1
|
Verep S, Senturk Ciftci H, Oktar T, Kocak T, Erdem S, Yitgin Y, Gasimov K, Savran Karadeniz M, Nane I, Tefik T. Relationship Between CXCL11, CXCL13, CCL2, and CCL5 Gene Expression Levels and Allograft Function in Patients Undergoing Renal Transplant. EXP CLIN TRANSPLANT 2024; 22:767-774. [PMID: 39588992 DOI: 10.6002/ect.2023.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
OBJECTIVES Chemokines are inflammatory mediators directly involved in immunological mechanisms that mediate alloimmune responses; recently, gene expression analysis studies have aroused great interest in the field of transplantation. We aimed to evaluate the predictive role of chemokine gene expression in rejection in renal transplant patients. MATERIALS AND METHODS Our study included 91 patients who underwent living-related renal transplant. Gene expression levels of chemokines were evaluated in urine samples collected preoperatively and postoperatively. Patients were followed up frequently in the clinic, and the relationship between chemokine levels and the development of acute rejection was investigated. RESULTS The CXCL11 and CXCL13 gene expression levels at day 1 (P = .018 and P = .037), day 7 (P = .021 and P = .041), and month 1 (P = .039 and P = .039) after renal transplant were significantly higher in patients with acute rejection. CCL2 gene expression level was significantly higher in the group with acute rejection on day 1 (P = .038) and day 7 (P = .014) posttransplant. CCL5 expression level was higher in the group with acute rejection only on day 7 posttransplant (P = .027). CONCLUSIONS Follow-up of allograft function after renal transplant is of utmost importance. CXCL11, CXCL13, CCL2, and CCL5 gene expression levels may have roles in immune monitoring as they seem to have a potential to predict rejection.
Collapse
Affiliation(s)
- Samed Verep
- From the Department of Urology, Private Yuzyil Gebze Hospital, Gebze, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Salvadori M, Rosati A, Rosso G. Evolving Biomarkers in Kidney Transplantation. TRANSPLANTOLOGY 2024; 5:116-128. [DOI: 10.3390/transplantology5030012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Precision medicine is mainly based on reliable and noninvasive biomarkers. The aim of this review was to describe the newest biomarkers in the field of kidney transplantation and kidney rejection, one of the most common and severe complications. The standard tools used to identify acute rejection largely result in errors and have many drawbacks. In recent years, new and reliable biomarkers have been identified. These methods avoid risks, are noninvasive, and are able to detect rejection even in cases in which acute rejection is clinically asymptomatic and not otherwise identifiable, which is a frequent occurrence. In recent years, several biomarkers have been identified. Very recently, new relevant biomarkers with high positive predictive value and low negative predictive value have been identified. These are the donor-derived cell-free DNA found in the recipient, the gene expression profile of the donor found in the recipient, and the urinary cytokines that are modified in the graft tissue. The aim of this study was to identify the most recent findings in the literature on this topic and to describe the utility and possible limitations of such new biomarkers for kidney rejection.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Viale Pieraccini 18, 50139 Florence, Italy
| | - Alberto Rosati
- Division of Nephrology, San Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Giuseppina Rosso
- Division of Nephrology, San Giovanni di Dio Hospital, 50143 Florence, Italy
| |
Collapse
|
3
|
Cheung J, Zahorowska B, Suranyi M, Wong JKW, Diep J, Spicer ST, Verma ND, Hodgkinson SJ, Hall BM. CD4 +CD25 + T regulatory cells in renal transplantation. Front Immunol 2022; 13:1017683. [PMID: 36426347 PMCID: PMC9681496 DOI: 10.3389/fimmu.2022.1017683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 09/14/2023] Open
Abstract
The immune response to an allograft activates lymphocytes with the capacity to cause rejection. Activation of CD4+CD25+Foxp3+T regulatory cells (Treg) can down-regulate allograft rejection and can induce immune tolerance to the allograft. Treg represent <10% of peripheral CD4+T cells and do not markedly increase in tolerant hosts. CD4+CD25+Foxp3+T cells include both resting and activated Treg that can be distinguished by several markers, many of which are also expressed by effector T cells. More detailed characterization of Treg to identify increased activated antigen-specific Treg may allow reduction of non-specific immunosuppression. Natural thymus derived resting Treg (tTreg) are CD4+CD25+Foxp3+T cells and only partially inhibit alloantigen presenting cell activation of effector cells. Cytokines produced by activated effector cells activate these tTreg to more potent alloantigen-activated Treg that may promote a state of operational tolerance. Activated Treg can be distinguished by several molecules they are induced to express, or whose expression they have suppressed. These include CD45RA/RO, cytokine receptors, chemokine receptors that alter pathways of migration and transcription factors, cytokines and suppression mediating molecules. As the total Treg population does not increase in operational tolerance, it is the activated Treg which may be the most informative to monitor. Here we review the methods used to monitor peripheral Treg, the effect of immunosuppressive regimens on Treg, and correlations with clinical outcomes such as graft survival and rejection. Experimental therapies involving ex vivo Treg expansion and administration in renal transplantation are not reviewed.
Collapse
Affiliation(s)
- Jason Cheung
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
| | | | - Michael Suranyi
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | | | - Jason Diep
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stephen T. Spicer
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Nirupama D. Verma
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Suzanne J. Hodgkinson
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Bruce M. Hall
- Renal Unit, Liverpool Hospital, Sydney, NSW, Australia
- South Western Sydney Clinical School, University of New South Wales (UNSW), Sydney, NSW, Australia
- Immune Tolerance Laboratory, Ingham Institute for Applied Medical Research, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
4
|
Cornish EF, McDonnell T, Williams DJ. Chronic Inflammatory Placental Disorders Associated With Recurrent Adverse Pregnancy Outcome. Front Immunol 2022; 13:825075. [PMID: 35529853 PMCID: PMC9072631 DOI: 10.3389/fimmu.2022.825075] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammatory placental disorders are a group of rare but devastating gestational syndromes associated with adverse pregnancy outcome. This review focuses on three related conditions: villitis of unknown etiology (VUE), chronic histiocytic intervillositis (CHI) and massive perivillous fibrin deposition (MPFD). The hallmark of these disorders is infiltration of the placental architecture by maternal immune cells and disruption of the intervillous space, where gas exchange between the mother and fetus occurs. Currently, they can only be detected through histopathological examination of the placenta after a pregnancy has ended. All three are associated with a significant risk of recurrence in subsequent pregnancies. Villitis of unknown etiology is characterised by a destructive infiltrate of maternal CD8+ T lymphocytes invading into the chorionic villi, combined with activation of fetal villous macrophages. The diagnosis can only be made when an infectious aetiology has been excluded. VUE becomes more common as pregnancy progresses and is frequently seen with normal pregnancy outcome. However, severe early-onset villitis is usually associated with fetal growth restriction and recurrent pregnancy loss. Chronic histiocytic intervillositis is characterised by excessive accumulation of maternal CD68+ histiocytes in the intervillous space. It is associated with a wide spectrum of adverse pregnancy outcomes including high rates of first-trimester miscarriage, severe fetal growth restriction and late intrauterine fetal death. Intervillous histiocytes can also accumulate due to infection, including SARS-CoV-2, although this infection-induced intervillositis does not appear to recur. As with VUE, the diagnosis of CHI requires exclusion of an infectious cause. Women with recurrent CHI and their families are predisposed to autoimmune diseases, suggesting CHI may have an alloimmune pathology. This observation has driven attempts to prevent CHI with a wide range of maternal immunosuppression. Massive perivillous fibrin deposition is diagnosed when >25% of the intervillous space is occupied by fibrin, and is associated with fetal growth restriction and late intrauterine fetal death. Although not an inflammatory disorder per se, MPFD is frequently seen in association with both VUE and CHI. This review summarises current understanding of the prevalence, diagnostic features, clinical consequences, immune pathology and potential prophylaxis against recurrence in these three chronic inflammatory placental syndromes.
Collapse
Affiliation(s)
- Emily F. Cornish
- Elizabeth Garrett Anderson Institute for Women’s Health, Department of Maternal and Fetal Medicine, University College London, London, United Kingdom,*Correspondence: Emily F. Cornish,
| | - Thomas McDonnell
- Faculty of Engineering Science, Department of Biochemical Engineering, University College London, London, United Kingdom
| | - David J. Williams
- Elizabeth Garrett Anderson Institute for Women’s Health, Department of Maternal and Fetal Medicine, University College London, London, United Kingdom
| |
Collapse
|
5
|
A study of the mechanisms responsible for the action of new immunosuppressants and their effects on rat small intestinal transplantation. Transpl Immunol 2021; 70:101497. [PMID: 34785307 DOI: 10.1016/j.trim.2021.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
In a series of studies, using an identical rat intestinal transplantation model, we evaluated the effects of several drugs. FK-506 caused a significant attenuation in the proliferation of allogeneic CD4+ T cells and IFN-γ secreting effector functions. FYT720 resulted in a marked reduction in the numbers of lymphocytes, associated with a reduction of T cell recruitment, in grafts. An anti-MAdCAM antibody was next reported to significantly down-regulate CD4+ T cell infiltration in intestinal grafts by blocking the adhesion molecule, and could be useful as an induction therapy. Concerning TAK-779, this CCR5 and CXCR3 antagonist diminished the number of graft-infiltrating cells by suppressing the expression of their receptors in the graft. As a result, it reduced the total number of recipient T cells involved in graft rejection. As the next step, we focused on the participation of monocytes/ macrophages in this field. PQA-18 has been the focus of a novel immunosuppressant that attenuates not only the production of various cytokines, such as IL-2 & TNF-α, on T cells, but the differentiation of macrophages by inhibiting PAK2 as well. In this report, we summarize our previous studies not only regarding the above drugs, but on an anti-complement drug and a JAK inhibitor as well.
Collapse
|
6
|
A Combined microRNA and Chemokine Profile in Urine to Identify Rejection After Kidney Transplantation. Transplant Direct 2021; 7:e711. [PMID: 34131583 PMCID: PMC8196093 DOI: 10.1097/txd.0000000000001169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/29/2022] Open
Abstract
Supplemental Digital Content is available in the text. There is an unmet need for noninvasive tools for diagnosis of rejection after kidney transplantation. The aim of this study was to determine the discriminative value of a combined cellular and molecular biomarker platform in urine for the detection of rejection.
Collapse
|
7
|
Riedel JH, Turner JE, Panzer U. T helper cell trafficking in autoimmune kidney diseases. Cell Tissue Res 2021; 385:281-292. [PMID: 33598825 PMCID: PMC8523400 DOI: 10.1007/s00441-020-03403-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
CD4+ T cells are key drivers of autoimmune diseases, including crescentic GN. Many effector mechanisms employed by T cells to mediate renal damage and repair, such as local cytokine production, depend on their presence at the site of inflammation. Therefore, the mechanisms regulating the renal CD4+ T cell infiltrate are of central importance. From a conceptual point of view, there are four distinct factors that can regulate the abundance of T cells in the kidney: (1) T cell infiltration, (2) T cell proliferation, (3) T cell death and (4) T cell retention/egress. While a substantial amount of data on the recruitment of T cells to the kidneys in crescentic GN have accumulated over the last decade, the roles of T cell proliferation and death in the kidney in crescentic GN is less well characterized. However, the findings from the data available so far do not indicate a major role of these processes. More importantly, the molecular mechanisms underlying both egress and retention of T cells from/in peripheral tissues, such as the kidney, are unknown. Here, we review the current knowledge of mechanisms and functions of T cell migration in renal autoimmune diseases with a special focus on chemokines and their receptors.
Collapse
Affiliation(s)
- Jan-Hendrik Riedel
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Ashoori MD, Suzuki K, Tokumaru Y, Ikuta N, Tajima M, Honjo T, Ohta A. Inactivation of the PD-1-Dependent Immunoregulation in Mice Exacerbates Contact Hypersensitivity Resembling Immune-Related Adverse Events. Front Immunol 2021; 11:618711. [PMID: 33584713 PMCID: PMC7873368 DOI: 10.3389/fimmu.2020.618711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023] Open
Abstract
Blockade of PD-1, an indispensable physiological immunoregulatory mechanism, enhances immune activities and is widely used in the immunotherapy of cancer. This treatment often accompanies inflammatory complication called immune-related adverse events (irAE), most frequently in the skin. To analyze how skin inflammation develops by the blockade of PD-1-dependent immunoregulation, we studied the exacerbation of oxazolone-induced contact hypersensitivity by PD-L1 blockade. The inactivation of PD-1 signaling enhanced swelling of the skin with massive CD8+ T cell infiltration. Among PD-1-expressing cells, T cells were the predominant targets of anti-PD-L1 mAb treatment since PD-L1 blockade did not affect skin inflammation in RAG2-/- mice. PD-L1 blockade during immunization with oxazolone significantly promoted the development of hapten-reactive T cells in the draining lymph nodes. The enhancement of local CD8+ T cell-dominant immune responses by PD-L1 blockade was correlated with the upregulation of CXCL9 and CXCL10. Challenges with a low dose of oxazolone did not demonstrate any significant dermatitis; however, the influence of PD-L1 blockade on T cell immunity was strong enough to cause the emergence of notable dermatitis in this suboptimal dosing, suggesting its relevance to dermal irAE development. In the low-dose setting, the blockade of CXCR3, receptor of CXCL9/10, prevented the induction of T cell-dominant inflammation by anti-PD-L1 mAb. This experimental approach reproduced CD8+ T cell-dominant form of cutaneous inflammation by the blockade of PD-L1 that has been observed in dermal irAE in human patients.
Collapse
Affiliation(s)
- Matin Dokht Ashoori
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kensuke Suzuki
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Pharmaceutical Research Labs, Meiji Seika Pharma Co., Ltd., Yokohama, Japan
| | - Yosuke Tokumaru
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Pharmaceutical Research Labs, Meiji Seika Pharma Co., Ltd., Yokohama, Japan
| | - Naoko Ikuta
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Masaki Tajima
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Ohta
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
9
|
Dangi A, Natesh NR, Husain I, Ji Z, Barisoni L, Kwun J, Shen X, Thorp EB, Luo X. Single cell transcriptomics of mouse kidney transplants reveals a myeloid cell pathway for transplant rejection. JCI Insight 2020; 5:141321. [PMID: 32970632 PMCID: PMC7605544 DOI: 10.1172/jci.insight.141321] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid cells are increasingly recognized as major players in transplant rejection. Here, we used a murine kidney transplantation model and single cell transcriptomics to dissect the contribution of myeloid cell subsets and their potential signaling pathways to kidney transplant rejection. Using a variety of bioinformatic techniques, including machine learning, we demonstrate that kidney allograft–infiltrating myeloid cells followed a trajectory of differentiation from monocytes to proinflammatory macrophages, and they exhibited distinct interactions with kidney allograft parenchymal cells. While this process correlated with a unique pattern of myeloid cell transcripts, a top gene identified was Axl, a member of the receptor tyrosine kinase family Tyro3/Axl/Mertk (TAM). Using kidney transplant recipients with Axl gene deficiency, we further demonstrate that Axl augmented intragraft differentiation of proinflammatory macrophages, likely via its effect on the transcription factor Cebpb. This, in turn, promoted intragraft recruitment, differentiation, and proliferation of donor-specific T cells, and it enhanced early allograft inflammation evidenced by histology. We conclude that myeloid cell Axl expression identified by single cell transcriptomics of kidney allografts in our study plays a major role in promoting intragraft myeloid cell and T cell differentiation, and it presents a potentially novel therapeutic target for controlling kidney allograft rejection and improving kidney allograft survival. In a murine model of allogeneic kidney transplantation, single-cell transcriptomics identifies that myeloid cell Axl expression promotes allograft rejection by inducing inflammatory macrophage differentiation.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Naveen R Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | - Irma Husain
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zhicheng Ji
- Department of Biostatistics & Bioinformatics
| | | | - Jean Kwun
- Department of Surgery, and.,Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
10
|
Hanssen O, Weekers L, Lovinfosse P, Jadoul A, Bonvoisin C, Bouquegneau A, Grosch S, Huynen A, Anglicheau D, Hustinx R, Jouret F. Diagnostic yield of 18 F-FDG PET/CT imaging and urinary CXCL9/creatinine levels in kidney allograft subclinical rejection. Am J Transplant 2020; 20:1402-1409. [PMID: 31841263 DOI: 10.1111/ajt.15742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/25/2023]
Abstract
Subclinical kidney allograft acute rejection (SCR) corresponds to "the unexpected histological evidence of acute rejection in a stable patient." SCR detection relies on surveillance biopsy. Noninvasive approaches may help avoid biopsy-associated complications. From November 2015 to January 2018, we prospectively performed positron emission tomography/computed tomography (PET/CT) after injection of F18 -fluorodeoxyglucose (18 F-FDG) in adult kidney transplant recipients with surveillance biopsy at ~3 months posttransplantation. The Banff-2017 classification was used. The ratio of the mean standard uptake value (mSUVR) between kidney cortex and psoas muscle was measured. Urinary levels of CXCL-9 were concomitantly quantified. Our 92-patient cohort was categorized upon histology: normal (n = 70), borderline (n = 16), and SCR (n = 6). No clinical or biological difference was observed between groups. The mSUVR reached 1.87 ± 0.55, 1.94 ± 0.35, and 2.41 ± 0.54 in normal, borderline, and SCR groups, respectively. A significant difference in mSUVR was found among groups. Furthermore, mSUVR was significantly higher in the SCR vs normal group. The area under the receiver operating characteristic curve (AUC) was 0.79, with 83% sensitivity using an mSUVR threshold of 2.4. The AUC of urinary CXCL-9/creatinine ratios comparatively reached 0.79. The mSUVR positively correlated with ti and acute composite Banff scores. 18 F-FDG-PET/CT helps noninvasively exclude SCR, with a negative predictive value of 98%. External validations are required.
Collapse
Affiliation(s)
- Oriane Hanssen
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium
| | - Laurent Weekers
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium
| | - Pierre Lovinfosse
- Division of Nuclear Medicine, Department of Medical Physics, University of Liège Hospital, Liège, Belgium
| | - Alexandre Jadoul
- Division of Nuclear Medicine, Department of Medical Physics, University of Liège Hospital, Liège, Belgium
| | - Catherine Bonvoisin
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium
| | - Antoine Bouquegneau
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium
| | - Stéphanie Grosch
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium.,Division of Renal Pathology, Unilab, University of Liège Hospital, Liège, Belgium
| | - Alexandre Huynen
- Structural Engineering Division, Faculty of Applied Sciences, University of Liège, Liège, Belgium
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, RTRS Centaure, LabEx Transplantex, Necker Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Roland Hustinx
- Division of Nuclear Medicine, Department of Medical Physics, University of Liège Hospital, Liège, Belgium
| | - Francois Jouret
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium.,Groupe Interdisciplinaire de Géno-protéomique Appliquée, Cardiovascular Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
11
|
Identification of potential key protein interaction networks of BK virus nephropathy in patients receiving kidney transplantation. Sci Rep 2018; 8:5017. [PMID: 29567951 PMCID: PMC5864740 DOI: 10.1038/s41598-018-23492-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
We aim to identify the key protein interaction networks and implicated pathways of BK virus nephropathy (BKVN) via bioinformatic methods. The microarray data GSE75693 of 30 patients with stable kidney transplantation and 15 with BKVN were downloaded and analyzed by using the limma package to identify differentially expressed genes (DEGs). Then the gene ontology (GO) functional enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were done to investigate the molecular function (MF), biological process (BP), cellular components (CC) and pathways of DEGs. Finally, protein-protein interactions (PPIs) were constructed, and the hub proteins were identified. As a result, 249 up-regulated genes and 253 down-regulated genes of BKVN patients were selected based on criteria of P > 0.01 and fold change >2.0. GO and KEGG showed that DEGs were mainly located in nucleus and cytosol, and were implicated in the immune responses. In the PPI analysis, 26 up-regulated and 8 down-regulated proteins composed the pivotal interaction network. CXCL10, EGF and STAT1 were identified as hub proteins in BKVN. In conclusion, CXCL10, EGF and STAT1 may induce kidney injuries by promoting inflammation and prohibiting reparation of tissue damage in BKVN.
Collapse
|
12
|
Maymon E, Romero R, Bhatti G, Chaemsaithong P, Gomez-Lopez N, Panaitescu B, Chaiyasit N, Pacora P, Dong Z, Hassan SS, Erez O. Chronic inflammatory lesions of the placenta are associated with an up-regulation of amniotic fluid CXCR3: A marker of allograft rejection. J Perinat Med 2018; 46:123-137. [PMID: 28829757 PMCID: PMC5797487 DOI: 10.1515/jpm-2017-0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The objective of this study is to determine whether the amniotic fluid (AF) concentration of soluble CXCR3 and its ligands CXCL9 and CXCL10 changes in patients whose placentas show evidence of chronic chorioamnionitis or other placental lesions consistent with maternal anti-fetal rejection. METHODS This retrospective case-control study included 425 women with (1) preterm delivery (n=92); (2) term in labor (n=68); and (3) term not in labor (n=265). Amniotic fluid CXCR3, CXCL9 and CXCL10 concentrations were determined by ELISA. RESULTS (1) Amniotic fluid concentrations of CXCR3 and its ligands CXCL9 and CXCL10 are higher in patients with preterm labor and maternal anti-fetal rejection lesions than in those without these lesions [CXCR3: preterm labor and delivery with maternal anti-fetal rejection placental lesions (median, 17.24 ng/mL; IQR, 6.79-26.68) vs. preterm labor and delivery without these placental lesions (median 8.79 ng/mL; IQR, 4.98-14.7; P=0.028)]; (2) patients with preterm labor and chronic chorioamnionitis had higher AF concentrations of CXCL9 and CXCL10, but not CXCR3, than those without this lesion [CXCR3: preterm labor with chronic chorioamnionitis (median, 17.02 ng/mL; IQR, 5.57-26.68) vs. preterm labor without chronic chorioamnionitis (median, 10.37 ng/mL; IQR 5.01-17.81; P=0.283)]; (3) patients with preterm labor had a significantly higher AF concentration of CXCR3 than those in labor at term regardless of the presence or absence of placental lesions. CONCLUSION Our findings support a role for maternal anti-fetal rejection in a subset of patients with preterm labor.
Collapse
Affiliation(s)
- Eli Maymon
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Block E East Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
13
|
Romero R, Chaemsaithong P, Chaiyasit N, Docheva N, Dong Z, Kim CJ, Kim YM, Kim JS, Qureshi F, Jacques SM, Yoon BH, Chaiworapongsa T, Yeo L, Hassan SS, Erez O, Korzeniewski SJ. CXCL10 and IL-6: Markers of two different forms of intra-amniotic inflammation in preterm labor. Am J Reprod Immunol 2017; 78. [PMID: 28544362 PMCID: PMC5488235 DOI: 10.1111/aji.12685] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022] Open
Abstract
Problem To determine whether amniotic fluid (AF) CXCL10 concentration is associated with histologic chronic chorioamnionitis in patients with preterm labor (PTL) and preterm prelabor rupture of the membranes (PROM). Method of Study This study included 168 women who had an episode of PTL or preterm PROM. AF interleukin (IL)‐6 and CXCL10 concentrations were determined by immunoassay. Results (i) Increased AF CXCL10 concentration was associated with chronic (OR: 4.8; 95% CI: 1.7‐14), but not acute chorioamnionitis; (ii) increased AF IL‐6 concentration was associated with acute (OR: 4.2; 95% CI: 1.3‐13.7) but not chronic chorioamnionitis; and (iii) an increase in AF CXCL10 concentration was associated with placental lesions consistent with maternal anti‐fetal rejection (OR: 3.7; 95% CI: 1.3‐10.4). (iv) All patients with elevated AF CXCL10 and IL‐6 delivered preterm. Conclusion Increased AF CXCL10 concentration is associated with chronic chorioamnionitis or maternal anti‐fetal rejection, whereas increased AF IL‐6 concentration is associated with acute histologic chorioamnionitis.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikolina Docheva
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chong Jai Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon Mee Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jung-Sun Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Faisal Qureshi
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Suzanne M Jacques
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven J Korzeniewski
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
14
|
Raza A, Firasat S, Khaliq S, Aziz T, Mubarak M, Naqvi SAA, Mehdi SQ, Rizvi SAUH, Abid A. The association of urinary interferon-gamma inducible protein-10 (IP10/CXCL10) levels with kidney allograft rejection. Inflamm Res 2017; 66:425-432. [PMID: 28246678 DOI: 10.1007/s00011-017-1025-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/29/2016] [Accepted: 02/07/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Interferon-gamma inducible protein-10 (IP-10/CXCL10) is a chemokine involved in the alloimmune response against kidney allograft. We aimed to investigate the association of urinary CXCL10 protein levels with rejection in renal transplant patients. METHODS A total of 273 urine samples from (biopsy-proven) rejection and non-rejection patients and controls were included in this study. CXCL10 levels were analyzed for association with rejection. RESULTS The data showed statistically significant differences in the CXCL10 levels between rejection vs. non-rejection (p < 0.001). Among the rejection groups, statistically significant differences for CXCL10 levels were found between ACR vs. NAD (p < 0.001), ACR vs. BLR (p = 0.019) and AVR vs. NAD (p = 0.009). Receiver Operating Characteristic (ROC) curve analysis of CXCL10 showed an area under the curve (AUC) of 0.74 with 72% sensitivity and 71% specificity at 27.5 pg/ml between rejection and non-rejection group. Kaplan-Meier curve analysis among different levels of CXCL10 showed a better rejection-free graft survival in patients with <100 pg/ml when compared to >200 pg/ml (38 ± 6 vs. 12 ± 1.0 weeks; log-rank p < 0.001) and 100-200 pg/ml (38 ± 6 vs. 22 ± 9 weeks; log-rank p = 0.442) concentration. CONCLUSION The results indicate significantly increased levels of CXCL10 protein in the urine at the time of allograft rejection. This association of urinary CXCL10 protein levels with rejection could provide an additional tool for the non-invasive monitoring of allograft rejection.
Collapse
Affiliation(s)
- Ali Raza
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Sadaf Firasat
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Shagufta Khaliq
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
- Department of Human Genetics, University of Health Sciences (UHS), Lahore, Pakistan
| | - Tahir Aziz
- Department of Urology, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Muhammed Mubarak
- Department of Histopathology, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Syed Ali Anwar Naqvi
- Department of Urology, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Syed Qasim Mehdi
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | | | - Aiysha Abid
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan.
| |
Collapse
|
15
|
Arai Y, Takahashi D, Asano K, Tanaka M, Oda M, Ko SBH, Ko MSH, Mandai S, Nomura N, Rai T, Uchida S, Sohara E. Salt suppresses IFNγ inducible chemokines through the IFNγ-JAK1-STAT1 signaling pathway in proximal tubular cells. Sci Rep 2017; 7:46580. [PMID: 28425456 PMCID: PMC5397865 DOI: 10.1038/srep46580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/17/2017] [Indexed: 12/04/2022] Open
Abstract
The mechanisms of immunoactivation by salt are now becoming clearer. However, those of immunosuppression remain unknown. Since clinical evidence indicates that salt protects proximal tubules from injury, we investigated mechanisms responsible for salt causing immunosuppression in proximal tubules. We focused on cytokine-related gene expression profiles in kidneys of mice fed a high salt diet using microarray analysis and found that both an interferon gamma (IFNγ) inducible chemokine, chemokine (C-X-C motif) ligand 9 (CXCL9), and receptor, CXCR3, were suppressed. We further revealed that a high salt concentration suppressed IFNγ inducible chemokines in HK2 proximal tubular cells. Finally, we demonstrated that a high salt concentration decreased IFNGR1 expression in the basolateral membrane of HK2 cells, leading to decreased phosphorylation of activation sites of Janus kinase 1 (JAK1) and Signal Transducers and Activator of Transcription 1 (STAT1), activators of chemokines. JAK inhibitor canceled the effect of a high salt concentration on STAT1 and chemokines, indicating that the JAK1-STAT1 signaling pathway is essential for this mechanism. In conclusion, a high salt concentration suppresses IFNγ-JAK1-STAT1 signaling pathways and chemokine expressions in proximal tubules. This finding may explain how salt ameliorates proximal tubular injury and offer a new insight into the linkage between salt and immunity.
Collapse
Affiliation(s)
- Yohei Arai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Daiei Takahashi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenichi Asano
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masato Tanaka
- Laboratory of Immune regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Mayumi Oda
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shigeru B. H. Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Minoru S. H. Ko
- Department of Systems Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Naohiro Nomura
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
16
|
Yeh CR, Ou ZY, Xiao GQ, Guancial E, Yeh S. Infiltrating T cells promote renal cell carcinoma (RCC) progression via altering the estrogen receptor β-DAB2IP signals. Oncotarget 2016; 6:44346-59. [PMID: 26587829 PMCID: PMC4792561 DOI: 10.18632/oncotarget.5884] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022] Open
Abstract
Previous studies indicated the T cells, one of the most common types of immune cells existing in the microenvironment of renal cell carcinoma (RCC), may influence the progression of RCC. The potential linkage of T cells and the estrogen receptor beta (ERβ), a key player to impact RCC progression, however, remains unclear. Our results demonstrate that RCC cells can recruit more T cells than non-malignant kidney cells. Using an in vitro matrigel invasion system, we found infiltrating T cells could promote RCC cells invasion via increasing ERβ expression and transcriptional activity. Mechanism dissection suggested that co-culturing T cells with RCC cells released more T cell attraction factors, including IFN-γ, CCL3 and CCL5, suggesting a positive regulatory feed-back mechanism. Meanwhile, infiltrating T cells may also promote RCC cell invasion via increased ERβ and decreased DAB2IP expressions, and knocking down DAB2IP can then reverse the T cells-promoted RCC cell invasion. Together, our results suggest that infiltrating T cells may promote RCC cell invasion via increasing the RCC cell ERβ expression to inhibit the tumor suppressor DAB2IP signals. Further mechanism dissection showed that co-culturing T cells with RCC cells could produce more IGF-1 and FGF-7, which may enhance the ERβ transcriptional activity. The newly identified relationship between infiltrating T cells/ERβ/DAB2IP signals may provide a novel therapeutic target in the development of agents against RCC.
Collapse
Affiliation(s)
- Chiuan-Ren Yeh
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zheng-Yu Ou
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Guang-Qian Xiao
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Elizabeth Guancial
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shuyuan Yeh
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
17
|
Jain NG, Wong EA, Aranyosi AJ, Boneschansker L, Markmann JF, Briscoe DM, Irimia D. Microfluidic mazes to characterize T-cell exploration patterns following activation in vitro. Integr Biol (Camb) 2016; 7:1423-31. [PMID: 26325525 DOI: 10.1039/c5ib00146c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The migration of T-cell subsets within peripheral tissues is characteristic of inflammation and immunoregulation. In general, the lymphocyte migratory response is assumed directional and guided by local gradients of chemoattractants and/or chemorepellents. However, little is known about how cells explore their tissue environment, and whether lymphocyte activation may influence speed and exploratory patterns of migration. To probe migration patterns by T-cells we designed a microfluidic maze device that replicates critical features of a tissue-like microenvironment. We quantified the migration patterns of unstimulated and mitogen-activated human T-cells at single cell resolution and found significant differences in exploration within microfluidic mazes. While unstimulated lymphocytes migrated in a directed manner, activated T-cells migrated through large areas of the mazes in an exploratory pattern in response to the chemoattractants RANTES (CCL5) and IP-10 (CXCL10). The analysis of migration enabled by the microfluidic devices help develop new methods for determining how human circulating T-cells function in vivo to seek out antigens in health and disease states.
Collapse
Affiliation(s)
- Namrata G Jain
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA and Transplant Research Program, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Elisabeth A Wong
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Alexander J Aranyosi
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Leo Boneschansker
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA and Transplant Research Program, Boston Children's Hospital, Boston, MA 02115, USA.
| | - James F Markmann
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA and Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Ave, MA 02139, USA
| | - David M Briscoe
- Transplant Research Program, Boston Children's Hospital, Boston, MA 02115, USA. and Division of Nephrology, Department of Medicine, Boston Children's Hospital, 300 Longwood Ave, MA 02139, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Boston, MA 02129, USA and Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
18
|
Erpicum P, Hanssen O, Weekers L, Lovinfosse P, Meunier P, Tshibanda L, Krzesinski JM, Hustinx R, Jouret F. Non-invasive approaches in the diagnosis of acute rejection in kidney transplant recipients, part II: omics analyses of urine and blood samples. Clin Kidney J 2016. [PMID: 28643819 PMCID: PMC5469577 DOI: 10.1093/ckj/sfw077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidney transplantation (KTx) represents the best available treatment for patients with end-stage renal disease. Still, the full benefits of KTx are undermined by acute rejection (AR). The diagnosis of AR ultimately relies on transplant needle biopsy. However, such an invasive procedure is associated with a significant risk of complications and is limited by sampling error and interobserver variability. In the present review, we summarize the current literature about non-invasive approaches for the diagnosis of AR in kidney transplant recipients (KTRs), including in vivo imaging, gene-expression profiling and omics analyses of blood and urine samples. Most imaging techniques, such as contrast-enhanced ultrasound and magnetic resonance, exploit the fact that blood flow is significantly lowered in case of AR-induced inflammation. In addition, AR-associated recruitment of activated leucocytes may be detectable by 18F-fluorodeoxyglucose positron emission tomography. In parallel, urine biomarkers, including CXCL9/CXCL10 or a three-gene signature of CD3ε, CXCL10 and 18S RNA levels, have been identified. None of these approaches has yet been adopted in the clinical follow-up of KTRs, but standardization of analysis procedures may help assess reproducibility and comparative diagnostic yield in large, prospective, multicentre trials.
Collapse
Affiliation(s)
- Pauline Erpicum
- Division of Nephrology, University of Liège Academic Hospital (ULg CHU), B-4000 Liège, Belgium.,GIGA Cardiovascular Sciences, Université de Liège, Liège, Belgium
| | - Oriane Hanssen
- Division of Nephrology, University of Liège Academic Hospital (ULg CHU), B-4000 Liège, Belgium
| | - Laurent Weekers
- Division of Nephrology, University of Liège Academic Hospital (ULg CHU), B-4000 Liège, Belgium
| | - Pierre Lovinfosse
- Division of Nuclear Medicine, University of Liège Academic Hospital (ULg CHU), Liège, Belgium
| | - Paul Meunier
- Division of Radiology, University of Liège Academic Hospital (ULg CHU), Liège, Belgium
| | - Luaba Tshibanda
- Division of Radiology, University of Liège Academic Hospital (ULg CHU), Liège, Belgium
| | - Jean-Marie Krzesinski
- Division of Nephrology, University of Liège Academic Hospital (ULg CHU), B-4000 Liège, Belgium.,GIGA Cardiovascular Sciences, Université de Liège, Liège, Belgium
| | - Roland Hustinx
- Division of Nuclear Medicine, University of Liège Academic Hospital (ULg CHU), Liège, Belgium
| | - François Jouret
- Division of Nephrology, University of Liège Academic Hospital (ULg CHU), B-4000 Liège, Belgium.,GIGA Cardiovascular Sciences, Université de Liège, Liège, Belgium
| |
Collapse
|
19
|
Boneschansker L, Nakayama H, Eisenga M, Wedel J, Klagsbrun M, Irimia D, Briscoe DM. Netrin-1 Augments Chemokinesis in CD4+ T Cells In Vitro and Elicits a Proinflammatory Response In Vivo. THE JOURNAL OF IMMUNOLOGY 2016; 197:1389-98. [PMID: 27430720 DOI: 10.4049/jimmunol.1502432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/14/2016] [Indexed: 11/19/2022]
Abstract
Netrin-1 is a neuronal guidance cue that regulates cellular activation, migration, and cytoskeleton rearrangement in multiple cell types. It is a chemotropic protein that is expressed within tissues and elicits both attractive and repulsive migratory responses. Netrin-1 has recently been found to modulate the immune response via the inhibition of neutrophil and macrophage migration. However, the ability of Netrin-1 to interact with lymphocytes and its in-depth effects on leukocyte migration are poorly understood. In this study, we profiled the mRNA and protein expression of known Netrin-1 receptors on human CD4(+) T cells. Neogenin, uncoordinated-5 (UNC5)A, and UNC5B were expressed at low levels in unstimulated cells, but they increased following mitogen-dependent activation. By immunofluorescence, we observed a cytoplasmic staining pattern of neogenin and UNC5A/B that also increased following activation. Using a novel microfluidic assay, we found that Netrin-1 stimulated bidirectional migration and enhanced the size of migratory subpopulations of mitogen-activated CD4(+) T cells, but it had no demonstrable effects on the migration of purified CD4(+)CD25(+)CD127(dim) T regulatory cells. Furthermore, using a short hairpin RNA knockdown approach, we observed that the promigratory effects of Netrin-1 on T effectors is dependent on its interactions with neogenin. In the humanized SCID mouse, local injection of Netrin-1 into skin enhanced inflammation and the number of neogenin-expressing CD3(+) T cell infiltrates. Neogenin was also observed on CD3(+) T cell infiltrates within human cardiac allograft biopsies with evidence of rejection. Collectively, our findings demonstrate that Netrin-1/neogenin interactions augment CD4(+) T cell chemokinesis and promote cellular infiltration in association with acute inflammation in vivo.
Collapse
Affiliation(s)
- Leo Boneschansker
- Transplant Research Program, Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA 02115; Department of Pediatrics, Harvard Medical School, Boston, MA 02115; Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114; and
| | - Hironao Nakayama
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Michele Eisenga
- Transplant Research Program, Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Johannes Wedel
- Transplant Research Program, Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA 02115; Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Michael Klagsbrun
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Daniel Irimia
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114; and
| | - David M Briscoe
- Transplant Research Program, Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA 02115; Department of Pediatrics, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
20
|
Kariminik A, Dabiri S, Yaghobi R. Polyomavirus BK Induces Inflammation via Up-regulation of CXCL10 at Translation Levels in Renal Transplant Patients with Nephropathy. Inflammation 2016; 39:1514-9. [DOI: 10.1007/s10753-016-0385-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Turner DL, Gordon CL, Farber DL. Tissue-resident T cells,in situimmunity and transplantation. Immunol Rev 2014; 258:150-66. [DOI: 10.1111/imr.12149] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Damian L. Turner
- Columbia Center for Translational Immunology; Columbia University Medical Center; New York NY USA
- Department of Medicine; Columbia University Medical Center; New York NY USA
| | - Claire L. Gordon
- Columbia Center for Translational Immunology; Columbia University Medical Center; New York NY USA
- Department of Medicine; Columbia University Medical Center; New York NY USA
- Department of Medicine; University of Melbourne; Melbourne Vic. Australia
| | - Donna L. Farber
- Columbia Center for Translational Immunology; Columbia University Medical Center; New York NY USA
- Department of Surgery; Columbia University Medical Center; New York NY USA
- Department of Microbiology and Immunology; Columbia University Medical Center; New York NY USA
| |
Collapse
|
22
|
Huang H, Xu X, Yao C, Cai M, Qian Y, Wang X, Shi B. Serum levels of CXCR3 ligands predict T cell-mediated acute rejection after kidney transplantation. Mol Med Rep 2014; 9:45-50. [PMID: 24154640 DOI: 10.3892/mmr.2013.1753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/12/2013] [Indexed: 11/05/2022] Open
Abstract
The early diagnosis of acute rejection is crucial for graft survival after kidney transplantation. The interferon-γ (IFNγ)-CXCR3-chemokine-dependent inflammatory loop plays a pivotal role in the recruitment of T lymphocytes during acute rejection. Previously published studies have typically focused on the CXCR3 receptor rather than on its ligands. In the present study, we used Luminex assays to detect the levels of CXCR3 ligands, monokine induced by IFNγ (MIG), IFN-induced protein 10 (IP-10) and IFN-induced T‑cell chemoattractant (I-TAC), in the serum of renal allograft recipients. According to a renal biopsy performed one month after kidney transplantation, 32 recipients were diagnosed with T cell-mediated acute rejection and 38 patients were evaluated as stable. Serum was collected after the diagnosis of acute rejection or one month after transplantation. The concentrations of MIG (median, 4,271 pg/ml), IP-10 (median, 686.7 pg/ml) and I-TAC (median, 44.32 pg/ml) in the serum during an acute rejection episode were significantly higher compared with those of the stable patients (MIG, P=0.0002; IP-10, P=0.0001; I-TAC, P=0.0103; vs. the stable function group, P<0.05). Based on the receiver-operating characteristic (ROC) curve, the joint detection of MIG, IP-10 and I-TAC in the serum using Luminex analysis may constitute a non-invasive and efficient method for the early prediction of T cell-mediated acute rejection following kidney transplantation.
Collapse
Affiliation(s)
- Haiyan Huang
- Organ Transplant Institute, Chinese PLA 309th Hospital, Beijing 100091, P.R. China
| | | | | | | | | | | | | |
Collapse
|
23
|
Hricik DE, Nickerson P, Formica RN, Poggio ED, Rush D, Newell KA, Goebel J, Gibson IW, Fairchild RL, Riggs M, Spain K, Ikle D, Bridges ND, Heeger PS. Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury. Am J Transplant 2013; 13:2634-44. [PMID: 23968332 PMCID: PMC3959786 DOI: 10.1111/ajt.12426] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/03/2013] [Accepted: 05/11/2013] [Indexed: 01/25/2023]
Abstract
Noninvasive biomarkers are needed to assess immune risk and ultimately guide therapeutic decision-making following kidney transplantation. A requisite step toward these goals is validation of markers that diagnose and/or predict relevant transplant endpoints. The Clinical Trials in Organ Transplantation-01 protocol is a multicenter observational study of biomarkers in 280 adult and pediatric first kidney transplant recipients. We compared and validated urinary mRNAs and proteins as biomarkers to diagnose biopsy-proven acute rejection (AR) and stratify patients into groups based on risk for developing AR or progressive renal dysfunction. Among markers tested for diagnosing AR, urinary CXCL9 mRNA (odds ratio [OR] 2.77, positive predictive value [PPV] 61.5%, negative predictive value [NPV] 83%) and CXCL9 protein (OR 3.40, PPV 67.6%, NPV 92%) were the most robust. Low urinary CXCL9 protein in 6-month posttransplant urines obtained from stable allograft recipients classified individuals least likely to develop future AR or a decrement in estimated glomerular filtration rate between 6 and 24 months (92.5-99.3% NPV). Our results support using urinary CXCL9 for clinical decision-making following kidney transplantation. In the context of acute dysfunction, low values can rule out infectious/immunological causes of injury. Absent urinary CXCL9 at 6 months posttransplant defines a subgroup at low risk for incipient immune injury.
Collapse
Affiliation(s)
- D. E. Hricik
- University Hospitals Case Medical Center, Cleveland, OH
| | - P. Nickerson
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - D. Rush
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - J. Goebel
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - I. W. Gibson
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | - N. D. Bridges
- Transplantation Branch, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD
| | - P. S. Heeger
- Icahn School of Medicine at Mount Sinai, New York, NY, Corresponding author: Peter S. Heeger,
| | | |
Collapse
|
24
|
Romero R, Whitten A, Korzeniewski SJ, Than NG, Chaemsaithong P, Miranda J, Dong Z, Hassan SS, Chaiworapongsa T. Maternal floor infarction/massive perivillous fibrin deposition: a manifestation of maternal antifetal rejection? Am J Reprod Immunol 2013; 70:285-98. [PMID: 23905710 DOI: 10.1111/aji.12143] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/07/2013] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Massive perivillous fibrin deposition (MPFD) and maternal floor infarction (MFI) are related placental lesions often associated with fetal death and fetal growth restriction. A tendency to recur in subsequent pregnancies has been reported. This study was conducted to determine whether this complication of pregnancy could reflect maternal antifetal rejection. METHODS Pregnancies with MPFD were identified (n = 10). Controls consisted of women with uncomplicated pregnancies who delivered at term without MPFD (n = 175). Second-trimester maternal plasma was analyzed for panel-reactive anti-HLA class I and class II antibodies. The prevalence of chronic chorioamnionitis, villitis of unknown etiology, and plasma cell deciduitis was compared between cases and controls. Immunohistochemistry was performed on available umbilical vein segments from cases with MPFD (n = 4) to determine whether there was evidence of complement activation (C4d deposition). Specific maternal HLA-antibody and fetal HLA-antigen status were also determined in paired specimens (n = 6). Plasma CXCL-10 concentrations were measured in longitudinal samples of cases (n = 28 specimens) and controls (n = 749 specimens) by ELISA. Linear mixed-effects models were used to test for differences in plasma CXCL-10 concentration. RESULTS (i) The prevalence of plasma cell deciduitis in the placenta was significantly higher in cases with MPFD than in those with uncomplicated term deliveries (40% versus 8.6%, P = 0.01), (ii) patients with MPFD had a significantly higher frequency of maternal anti-HLA class I positivity during the second trimester than those with uncomplicated term deliveries (80% versus 36%, P = 0.01); (iii) strongly positive C4d deposition was observed on umbilical vein endothelium in cases of MPFD, (iv) a specific maternal antibody against fetal HLA antigen class I or II was identified in all cases of MPFD; and 5) the mean maternal plasma concentration of CXCL-10 was higher in patients with evidence of MPFD than in those without evidence of MFPD (P < 0.001). CONCLUSION A subset of patients with MPFD has evidence of maternal antifetal rejection.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ghosh R, Sharma A, Mitra DK, Agarwal SK, Dinda AK, Saxena A. Study of CC chemokine receptor 5 in renal allograft rejection. Indian J Nephrol 2013; 23:196-200. [PMID: 23814418 PMCID: PMC3692145 DOI: 10.4103/0971-4065.111848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allospecific recruitment of T cells is primary to the pathogenesis of renal transplant rejection. Chemokines and their receptors inducing a Th1 cytokine response play a central role in this recruitment. Renal allograft biopsies of 28 patients with acute cellular rejection and 10 protocol biopsies (controls) were examined in accordance with Banff grading 2007 schema. Immunohistochemistry for CD3 and CC chemokine receptor 5 (CCR5) in sequential sections was performed and quantitatively assessed in the glomeruli, tubules, and interstitium. Histopathologic and clinical correlations were carried out. CD3- and CCR5-positive cells were observed in significantly higher numbers in rejection cases than in controls (P = 0.010). A larger proportion of CCR5-positive cells were noted in the foci of tubulitis compared to the interstitial infiltrates and glomeruli in all cases, and it correlated with the grade of cellular rejection (P = 0.010). A greater number of CCR5-positive cells were seen in early rejection (<6 months posttransplant) compared to late rejection. No clinical correlation with serum creatinine levels was found. CCR5-positive cells represent the alloaggressive subset of T cells in ACR, and their numbers correlate with rejection severity. CCR5 may be used as a marker of early acute rejection and may be an important target for future antirejection therapies.
Collapse
Affiliation(s)
- R Ghosh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
26
|
Differential effects of activated human renal epithelial cells on T-cell migration. PLoS One 2013; 8:e64916. [PMID: 23717673 PMCID: PMC3661561 DOI: 10.1371/journal.pone.0064916] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/22/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Renal tubular epithelial cells (TECs) are one of the main targets of inflammatory insults during interstitial nephritis and kidney transplant rejection. While Th1 cells are know to be essential in the pathogenesis of rejection, the role of Th17 is still under debate. We hypothesize that TECs modulate the outcome of rejection process by production of distinct chemokines and cytokines that determine the attraction of different T-cell subsets. Therefore, we studied differential effects of activated human renal epithelial cells on T-cell migration. METHODS Human primary TECs were stimulated by IFN-γ and TNF-α in vitro. Chemokines and cytokines produced by activated TECs were measured using Luminex or ELISA. Chemotaxis assay was performed using activated peripheral blood mononuclear cells composed of CD4+CXCR3+ and CD4+CCR6+ T cells migrating towards stimulated and unstimulated TECs. RESULTS While activated TECs secreted abundant amounts of the pro-inflammatory cytokines IL-6 and IL-8, the T helper cell differentiation cytokines IL-1β, IL-12p70, IL-23 or TGF-β1 were not produced. The production of Th1 chemokines CXCL9, CXCL10 and CCL5 were significantly upregulated after TEC stimulation. In contrast, Th17 chemokine CCL20 could not be detected. Finally, activated TECs attracted significantly higher numbers of CD4+CXCR3+ T cells as compared to unstimulated TECs. No migration of CD4+CCR6+ T cells could be observed. CONCLUSION Activated primary renal tubular epithelial cells do not attract Th17 cells nor produce cytokines promoting Th17 cell differentiation in our experimental system mimicking the proinflammatory microenvironment of rejection.
Collapse
|
27
|
Suga H, Sugaya M, Miyagaki T, Ohmatsu H, Okochi H, Sato S. CXCR3 deficiency prolongs Th1-type contact hypersensitivity. THE JOURNAL OF IMMUNOLOGY 2013; 190:6059-70. [PMID: 23656737 DOI: 10.4049/jimmunol.1201606] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sensitization and challenge using dinitrofluorobenzene (DNFB) induce contact hypersensitivity (CHS) with Th1 cell infiltration, whereas those using FITC generate CHS with Th2 cell infiltration. In this study, we attempted to determine the role of CXCR3, a chemokine receptor, in Th1- and Th2-type CHS induced by DNFB or FITC using CXCR3-deficient (CXCR3(-/-)) mice. Ear swelling was prolonged after DNFB challenge in CXCR3(-/-) mice, which was accompanied by increased Th1 cytokines and decreased TGF-β and IL-10 expression at a late time point of CHS, whereas there was no significant difference between wild-type and CXCR3(-/-) mice in FITC-induced CHS. In Th1-type CHS, the number of regulatory T cells (Tregs) was decreased in the challenged ear of CXCR3(-/-) mice compared with that of wild-type mice, suggesting that CXCR3 would be important in migration of Tregs into the site of inflammation. Moreover, we examined the characteristics of CXCR3(+) Tregs both in vitro and in vivo, revealing that CXCR3(+) Tregs expressed high levels of TGF-β and IL-10 as well as IFN-γ compared with CXCR3(-) Tregs. When CXCR3(-/-) mice were injected with CXCR3(+) Tregs, the prolonged ear swelling induced by DNFB was normalized. Taken together, our results suggest that CXCR3(+) Tregs play a key role for quenching Th1-type CHS.
Collapse
Affiliation(s)
- Hiraku Suga
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Saha PK, Sharma PK, Sharma SK, Singh A, Mitra DK. Recruitment of Th1 effector cells in human tuberculosis: hierarchy of chemokine receptor(s) and their ligands. Cytokine 2013; 63:43-51. [PMID: 23643185 DOI: 10.1016/j.cyto.2013.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/01/2013] [Accepted: 04/01/2013] [Indexed: 11/18/2022]
Abstract
Selective recruitment of IFN-γ biased Th1 effector cells at the pathologic site(s) determines the local immunity of tuberculosis (TB). We observed the enrichment of CXCR3, CCR5 and CD11a(high) T cells in the peripheral blood, pleural fluid and bronchoalveolar lavage of TB pleural effusion (TB-PE) and miliary tuberculosis (MTB) patients respectively. CXCR3(+)CCR5(+) T cells were significantly high at the local disease site(s) in both the forms of TB and their frequency was highest among activated lymphocytes in TB-PE. Interestingly, all CCR5(+) cells were invariably positive for CXCR3 but all CXCR3(+) cells did not co-express CCR5 in pleural fluid whereas the situation was reverse in bronchoalveolar lavage. These CXCR3(+)CCR5(+) cells dominantly produced IFN-γ in response to Mycobacterium tuberculosis antigen. In vitro chemotaxis assay indicates dominant role of RANTES and IP-10 in the selective recruitment of CXCR3(+)CCR5(+)cells at the tubercular pathologic sites.
Collapse
Affiliation(s)
- Pradip K Saha
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat K Sharma
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Surendra K Sharma
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India.
| | - Amar Singh
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipendra K Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
29
|
Topping V, Romero R, Than NG, Tarca AL, Xu Z, Kim SY, Wang B, Yeo L, Kim CJ, Hassan SS, Kim JS. Interleukin-33 in the human placenta. J Matern Fetal Neonatal Med 2013; 26:327-38. [PMID: 23039129 PMCID: PMC3563729 DOI: 10.3109/14767058.2012.735724] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Interleukin-33 (IL-33) is the newest member of the IL-1 cytokine family, a group of key regulators of inflammation. The purpose of this study was to determine whether IL-33 is expressed in the human placenta and to investigate its expression in the context of acute and chronic chorioamnionitis. METHODS Placental tissues were obtained from five groups of patients: 1) normal pregnancy at term without labor (n = 10); 2) normal pregnancy at term in labor (n = 10); 3) preterm labor without inflammation (n = 10); 4) preterm labor with acute chorioamnionitis and funisitis (n = 10); and 5) preterm labor with chronic chorioamnionitis (n = 10). Immunostaining was performed to determine IL-33 protein expression patterns in the placental disk, chorioamniotic membranes, and umbilical cord. mRNA expression of IL-33 and its receptor IL1RL1 (ST2) was measured in primary amnion epithelial and mesenchymal cells (AECs and AMCs, n = 4) and human umbilical vein endothelial cells (HUVECs, n = 4) treated with IL-1β (1 and 10 ng/ml) and CXCL10 (0.5 and 1 or 5 ng/ml). RESULTS 1) Nuclear IL-33 expression was found in endothelial and smooth muscle cells in the placenta, chorioamniotic membranes, and umbilical cord; 2) IL-33 was detected in the nucleus of CD14+ macrophages in the chorioamniotic membranes, chorionic plate, and umbilical cord, and in the cytoplasm of myofibroblasts in the Wharton's jelly; 3) acute (but not chronic) chorioamnionitis was associated with the presence of IL-33+ macrophages in the chorioamniotic membranes and umbilical cord; 4) expression of IL-33 or IL1RL1 (ST2) mRNA in AECs was undetectable; 5) IL-33 mRNA expression increased in AMCs and HUVECs after IL-1β treatment but did not change with CXCL10 treatment; and 6) IL1RL1 (ST2) expression decreased in AMCs and increased in HUVECs after IL-1β but not CXCL10 treatment. CONCLUSIONS IL-33 is expressed in the nucleus of placental endothelial cells, CD14+ macrophages, and myofibroblasts in the Wharton's jelly. IL-1β can induce the expression of IL-33 and its receptor. Protein expression of IL-33 is detectable in macrophages of the chorioamniotic membranes in acute (but not chronic) chorioamnionitis.
Collapse
Affiliation(s)
- Vanessa Topping
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L. Tarca
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Computer Science, Wayne State University, Detroit, MI, USA
| | - Zhonghui Xu
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Sun Young Kim
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Bing Wang
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jung-Sun Kim
- Perinatology Research Branch, NICHD NIH DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Hoerning A, Köhler S, Jun C, Tebbe B, Fu J, Menke J, Wilde B, Dolff S, Feldkamp T, Briscoe DM, Kribben A, Hoyer PF, Witzke O. Peripherally circulating CD4⁺ FOXP3⁺ CXCR3⁺ T regulatory cells correlate with renal allograft function. Scand J Immunol 2012; 76:320-8. [PMID: 22670785 DOI: 10.1111/j.1365-3083.2012.02732.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Peripheral immunoregulation depends on T regulatory cell trafficking into the allograft to modulate the local alloresponse. Little is known about the relevance of trafficking receptors for Tregs after solid organ transplantation in humans. In this study, expression of the peripheral chemokine receptors CXCR3 and CCR5 on CD4⁺ FOXP3⁺ Treg cells was analysed and correlated with allograft function in renal transplant recipients. Flow cytometry analysis of peripheral blood mononuclear cells of 54 renal transplant recipients receiving a calcineurin inhibitor-based immunosuppression was performed for CD4, CD25, FOXP3, CXCR3 and CCR5 within the first 18 months post-transplantation. Correlation analysis of chemokine receptor expression and glomerular filtration rate as calculated by MDRD (eGFR) was performed. Expression of the peripheral homing receptors CXCR3 (r = 0.44, P < 0.05) and CCR5 (r = 0.45, P < 0.05) on FOXP3⁺ Tregs correlated with renal allograft function (eGFR) in patients receiving tacrolimus (n = 28), but not cyclosporine A (CsA) (n = 26). CsA but not tacrolimus reduced surface expression of CXCR3 on FOXP3⁺ Tregs in renal transplant recipients as correlated to trough levels (r = -0.42, P < 0.05). In contrast to CD4⁺ CXCR3⁺ CD25(lo) T cells, flow-sorted CD4⁺ CXCR3⁺ CD25(hi) Tregs isolated from healthy individuals did not produce IFNγ or IL-17 ex vivo and expressed high levels of GARP mRNA both at baseline as well as after TCR activation indicating functional regulatory activity. Expression of the peripheral trafficking receptors CXCR3 and CCR5 on FOXP3⁺ Tregs is associated with renal allograft function. These results suggest that Treg trafficking may also depend on the interaction of CXCR3 or CCR5 and their respective ligands.
Collapse
Affiliation(s)
- A Hoerning
- Department of Pediatrics II, Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hoerning A, Köhler S, Jun C, Lu J, Fu J, Tebbe B, Dolff S, Feldkamp T, Kribben A, Hoyer PF, Witzke O. Cyclosporin but not everolimus inhibits chemokine receptor expression on CD4+ T cell subsets circulating in the peripheral blood of renal transplant recipients. Clin Exp Immunol 2012; 168:251-9. [PMID: 22471287 DOI: 10.1111/j.1365-2249.2012.04571.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peripheral chemokine receptors chemokine receptor 3 (CXCR3) and CC chemokine receptor 5 (CCR5) have been reported to be associated with allograft rejection. The impact of the expression of immunosuppressive drugs on peripherally circulating CD4(+) T cell subsets after renal transplantation is unknown. Expression of CXCR3 and CCR5 was investigated by flow cytometry in 20 renal allograft recipients participating in a prospective, randomized trial (NCT00514514). Initial immunosuppression consisted of basiliximab, cyclosporin A (CsA), mycophenolate sodium and corticosteroids. After 3 months, patients were treated either with CsA, mycophenolate sodium (MPA) plus corticosteroids (n = 6), CsA and everolimus plus corticosteroids (n =8) or CsA-free (CsA(free)) receiving everolimus, MPA and corticosteroids (n = 6). After initial reduction of CD4(+) forkhead box protein 3 (FoxP3)(+) and CD4(+) CD25(hi) FoxP3(+) regulatory T cells (T(regs)) (P < 0.05; P < 0.01), 3-month post-transplant percentages of T(regs) were reconstituted in CsA(free) and CsA(lo) arms compared to CsA(reg) 12 months post transplant. Expression of CCR5 and CXCR3 on CD4(+) FoxP3(+) and CD4(+) FoxP3(-) T cells 12 months post transplant was increased in CsA(free) versus CsA(reg). Increase in CCR5(+) CXCR3(+) co-expressing CD4(+) FoxP3(-) cells between 3 and 12 months correlated negatively with the glomerular filtration rate (GFR) slope/year [modification of diet in renal disease (MDRD); r = -0.59, P < 0.01]. CsA, but not everolimus, inhibits both T(reg) development and expression of CXCR3 and CCR5 on CD4(+) T cell subsets. Increase in CCR5(+) CXCR3(+) co-expressing CD4(+) FoxP3(-) T cells is associated with early loss in allograft function.
Collapse
Affiliation(s)
- A Hoerning
- Department of Pediatrics II, Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Children's Hospital Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
van de Berg PJEJ, Yong SL, Koch SD, Lardy N, van Donselaar-van der Pant KAMI, Florquin S, Bemelman FJ, van Lier RAW, ten Berge IJM. Characteristics of alloreactive T cells measured before renal transplantation. Clin Exp Immunol 2012; 168:241-50. [PMID: 22471286 DOI: 10.1111/j.1365-2249.2011.04551.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Several assays to measure pre-existing allospecific T cell immunity in renal transplant candidates have been developed in the past years. In 46 patients, we used flow cytometry-based mixed lymphocyte culture to measure the precursor frequency and phenotype of alloreactive T cells before renal transplantation, using donor-specific or third-party cells for allostimulation. Allostimulation induced up-regulation of co-stimulatory molecules, chemokine receptors relevant for migration of T cells into the graft and effector proteins. Recipients prone for acute rejection had a higher precursor frequency of alloreactive CD8(+) T cells and a lower percentage of interleukin (IL)-7Rα expressing alloreactive CD8(+) T cells than non-rejectors. These data point to quantitative and qualitative differences between T cells of patients who will experience acute cellular rejection episodes from those who will not.
Collapse
Affiliation(s)
- P J E J van de Berg
- Renal Transplant Unit, Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gervasi MT, Romero R, Bracalente G, Erez O, Dong Z, Hassan SS, Yeo L, Yoon BH, Chaiworapongsa T. Midtrimester amniotic fluid concentrations of interleukin-6 and interferon-gamma-inducible protein-10: evidence for heterogeneity of intra-amniotic inflammation and associations with spontaneous early (<32 weeks) and late (>32 weeks) preterm delivery. J Perinat Med 2012; 40:329-43. [PMID: 22752762 PMCID: PMC3498502 DOI: 10.1515/jpm-2012-0034] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/19/2012] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Intra-amniotic inflammation is traditionally defined as an elevation of amniotic fluid interleukin (IL)-6. Previous case control studies have suggested an association between an elevated midtrimester amniotic fluid IL-6 and preterm delivery, although such an association has been recently challenged. Intra-amniotic inflammation can also be defined by an elevation of the T-cell chemokine, Interferon-gamma-inducible protein (IP)-10. An elevation in amniotic fluid IP-10 has been associated with chronic chorioamnionitis, a lesion frequently found in late spontaneous preterm birth and fetal death. In contrast, an elevation in amniotic fluid IL-6 is typically associated with acute chorioamnionitis and funisitis. This study was conducted to examine the relationship between an elevation in amniotic fluid IL-6 in the midtrimester and preterm delivery at or before 32 weeks of gestation, and the amniotic fluid concentration of IP-10 and preterm delivery after 32 weeks of gestation. MATERIALS AND METHODS This cohort study included 847 consecutive women undergoing genetic midtrimester amniocentesis; in 796 cases, amniotic fluid and pregnancy outcome was available for study after exclusion of abnormal karyotype and/or fetal congenital anomalies. Spontaneous preterm delivery was defined as early (≤32 weeks) or late (after 32 completed weeks of pregnancy). The amniotic fluid and maternal blood concentrations of IL-6 and IP-10 were measured by specific immunoassays. RESULTS 1) The prevalence of preterm delivery was 8.3% (66/796), while those of early and late spontaneous preterm delivery were 1.5% (n=12), and 4.5% (n=36), respectively; 2) patients who had a spontaneous preterm delivery after 32 weeks of gestation had a higher median amniotic fluid IP-10 concentration than those who delivered at term [median 713 pg/mL, inter-quartile range (IQR) 509-1427 pg/mL vs. median 589 pg/mL, IQR 402-953 pg/mL; P=0.006] and an elevation of amniotic fluid IP-10 concentration above 502 pg/mL (derived from an ROC curve) was associated with late spontaneous preterm delivery [odds ratio 3.9 (95% CI 1.6-9.9)]; 3) patients who had a spontaneous preterm delivery ≤32 weeks of gestation had a higher median amniotic fluid IL-6 concentration than those who delivered at term [median 2052 pg/mL, IQR 435-3015 pg/mL vs. median 414 pg/mL, IQR 209-930 pg/mL; P=0.006], and an elevated amniotic fluid IL-6 concentration above 1740 pg/mL (derived from an ROC curve) was associated with early spontaneous preterm delivery [odds ratio 9.5 (95% CI 2.9-31.1)]; 4) subclinical intra-amniotic inflammation, defined as an elevation of IL-6 (≥2.9 ng/mL) or IP-10 (≥2.2 ng/mL) concentration above the 95th percentile of patients who had uncomplicated term delivery (n=652 for IL-6 and n=633 for IP-10), was observed in 6.3% (50/796) and 5.8% (45/770) of cases, respectively. Although each type of inflammation is a risk factor for spontaneous preterm delivery, many patients had a term delivery without complication; 5) the amniotic fluid in the midtrimester did not contain microorganisms detectable with cultivation techniques. CONCLUSIONS INTRA-amniotic inflammation is heterogeneous. Some patients have elevated amniotic fluid concentrations of IL-6, and are at risk for spontaneous preterm delivery before 32 weeks of gestation, while others have an elevated IP-10 (a chemotactic T-cell chemokine) and such patients are at risk for spontaneous preterm delivery after 32 weeks of gestation. A fraction of patients have subclinical intra-amniotic inflammation and deliver at term. The clinical significance of this condition remains to be determined.
Collapse
Affiliation(s)
- Maria-Teresa Gervasi
- Ob/Gyn Unit, Department for Health of Mothers and Chidlren, Azienda Ospedaliera, Padova, Italy
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, and Bethesda, MD, USA
| | - Gabriella Bracalente
- Ob/Gyn Unit, Department for Health of Mothers and Children, ASL 9 Treviso, Italy
| | - Offer Erez
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of The Negev, Beer Sheva, Israel
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, and Bethesda, MD, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, and Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, and Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Detroit, MI, and Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
34
|
Serum and urinary biomarkers in acute kidney transplant rejection. Nephrol Ther 2012; 8:13-9. [DOI: 10.1016/j.nephro.2011.07.409] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022]
|
35
|
Calarota SA, Zelini P, De Silvestri A, Chiesa A, Comolli G, Sarchi E, Migotto C, Pellegrini C, Esposito P, Minoli L, Tinelli C, Marone P, Baldanti F. Kinetics of T-lymphocyte subsets and posttransplant opportunistic infections in heart and kidney transplant recipients. Transplantation 2012; 93:112-119. [PMID: 22134368 DOI: 10.1097/tp.0b013e318239e90c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The potential use of T-lymphocyte measurements as infection risk markers after solid organ transplant has not been fully investigated. We analyzed the kinetics of T-lymphocyte subsets within the first 8 months posttransplant and their correlation with opportunistic infections (OIs) in solid organ transplant recipients. METHODS Serial measurement of CD4 and CD8 T cells was performed retrospectively in 48 heart transplant recipients (HTR) and 42 kidney transplant recipients (KTR). Generalized estimating equation models were used to analyze longitudinal data separately for HTR and KTR. RESULTS An initial CD4 T-cell drop (at months 1 and 2, in HTR and KTR, respectively) coincided with the peak of OIs. HTR with a low nadir CD4 T-cell count (≤ 200/μL) showed poor CD4 T-cell recovery (175 ± 277 cells/μL at baseline vs 242 ± 99 cells/μL at month 8) and their CD8 T cells increased from 153 ± 194 cells/μL at baseline to 601 ± 399 cells/μL at month 8. KTR with a low nadir CD4 T-cell count (≤ 200/μL) showed a modest CD4 T-cell recovery (138 ± 46 cells/μL at baseline vs. 440 ± 448 cells/μL at month 8), and their CD8 T cells increased from 90 ± 41 cells/μL at baseline to 450 ± 242 cells/μL at month 8. HTR developing OIs had lower CD4 (P<0.001) and CD8 T cells (P=0.001) than those without infections, whereas in KTR the risk for OIs seemed restricted to patients with low CD8 T cells. HTR with OIs had a low CD4/CD8 T-cell ratio, whereas KTR had a high CD4/CD8 T-cell ratio. CONCLUSIONS Determination of T-lymphocyte subsets is a simple and effective parameter to identify patients at risk of developing OIs.
Collapse
Affiliation(s)
- Sandra A Calarota
- Virology and Microbiology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hoerning A, Koss K, Datta D, Boneschansker L, Jones CN, Wong IY, Irimia D, Calzadilla K, Benitez F, Hoyer PF, Harmon WE, Briscoe DM. Subsets of human CD4(+) regulatory T cells express the peripheral homing receptor CXCR3. Eur J Immunol 2011; 41:2291-302. [PMID: 21538345 DOI: 10.1002/eji.201041095] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 03/31/2011] [Accepted: 04/26/2011] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) migrate into peripheral sites of inflammation such as allografts undergoing rejection, where they serve to suppress the immune response. In this study, we find that ∼30-40% of human CD25(hi) FOXP3(+) CD4(+) Tregs express the peripheral CXC chemokine receptor 3 (CXCR3) and that this subset has potent immunoregulatory properties. Consistently, we observed that proliferative responses as well as IFN-γ production were significantly higher using CXCR3-depleted versus undepleted responders in the mixed lymphocyte reaction, as well as following mitogen-dependent activation of T cells. Using microfluidics, we also found that CXCR3 was functional on CXCR3(pos) Tregs, in as much as chemotaxis and directional persistence towards interferon-γ-inducible protein of 10 kDa (IP-10) was significantly greater for CXCR3(pos) than CXCR3(neg) Tregs. Following activation, CXCR3-expressing CD4(+) Tregs were maintained in vitro in cell culture in the presence of the mammalian target of rapamycin (mTOR) inhibitor rapamycin, and we detected higher numbers of circulating CXCR3(+) FOXP3(+) T cells in adult and pediatric recipients of renal transplants who were treated with mTOR-inhibitor immunosuppressive therapy. Collectively, these results demonstrate that the peripheral homing receptor CXCR3 is expressed on subset(s) of circulating human Tregs and suggest a role for CXCR3 in their recruitment into peripheral sites of inflammation.
Collapse
Affiliation(s)
- André Hoerning
- Department of Medicine, Children's Hospital Boston, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Knoblach T, Grandel B, Seiler J, Nevels M, Paulus C. Human cytomegalovirus IE1 protein elicits a type II interferon-like host cell response that depends on activated STAT1 but not interferon-γ. PLoS Pathog 2011; 7:e1002016. [PMID: 21533215 PMCID: PMC3077363 DOI: 10.1371/journal.ppat.1002016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/02/2011] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory genes normally controlled by IFN-γ and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-γ-responsive promoters. However, neither synthesis nor secretion of IFN-γ or other IFNs seems to be required for the IE1-dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and identify IE1 as a candidate determinant of hCMV pathogenicity.
Collapse
Affiliation(s)
- Theresa Knoblach
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| | - Benedikt Grandel
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| | - Jana Seiler
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| | - Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| | - Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg,
Regensburg, Germany
| |
Collapse
|
38
|
Lo DJ, Weaver TA, Kleiner DE, Mannon RB, Jacobson LM, Becker BN, Swanson SJ, Hale DA, Kirk AD. Chemokines and their receptors in human renal allotransplantation. Transplantation 2011; 91:70-7. [PMID: 21441854 PMCID: PMC3311125 DOI: 10.1097/tp.0b013e3181fe12fc] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chemokines and their receptors play a critical role in leukocyte trafficking, and inhibition of select chemokines has been shown to attenuate kidney disease and allograft rejection in animal models. Therefore, we evaluated chemokine and chemokine receptor transcripts in human renal allograft biopsies, correlating transcript levels with clinical course and immunohistochemical analysis to relate chemokine expression to relevant clinical human disease phenotypes. METHODS Renal biopsies were grouped as postreperfusion (n=10), stable function (n=10), subclinical (n=10) or acute rejection (n=17), or calcineurin inhibitor nephrotoxicity (n=9) based on clinical presentation and histopathologic assessment. Using quantitative real-time polymerase chain reaction analysis, chemokine transcripts were assessed relative to transcript levels in preprocurement biopsies from live donor kidneys (n=15). RESULTS Transcripts from several inflammatory chemokines (CCL3, CCL5, CXCL9, CXCL10, and CXCL11) and chemokine receptors (CCR5, CCR7, and CXCR3) were significantly increased in allografts with subclinical and clinical acute rejection, indicating a strong polarization toward a T-helper 1 effector phenotype during rejection. These transcripts also distinguished acutely rejecting allografts from allografts with nonrejection causes of renal dysfunction. Biopsies from patients with stable function without histologic evidence of rejection had increased chemokine transcript levels that were qualitatively similar but quantitatively reduced compared with rejecting allografts. CONCLUSIONS This comprehensive evaluation of chemokines and their receptors in human renal transplantation defines associations between chemokine expression and clinical phenotypes, may have diagnostic utility, and highlights relevant pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Denise J. Lo
- Emory Transplant Center, Emory University, Atlanta, GA
| | - Tim A. Weaver
- Emory Transplant Center, Emory University, Atlanta, GA
| | | | | | | | - Bryan N. Becker
- Department of Medicine, University of Wisconsin, Madison, WI
| | - S. John Swanson
- Transplantation Branch, NIDDK, NIH, DHHS, Bethesda, MD
- Organ Transplant Service, Walter Reed Army Medical Center, Washington, DC
| | - Douglas A. Hale
- Transplantation Branch, NIDDK, NIH, DHHS, Bethesda, MD
- Organ Transplant Service, Walter Reed Army Medical Center, Washington, DC
| | - Allan D. Kirk
- Emory Transplant Center, Emory University, Atlanta, GA
- Transplantation Branch, NIDDK, NIH, DHHS, Bethesda, MD
- Organ Transplant Service, Walter Reed Army Medical Center, Washington, DC
| |
Collapse
|
39
|
Mao Y, Wang M, Zhou Q, Jin J, Wang Y, Peng W, Wu J, Shou Z, Chen J. CXCL10 and CXCL13 Expression were highly up-regulated in peripheral blood mononuclear cells in acute rejection and poor response to anti-rejection therapy. J Clin Immunol 2010; 31:414-8. [PMID: 21191639 DOI: 10.1007/s10875-010-9500-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/16/2010] [Indexed: 01/16/2023]
Abstract
BACKGROUND Acute rejection is still one of the main complications which enhances the cost and the risk to renal graft failure. Chemokines, interacting with respective receptors, can recruit leukocytes into grafts and mediate allograft rejection. In this study, we aimed to analyze gene expression of chemokines including CCL5/RANTES, CXCL10/IP-10, CXCL13/BCA-1, and receptors of CCR5, CXCR3, CXCR5 in peripheral blood mononuclear cells (PBMCs) during acute renal allograft rejection METHODS Gene expression of all these chemokines and receptors in PBMCs were analyzed by real-time PCR from 14 stable recipients, 32 biopsy-proven acute rejection (AR), and 5 acute tubular necrosis (ATN). RESULTS Gene expression of CCL5, CXCL10, CXCL13, and CCR5 were up-regulated both in AR and ATN group compared to stable recipients (fold change>2, P<0.05). Serum creatinine recovered to baseline level after anti-rejection therapy was defined as AR-sensitive and creatinine maintained above 200 μmol/L as AR-resistant. Expression of CXCL10 and CXCL13 were 5.98-, 2.94-, and 20.5, 10.8-fold change in AR-resistant and AR-sensitive compared to stable recipients, respectively. The expression of CXCL10 and CXCL13 was a twofold change in AR-resistant compared to AR-sensitive recipients (P<0.05). Five out of ten AR-resistant recipients lost graft function in the follow-up. CONCLUSION CXCL10 and CXCL13 expression were highly up-regulated in PBMCs in acute renal allograft rejection, especially in poor response to anti-rejection therapy and detrimental prognosis.
Collapse
Affiliation(s)
- Youying Mao
- Kidney Disease Center, the First Affiliated Hospital of Medical College, Zhejiang University, 79 Qingchun road, Hangzhou, 310003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kim CJ, Romero R, Kusanovic JP, Yoo W, Dong Z, Topping V, Gotsch F, Yoon BH, Chi JG, Kim JS. The frequency, clinical significance, and pathological features of chronic chorioamnionitis: a lesion associated with spontaneous preterm birth. Mod Pathol 2010; 23:1000-11. [PMID: 20348884 PMCID: PMC3096929 DOI: 10.1038/modpathol.2010.73] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Acute chorioamnionitis is a well-established lesion of the placenta in cases with intra-amniotic infection. In contrast, the clinicopathological significance of chronic chorioamnionitis is unclear. This study was conducted to determine the frequency and severity of chronic chorioamnionitis in normal pregnancy and in various pregnancy complications. Placentas from the following patient groups were studied: (1) term not in labor (n=100), (2) term in labor (n=100), (3) preterm labor (n=100), (4) preterm prelabor rupture of membranes (n=100), (5) preeclampsia at term (n=100), (6) preterm preeclampsia (n=100), and (7) small-for-gestational-age at term (n=100). Amniotic fluid CXCL10 concentration was measured in 64 patients. CXCL9, CXCL10, and CXCL11 mRNA expressions in the chorioamniotic membranes were assessed using real-time quantitative reverse transcription-PCR. The frequency of chronic chorioamnionitis in the preterm labor group and the preterm prelabor rupture of membranes group was 34 and 39%, respectively, which was higher than that of normal-term placentas (term not in labor, 19%; term in labor, 8%; P<0.05 each). The frequency of chronic chorioamnionitis in the preeclampsia at term group, preterm preeclampsia group, and small-for-gestational-age group was 23, 16, and 13%, respectively. Concomitant villitis of unknown etiology was found in 38 and 36% of preterm labor cases and preterm prelabor rupture of membranes cases with chronic chorioamnionitis, respectively. Interestingly, the median gestational age of preterm chronic chorioamnionitis cases was higher than that of acute chorioamnionitis cases (P<0.05). The median amniotic fluid CXCL10 concentration was higher in cases with chronic chorioamnionitis than in those without, in both the preterm labor group and preterm prelabor rupture of membranes group (P<0.05 and P<0.01, respectively). CXCL9, CXCL10, and CXCL11 mRNA expression in the chorioamniotic membranes was also higher in cases with chronic chorioamnionitis than in those without chronic chorioamnionitis (P<0.05). We propose that chronic chorioamnionitis defines a common placental pathological lesion among the preterm labor and preterm prelabor rupture of membranes groups, especially in cases of late preterm birth. Its association with villitis of unknown etiology and the chemokine profile in amniotic fluid suggests an immunological origin, akin to transplantation rejection and graft-versus-host disease in the chorioamniotic membranes.
Collapse
Affiliation(s)
- Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Wonsuk Yoo
- Translational Research and Clinical Epidemiology, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Vanessa Topping
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Je Geun Chi
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Sun Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
41
|
Kwon O, Ahn K, Zhang B, Lockwood T, Dhamija R, Anderson D, Saqib N. Simultaneous monitoring of multiple urinary cytokines may predict renal and patient outcome in ischemic AKI. Ren Fail 2010; 32:699-708. [DOI: 10.3109/0886022x.2010.486496] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Abstract
Efficient recruitment and activation of immuno-competent cells is crucial for an effective immune response to hepatitis C virus (HCV) infection. Chemokines and chemokine receptors have been shown to be critically involved in these processes. The CCR5 chemokine receptor is expressed on several cells of the immune system and has been suggested to influence the susceptibility to HCV infection as well as natural course and progression of hepatitis C. However, these reports are still controversial. This review will summarize and discuss the available data regarding the potential role of CCR5 and its ligands in hepatitis C.
Collapse
Affiliation(s)
- Martin Coenen
- Department of Internal Medicine I, University of Bonn, Germany
| | | |
Collapse
|
43
|
Jedlicka J, Soleiman A, Draganovici D, Mandelbaum J, Ziegler U, Regele H, Wüthrich RP, Gross O, Anders HJ, Segerer S. Interstitial inflammation in Alport syndrome. Hum Pathol 2010; 41:582-93. [DOI: 10.1016/j.humpath.2009.08.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/12/2009] [Accepted: 08/14/2009] [Indexed: 11/30/2022]
|
44
|
Neusser MA, Kraus AK, Regele H, Cohen CD, Fehr T, Kerjaschki D, Wüthrich RP, Penfold MET, Schall T, Segerer S. The chemokine receptor CXCR7 is expressed on lymphatic endothelial cells during renal allograft rejection. Kidney Int 2010; 77:801-8. [PMID: 20164826 DOI: 10.1038/ki.2010.6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CXCR7 is an atypical receptor for the chemokines CXCL11 and CXCL12, which were found to be involved in animal models of allograft injury. We studied the expression of CXCR7 and its ligands in human kidneys by first quantifying the mRNA in 53 renal allograft biopsies. Receptor and ligand mRNAs were expressed in renal allografts, with a significant induction of CXCL11 and CXCL12 in biopsies showing borderline lesions and acute rejection. Immunohistochemical analysis for CXCR7 was performed in a series of 64 indication and 24 protocol biopsies. The indication biopsies included 46 acute rejections, 6 with interstitial fibrosis and tubular atrophy, and 12 pretransplant biopsies as controls. In control biopsies, CXCR7 protein was found on smooth muscle and on endothelial cells of a small number of peritubular vessels. The number of CXCR7-positive vessels was increased in acute rejection and, using double immunofluorescence labeling, a subset of these CXCR7-positive endothelial cells were identified as lymphatic vessels. Both CXCR7-positive blood and lymphatic vessels increased during allograft rejection. We found that CXCR7 is present in both blood and lymphatic endothelial cells in human renal allografts. Whether its presence modulates the formation of chemokine gradients and the recruitment of inflammatory cells will require further experimental studies.
Collapse
|
45
|
Steinmetz OM, Turner JE, Paust HJ, Lindner M, Peters A, Heiss K, Velden J, Hopfer H, Fehr S, Krieger T, Meyer-Schwesinger C, Meyer TN, Helmchen U, Mittrücker HW, Stahl RAK, Panzer U. CXCR3 mediates renal Th1 and Th17 immune response in murine lupus nephritis. THE JOURNAL OF IMMUNOLOGY 2009; 183:4693-704. [PMID: 19734217 DOI: 10.4049/jimmunol.0802626] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Infiltration of T cells into the kidney is a typical feature of human and experimental lupus nephritis that contributes to renal tissue injury. The chemokine receptor CXCR3 is highly expressed on Th1 cells and is supposed to be crucial for their trafficking into inflamed tissues. In this study, we explored the functional role of CXCR3 using the MRL/MpJ-Fas(lpr) (MRL/lpr) mouse model of systemic lupus erythematosus that closely resembles the human disease. CXCR3(-/-) mice were generated and backcrossed into the MRL/lpr background. Analysis of 20-wk-old CXCR3(-/-) MRL/lpr mice showed amelioration of nephritis with reduced glomerular tissue damage and decreased albuminuria and T cell recruitment. Most importantly, not only the numbers of renal IFN-gamma-producing Th1 cells, but also of IL-17-producing Th17 cells were significantly reduced. Unlike in inflamed kidneys, there was no reduction in the numbers of IFN-gamma- or IL-17-producing T cells in spleens, lymph nodes, or the small intestine of MRL/lpr CXCR3(-/-) mice. This observation suggests impaired trafficking of effector T cells to injured target organs, rather than the inability of CXCR3(-/-) mice to mount efficient Th1 and Th17 immune responses. These findings show a crucial role for CXCR3 in the development of experimental lupus nephritis by directing pathogenic effector T cells into the kidney. For the first time, we demonstrate a beneficial effect of CXCR3 deficiency through attenuation of both the Th1 and the newly defined Th17 immune response. Our data therefore identify the chemokine receptor CXCR3 as a promising therapeutic target in lupus nephritis.
Collapse
|
46
|
Schaub S, Nickerson P, Rush D, Mayr M, Hess C, Golian M, Stefura W, Hayglass K. Urinary CXCL9 and CXCL10 levels correlate with the extent of subclinical tubulitis. Am J Transplant 2009; 9:1347-53. [PMID: 19459809 DOI: 10.1111/j.1600-6143.2009.02645.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Subclinical tubulitis has been associated with the later development of interstitial fibrosis and tubular atrophy (IF/TA), leading to diminished allograft survival. The aim of this study was to investigate how concentrations of urinary CXC-receptor 3 (CXCR3) chemokines (i.e. CXCL4/9/10/11) and CCL2 relate to the extent of subclinical tubulitis. Using ELISA, urinary CXCR3 chemokines, CCL2 and tubular injury markers (i.e. urinary NGAL and alpha1-microglobulin [alpha1 m]) were measured in patients with stable estimated GFR >or=40 mL/min exhibiting normal tubular histology (n = 24), subclinical borderline tubulitis (n = 18) or subclinical tubulitis Ia/Ib (n = 22), as well as in patients with clinical tubulitis Ia/Ib (n = 17) or IF/TA (n = 10). CXCL9 and CXCL10 were significantly higher in subclinical tubulitis Ia/Ib than in subclinical borderline tubulitis (p <or= 0.03) and normal tubular histology (p <or= 0.0002). By contrast, NGAL, alpha1-m, CXCL4, CXCL11 and CCL2 were not or only marginally distinctive across these patient groups. All urinary chemokines and tubular injury markers were higher in clinical tubulitis Ia/Ib than in normal tubular histology (p <or= 0.002), but only tubular injury markers were elevated in IF/TA. These results demonstrate a correlation of urinary CXCL9 and CXCL10 levels with the extent of subclinical tubulitis suggesting potential as noninvasive screening biomarkers.
Collapse
Affiliation(s)
- S Schaub
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim MJ, Romero R, Kim CJ, Tarca AL, Chhauy S, LaJeunesse C, Lee DC, Draghici S, Gotsch F, Kusanovic JP, Hassan SS, Kim JS. Villitis of unknown etiology is associated with a distinct pattern of chemokine up-regulation in the feto-maternal and placental compartments: implications for conjoint maternal allograft rejection and maternal anti-fetal graft-versus-host disease. THE JOURNAL OF IMMUNOLOGY 2009; 182:3919-27. [PMID: 19265171 DOI: 10.4049/jimmunol.0803834] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The co-presence of histoincompatible fetal and maternal cells is a characteristic of human placental inflammation. Villitis of unknown etiology (VUE), a destructive inflammatory lesion of villous placenta, is characterized by participation of Hofbauer cells (placental macrophages) and maternal T cells. In contrast to acute chorioamnionitis of infection-related origin, the fundamental immunopathology of VUE is unknown. This study was performed to investigate the placental transcriptome of VUE and to determine whether VUE is associated with systemic maternal and/or fetal inflammatory response(s). Comparison of the transcriptome between term placentas without and with VUE revealed differential expression of 206 genes associated with pathways related to immune response. The mRNA expression of a subset of chemokines and their receptors (CXCL9, CXCL10, CXCL11, CXCL13, CCL4, CCL5, CXCR3, CCR5) was higher in VUE placentas than in normal placentas (p < 0.05). Analysis of blood cell mRNA showed a higher expression of CXCL9 and CXCL13 in the mother, and CXCL11 and CXCL13 in the fetus of VUE cases (p < 0.05). The median concentrations of CXCL9, CXCL10, and CXCL11 in maternal and fetal plasma were higher in VUE (p < 0.05). Comparison of preterm cases without and with acute chorioamnionitis revealed elevated CXCL9, CXCL10, CXCL11, and CXCL13 concentrations in fetal plasma (p < 0.05), but not in maternal plasma with chorioamnionitis. We report for the first time the placental transcriptome of VUE. A systemic derangement of CXC chemokines in maternal and fetal circulation distinguishes VUE from acute chorioamnionitis. We propose that VUE be a unique state combining maternal allograft rejection and maternal antifetal graft-vs-host disease mechanisms.
Collapse
Affiliation(s)
- Mi Jeong Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892 and Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
THORBURN NEE KRASNA ELISKA, KOLESAR LIBOR, BRABCOVA EVA, PETRICKOVA KATERINA, PETRICEK MIROSLAV, JARESOVA MARCELA, SLAVCEV ANTONIJ, STRIZ ILJA. CXC and CC chemokines induced in human renal epithelial cells by inflammatory cytokines. APMIS 2009; 117:477-87. [DOI: 10.1111/j.1600-0463.2009.02446.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
49
|
Abstract
In organ transplantation, blood borne cells and macromolecules (e.g., antibodies) of the host immune system are brought into direct contact with the endothelial cell lining of graft vessels. In this location, graft endothelial cells play several roles in allograft rejection, including the initiation of rejection responses by presentation of alloantigen to circulating T cells; the development of inflammation and thrombosis; and as targets of injury and agents of repair.
Collapse
|
50
|
Abstract
In organ transplantation, blood borne cells and macromolecules (e.g., antibodies) of the host immune system are brought into direct contact with the endothelial cell lining of graft vessels. In this location, graft endothelial cells play several roles in allograft rejection, including the initiation of rejection responses by presentation of alloantigen to circulating T cells; the development of inflammation and thrombosis; and as targets of injury and agents of repair.
Collapse
|