petrov D, Ali Z, Ledebur HC, Rosen JM, Kaplan HM, Wolf JA, Smith DH, Chen HI, Cullen DK. A Porcine Model of Peripheral Nerve Injury Enabling Ultra-Long Regenerative Distances: Surgical Approach, Recovery Kinetics, and Clinical Relevance. Neurosurgery 2021; 87:833-846. [PMID: 32392341 DOI: 10.1093/neuros/nyaa106] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Millions of Americans experience residual deficits from traumatic peripheral nerve injury (PNI). Despite advancements in surgical technique, repair typically results in poor functional outcomes due to prolonged periods of denervation resulting from long regenerative distances coupled with slow rates of axonal regeneration. Novel surgical solutions require valid preclinical models that adequately replicate the key challenges of clinical PNI. OBJECTIVE To develop a preclinical model of PNI in swine that addresses 2 challenging, clinically relevant PNI scenarios: long segmental defects (≥5 cm) and ultra-long regenerative distances (20-27 cm). Thus, we aim to demonstrate that a porcine model of major PNI is suitable as a potential framework to evaluate novel regenerative strategies prior to clinical deployment. METHODS A 5-cm-long common peroneal nerve or deep peroneal nerve injury was repaired using a saphenous nerve or sural nerve autograft, respectively. Histological and electrophysiological assessments were performed at 9 to 12 mo post repair to evaluate nerve regeneration and functional recovery. Relevant anatomy, surgical approach, and functional/histological outcomes were characterized for both repair techniques. RESULTS Axons regenerated across the repair zone and were identified in the distal stump. Electrophysiological recordings confirmed these findings and suggested regenerating axons reinnervated target muscles. CONCLUSION The models presented herein provide opportunities to investigate peripheral nerve regeneration using different nerves tailored for specific mechanisms of interest, such as nerve modality (motor, sensory, and mixed fiber composition), injury length (short/long gap), and total regenerative distance (proximal/distal injury).
Collapse
Affiliation(s)
- Justin C Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin D Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - John L Dutton
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Franco A Laimo
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Daniel P Brown
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Sanford Roberts
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Dmitriy Petrov
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Zarina Ali
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Joseph M Rosen
- Division of Plastic Surgery, Dartmouth-Hitchcock Medical Center, Dartmouth College, Lebanon, New Hampshire
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers University, New Brunswick, New Jersey
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Axonova Medical, Philadelphia, Pennsylvania
| | - H Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania.,Axonova Medical, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Han LW, Xu G, Guo MY, Chang YA, Zhang Y, Zhao YT, Li ZH. Comparison of SB-SDS and other decellularization methods for the acellular nerve graft: Biological evaluation and nerve repair in vitro and in vivo. Synapse 2019; 74:e22143. [PMID: 31706260 DOI: 10.1002/syn.22143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
We aimed to compare the performance of acellular nerves prepared by different decellularization methods, screening out the optimal decellularization protocol, repairing the sciatic nerve defects in rats by the allogeneic transplantation, and evaluating the effect of regenerative nerve on the function reconstruction. The Sondell, SB-SDS, TnBP, and the high/low permeation methods were used to decellularize donor nerves. Nerves without any treatment were as the control group. The histological results were evaluated by HE staining and toluidine blue (TB) staining. The proliferation activity of L929 cells was detected by CCK-8 assay. The adhesion of Schwann cells was observed and quantified by SEM. Balb/c mice were used to evaluate the cellular and humoral immunogenicity of the nerve scaffolds. The rat sciatic nerve defect model was applied to observe the repair effect of acellular nerve scaffold in vivo. To SB-SDS group, it remained the original state of the nerves, with no observed nucleus and axons, the neurotoxicity grade detected by CCK-8 being almost 0, and it kept the largest number of Schwann cells adhered to the acellular nerve and the better morphology. Further, it showed that the selected SB-SDS rats acellular nerve scaffold could promote the nerve repair of the rats by HE staining and TB staining. We could conclude that the acellular nerve matrix prepared by the SB-SDS method effectively removes the cellular components in the nerve tissue and retains the main components of the extracellular matrix of the nerve tissue, whose rats decellularized nerve scaffold could promote the sciatic nerve repair better.
Collapse
Affiliation(s)
- Li-Wei Han
- Department of Orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Gang Xu
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, People's Republic of China.,Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Mei-Yu Guo
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, People's Republic of China.,Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yv-Ang Chang
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, People's Republic of China.,Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, People's Republic of China.,Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yan-Tao Zhao
- Department of Orthopaedics, Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Zhong-Hai Li
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, People's Republic of China.,Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
14
|
Saffari TM, Bedar M, Zuidam JM, Shin AY, Baan CC, Hesselink DA, Hundepool CA. Exploring the neuroregenerative potential of tacrolimus. Expert Rev Clin Pharmacol 2019; 12:1047-1057. [DOI: 10.1080/17512433.2019.1675507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- T. M. Saffari
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - M. Bedar
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - J. M. Zuidam
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A. Y. Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - C. C. Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D. A. Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C. A. Hundepool
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Nerve grafting for peripheral nerve injuries with extended defect sizes. Wien Med Wochenschr 2018; 169:240-251. [PMID: 30547373 PMCID: PMC6538587 DOI: 10.1007/s10354-018-0675-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022]
Abstract
Artificial and non-artificial nerve grafts are the gold standard in peripheral nerve reconstruction in cases with extensive loss of nerve tissue, particularly where a direct end-to-end suture or an autologous nerve graft is inauspicious. Different materials are marketed and approved by the US Food and Drug Administration (FDA) for peripheral nerve graft reconstruction. The most frequently used materials are collagen and poly(DL-lactide-ε-caprolactone). Only one human nerve allograft is listed for peripheral nerve reconstruction by the FDA. All marketed nerve grafts are able to demonstrate sufficient nerve regeneration over small distances not exceeding 3.0 cm. A key question in the field is whether nerve reconstruction on large defect lengths extending 4.0 cm or more is possible. This review gives a summary of current clinical and experimental approaches in peripheral nerve surgery using artificial and non-artificial nerve grafts in short and long distance nerve defects. Strategies to extend nerve graft lengths for long nerve defects, such as enhancing axonal regeneration, include the additional application of Schwann cells, mesenchymal stem cells or supporting co-factors like growth factors on defect sizes between 4.0 and 8.0 cm.
Collapse
|
16
|
Kim JP, Hundepool CA, Friedrich PF, Moran SL, Bishop AT, Shin AY. The effect of full dose composite tissue allotransplantation immunosuppression on allograft motor nerve regeneration in a rat sciatic nerve model. Microsurgery 2017; 38:66-75. [PMID: 28792625 DOI: 10.1002/micr.30211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/01/2017] [Accepted: 07/21/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND The purpose of this study was to identify which triple immunosuppressive protocols, currently used for vascularized composite allotransplantation in the clinic, will have the best effect on motor function recovery following nerve allograft reconstruction. METHODS Eighty-eight Lewis rats underwent a 1-cm sciatic nerve allograft transplantation and skin graft from 44 Brown-Norway rats. Group I received 0.9% isotonic saline (control); Group II, 2 mg/kg FK506; Group III, 1 mg/kg FK506 with 15 mg/kg mycophenolate mofetil (MMF); and Group IV, 2 mg/kg FK506 with 30 mg/kg MMF and prednisone. Each group consisted of 11 rats. After 12 weeks, motor function recovery was evaluated with isometric tetanic force, muscle mass, ankle contracture angle, electrophysiology, and nerve histomorphometry. Adequacy of immunosuppression was monitored with the transplanted skin graft. All data are expressed as a percentage of the contralateral side. RESULTS Isometric tetanic force showed significantly better functional recovery in all groups treated with immunosuppression compared to control. Within the immunosuppression groups no significant difference was found: 42.1 ± 6.4% (Group I), 56.1 ± 12.4% (Group II), 58.4 ± 10.7% (Group III), and 61.3 ± 11.2% (Group IV). Group IV was superior to all other groups regarding ankle contracture (P < .05) and electrophysiology (P < .001). Skin graft rejection occurred in 41 and 0% (Groups III and IV, respectively). CONCLUSIONS FK506 significantly enhanced motor recovery after allograft reconstruction. This effect was comparable between combination treatment (low-dose FK506 and MMF) and triple therapy (high-dose FK506 and MMF plus prednisolone). However, triple therapy was more effective in suppressing skin rejection.
Collapse
Affiliation(s)
- Jong Pil Kim
- Dankook University College of Medicine, Cheonan, South Korea
| | | | | | - Steven L Moran
- Division of Hand Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Allen T Bishop
- Microvascular Research Laboratory, Mayo Clinic, Rochester, Minnesota.,Division of Hand Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Alexander Y Shin
- Microvascular Research Laboratory, Mayo Clinic, Rochester, Minnesota.,Division of Hand Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Li YJ, Zhao BL, Lv HZ, Qin ZG, Luo M. Acellular allogeneic nerve grafting combined with bone marrow mesenchymal stem cell transplantation for the repair of long-segment sciatic nerve defects: biomechanics and validation of mathematical models. Neural Regen Res 2016; 11:1322-6. [PMID: 27651781 PMCID: PMC5020832 DOI: 10.4103/1673-5374.189198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We hypothesized that a chemically extracted acellular allogeneic nerve graft used in combination with bone marrow mesenchymal stem cell transplantation would be an effective treatment for long-segment sciatic nerve defects. To test this, we established rabbit models of 30 mm sciatic nerve defects, and treated them using either an autograft or a chemically decellularized allogeneic nerve graft with or without simultaneous transplantation of bone marrow mesenchymal stem cells. We compared the tensile properties, electrophysiological function and morphology of the damaged nerve in each group. Sciatic nerves repaired by the allogeneic nerve graft combined with stem cell transplantation showed better recovery than those repaired by the acellular allogeneic nerve graft alone, and produced similar results to those observed with the autograft. These findings confirm that a chemically extracted acellular allogeneic nerve graft combined with transplantation of bone marrow mesenchymal stem cells is an effective method of repairing long-segment sciatic nerve defects.
Collapse
Affiliation(s)
- Ya-Jun Li
- School of Mathematics, Jilin University, Changchun, Jilin Province, China
| | - Bao-Lin Zhao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hao-Ze Lv
- Department of Clinical Medicine, School of Clinical Medicine, Jilin University, Changchun, Jilin Province, China
| | - Zhi-Gang Qin
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Min Luo
- Department of Pain, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
18
|
Bilateral hand transplantation: Functional benefits assessment in five patients with a mean follow-up of 7.6 years (range 4–13 years). J Plast Reconstr Aesthet Surg 2015; 68:1171-83. [DOI: 10.1016/j.bjps.2015.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 01/10/2023]
|
19
|
Sönmez E, Siemionow MZ. Nerve Allograft Transplantation. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Struzyna LA, Katiyar K, Cullen DK. Living scaffolds for neuroregeneration. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2014; 18:308-318. [PMID: 28736499 PMCID: PMC5520662 DOI: 10.1016/j.cossms.2014.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Neural tissue engineers are exploiting key mechanisms responsible for neural cell migration and axonal path finding during embryonic development to create living scaffolds for neuroregeneration following injury and disease. These mechanisms involve the combined use of haptotactic, chemotactic, and mechanical cues to direct cell movement and re-growth. Living scaffolds provide these cues through the use of cells engineered in a predefined architecture, generally in combination with biomaterial strategies. Although several hurdles exist in the implementation of living regenerative scaffolds, there are considerable therapeutic advantages to using living cells in conjunction with biomaterials. The leading contemporary living scaffolds for neurorepair are utilizing aligned glial cells and neuronal/axonal tracts to direct regenerating axons across damaged tissue to appropriate targets, and in some cases to directly replace the function of lost cells. Future advances in technology, including the use of exogenous stimulation and genetically engineered stem cells, will further the potential of living scaffolds and drive a new era of personalized medicine for neuroregeneration.
Collapse
Affiliation(s)
- Laura A Struzyna
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kritika Katiyar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States
| |
Collapse
|
21
|
Song Y, Wang Z, Wang Z, Zhang H, Li X, Chen B. Use of FK506 and bone marrow mesenchymal stem cells for rat hind limb allografts. Neural Regen Res 2014; 7:2681-8. [PMID: 25337114 PMCID: PMC4200736 DOI: 10.3969/j.issn.1673-5374.2012.34.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023] Open
Abstract
Dark Agouti rat donor hind limbs were orthotopically transplanted into Lewis rat recipients to verify the effects of bone marrow mesenchymal stem cells on neural regeneration and functional recovery of allotransplanted limbs in the microenvironment of immunotolerance. bone marrow mesenchymal stem cells were intramuscularly (gluteus maximus) injected with FK506 (tacrolimus) daily, and were transplanted to the injured nerves. Results indicated that the allograft group not receiving therapy showed severe rejection, with transplanted limbs detaching at 10 days after transplantation with complete necrosis. The number of myelinated axons and Schwann cells in the FK506 and FK506 + bone marrow mesenchymal stem cells groups were significantly increased. We observed a lesser degree of gastrocnemius muscle degeneration, and increased polymorphic fibers along with other pathological changes in the FK506 + bone marrow mesenchymal stem cells group. The FK506 + bone marrow mesenchymal stem cells group showed significantly better recovery than the autograft and FK506 groups. The results demonstrated that FK506 improved the immune microenvironment. FK506 combined with bone marrow mesenchymal stem cells significantly promoted sciatic nerve regeneration, and improved sensory recovery and motor function in hind limb allotransplant.
Collapse
Affiliation(s)
- Youxin Song
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Zhujun Wang
- Department of Research, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Zhixue Wang
- Department of Anesthesia, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Hong Zhang
- Department of Surgery, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Xiaohui Li
- Department of Research, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Bin Chen
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| |
Collapse
|
22
|
Abstract
BACKGROUND The rat model has had limited utility for the study of long nerve gaps because of the small size of the animal. The authors sought to develop a simple, effective rat model for reconstruction of long nerve gap defects. METHODS Fifteen rats had a sciatic nerve transection followed by reconstruction. Positive control rats received a 1-cm isograft. Negative control rats received a 3.5-cm hollow silicone conduit, and experimental rats received a 4-cm isograft; these were implanted in a looped configuration to accommodate the long length. Nerves were harvested at 6 weeks (1-cm grafts) and 12 weeks (3.5-cm conduits and 4-cm grafts) for histologic and histomorphometric evaluation. RESULTS The 1-cm and 4-cm isograft groups showed robust regeneration in the distal nerve segment. The 3.5-cm hollow conduits showed absolutely no initiation of nerve regeneration. Histomorphometric values were as expected for the specified gap length. CONCLUSIONS This study describes a simple and effective long nerve gap rat model for experiments on nerve grafts and nerve conduits. The long nerve graft model can be useful for studying techniques such as processed nerve grafts, which are currently a topic of frequent investigation. The 3.5-cm hollow conduit "no-regrowth" long-gap model is ideal for investigating conduit-based tissue-engineering solutions for long-gap nerve repair. The authors' approach overcomes the size limitation of the small animal while exploiting the features that make the rat the model of choice for preliminary nerve studies.
Collapse
|
23
|
Rau CS, Yang JCS, Wu SC, Chen YC, Lu TH, Lin MW, Wu YC, Tzeng SL, Wu CJ, Hsieh CH. Profiling circulating microRNA expression in a mouse model of nerve allotransplantation. J Biomed Sci 2013; 20:64. [PMID: 24011263 PMCID: PMC3844622 DOI: 10.1186/1423-0127-20-64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/13/2013] [Indexed: 01/09/2023] Open
Abstract
Background The lack of noninvasive biomarkers of rejection remains a challenge in the accurate monitoring of deeply buried nerve allografts and precludes optimization of therapeutic intervention. This study aimed to establish the expression profile of circulating microRNAs (miRNAs) during nerve allotransplantation with or without immunosuppression. Results Balb/c mice were randomized into 3 experimental groups, that is, (1) untreated isograft (Balb/c → Balb/c), (2) untreated allograft (C57BL/6 → Balb/c), and (3) allograft (C57BL/6 → Balb/c) with FK506 immunosuppression. A 1-cm Balb/c or C57BL/6 donor sciatic nerve graft was transplanted into sciatic nerve gaps created in recipient mice. At 1, 3, 7, 10, and 14 d after nerve transplantation, nerve grafts, whole blood, and sera were obtained for miRNA expression analysis with an miRNA array and subsequent validation with quantitative real-time PCR (qRT-PCR). Three circulating miRNAs (miR-320, miR-762, and miR-423-5p) were identified in the whole blood and serum of the mice receiving an allograft with FK506 immunosuppression, within 2 weeks after nerve allotransplantation. However, these 3 circulating miRNAs were not expressed in the nerve grafts. The expression of all these 3 upregulated circulating miRNAs significantly decreased at 2, 4, and 6 d after discontinuation of FK506 immunosuppression. In the nerve graft, miR-125-3b and miR-672 were significantly upregulated in the mice that received an allograft with FK506 only at 7 d after nerve allotransplantation. Conclusions We identified the circulating miR-320, miR-762, and miR-423-5p as potential biomarkers for monitoring the immunosuppression status of the nerve allograft. However, further research is required to investigate the mechanism behind the dysregulation of these markers and to evaluate their prognostic value in nerve allotransplantation.
Collapse
Affiliation(s)
- Cheng-Shyuan Rau
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Center for Vascularized Composite Allotransplantation, No, 123, Ta-Pei Road, Kaohsiung City, Niao-Sung District, 833, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Johnson PJ, Wood MD, Moore AM, Mackinnon SE. Tissue engineered constructs for peripheral nerve surgery. Eur Surg 2013; 45. [PMID: 24385980 DOI: 10.1007/s10353-013-0205-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tissue engineering has been defined as "an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ". Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump. METHODS A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal. RESULTS Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons. CONCLUSIONS The field of tissue engineering should consider its challenge to not only meet the autograft "gold standard" but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft.
Collapse
Affiliation(s)
- P J Johnson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - M D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - A M Moore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - S E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| |
Collapse
|
25
|
Nerve regeneration in rat limb allografts: evaluation of acute rejection rescue. Plast Reconstr Surg 2013; 131:499e-511e. [PMID: 23542267 DOI: 10.1097/prs.0b013e31828275b7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Successful nerve regeneration is critical to the functional success of composite tissue allografts. The present study was designed to characterize the effect of acute rejection on nerve regeneration and functional recovery in the setting of orthotopic limb transplantation. METHODS A rat orthotopic limb transplantation model was used to evaluate the effects of acute rejection on nerve regeneration and motor recovery. Continuous administration of FK506 (full suppression), administration of FK506 for the first 8 of 12 weeks (late rejection), or delayed administration of FK506/dexamethasone following noticeable rejection (early rejection) was used to preclude or induce rejection following limb transplantation. Twelve weeks postoperatively, nerve regeneration was assessed by means of histomorphometric analysis of explanted sciatic nerve, and motor recovery was assessed by means of evoked muscle force measurement in extensor digitorum longus muscle. RESULTS A single episode of acute rejection that occurs immediately or late after reconstruction does not significantly alter the number of regenerating axonal fibers. Acute rejection occurring late after reconstruction adversely affects extensor digitorum longus muscle function in composite tissue allografts. CONCLUSIONS Collected data reinforce that adequate immunosuppressant administration in cases of allogeneic limb transplantation ensures levels of nerve regeneration and motor functional recovery equivalent to that of syngeneic transplants. Prompt rescue following acute rejection was further demonstrated not to significantly affect nerve regeneration and functional recovery postoperatively. However, instances of acute rejection that occur late after reconstruction affect graft function. In total, the present study begins to characterize the effect of immunosuppression regimens on nerve regeneration and motor recovery in the setting of composite tissue allografts.
Collapse
|
26
|
Functional Outcomes following Multiple Acute Rejections in Experimental Vascularized Composite Allotransplantation. Plast Reconstr Surg 2013; 131:720e-730e. [DOI: 10.1097/prs.0b013e3182879e85] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Hautz T, Zelger BG, Weißenbacher A, Zelger B, Brandacher G, Landin L, Morelon E, Kanitakis J, Jablecki J, Lee WA, Pratschke J, Schneeberger S. Standardizing skin biopsy sampling to assess rejection in vascularized composite allotransplantation. Clin Transplant 2013; 27:E81-90. [DOI: 10.1111/ctr.12086] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Theresa Hautz
- Department of Visceral, Transplant and Thoracic Surgery; Center for Operative Medicine; Innsbruck Medical University; Innsbruck; Austria
| | - Bettina G. Zelger
- Department of Pathology; Innsbruck Medical University; Innsbruck; Austria
| | - Annemarie Weißenbacher
- Department of Visceral, Transplant and Thoracic Surgery; Center for Operative Medicine; Innsbruck Medical University; Innsbruck; Austria
| | - Bernhard Zelger
- Department of Dermatology; Innsbruck Medical University; Innsbruck; Austria
| | | | - Luis Landin
- Division of Plastic and Reconstructive Surgery; “La Paz” University Hospital; Madrid; Spain
| | - Emmanuel Morelon
- Department of Transplantation; Edouard Herriot Hospital; Hospices Civils de Lyon; Université de Lyon; Lyon; France
| | - Jean Kanitakis
- Department of Dermatology; Edouard Herriot Hospital; Hospices Civils de Lyon; Lyon; France
| | - Jerzy Jablecki
- Subdepartment of Replantation of Limbs; St Jadwiga Hospital; Trzebnica; Poland
| | - W.P. Andrew Lee
- Department of Plastic and Reconstructive Surgery; Johns Hopkins University School of Medicine; Baltimore; MD; USA
| | - Johann Pratschke
- Department of Visceral, Transplant and Thoracic Surgery; Center for Operative Medicine; Innsbruck Medical University; Innsbruck; Austria
| | | |
Collapse
|
28
|
Geldanamycin accelerated peripheral nerve regeneration in comparison to FK-506 in vivo. Neuroscience 2012; 223:114-23. [DOI: 10.1016/j.neuroscience.2012.07.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/21/2022]
|
29
|
Fox IK, Brenner MJ, Johnson PJ, Hunter DA, Mackinnon SE. Axonal regeneration and motor neuron survival after microsurgical nerve reconstruction. Microsurgery 2012; 32:552-62. [PMID: 22806696 DOI: 10.1002/micr.22036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/08/2012] [Indexed: 01/11/2023]
Abstract
Rodent models are used extensively for studying nerve regeneration, but little is known about how sprouting and pruning influence peripheral nerve fiber counts and motor neuron pools. The purpose of this study was to identify fluctuations in nerve regeneration and neuronal survival over time. One hundred and forty-four Lewis rats were randomized to end-to-end repair or nerve grafting (1.5 cm graft) after sciatic nerve transection. Quantitative histomorphometry and retrograde labeling of motor neurons were performed at 1, 3, 6, 9, 12, and 24 months and supplemented by electron microscopy. Fiber counts and motor neuron counts increased between 1 and 3 months, followed by plateau. End-to-end repair resulted in persistently higher fiber counts compared to the grafting for all time points (P < 0.05). Percent neural tissue and myelin width increased with time while fibrin debris dissipated. In conclusion, these data detail the natural history of regeneration and demonstrate that overall fiber counts may remain stable despite pruning.
Collapse
Affiliation(s)
- Ida K Fox
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
30
|
Rodriguez-Lorenzo A, Audolfsson T, Rozen S, Kildal M, Nowinski D. Supraorbitary to infraorbitary nerve transfer for restoration of midface sensation in face transplantation: Cadaver feasibility study. Microsurgery 2012; 32:309-13. [DOI: 10.1002/micr.21944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/04/2011] [Accepted: 11/09/2011] [Indexed: 11/06/2022]
|
31
|
Landin L, Bonastre J, Casado-Sanchez C, Diez J, Ninkovic M, Lanzetta M, del Bene M, Schneeberger S, Hautz T, Lovic A, Leyva F, García-de-Lorenzo A, Casado-Perez C. Outcomes with respect to disabilities of the upper limb after hand allograft transplantation: a systematic review. Transpl Int 2012; 25:424-32. [PMID: 22332605 DOI: 10.1111/j.1432-2277.2012.01433.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aim of this work is to compare disabilities of the upper limb before and after hand allograft transplantation (HAT), and to describe the side effects of immunosuppressive (IS) agents given to recipients of hand allografts. Clinical cases of HAT published between 1999 and 2011 in English, French, or German were reviewed systematically, with emphasis on comparing disabilities of the arm, shoulder and hand (DASH) scores before and after transplantation. Duration of ischemia, extent of amputation, and time since amputation were evaluated for their effect on intrinsic musculature function. Infectious, metabolic, and oncological complications because of IS therapy were recorded. Twenty-eight patients were reported in 56 clinical manuscripts. Among these patients, disabilities of the upper limb dropped by a mean of 27.6 (±19.04) points on the DASH score after HAT (P = 0.005). Lower DASH scores (P = 0.036) were recorded after secondary surgery on hand allografts. The presence of intrinsic muscle function was observed in 57% of the recipients. Duration of ischemia, extent of transplantation, and time since amputation were not associated statistically with the return of intrinsic musculature function. Three grafts were lost to follow-up because of noncompliance with immunosuppression, rejection, and arterial thrombosis, respectively. Fifty-two complications caused by IS agents were reported, and they were successfully managed medically or surgically. HAT recipients showed notable functional gains, but most complications resulted from the IS protocols.
Collapse
Affiliation(s)
- Luis Landin
- Division of Plastic and Reconstructive Surgery, University Hospital La Paz, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yan Y, Sun HH, Hunter DA, Mackinnon SE, Johnson PJ. Efficacy of Short-Term FK506 Administration on Accelerating Nerve Regeneration. Neurorehabil Neural Repair 2012; 26:570-80. [DOI: 10.1177/1545968311431965] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background. The slow rate of nerve regeneration following injury can cause extended muscle denervation, leading to irreversible muscle atrophy, fibrosis, and destruction of motor endplates. The immunosuppressant FK506 (tacrolimus) has been shown to accelerate the rate of nerve regeneration and functional recovery. However, the toxic and immunosuppressive properties of FK506 make it undesirable for long-term use. Objective. To take advantage of the regeneration-enhancing effects of FK506 but avoid the potential adverse effects of long-term administration, the current study evaluates and quantifies the efficacy of short-term FK506 treatment in rat models. Methods. Clinically relevant transection and graft models were evaluated, and walking track analysis (WTA) was used to evaluate functional recovery. FK506 was administered for 5 and 10 days post transection injury and 10 and 20 days post graft injury. Both groups involving a short course were compared with the continuous administration group. Results. In the transection model, FK506 was administered for 5 and 10 days postoperatively. WTA demonstrated that 10 days of FK506 administration was sufficient to reduce functional recovery time by 29% compared with negative controls. In the graft model, FK506 was administered for 10 and 20 days postoperatively. Short treatment courses of 10 and 20 days reduced recovery time by 15% and 21%, respectively, compared with negative controls. Analysis of blood–nerve barrier (BNB) integrity demonstrated that FK506 facilitated early reconstitution of the BNB. Conclusions. The results of this study indicate that short-term FK506 delivery following nerve injury imparts a significant therapeutic effect.
Collapse
Affiliation(s)
- Ying Yan
- Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Hank H. Sun
- Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Daniel A. Hunter
- Washington University in St Louis School of Medicine, St Louis, MO, USA
| | | | - Philip J. Johnson
- Washington University in St Louis School of Medicine, St Louis, MO, USA
| |
Collapse
|
33
|
Yan Y, Sun HH, Mackinnon SE, Johnson PJ. Evaluation of peripheral nerve regeneration via in vivo serial transcutaneous imaging using transgenic Thy1-YFP mice. Exp Neurol 2011; 232:7-14. [PMID: 21763310 DOI: 10.1016/j.expneurol.2011.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/23/2011] [Accepted: 06/23/2011] [Indexed: 12/28/2022]
Abstract
This study uses the saphenous nerve crush model in Thy1-YFP mice and serial transcutaneous imaging to evaluate the rate of nerve regeneration under various FK-506 (tacrolimus) dosing regimens and in the presence of transgenic overexpression of glial cell line-derived neurotrophic factor (GDNF). Thy1-YFP transgenic mice received saphenous nerve crush and were monitored for axonal regeneration via transcutaneous imaging for 7 days. Group A received no FK-506. Groups B and C received FK-506 at 2 or 0.5 mg/kg/day, starting three days before injury (preload). Groups D and E received FK-506 at 2 or 0.5 mg/kg/day, starting on the day of injury. Group F consisted of double transgenic mice with central overexpression of GDNF by CNS astrocytes (GFAP-GDNF/Thy1-YFP). Length and rate of axonal regeneration were measured and calculated over time. Regardless of concentration, FK-506 preload (Groups B and C) improved length and rate of axonal outgrowth compared with controls (Group A) and no preload (Groups D and E). Surprisingly, central overexpression of GDNF (GFAP-GDNF) delayed and stunted axonal outgrowth. Saphenous nerve crush in Thy1-YFP mice represents a viable model for timely evaluation of therapeutic strategies affecting the rate of nerve regeneration. FK-506 administered three days prior to injury accelerates axonal regeneration beyond injury conditioned regeneration alone and may serve as a reliable positive control for the model. GDNF overexpression in the CNS impedes early axonal outgrowth.
Collapse
Affiliation(s)
- Ying Yan
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Low-Dose FK506 After Contralateral C7 Transfer to the Musculocutaneous Nerve Using Two Different Tubes. Ann Plast Surg 2010; 64:622-31. [DOI: 10.1097/sap.0b013e3181b6aae1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Kawamura DH, Johnson PJ, Moore AM, Magill CK, Hunter DA, Ray WZ, Tung THH, Mackinnon SE. Matching of motor-sensory modality in the rodent femoral nerve model shows no enhanced effect on peripheral nerve regeneration. Exp Neurol 2010; 223:496-504. [PMID: 20122927 DOI: 10.1016/j.expneurol.2010.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/21/2010] [Accepted: 01/23/2010] [Indexed: 11/27/2022]
Abstract
The treatment of peripheral nerve injuries with nerve gaps largely consists of autologous nerve grafting utilizing sensory nerve donors. Underlying this clinical practice is the assumption that sensory autografts provide a suitable substrate for motoneuron regeneration, thereby facilitating motor endplate reinnervation and functional recovery. This study examined the role of nerve graft modality on axonal regeneration, comparing motor nerve regeneration through motor, sensory, and mixed nerve isografts in the Lewis rat. A total of 100 rats underwent grafting of the motor or sensory branch of the femoral nerve with histomorphometric analysis performed after 5, 6, or 7 weeks. Analysis demonstrated similar nerve regeneration in motor, sensory, and mixed nerve grafts at all three time points. These data indicate that matching of motor-sensory modality in the rat femoral nerve does not confer improved axonal regeneration through nerve isografts.
Collapse
Affiliation(s)
- David H Kawamura
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Ave, St. Louis, MO 63110-1010, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kasukurthi R, Brenner MJ, Moore AM, Moradzadeh A, Ray WZ, Santosa KB, Mackinnon SE, Hunter DA. Transcardial perfusion versus immersion fixation for assessment of peripheral nerve regeneration. J Neurosci Methods 2009; 184:303-9. [DOI: 10.1016/j.jneumeth.2009.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/22/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
|
38
|
Moore AM, Ray WZ, Chenard KE, Tung T, Mackinnon SE. Nerve allotransplantation as it pertains to composite tissue transplantation. Hand (N Y) 2009; 4:239-44. [PMID: 19306048 PMCID: PMC2724627 DOI: 10.1007/s11552-009-9183-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 11/06/2008] [Indexed: 12/29/2022]
Abstract
Nerve allografts provide a temporary scaffold for host nerve regeneration and allow for the repair of significant segmental nerve injuries. From rodent, large animal, and nonhuman primate studies, as well as clinical experience, nerve allografts, with the use of immunosuppression, have the capacity to provide equal regeneration and function to that of an autograft. In contrast to solid organ transplantation and composite tissue transfers, nerve allograft transplantation requires only temporary immunosuppression. Furthermore, nerve allograft rejection is difficult to assess, as the nerves are surgically buried and are without an immediate functional endpoint to monitor. In this article, we review what we know about peripheral nerve allograft transplantation from three decades of experience and apply our current understanding of nerve regeneration to the emerging field of composite tissue transplantation.
Collapse
Affiliation(s)
- Amy M. Moore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 S. Euclid Avenue, St. Louis, MO 63110 USA
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63116 USA
| | - Kristofer E. Chenard
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 S. Euclid Avenue, St. Louis, MO 63110 USA
| | - Thomas Tung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 S. Euclid Avenue, St. Louis, MO 63110 USA
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 S. Euclid Avenue, St. Louis, MO 63110 USA
| |
Collapse
|
39
|
Song JW, Yang LJ, Russell SM. Peripheral nerve: what's new in basic science laboratories. Neurosurg Clin N Am 2009; 20:121-31, viii. [PMID: 19064185 DOI: 10.1016/j.nec.2008.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Peripheral nerve regeneration research has unfolded a wealth of basic science knowledge in the last century. Today, that knowledge has become the fundamental groundwork for evolving clinical applications to treat peripheral nerve defects. This article discusses two clinical applications that have been investigated thoroughly in the laboratory setting for decades and recently tested in the clinical setting: nerve allotransplantation to graft nerve defects, and brief electrical stimulation to promote nerve regeneration. It also discusses the generation of Thy-1-XFP transgenic mice, which express fluorescent proteins in the nervous system and provide new avenues for investigating peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jae W Song
- Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
40
|
Chapter 18: Enhancement of nerve regeneration and recovery by immunosuppressive agents. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:347-62. [PMID: 19682647 DOI: 10.1016/s0074-7742(09)87018-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clinically, little can be done to induce restoration of good to excellent neurological function following nervous system trauma, and time is required before an effective technique is developed and applied clinically. However, there are novel techniques that have not been tested experimentally or clinically that may induce significantly faster, reliable, and extensive neurological recovery following nervous system trauma than is presently possible, even for techniques currently being tested on animal models. To repair peripheral nerves following trauma in which a length of the nerve pathway is destroyed, many clinicians consider autologous sensory nerve grafts to be the "gold standard" for inducing neurological recovery. However, this technique has severe limitations, such as being effective only across gaps less than 2 cm, for repairs performed less than 2 months posttrauma, and in young patients. As a consequence, many patients suffer permanent neurological deficits or recover only limited neurological function, and they frequently develop irreversible neuropathic pain. This review examines the clinical role that immunosuppressants might play, in the presence or absence of autologous, allografts, or xenografts, in increasing the rate, success, and extent of neurological recovery following nervous system trauma.
Collapse
|
41
|
Tos P, Ronchi G, Papalia I, Sallen V, Legagneux J, Geuna S, Giacobini‐Robecchi M. Chapter 4 Methods and Protocols in Peripheral Nerve Regeneration Experimental Research: Part I—Experimental Models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:47-79. [DOI: 10.1016/s0074-7742(09)87004-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Siemionow M, Brzezicki G. Chapter 8: Current techniques and concepts in peripheral nerve repair. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:141-72. [PMID: 19682637 DOI: 10.1016/s0074-7742(09)87008-6] [Citation(s) in RCA: 301] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the progress in understanding the pathophysiology of peripheral nervous system injury and regeneration, as well as advancements in microsurgical techniques, peripheral nerve injuries are still a major challenge for reconstructive surgeons. Thorough knowledge of anatomy, pathophysiology, and surgical reconstruction is a prerequisite of proper peripheral nerve injury management. This chapter reviews the currently available surgical treatment options for different types of nerve injuries in clinical conditions. In overview of direct nerve repair, various end-to-end coaptation techniques and the role of end-to-side repair for proximal nerve injuries is described. When primary repair cannot be performed without undue tension, nerve grafting or tubulization techniques are required. Current gold standard for bridging nerve gaps is nerve autografting. However, disadvantages of this approach, such as donor site morbidity and limited length of available graft material encouraged the search for alternative means of nerve gap reconstruction. Nerve allografting was introduced for repair of extensive nerve injuries. Tubulization techniques with natural or artificial conduits are applicable as an alternative for bridging short nerve defects without the morbidities associated with harvesting of autologous nerve grafts. Achieving better outcomes depends both on the advancements in microsurgical techniques and introduction of molecular biology discoveries into clinical practice. The field of peripheral nerve research is dynamically developing and concentrates on more sophisticated approaches tested at the basic science level. Future directions in peripheral nerve reconstruction including, tolerance induction and minimal immunosuppression for nerve allografting, cell based supportive therapies and bioengineering of nerve conduits are also reviewed in this chapter.
Collapse
Affiliation(s)
- Maria Siemionow
- Cleveland Clinic, Department of Plastic Surgery, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
43
|
Brenner MJ, Moradzadeh A, Myckatyn TM, Tung THH, Mendez AB, Hunter DA, Mackinnon SE. Role of timing in assessment of nerve regeneration. Microsurgery 2008; 28:265-72. [PMID: 18381659 DOI: 10.1002/micr.20483] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Small animal models are indispensable for research on nerve injury and reconstruction, but their superlative regenerative potential may confound experimental interpretation. This study investigated time-dependent neuroregenerative phenomena in rodents. Forty-six Lewis rats were randomized to three nerve allograft groups treated with 2 mg/(kg day) tacrolimus; 5 mg/(kg day) Cyclosporine A; or placebo injection. Nerves were subjected to histomorphometric and walking track analysis at serial time points. Tacrolimus increased fiber density, percent neural tissue, and nerve fiber count and accelerated functional recovery at 40 days, but these differences were undetectable by 70 days. Serial walking track analysis showed a similar pattern of recovery. A "blow-through" effect is observed in rodents whereby an advancing nerve front overcomes an experimental defect given sufficient time, rendering experimental groups indistinguishable at late time points. Selection of validated time points and corroboration in higher animal models are essential prerequisites for the clinical application of basic research on nerve regeneration.
Collapse
Affiliation(s)
- Michael J Brenner
- Department of Otolaryngology-Head & Neck Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Duhamel P, Bey E, Petit F, Cariou JL. [Experimental and clinical experience of composite tissues allotransplantation in reconstructive surgery]. ANN CHIR PLAST ESTH 2007; 52:399-413. [PMID: 17597279 DOI: 10.1016/j.anplas.2007.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 05/17/2007] [Indexed: 12/22/2022]
Abstract
Composite tissue allotransplantation (CTA) is a new concept in reconstructive surgery to improve major physical defects with no current solution. Although not a life-saving procedure, tissue replacement by CTA offers great potential for improving quality of life but relies on lifelong immunotherapy. This new practice has become achievable with the refinement of microsurgical techniques, with experience gained from limb and scalp replantations, with the development of organ transplantation and the release of new immunosuppressive drugs. Experimental and clinical research made it possible. The first human cases of CTA proved the reality and the feasibility of the concept. While the early functional results of these allografts are encouraging, they will need to be assessed in the long-term, and development of less toxic - more efficient immonu-suppressive drugs will be a permanent requisite to the broadening of CTA. Although long-term outcome and potential adverse effects of chronic immunosuppression remain uncertain, as for organ transplantation, CTA is already a potential solution for some highly selected patients carrying physical disabilities such as large facial defects and bilateral hand amputation.
Collapse
Affiliation(s)
- P Duhamel
- Service de chirurgie plastique et maxillofaciale, hôpital d'instruction des Armées Percy, 101, avenue Henri-Barbusse, 92141 Clamart cedex, France.
| | | | | | | |
Collapse
|
45
|
Cui Q, Hodgetts SI, Hu Y, Luo JM, Harvey AR. Strain-specific differences in the effects of cyclosporin A and FK506 on the survival and regeneration of axotomized retinal ganglion cells in adult rats. Neuroscience 2007; 146:986-99. [PMID: 17408862 DOI: 10.1016/j.neuroscience.2007.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/14/2007] [Accepted: 02/14/2007] [Indexed: 02/07/2023]
Abstract
The immune response can influence neuronal viability and plasticity after injury, effects differing in strains of rats with different susceptibility to autoimmune disease. We assessed the effects of i.p. injections of cyclosporin A (CsA) or FK506 on adult retinal ganglion cell (RGC) survival and axonal regeneration into peripheral nerve (PN) autografted onto the cut optic nerve of rats resistant (Fischer F344) or vulnerable (Lewis) to autoimmune disease. Circulating and tissue CsA and FK506 levels were similar in both strains. Three weeks after autologous PN transplantation the number of viable beta-III tubulin-positive RGCs was significantly greater in CsA- and FK506-treated F344 rats compared with saline-injected controls. RGC survival in Lewis rats was not significantly altered. In F344 rats, retrograde labeling of RGCs revealed that CsA or FK506 treatment significantly increased the number of RGCs that regenerated an axon into a PN autograft; however these agents had no beneficial effect on axonal regeneration in Lewis rats. PN grafts in F344 rats also contained comparatively more pan-neurofilament immunoreactive axons. In both strains, 3 weeks after transplantation CsA or FK506 treatment resulted in increased retinal macrophage numbers, but only in F344 rats was this increase significant. At this time-point PN grafts in both strains contained many macrophages and some T cells. T cell numbers in Lewis rats were significantly greater than in F344 animals. The increased RGC axonal regeneration seen in CsA- or FK506-treated F344 but not Lewis rats shows that modulation of immune responses after neurotrauma has complex and not always predictable outcomes.
Collapse
Affiliation(s)
- Q Cui
- School of Anatomy and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Hontanilla B, Aubá C, Arcocha J, Gorría O. Nerve Regeneration through Nerve Autografts and Cold Preserved Allografts using Tacrolimus (FK506) in a Facial Paralysis Model: A Topographical and Neurophysiological Study in Monkeys. Neurosurgery 2006; 58:768-79; discussion 768-79. [PMID: 16575341 DOI: 10.1227/01.neu.0000204319.37546.5f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Nerve regeneration through cold preserved nerve allografts is demonstrated, and treatment of nerve allografts with FK506 induces better regeneration than other immunosuppressants. We study nerve regeneration through cold preserved nerve allografts temporarily treated with FK506 and compare it with the regeneration obtained using classic nerve autografts in a facial paralysis model in monkeys. METHODS A trunk of the facial nerve on both sides was transected in eight monkeys and immediately repaired with a 3 to 4 cm nerve autograft or allograft. FK506 was administered to the animals of the allograft group for 2 months, and nerve allografts were cold preserved for 3 weeks. At periods of 3, 5, and 8 months after surgery, quantitative electrophysiological assessment and video recordings were performed. At the end of the study, quantitative analysis of neurons in the facial nucleus was carried out, and axons were stereologically counted. RESULTS After the regenerative period, neuronal density was higher in the autograft group. However, distal axonal counts were similar in both groups. Serial electrophysiological recordings and histology of nerve allografts showed that the grafts were partially rejected after cessation of the immunosuppressant. CONCLUSION The regeneration through nerve allografts temporarily treated with FK506 does not achieve the electrophysiological results and neuronal counts achieved with nerve autografts, but axonal collateralization in the allografts induces a similar activation of mimic muscles.
Collapse
Affiliation(s)
- Bernardo Hontanilla
- Department of Plastic and Reconstructive Surgery, Clínica Universitaria, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
48
|
Sosa I, Reyes O, Kuffler DP. Immunosuppressants: neuroprotection and promoting neurological recovery following peripheral nerve and spinal cord lesions. Exp Neurol 2005; 195:7-15. [PMID: 15935348 DOI: 10.1016/j.expneurol.2005.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 04/28/2005] [Indexed: 12/17/2022]
Abstract
No clinical techniques induce restoration of neurological losses following spinal cord trauma. Peripheral nerve damage also leads to permanent neurological deficits, but neurological recovery can be relatively good, especially if the ends of a transected nerve are anastomosed soon after the injury. The time until recovery generally depends on the distance the axons must regenerate to their targets. Neurological recovery following the destruction of a length of a peripheral nerve requires a graft to bridge the gap that is permissive to, and promotes, axon regeneration. But neurological recovery is slow and limited, especially for gaps longer than 1.5 cm, even using autologous peripheral nerve grafts. Without a reliable means of bridging long nerve gaps, such injuries commonly result in amputations. Promoting extensive neurological recovery requires techniques that simultaneously provide protection to injured neurons and increase the numbers of neurons that extend axons, while inducing more rapid and extensive axon regeneration across long nerve gaps. Although conduits filled with various materials enhance axon regeneration across short nerve gaps, pure sensory nerve graft remains the gold standard for use across long nerve gaps, even though they lead to only limited neurological recovery. Consistent results demonstrate that several immunosuppressive agents enhance the number of axons and the rate at which they regenerate. This review examines the roles played by immunosuppressants, especially FK506, with primary focus on its role as a neuroprotectant and neurotrophic agent, and its potential clinical use to promote improved neurological recovery following peripheral nerve and spinal cord injuries.
Collapse
Affiliation(s)
- I Sosa
- Section of Neurosurgery, Medical Sciences Campus, UPR, 201 Boulevard del Valle, San Juan 00901, Puerto Rico
| | | | | |
Collapse
|