1
|
Alpha-Lipoic Acid Inhibits Spontaneous Diabetes and Autoimmune Recurrence in Non-Obese Diabetic Mice by Enhancing Differentiation of Regulatory T Cells and Showed Potential for Use in Cell Therapies for the Treatment of Type 1 Diabetes. Int J Mol Sci 2022; 23:ijms23031169. [PMID: 35163121 PMCID: PMC8835933 DOI: 10.3390/ijms23031169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Type 1 diabetes (T1D) is caused by the destruction of β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective treatment for T1D. However, the survival of islet grafts is often disrupted by recurrent autoimmunity. Alpha-lipoic acid (ALA) has been reported to have immunomodulatory effects and, therefore, may have therapeutic potential in the treatment of T1D. In this study, we investigated the therapeutic potential of ALA in autoimmunity inhibition. We treated non-obese diabetic (NOD) mice with spontaneous diabetes and islet-transplantation mice with ALA. The onset of diabetes was decreased and survival of the islet grafts was extended. The populations of Th1 cells decreased, and regulatory T cells (Tregs) increased in ALA-treated mice. The in vitro Treg differentiation was significantly increased by treatment with ALA. The adoptive transfer of ALA-differentiated Tregs into NOD recipients improved the outcome of the islet grafts. Our results showed that in vivo ALA treatment suppressed spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Tregs. Our study also demonstrated the therapeutic potential of ALA in Treg-based cell therapies and islet transplantation used in the treatment of T1D.
Collapse
|
2
|
Tang S, Zhang M, Zeng S, Huang Y, Qin M, Nasri U, Santamaria P, Riggs AD, Jin L, Zeng D. Reversal of autoimmunity by mixed chimerism enables reactivation of β cells and transdifferentiation of α cells in diabetic NOD mice. Proc Natl Acad Sci U S A 2020; 117:31219-31230. [PMID: 33229527 PMCID: PMC7733788 DOI: 10.1073/pnas.2012389117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) results from the autoimmune destruction of β cells, so cure of firmly established T1D requires both reversal of autoimmunity and restoration of β cells. It is known that β cell regeneration in nonautoimmune diabetic mice can come from differentiation of progenitors and/or transdifferentiation of α cells. However, the source of β cell regeneration in autoimmune nonobese diabetic (NOD) mice remains unclear. Here, we show that, after reversal of autoimmunity by induction of haploidentical mixed chimerism, administration of gastrin plus epidermal growth factor augments β cell regeneration and normalizes blood glucose in the firmly established diabetic NOD mice. Using transgenic NOD mice with inducible lineage-tracing markers for insulin-producing β cells, Sox9+ ductal progenitors, Nestin+ mesenchymal stem cells, and glucagon-producing α cells, we have found that both reactivation of dysfunctional low-level insulin expression (insulinlo) β cells and neogenesis contribute to the regeneration, with the latter predominantly coming from transdifferentiation of α cells. These results indicate that, after reversal of autoimmunity, reactivation of β cells and transdifferentiation of α cells can provide sufficient new functional β cells to reach euglycemia in firmly established T1D.
Collapse
Affiliation(s)
- Shanshan Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 210009 Nanjing, China
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Mingfeng Zhang
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Samuel Zeng
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Yaxun Huang
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Department of Organ Transplantation, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Melissa Qin
- Diabetes and Metabolism Research Institute, Summer Student Academy of City of Hope, Duarte, CA 91010
| | - Ubaydah Nasri
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Center, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
- Pathogenesis and Treatment of Autoimmunity Laboratory, Institut D'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010;
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 210009 Nanjing, China;
| | - Defu Zeng
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010;
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA 91010
| |
Collapse
|
3
|
Sneddon JB, Tang Q, Stock P, Bluestone JA, Roy S, Desai T, Hebrok M. Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges. Cell Stem Cell 2019; 22:810-823. [PMID: 29859172 DOI: 10.1016/j.stem.2018.05.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Restoration of insulin independence and normoglycemia has been the overarching goal in diabetes research and therapy. While whole-organ and islet transplantation have become gold-standard procedures in achieving glucose control in diabetic patients, the profound lack of suitable donor tissues severely hampers the broad application of these therapies. Here, we describe current efforts aimed at generating a sustainable source of functional human stem cell-derived insulin-producing islet cells for cell transplantation and present state-of-the-art efforts to protect such cells via immune modulation and encapsulation strategies.
Collapse
Affiliation(s)
- Julie B Sneddon
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Stock
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shuvo Roy
- UCSF-UC Berkeley Joint Ph.D. Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tejal Desai
- UCSF-UC Berkeley Joint Ph.D. Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells. Toxicol Appl Pharmacol 2015; 282:207-14. [DOI: 10.1016/j.taap.2014.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
|
5
|
Lin GJ, Huang SH, Chen SJ, Wang CH, Chang DM, Sytwu HK. Modulation by melatonin of the pathogenesis of inflammatory autoimmune diseases. Int J Mol Sci 2013; 14:11742-66. [PMID: 23727938 PMCID: PMC3709754 DOI: 10.3390/ijms140611742] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/14/2022] Open
Abstract
Melatonin is the major secretory product of the pineal gland during the night and has multiple activities including the regulation of circadian and seasonal rhythms, and antioxidant and anti-inflammatory effects. It also possesses the ability to modulate immune responses by regulation of the T helper 1/2 balance and cytokine production. Autoimmune diseases, which result from the activation of immune cells by autoantigens released from normal tissues, affect around 5% of the population. Activation of autoantigen-specific immune cells leads to subsequent damage of target tissues by these activated cells. Melatonin therapy has been investigated in several animal models of autoimmune disease, where it has a beneficial effect in a number of models excepting rheumatoid arthritis, and has been evaluated in clinical autoimmune diseases including rheumatoid arthritis and ulcerative colitis. This review summarizes and highlights the role and the modulatory effects of melatonin in several inflammatory autoimmune diseases including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan; E-Mail:
| | - Shing-Hwa Huang
- Department of General Surgery, Tri-Service General Hospital, No.325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan; E-Mail:
| | - Shyi-Jou Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan; E-Mails: (S.-J.C.); (C.-H.W.)
- Department of Pediatrics, Tri-Service General Hospital, No.325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan; E-Mails: (S.-J.C.); (C.-H.W.)
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, No.325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan
- Institute of Undersea and Hyperbaric Medicine, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan
| | - Deh-Ming Chang
- Rheumatology/Immunology/Allergy, Tri-Service General Hospital, No.325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan; E-Mail:
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-2-8792-3100 (ext. 18540); Fax: +886-2-8792-1774
| |
Collapse
|
6
|
Abstract
OBJECTIVES Triptolide (TPL) possesses profound immunosuppressive effects and has potential in allograft transplantation. We investigated whether TPL treatment prevents autoimmune diabetes in nonobese diabetic (NOD) mice and prolongs the survival of islet grafts against autoimmune attack or allograft rejection. METHODS Diabetic incidence was monitored in TPL-treated NOD mice. Nonobese diabetic or BALB/c islets were transplanted into diabetic recipients treated with TPL. Different T-cell subsets in grafts or spleen were analyzed. The proliferation, apoptosis, cytokines, and activities of AKT, NFκB, and caspases 3, 8, and 9 of T cells were determined. RESULTS Diabetic incidence was reduced and inflammatory cytokines were decreased in islets and spleen under TPL treatment. T-cell proliferation was reduced and the survival of syngeneic or allogeneic grafts was significantly increased in TPL-treated mice. The populations of CD4, CD8, CD4CD69, CD8CD69, and interferon-γ-producing T cells in islet grafts and spleen were reduced. Triptolide treatment increased the apoptosis of T cells in the spleen of recipients. Levels of phosphorylated protein kinase B and phosphorylated inhibitor of kappa B in splenocytes were reduced and caspases 3, 8, and 9 were increased in TPL-treated mice. CONCLUSIONS Triptolide treatment not only reduced the diabetic incidence in NOD mice but also prolonged the survival of syngeneic or allogeneic grafts.
Collapse
|
7
|
Huang SH, Lin GJ, Chien MW, Chu CH, Yu JC, Chen TW, Hueng DY, Liu YL, Sytwu HK. Adverse Effect on Syngeneic Islet Transplantation by Transgenic Coexpression of Decoy Receptor 3 and Heme Oxygenase-1 in the Islet of NOD Mice. Transplant Proc 2013; 45:580-4. [DOI: 10.1016/j.transproceed.2012.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 02/14/2012] [Indexed: 01/12/2023]
|
8
|
Wang P, Yigit MV, Ran C, Ross A, Wei L, Dai G, Medarova Z, Moore A. A theranostic small interfering RNA nanoprobe protects pancreatic islet grafts from adoptively transferred immune rejection. Diabetes 2012; 61:3247-54. [PMID: 22923469 PMCID: PMC3501867 DOI: 10.2337/db12-0441] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Islet transplantation has recently emerged as an acceptable clinical modality for restoring normoglycemia in patients with type 1 diabetes mellitus (T1DM). The long-term survival and function of islet grafts is compromised by immune rejection-related factors. Downregulation of factors that mediate immune rejection using RNA interference holds promise for improving islet graft resistance to damaging factors after transplantation. Here, we used a dual-purpose therapy/imaging small interfering (si)RNA magnetic nanoparticle (MN) probe that targets β(2) microglobulin (B2M), a key component of the major histocompatibility class I complex (MHC I). In addition to serving as a siRNA carrier, this MN-siB2M probe enables monitoring of graft persistence noninvasively using magnetic resonance imaging (MRI). Human islets labeled with these MNs before transplantation into B2M (null) NOD/scid mice showed significantly improved preservation of graft volume starting at 2 weeks, as determined by longitudinal MRI in an adoptive transfer model (P < 0.05). Furthermore, animals transplanted with MN-siB2M-labeled islets demonstrated a significant delay of up to 23.8 ± 4.8 days in diabetes onset after the adoptive transfer of T cells relative to 6.5 ± 4.5 days in controls. This study demonstrated that our approach could protect pancreatic islet grafts from immune rejection and could potentially be applied to allotransplantation and prevention of the autoimmune recurrence of T1DM in islet transplantation or endogenous islets.
Collapse
Affiliation(s)
- Ping Wang
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Mehmet V. Yigit
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Chongzhao Ran
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Alana Ross
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Lingling Wei
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Guangping Dai
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Zdravka Medarova
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
| | - Anna Moore
- From the Molecular Imaging Laboratory, (MGH)/(MIT)/(HMS) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and the
- Corresponding author: Anna Moore,
| |
Collapse
|
9
|
Making the most of major histocompatibility complex molecule multimers: applications in type 1 diabetes. Clin Dev Immunol 2012; 2012:380289. [PMID: 22693523 PMCID: PMC3368179 DOI: 10.1155/2012/380289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 03/22/2012] [Indexed: 01/11/2023]
Abstract
Classical major histocompatibility complex (MHC) class I and II molecules present peptides to cognate T-cell receptors on the surface of T lymphocytes. The specificity with which T cells recognize peptide-MHC (pMHC) complexes has allowed for the utilization of recombinant, multimeric pMHC ligands for the study of minute antigen-specific T-cell populations. In type 1 diabetes (T1D), CD8+ cytotoxic T lymphocytes, in conjunction with CD4+ T helper cells, destroy the insulin-producing β cells within the pancreatic islets of Langerhans. Due to the importance of T cells in the progression of T1D, the ability to monitor and therapeutically target diabetogenic clonotypes of T cells provides a critical tool that could result in the amelioration of the disease. By administering pMHC multimers coupled to fluorophores, nanoparticles, or toxic moieties, researchers have demonstrated the ability to enumerate, track, and delete diabetogenic T-cell clonotypes that are, at least in part, responsible for insulitis; some studies even delay or prevent diabetes onset in the murine model of T1D. This paper will provide a brief overview of pMHC multimer usage in defining the role T-cell subsets play in T1D etiology and the therapeutic potential of pMHC for antigen-specific identification and modulation of diabetogenic T cells.
Collapse
|
10
|
Olsson R, Olerud J, Pettersson U, Carlsson PO. Increased numbers of low-oxygenated pancreatic islets after intraportal islet transplantation. Diabetes 2011; 60:2350-3. [PMID: 21788575 PMCID: PMC3161309 DOI: 10.2337/db09-0490] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/19/2011] [Indexed: 12/13/2022]
Abstract
OBJECTIVE No previous study has measured the oxygenation of intraportally transplanted islets, although recent data suggest that insufficient engraftment may result in hypoxia and loss of islet cells. RESEARCH DESIGN AND METHODS After intraportal infusion into syngeneic mice, islet oxygenation was investigated in 1-day-old, 1-month-old, or 3-month-old grafts and compared with renal subcapsular grafts and native islets. Animals received an intravenous injection of pimonidazole for immunohistochemical detection of low-oxygenated islet cells (pO(2) <10 mmHg), and caspase-3 immunostaining was performed to assess apoptosis rates in adjacent tissue sections. RESULTS In the native pancreas of nontransplanted animals, ∼30% of the islets stained positive for pimonidazole. In 1-day-old and 1-month-old grafts, the percentage of pimonidazole-positive islets in the liver was twice that of native islets, whereas this increase was abolished in 3-month-old grafts. Beneath the renal capsule, pimonidazole accumulation was, however, similar to native islets at all time points. Apoptosis rates were markedly increased in 1-day-old intrahepatic grafts compared with corresponding renal islet grafts, which were slightly increased compared with native islets. One month posttransplantation renal subcapsular grafts had similar frequencies of apoptosis as native islets, whereas apoptosis in intraportally implanted islets was still high. In the liver, islet graft vascular density increased between 1 and 3 months posttransplantation, and apoptosis rates simultaneously dropped to values similar to those observed in native islets. CONCLUSIONS The vascular engraftment of intraportally transplanted islets is markedly delayed compared with renal islet grafts. The prolonged ischemia of intraportally transplanted islets may favor an alternative implantation site.
Collapse
Affiliation(s)
- Richard Olsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
11
|
Huszarik K, Wright B, Keller C, Nikoopour E, Krougly O, Lee-Chan E, Qin HY, Cameron MJ, Gurr WK, Hill DJ, Sherwin RS, Kelvin DJ, Singh B. Adjuvant immunotherapy increases beta cell regenerative factor Reg2 in the pancreas of diabetic mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:5120-9. [PMID: 20876350 DOI: 10.4049/jimmunol.1001596] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin-producing β cells can partially regenerate in adult pancreatic tissues, both in human and animal models of type 1 diabetes (T1D). Previous studies have shown that treatment with mycobacterial adjuvants such as CFA and bacillus Calmette-Guérin prevents induction and recurrence of T1D in NOD mice with partial recovery of β cell mass. In this study, we investigated factors involved in the regeneration of β cells in the pancreas of NOD mice during diabetes development and after treatment with adjuvants. The Regeneration (Reg) gene family is known to be involved in regeneration of various tissues including β cells. Reg2 expression was found to be upregulated in pancreatic islets both during diabetes development and as a result of adjuvant treatment in diabetic NOD mice and in C57BL/6 mice made diabetic by streptozotocin treatment. The upregulation of Reg2 by adjuvant treatment was independent of signaling through MyD88 and IL-6 because it was not altered in MyD88 or IL-6 knockout mice. We also observed upregulation of Reg2 in the pancreas of diabetic mice undergoing β cell regenerative therapy with exendin-4 or with islet neogenesis-associated protein. Reg2 expression following adjuvant treatment correlated with a reduction in insulitis, an increase in insulin secretion, and an increase in the number of small islets in the pancreas of diabetic NOD mice and with improved glucose tolerance tests in streptozotocin-treated diabetic C57BL/6 mice. In conclusion, adjuvant immunotherapy regulates T1D in diabetic mice and induces Reg2-mediated regeneration of β cells.
Collapse
Affiliation(s)
- Katrina Huszarik
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lin GJ, Huang SH, Chen YW, Hueng DY, Chien MW, Chia WT, Chang DM, Sytwu HK. Melatonin prolongs islet graft survival in diabetic NOD mice. J Pineal Res 2009; 47:284-92. [PMID: 19708865 DOI: 10.1111/j.1600-079x.2009.00712.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Islet transplantation has been established as a potential therapy for type 1 diabetes. However, inflammation, allorejection, and on-going autoimmune damage contribute to early graft loss and failure of islet transplantation. Melatonin is the major secretory product of the pineal gland during the dark period of each day and displays multifunctional properties including the regulation of circadian and seasonal rhythms, antioxidation reactions and immune modulation. Based on the immunosuppressive properties of melatonin, we investigated whether melatonin treatment prolonged the survival of islet grafts in non-obese diabetic (NOD) mice. The mean islet graft survival time was 7.33 +/- 1.51 and 7.75 +/- 2.66 days in untreated controls and in the solvent-treated animals, respectively. Strikingly, the mean survival time of islet grafts in recipients treated with melatonin (200 mg/kg/bw) was 17 +/- 7.76 days. Moreover, melatonin treatment reduced the proliferation of splenocytes in NOD mice. Using a T1 and T2 double transgenic mouse model, we found that T helper 1 (Th1) cells in mice treated with melatonin were significantly decreased. The reduction of Th1 cells and T cell proliferation may result from an increase in the immunosuppressive cytokine IL-10. Our results indicate that melatonin treatment suppresses autoimmune recurrence by inhibiting the proliferation of Th1 cells in NOD mice and thus prolongs the survival of syngeneic islet grafts.
Collapse
Affiliation(s)
- Gu-Jiun Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Xiang Z, Ma LL, Manicassamy S, Ganesh BB, Williams P, Chari R, Chong A, Yin DP. CD4+ T cells are sufficient to elicit allograft rejection and major histocompatibility complex class I molecule is required to induce recurrent autoimmune diabetes after pancreas transplantation in mice. Transplantation 2008; 85:1205-11. [PMID: 18431243 PMCID: PMC2632575 DOI: 10.1097/tp.0b013e31816b70bf] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND We characterized the role of T cell subsets and major histocompatibility complex molecules in allograft rejection and recurrence of autoimmune diabetes. METHODS Adoptive cell transfer and vascularized segmental pancreas transplantation were performed in mice. RESULTS In an alloimmune response model, transfer of nondiabetic CD4, but not CD8 T cells, elicited pancreas allograft rejection in streptozotocin (STZ)-induced diabetic NOD/scid mice. Pancreas allografts were acutely rejected in STZ-induced diabetic NOD/beta2m mice (confirmed the absence of major histocompatibility complex [MHC] class I and CD8 T cells) and permanently accepted in NOD/CIIT mice (confirmed the absence of MHC class II and CD4 T cells). The results suggest that rejection of pancreas allograft is CD4-dependent and MHC class I-independent. In the autoimmune diabetes model, whole spleen cells obtained from diabetic NOD mice induced autoimmune diabetes in NOD/scid and NOD/CIIT mice, but the onset of diabetes was delayed in NOD/beta2m mice. However, the purified diabetic T cells failed to elicit autoimmune diabetes in NOD/beta2m mice. NOD/scid and NOD/CIIT pancreas grafts were acutely destroyed whereas four of six NOD/beta2m pancreas grafts were permanently accepted in autoimmune diabetic NOD mice. CONCLUSION CD4 T cells are sufficient for the induction of allograft rejection, and MHC class I molecule is required to induce recurrent autoimmune diabetes after pancreas transplantation in mice.
Collapse
Affiliation(s)
- Zhidan Xiang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
T1DM (Type I diabetes mellitus) results from selective destruction of the insulin-producing beta-cells of the pancreas by the immune system, and is characterized by hyperglycaemia and vascular complications arising from suboptimal control of blood glucose levels. The discovery of animal models of T1DM in the late 1970s and early 1980s, particularly the NOD (non-obese diabetic) mouse and the BB (BioBreeding) diabetes-prone rat, had a fundamental impact on our ability to understand the genetics, aetiology and pathogenesis of this disease. NOD and BB diabetes-prone rats spontaneously develop a form of diabetes that closely resembles the human counterpart. Early studies of these animals quickly led to the realization that T1DM is caused by autoreactive T-lymphocytes and revealed that the development of T1DM is controlled by numerous polymorphic genetic elements that are scattered throughout the genome. The development of transgenic and gene-targeting technologies during the 1980s allowed the generation of models of T1DM of reduced genetic and pathogenic complexity, and a more detailed understanding of the immunogenetics of T1DM. In this review, we summarize the contribution of studies in animal models of T1DM to our current understanding of four fundamental aspects of T1DM: (i) the nature of genetic elements affording T1DM susceptibility or resistance; (ii) the mechanisms underlying the development and recruitment of pathogenic autoreactive T-cells; (iii) the identity of islet antigens that contribute to the initiation and/or progression of islet inflammation and beta-cell destruction; and (iv) the design of avenues for therapeutic intervention that are rooted in the knowledge gained from studies of animal models. Development of new animal models will ensure continued progress in these four areas.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|