1
|
Yadav SS, Nair RR. Ethyl Pyruvate as a Potential Therapeutic Agent for Endometriosis: A Perspective. Reprod Sci 2025:10.1007/s43032-025-01875-x. [PMID: 40360949 DOI: 10.1007/s43032-025-01875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Endometriosis is a disease where vascularised tissue similar to endometrium (the lining of the uterus) grows outside of the uterus. Its pathogenesis involves a complex interplay of inflammation, angiogenesis, cellular proliferation, reactive oxygen species (ROS) production, altered energy metabolism, and epithelial-to-mesenchymal transition (EMT).Even though endometriosis was described more than 150 years ago, we have been unable to find its effective therapy. Conservative treatment approaches like non-steroidal anti-inflammatory drugs or hormone therapy are available to date for the treatment of endometriosis. Anti-angiogenic inhibitors and immunomodulators like IFN-α, β, and TNF-α inhibitors are also potential treatment options. These treatments are inadequate as they either affect the symptoms only of endometriosis or target only one pathological pathway involved. Surgical excision of the endometriotic lesion is also possible, however, recurrence of the disease is reported in several cases. A single therapeutic agent targeting several pathological processes in endometriosis would always be a better option. Here we present our perspective on the pharmacological potential of Ethyl pyruvate and also propose it as a promising therapeutic agent for endometriosis as it inhibits inflammation, cell proliferation, angiogenesis, aerobic glycolysis, EMT, and ROS activity together.
Collapse
Affiliation(s)
- Suresh Singh Yadav
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rohini Ravindran Nair
- Department of Medical Biotechnology, Gujrat Biotechnology University, Gandhinagar, 382355, Gujrat, India.
| |
Collapse
|
2
|
Rabadi MM, Verde MR, Camilliere M, Vecchio N, Kandhi S, Sekulic M, Wolin MS, Ratliff BB. Renal and Vascular Functional Decline in Aged Low Birth Weight Murine Adults. Kidney Blood Press Res 2024; 49:1075-1090. [PMID: 39571568 DOI: 10.1159/000542141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/16/2024] [Indexed: 12/19/2024] Open
Abstract
INTRODUCTION Maternal undernutrition (MUN)-induced low birth weight (LBW) neonates are susceptible to the development of high blood pressure and kidney disease later in life, although the underlying pathological causes remain unclear. The study here investigated the role of renal oxidative stress, impairment of vascular function, and altered sensitivity to angiotensin II (Ang II) as factors that contribute to these pathologies in aged LBW mice. METHODS LBW offspring were generated using a combined protein and caloric restricted MUN mouse model. The resulting LBW offspring were examined 1 year after birth for mean arterial blood pressure (MABP) (carotid artery catheterization), renal blood flow (RBF) (laser Doppler flowmetry), glomerular filtration rate (GFR) (sinistrin clearance), vasoreactivity (myograph), renal vascular density (CD31 staining), and reactive oxygen species (ROS) (ROS probes). Immunoblotting examined Ang II type 1 receptor (AT1R), soluble guanylate cyclase (sGC), and antioxidant systems. Pharmacological agents delivered to animals included the sGC stimulator δ-aminolevulinic acid (ALA), the AT1R inhibitor losartan, the antioxidant ethyl pyruvate (EP), and the toll-like receptor 4 inhibitor TAK242. RESULTS After 1 year, MABP was increased, while RBF, GFR, vascular reactivity, renal vascular density, and sGC were all reduced in the LBW aged adult. All four pharmacological agents improved MABP, RBF, GFR, vascular density, and vascular reactivity. Renal ROS was increased in the LBW adult but was reduced by ALA, EP, and TAK242 treatment. AT1R was upregulated in the LBW adult, while sGC was decreased, an effect reversed by ALA treatment. Endogenous antioxidant systems, including SOD1, catalase, and glutathione were downregulated in the LBW adult. CONCLUSION MUN-induced LBW mice experience increased Ang II sensitivity and oxidative stress. The increased Ang II sensitivity and ROS generation influences vascular density and reactivity, which drive an increase in MABP, and a concomitantly decrease in RBF and glomerular filtration. Pharmacological intervention that inhibits AT1R, enhances levels of sGC, reduces ROS, or inhibits toll-like receptor 4 improves vascular and renal function in the LBW adult.
Collapse
Affiliation(s)
- May M Rabadi
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - Marella R Verde
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| | - Mia Camilliere
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| | - Nicholas Vecchio
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| | - Brian B Ratliff
- Department of Medicine, New York Medical College, Valhalla, New York, USA
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
3
|
Tang D, Kang R, Zeh HJ, Lotze MT. The multifunctional protein HMGB1: 50 years of discovery. Nat Rev Immunol 2023; 23:824-841. [PMID: 37322174 DOI: 10.1038/s41577-023-00894-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Fifty years since the initial discovery of HMGB1 in 1973 as a structural protein of chromatin, HMGB1 is now known to regulate diverse biological processes depending on its subcellular or extracellular localization. These functions include promoting DNA damage repair in the nucleus, sensing nucleic acids and inducing innate immune responses and autophagy in the cytosol and binding protein partners in the extracellular environment and stimulating immunoreceptors. In addition, HMGB1 is a broad sensor of cellular stress that balances cell death and survival responses essential for cellular homeostasis and tissue maintenance. HMGB1 is also an important mediator secreted by immune cells that is involved in a range of pathological conditions, including infectious diseases, ischaemia-reperfusion injury, autoimmunity, cardiovascular and neurodegenerative diseases, metabolic disorders and cancer. In this Review, we discuss the signalling mechanisms, cellular functions and clinical relevance of HMGB1 and describe strategies to modify its release and biological activities in the setting of various diseases.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael T Lotze
- Departments of Surgery, Immunology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Salış M, Ünal B, Ulaş M, Yücel F, Dönmez DB, Bal C. Ethyl Pyruvate; from Liver Preservation Solutions University of Wisconsin (UW) Increases the Effectiveness of the Solution. Transplant Proc 2023; 55:2218-2226. [PMID: 37778933 DOI: 10.1016/j.transproceed.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/01/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND The most important factor affecting the success rate of liver transplants is the preservation of the normal histologic and biochemical properties of the cells in the tissue taken. The study aimed to identify the possible increase in efficacy of ethyl pyruvate, which has a hepatoprotective effect, on the University of Wisconsin (UW) solution. METHODS Rats were randomly selected and divided into 4 groups. After a laparotomy, the small intestines were removed from the abdomen and the portal pedicle was identified. Arterial and venous circulation of the liver was interrupted. After the portal vein was cannulated (and the distal of the portal pedicle was ligated, the liver was perfused with a solution. Perfusion solution was selected as Ringer Lactate in Group 1. In group 2, UW solution was chosen as the perfusion solution. In Group 3, the perfusion solution was chosen as the UW solution, but ethyl pyruvate at a dose of 40 mg/kg was administered intraperitoneally to the experimental animals 30 minutes before hepatectomy. In Group 4, as a perfusion solution, a UW solution with 40 mg/kg dose of ethyl pyruvate added to it was used. RESULTS With TUNEL and Caspase-3 staining, a significant decrease was found in the apoptosis rates of Groups 2, 3, and 4 at the 12th hour post hepatectomy when compared with Group 1. When the morphometric liver sinusoid/parenchyma ratios and vena centralis diameters of the groups were examined, it was found that all preservation solutions containing the UW solution were more protective than the RL solution. CONCLUSIONS Ethyl pyruvate is regarded as a promising agent that can increase the effect of the UW solution on organ preservation solutions. Because this study is the first in literature to apply ethyl pyruvate in preservation solutions, additional studies with larger series and different doses are needed.
Collapse
Affiliation(s)
- Mustafa Salış
- Department of General Surgery, Eskişehir City Hospital, Eskişehir, Turkey.
| | - Bülent Ünal
- Department of General Surgery, Faculty of Medicine, İstanbul Aydın University, Istanbul, Turkey
| | - Murat Ulaş
- Department of General Surgery, Faculty of Medicine, Osmangazi University, Eskişehir, Turkey
| | - Ferruh Yücel
- Department of Anatomy, Faculty of Medicine, Osmangazi University, Eskişehir, Turkey
| | - Dilek Burukoğlu Dönmez
- Department of Histology and Embryology, Faculty of Medicine, Osmangazi University, Eskişehir, Turkey
| | - Cengiz Bal
- Department of Biostatistics, Faculty of Medicine, Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
5
|
Ethyl pyruvate, a versatile protector in inflammation and autoimmunity. Inflamm Res 2022; 71:169-182. [PMID: 34999919 PMCID: PMC8742706 DOI: 10.1007/s00011-021-01529-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/18/2022] Open
Abstract
Ethyl pyruvate (EP) has potent influence on redox processes, cellular metabolism, and inflammation. It has been intensively studied in numerous animal models of systemic and organ-specific disorders whose pathogenesis involves a strong immune component. Here, basic chemical and biological properties of EP are discussed, with an emphasis on its redox and metabolic activity. Further, its influence on myeloid and T cells is considered, as well as on intracellular signaling beyond its effect on immune cells. Also, the effects of EP on animal models of chronic inflammatory and autoimmune disorders are presented. Finally, a possibility to apply EP as a treatment for such diseases in humans is discussed. Scientific papers cited in this review were identified using the PubMed search engine that relies on the MEDLINE database. The reference list covers the most important findings in the field in the past twenty years.
Collapse
|
6
|
Bakdemir M, Çetin E. Hepatoprotective effects of ethyl pyruvate against carbon tetrachloride-induced oxidative stress, biochemical and histological alterations in rats. Arch Physiol Biochem 2021; 127:359-366. [PMID: 31314597 DOI: 10.1080/13813455.2019.1640254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study investigated the protective effects of ethyl pyruvate (EP) against carbon tetrachloride (CCl4)-induced acute hepatic injury in rats. The administration of a single dose of CCl4 (1.6 g/kg body weight) significantly elevated the levels of malondialdehyde, nitric oxide, alanine transaminase, aspartate transaminase, and alkaline phosphatase, cholesterol, low-density lipoprotein cholesterol, and triglycerides. In addition, CCl4 was found to significantly suppress the activity of superoxide dismutase, catalase, and glutathione peroxidase. All of these parameters were restored to their normal levels by the administration of EP before and after the CCl4 injection. Moreover, the number of positive apoptotic hepatocytes had significantly increased in the CCl4 group but decreased in rats treated with EP along with CCl4. Histopathological changes induced by CCl4 were also ameliorated by EP treatment. These findings provided evidence that EP, because of its antioxidant and anti-apoptotic action, could protect rat liver against CCl4-induced acute liver injury.
Collapse
Affiliation(s)
- Miraç Bakdemir
- Department of Veterinary Physiology, Institute of Health Sciences, Erciyes University, Kayseri, Turkey
| | - Ebru Çetin
- Department of Physiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
7
|
Lu C, Wang C, Xiao H, Chen M, Yang Z, Liang Z, Wang H, Liu Y, Yang Y, Wang Q. Ethyl pyruvate: A newly discovered compound against ischemia-reperfusion injury in multiple organs. Pharmacol Res 2021; 171:105757. [PMID: 34302979 DOI: 10.1016/j.phrs.2021.105757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022]
Abstract
Ischemia-reperfusion injury (IRI) is a process whereby an initial ischemia injury and subsequent recovery of blood flow, which leads to the propagation of an innate immune response and the changes of structural and functional of multiple organs. Therefore, IRI is considered to be a great challenge in clinical treatment such as organ transplantation or coronary angioplasty. In recent years, ethyl pyruvate (EP), a derivative of pyruvate, has received great attention because of its stability and low toxicity. Previous studies have proved that EP has various pharmacological activities, including anti-inflammation, anti-oxidative stress, anti-apoptosis, and anti-fibrosis. Compelling evidence has indicated EP plays a beneficial role in a variety of acute injury models, such as brain IRI, myocardial IRI, renal IRI, and hepatic IRI. Moreover, EP can not only effectively inhibit multiple IRI-induced pathological processes, but also improve the structural and functional lesion of tissues and organs. In this study, we review the recent progress in the research on EP and discuss their implications for a better understanding of multiple organ IRI, and the prospects of targeting the EP for therapeutic intervention.
Collapse
Affiliation(s)
- Chenxi Lu
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Haoxiang Xiao
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Mengfan Chen
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zhi Yang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, China
| | - Haiying Wang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China
| | - Yonglin Liu
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China
| | - Yang Yang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Qiang Wang
- Department of Paediatrics, Shenmu Hospital, School of Life Sciences and Medicine, Northwest University, Guangming Road, Shenmu, China.
| |
Collapse
|
8
|
Tatli Ö, Pasli S, Imamoğlu M, Cicek M, Yadigaroglu M, Sahin A, Dilaver I, Yulug E, Karaca Y. Potential therapeutic effects of ethyl pyruvate and N-acetyl cysteine in an experimental rat model of corrosive esophageal. Arab J Gastroenterol 2020; 21:260-266. [PMID: 33281067 DOI: 10.1016/j.ajg.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 08/11/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND STUDY AIMS Esophageal burns due to ingestion of corrosive substances are frequently seen in both children and adults. However, there is no standard method of treatment to prevent associated mortality and morbidity. Therefore, this study aimed to evaluate the effects of known antioxidants, namely N-acetyl cysteine and ethyl pyruvate, on esophageal damage due to sodium hydroxide-induced corrosive burns. MATERIALS AND METHODS Thirty-five female rats were randomly assigned to five equal groups. Group 1 was the sham group, while Group 2 was the control group. Group 3 received N-acetyl cysteine, Group 4 received ethyl pyruvate, and Group 5 received both N-acetyl cysteine and ethyl pyruvate. Rats in the "burn" groups were gavage-fed with 0.2mL of 25% NaOH. All esophagi were extracted on day 4 for histopathological evaluation. RESULTS Total histopathological damage scores were evaluated at the end of the study. Groups 3 and 5 were significantly different from the control group in terms of total histopathological scores (p = 0.001), while no significant difference was seen with Group 4. Stenosis index results in groups 3 and 5 were similar to those seen with total histopathological scores (p = 0.004). CONCLUSION N-acetyl cysteine, alone or in combination with ethyl pyruvate, may be useful in the treatment of esophageal damage associated with corrosive substances and in achieving histopathological improvement in an experimental setting.
Collapse
Affiliation(s)
- Özgur Tatli
- Karadeniz Technical University, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey
| | - Sinan Pasli
- Gümüşhane State Hospital, Department of Emergency Medicine, Gümüşhane, Turkey.
| | - Melih Imamoğlu
- Rize State Hospital, Department of Emergency Medicine, Rize, Turkey
| | - Mustafa Cicek
- Fatih State Hospital, Department of Emergency Medicine, Trabzon, Turkey
| | - Metin Yadigaroglu
- Fatih State Hospital, Department of Emergency Medicine, Trabzon, Turkey
| | - Aynur Sahin
- Karadeniz Technical University, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey
| | - Irem Dilaver
- Karadeniz Technical University, Faculty of Medicine, Department of Public Health, Trabzon, Turkey
| | - Esin Yulug
- Karadeniz Technical University, Faculty of Medicine, Department of Histology and Embryology, Trabzon, Turkey
| | - Yunus Karaca
- Karadeniz Technical University, Faculty of Medicine, Department of Emergency Medicine, Trabzon, Turkey
| |
Collapse
|
9
|
Ringer's ethyl pyruvate solution attenuates hypoperfusion and renal injury after multivisceral ischemia-reperfusion in rabbits. J Anesth 2020; 34:303-307. [PMID: 31916012 DOI: 10.1007/s00540-019-02730-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/25/2019] [Indexed: 01/28/2023]
Abstract
Ringer's ethyl pyruvate solution (REPS) has been protective against experimental renal, intestinal, and spinal ischemia and may be useful for organ protection in major vascular surgery. The purpose of this study was to investigate whether REPS attenuates organ injury in a rabbit model of supraceliac aortic cross-clamp that simulates thoracoabdominal aortic surgery. Following the Institutional Animal Care and Use Committee's approval, 20 rabbits were undergone cross-clamping of the supraceliac thoracic aorta for 30 min, and observed for 180 min after reperfusion. Either REPS (33 mg/kg/h of ethyl pyruvate) or Ringer's lactate solution were infused throughout the study period. Arterial pressure and aortic blood flow were continuously monitored. Blood lactate concentration, serum transaminase levels, neutrophil activation, and urinary N-acetyl-beta-glucosaminidase (NAG) activity were evaluated. After reperfusion, supraceliac aortic blood flow was significantly higher, and urinary NAG was significantly lower in animals that received REPS, while the other parameters were not significantly different. In conclusion, REPS attenuated the reduction of aortic blood flow and urinary NAG elevation after the cross-clamp of supraceliac aorta.
Collapse
|
10
|
Demir S, Kazaz IO, Aliyazicioglu Y, Kerimoglu G, Teoman AS, Yaman SO, Arslan A, Mentese A. Effect of ethyl pyruvate on oxidative state and endoplasmic reticulum stress in a rat model of testicular torsion. Biotech Histochem 2019; 95:317-322. [PMID: 31850805 DOI: 10.1080/10520295.2019.1695947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We investigated the effects of ethyl pyruvate (EP) on oxidative and endoplasmic reticulum (ER) stress due to experimental testicular ischemia-reperfusion (I-R). Eighteen rats were divided into a control group, a torsion-detorsion (T-D) group and an EP group. For pretreatment of the EP group, 50 mg/kg EP was given intraperitoneally (i.p.) 30 min before detorsion. Tissue 4-hydroxynonenal (4-HNE) and 78-kDa glucose-regulated protein (GRP78) levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Tissue total oxidant status (TOS) and total antioxidant status were determined using colorimetric methods. Histology of the tissues was evaluated using hematoxylin and eosin staining. In the T-D group, tissue 4-HNE, GRP78, TOS and oxidative stress index levels were significantly higher than for the control group. The increases were reduced significantly by EP pretreatment. Our findings suggest that EP can inhibit I-R induced testicular injury by suppressing oxidative and ER stress. EP may be a useful adjunctive treatment for surgical repair in humans.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ilke Onur Kazaz
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Gokcen Kerimoglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ahmet Serdar Teoman
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Serap Ozer Yaman
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ayhan Arslan
- Department of Urology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Ahmet Mentese
- Program of Medical Laboratory Techniques, Vocational School of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
11
|
Deng W, Fan C, Shen R, Wu Y, Du R, Teng J. Long noncoding MIAT acting as a ceRNA to sponge microRNA-204-5p to participate in cerebral microvascular endothelial cell injury after cerebral ischemia through regulating HMGB1. J Cell Physiol 2019; 235:4571-4586. [PMID: 31628679 DOI: 10.1002/jcp.29334] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
This study is applied to the investigation of the long noncoding RNA myocardial infarction associated transcript's (MIAT's) role in regulating the expression of high-mobility group box 1 (HMGB1) in cerebral microvascular endothelial cell (CMEC) injury after cerebral ischemia by serving as a competitive endogenous RNA (ceRNA) to sponge microRNA-204-5p (miR-204-5p). The cerebral ischemia model of middle cerebral artery occlusion (MCAO) in rats was established by the suture method, in which rats were injected with empty plasmids and MIAT siRNA plasmids. The cerebral ischemia injury model in vitro was established through oxygen glucose deprivation (OGD) in primary cultured CMECs in rats. The cells were transfected with empty plasmids and MIAT siRNA plasmids. The MIAT/miR-204-5p/HMGB1 axis' function in damage and angiogenesis of CMECs were explored. The binding site between MIAT and miR-204-5p along with that between miR-204-5p and HMGB1 was determined. MIAT was overexpressed in MCAO rats' brain tissue and inhibited MIAT attenuated the injury of brain tissue in MCAO rats. Inhibition of MIAT promoted angiogenesis, promoted miR-204-5p expression and inhibited HMGB1 expression in brain tissue of MCAO rats. Inhibition of MIAT reduced CMEC damage, induced angiogenesis of CMECs, increased the number of surviving neurons, promoted miR-204-5p expression and inhibited HMGB1 expression in CMECs treated with OGD. MIAT promoted HMGB1 expression by competitive binding to miR-204-5p to regulate the injury of CMECs after cerebral ischemia. Our study showed that MIAT promoted HMGB1 expression by competitively binding to miR-204-5p to regulate the injury of CMECs after cerebral ischemia.
Collapse
Affiliation(s)
- Wenjing Deng
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenghe Fan
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruile Shen
- The Neurology Department, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yanzhi Wu
- The Neurology Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ran Du
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junfang Teng
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Yaron JR, Chen H, Ambadapadi S, Zhang L, Tafoya AM, Munk BH, Wakefield DN, Fuentes J, Marques BJ, Harripersaud K, Bartee MY, Davids JA, Zheng D, Rand K, Dixon L, Moyer RW, Clapp WL, Lucas AR. Serp-2, a virus-derived apoptosis and inflammasome inhibitor, attenuates liver ischemia-reperfusion injury in mice. J Inflamm (Lond) 2019; 16:12. [PMID: 31160886 PMCID: PMC6542089 DOI: 10.1186/s12950-019-0215-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/17/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an antigen-independent, innate immune response to arterial occlusion and ischemia with subsequent paradoxical exacerbation after reperfusion. IRI remains a critical problem after vessel occlusion and infarction or during harvest and surgery in transplants. After transplant, liver IRI (LIRI) contributes to increased acute and chronic rejection and graft loss. Tissue loss during LIRI has been attributed to local macrophage activation and invasion with excessive inflammation together with hepatocyte apoptosis and necrosis. Inflammatory and apoptotic signaling are key targets for reducing post-ischemic liver injury.Myxomavirus is a rabbit-specific leporipoxvirus that encodes a suite of immune suppressing proteins, often with extensive function in other mammalian species. Serp-2 is a cross-class serine protease inhibitor (serpin) which inhibits the inflammasome effector protease caspase-1 as well as the apoptotic proteases granzyme B and caspases 8 and 10. In prior work, Serp-2 reduced inflammatory cell invasion after angioplasty injury and after aortic transplantation in rodents. In this report, we explore the potential for therapeutic treatment with Serp-2 in a mouse model of LIRI. METHODS Wildtype (C57BL/6 J) mice were subjected to warm, partial (70%) hepatic ischemia for 90 min followed by treatment with saline or Serp-2 or M-T7, 100 ng/g/day given by intraperitoneal injection on alternate days for 5 days. M-T7 is a Myxomavirus-derived inhibitor of chemokine-GAG interactions and was used in this study for comparative analysis of an unrelated viral protein with an alternative immunomodulating mechanism of action. Survival, serum ALT levels and histopathology were assessed 24 h and 10 days post-LIRI. RESULTS Serp-2 treatment significantly improved survival to 85.7% percent versus saline-treated wildtype mice (p = 0.0135), while M-T7 treatment did not significantly improve survival (p = 0.2584). Liver viability was preserved by Serp-2 treatment with a significant reduction in serum ALT levels (p = 0.0343) and infarct scar thickness (p = 0.0016), but with no significant improvement with M-T7 treatment. Suzuki scoring by pathologists blinded with respect to treatment group indicated that Serp-2 significantly reduced hepatocyte necrosis (p = 0.0057) and improved overall pathology score (p = 0.0046) compared to saline. Immunohistochemistry revealed that Serp-2 treatment reduced macrophage infiltration into the infarcted liver tissue (p = 0.0197). CONCLUSIONS Treatment with Serp-2, a virus-derived inflammasome and apoptotic pathway inhibitor, improves survival after liver ischemia-reperfusion injury in mouse models. Treatment with a cross-class immune modulator provides a promising new approach designed to reduce ischemia-reperfusion injury, improving survival and reducing chronic transplant damage.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Hao Chen
- The Department of Tumor Surgery, Second Hospital of Lanzhou University and The Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Sriram Ambadapadi
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Amanda M. Tafoya
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Barbara H. Munk
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | | | - Jorge Fuentes
- Divisions of Cardiovascular Medicine and Rheumatology, Department of Medicine, University of Florida, Gainesville, FL USA
| | - Bruno J. Marques
- Divisions of Cardiovascular Medicine and Rheumatology, Department of Medicine, University of Florida, Gainesville, FL USA
| | - Krishna Harripersaud
- Divisions of Cardiovascular Medicine and Rheumatology, Department of Medicine, University of Florida, Gainesville, FL USA
| | - Mee Yong Bartee
- Divisions of Cardiovascular Medicine and Rheumatology, Department of Medicine, University of Florida, Gainesville, FL USA
| | - Jennifer A. Davids
- Divisions of Cardiovascular Medicine and Rheumatology, Department of Medicine, University of Florida, Gainesville, FL USA
| | - Donghang Zheng
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL USA
| | - Kenneth Rand
- Department of Pathology, University of Florida, Gainesville, FL USA
| | - Lisa Dixon
- Department of Pathology, University of Florida, Gainesville, FL USA
| | - Richard W. Moyer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL USA
| | - William L. Clapp
- Department of Pathology, University of Florida, Gainesville, FL USA
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ USA
- Divisions of Cardiovascular Medicine and Rheumatology, Department of Medicine, University of Florida, Gainesville, FL USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL USA
| |
Collapse
|
13
|
Lee HK, Park JY, Lee H, Kim ID, Kim SW, Yoon SH, Lee JK. Anti-Inflammatory and Neuroprotective Effects of DIPOPA (N,N-Diisopropyl-2-Oxopropanamide), an Ethyl Pyruvate Bioisoster, in the Postischemic Brain. Neurotherapeutics 2019; 16:523-537. [PMID: 30680637 PMCID: PMC6554410 DOI: 10.1007/s13311-019-00711-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Ethyl pyruvate (EP) is a simple aliphatic ester of pyruvic acid and has been shown to have protective properties, which have been attributed to its anti-inflammatory, anti-oxidative, and anti-apoptotic functions. In an effort to develop better derivatives of EP, we previously synthesized DEOPA (N,N-diethyl-2-oxopropanamide, a novel isoster of EP) which has greater neuroprotective effects than EP, probably due to its anti-inflammatory and anti-excitotoxic effects. In the present study, we synthesized 3 DEOPA derivatives, in which its diethylamino group was substituted with diisopropylamino, dipropylamino, or diisobutylamino groups. Among them, DIPOPA (N,N-diisopropyl-2-oxopropanamide) containing diisopropylamino group had a greater neuroprotective effect than DEOPA or EP when administered intravenously to a rat middle cerebral artery occlusion (MCAO) model at 9 h after MCAO. Furthermore, DIPOPA had a wider therapeutic window than DEOPA and a marked reduction of infarct volume was accompanied by greater neurological and behavioral improvements. In particular, DIPOPA exerted robust anti-inflammatory effects, as evidenced by marked suppressions of microglia activation and neutrophil infiltration in the MCAO model, in microglial cells, and in neutrophil-endothelial cocultures at lower concentration, and did so more effectively than DEOPA. In particular, DIPOPA remarkably suppressed neutrophil infiltration into brain parenchyma, and this effect was attributed to the expressional inhibitions of cell adhesion molecules in neutrophils of brain parenchyma and in circulating neutrophils via NF-κB inhibition. Together, these results indicate the robust neuroprotective effects of DIPOPA are attributable to its anti-inflammatory effects and suggest that DIPOPA offers a potential therapeutic means of ameliorating cerebral ischemic injury and other inflammation-related pathologies.
Collapse
Affiliation(s)
- Hye-Kyung Lee
- Department of Anatomy, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea
- Medical Research Center, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea
| | - Ju-Young Park
- Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hahnbie Lee
- Department of Anatomy, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea
- Medical Research Center, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea
| | - Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea
- Department of Biomedical Sciences, Inha University School of Medicine, Inchon, South Korea
| | - Seung-Woo Kim
- Medical Research Center, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea
- Department of Biomedical Sciences, Inha University School of Medicine, Inchon, South Korea
| | - Sung-Hwa Yoon
- Department of Molecular Science and Technology, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea.
- Medical Research Center, Inha University School of Medicine, Michuhol-gu Inharo 100, Inchon, 22202, Republic of Korea.
| |
Collapse
|
14
|
Chakhtoura M, Chain RW, Sato PY, Qiu CC, Lee MH, Meissler JJ, Eisenstein TK, Koch WJ, Caricchio R, Gallucci S. Ethyl Pyruvate Modulates Murine Dendritic Cell Activation and Survival Through Their Immunometabolism. Front Immunol 2019; 10:30. [PMID: 30761126 PMCID: PMC6362406 DOI: 10.3389/fimmu.2019.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Attenuating the innate immunity activation could ameliorate inflammation and disease in settings such as transplant rejection or autoimmunity. Recently, a pivotal role for metabolic re-programming in TLR-induced dendritic cell (DC) activation has emerged. Ethyl pyruvate (EP), a pyruvate derivative, possesses anti-inflammatory properties in vitro and in animal models of disease. However, its effects on DCs remain elusive. We found that EP attenuated LPS-induced activation of murine GM-CSF bone marrow-derived dendritic cells (DCs) in vitro, reducing pro-inflammatory cytokine and IL-10 production, costimulatory molecule and MHC expression, the type I Interferon (IFN-I) response, the LPS-induced cell death, and the ability of DCs to stimulate allogeneic T cells. DC activation induced by TLR7 and TLR9 ligands was also suppressed by EP in vitro. Finally, EP decreased TLR-induced activation stimulated in vivo in conventional DCs and inflammatory monocytes. Investigating EP mechanisms, we found that EP decreased glycolysis and mitochondrial respiration, upon and in absence of TLR stimulation, by reducing ERK, AKT, and nitric oxide (NO) activation. These results indicate that EP inhibits most of the DC biological responses to TLR triggering, altering the metabolic reprogramming necessary for DC activation.
Collapse
Affiliation(s)
- Marita Chakhtoura
- Laboratory of Dendritic Cell Biology, Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Robert W Chain
- Laboratory of Dendritic Cell Biology, Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Priscila Y Sato
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Connie C Qiu
- Laboratory of Dendritic Cell Biology, Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael H Lee
- Laboratory of Dendritic Cell Biology, Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Joseph J Meissler
- Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Toby K Eisenstein
- Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Roberto Caricchio
- Division of Rheumatology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
15
|
Bloom J, Patel N, Wagmaister J, Choudhury M, Eshghi M, Konno S. Prophylactic effect of ethyl pyruvate on renal ischemia/reperfusion injury mediated through oxidative stress. Int Urol Nephrol 2018; 51:85-92. [PMID: 30382544 DOI: 10.1007/s11255-018-2020-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/24/2018] [Indexed: 01/28/2023]
Abstract
PURPOSE As oxidative stress (OXS) has been shown to play a primary role in renal ischemia/reperfusion injury (RIRI), we investigated whether antioxidant such as ethyl pyruvate (EPy) might effectively prevent RIRI. Possible prophylactic effects of EPy and mannitol (Mann), one of perioperative agents often used, were tested against harmful OXS in vitro. METHODS Hydrogen peroxide (H2O2) was used to exert OXS on the renal proximal tubular MDCK cells. Severity of OXS and protective effects of EPy and Mann were assessed by lipid peroxidation assay and cell viability test, respectively. The cytotoxic mechanism of H2O2 was explored by examining the status of glycolysis, metabolic signaling pathways, cell cycle, and induction of apoptosis. RESULTS Although H2O2 (500 µM) increased OXS by ~ 3.5 times of controls, EPy (1 mM) fully reduced it to the basal level. Cell viability declined to merely 10% by H2O2 was regained to > 90% with EPy. Hexokinase activity and ATP level also declined significantly by H2O2, but they sustained 80-90% with EPy. Additionally, H2O2 led to the modulations of metabolic signaling regulators, a G1 cell cycle arrest, and induction of apoptosis, which were yet prevented with EPy. Unlike EPy, Mann had virtually little effects. CONCLUSIONS OXS can indeed lead to the significant cell viability reduction through its adverse cellular effects, ultimately resulting in RIRI. However, EPy appears to prevent these effects and protect MDCK cells, while Mann does not. Thus, EPy could be a more effective prophylactic renoprotective agent (than Mann) against oxidative renal cell injury including RIRI.
Collapse
Affiliation(s)
- Jonathan Bloom
- Department of Urology, New York Medical College, Valhalla, NY, 10595, USA
| | - Neel Patel
- Department of Urology, New York Medical College, Valhalla, NY, 10595, USA
| | | | - Muhammad Choudhury
- Department of Urology, New York Medical College, Valhalla, NY, 10595, USA
| | - Majid Eshghi
- Department of Urology, New York Medical College, Valhalla, NY, 10595, USA
| | - Sensuke Konno
- Department of Urology, New York Medical College, Valhalla, NY, 10595, USA. .,Department of Urology, New York Medical College, BSB, Room A03, Valhalla, NY, 10595, USA.
| |
Collapse
|
16
|
Zhou Z, Chen Q, Wan L, Zheng D, Li Z, Wu Z. Dexmedetomidine protects hepatic cells against oxygen-glucose deprivation/reperfusion injury via lncRNA CCAT1. Cell Biol Int 2018; 42:1250-1258. [PMID: 29851220 DOI: 10.1002/cbin.10996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/27/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Zhuang Zhou
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Qingsong Chen
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Lei Wan
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Daofeng Zheng
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Zhongtang Li
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Zhongjun Wu
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| |
Collapse
|
17
|
Shen F, Wang Z, Liu W, Liang Y. Ethyl pyruvate can alleviate alcoholic liver disease through inhibiting Nrf2 signaling pathway. Exp Ther Med 2018; 15:4223-4228. [PMID: 29725369 PMCID: PMC5920469 DOI: 10.3892/etm.2018.5925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/19/2018] [Indexed: 12/22/2022] Open
Abstract
The effects of ethyl pyruvate (EP) on alcoholic liver disease and its related mechanism were investigated. Thirty male C57/BL6 mice were randomly divided to three groups: Control (n=10), alcoholic liver disease (ALD, n=10) and ethyl pyruvate group (EP, n=10). EP group was treated with gavage using EP (100 mg/kg) for 15 consecutive days. Control and ALD group were treated with the same volume of normal saline. After the last gavage, EP and ALD group were treated with the intraperitoneal injection of 50% alcoholic solution (10 ml/kg). After that, ALD and EP group received the gavage using alcohol for 4 weeks, while Control group received the same volume of normal saline, and blood and liver tissues were taken for detection. Results showed that in this experimental study that EP could effectively alleviate the alcoholic liver disease. The levels of alanine aminotransferase (AST), triglycerides (TG), free fatty acid (FFA) and FBG in EP group were significantly lower than those in ALD group, but the number of platelets was reversed, and the differences were statistically significant; the levels of anti-inflammatory factors (TGF-β/IL-10) and superoxide dismutase (SOD) in EP were significantly higher than those in ALP group, but the levels of pro-inflammatory factors (IL-6/TNF-α) and MDA were significantly lower than those in ALP group. EP upregulated CYP2E1, downregulated PPAR-α, nuclear factor 2 (Nrf2) and very-low density lipoprotein receptor (VLDLR), positively regulated the CYP2E1-PPAR-α-ROS signaling pathway and negatively regulated the ROS-Nrf2-VLDLR signaling pathway. EP can increase anti-inflammatory factors and decrease pro-inflammatory factors, enhance the activity of SOD and reduce FFA and TG. Moreover, it can upregulate the PPAR-α expression by negative regulation of CYP2E1-PPAR-α signaling pathway and downregulate the Nrf2 expression by negative regulation of Nrf2-VLDLR signaling pathway, thus alleviating the alcoholic liver disease.
Collapse
Affiliation(s)
- Fei Shen
- Department of Liver Disease, Jinan Infectious Disease Hospital, Jinan, Shandong 250000, P.R. China
| | - Zhaohong Wang
- Department of Liver Disease, Jinan Infectious Disease Hospital, Jinan, Shandong 250000, P.R. China
| | - Wei Liu
- Department of Infectious Disease, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Yuji Liang
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
18
|
Wagner N, Dieteren S, Franz N, Köhler K, Mörs K, Nicin L, Schmidt J, Perl M, Marzi I, Relja B. Ethyl pyruvate ameliorates hepatic injury following blunt chest trauma and hemorrhagic shock by reducing local inflammation, NF-kappaB activation and HMGB1 release. PLoS One 2018; 13:e0192171. [PMID: 29420582 PMCID: PMC5805235 DOI: 10.1371/journal.pone.0192171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 01/17/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The treatment of patients with multiple trauma including blunt chest/thoracic trauma (TxT) and hemorrhagic shock (H) is still challenging. Numerous studies show detrimental consequences of TxT and HS resulting in strong inflammatory changes, organ injury and mortality. Additionally, the reperfusion (R) phase plays a key role in triggering inflammation and worsening outcome. Ethyl pyruvate (EP), a stable lipophilic ester, has anti-inflammatory properties. Here, the influence of EP on the inflammatory reaction and liver injury in a double hit model of TxT and H/R in rats was explored. METHODS Female Lewis rats were subjected to TxT followed by hemorrhage/H (60 min, 35±3 mm Hg) and resuscitation/R (TxT+H/R). Reperfusion was performed by either Ringer`s lactated solution (RL) alone or RL supplemented with EP (50 mg/kg). Sham animals underwent all surgical procedures without TxT+H/R. After 2h, blood and liver tissue were collected for analyses, and survival was assessed after 24h. RESULTS Resuscitation with EP significantly improved haemoglobin levels and base excess recovery compared with controls after TxT+H/R, respectively (p<0.05). TxT+H/R-induced significant increase in alanine aminotransferase levels and liver injury were attenuated by EP compared with controls (p<0.05). Local inflammation as shown by increased gene expression of IL-6 and ICAM-1, enhanced ICAM-1 and HMGB1 protein expression and infiltration of the liver with neutrophils were also significantly attenuated by EP compared with controls after TxT+H/R (p<0.05). EP significantly reduced TxT+H/R-induced p65 activation in liver tissue. Survival rates improved by EP from 50% to 70% after TxT+H/R. CONCLUSIONS These data support the concept that the pronounced local pro-inflammatory response in the liver after blunt chest trauma and hemorrhagic shock is associated with NF-κB. In particular, the beneficial anti-inflammatory effects of ethyl pyruvate seem to be regulated by the HMGB1/NF-κB axis in the liver, thereby, restraining inflammatory responses and liver injury after double hit trauma in the rat.
Collapse
Affiliation(s)
- Nils Wagner
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Scott Dieteren
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Niklas Franz
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Katharina Mörs
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Luka Nicin
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Julia Schmidt
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Mario Perl
- BG-Trauma Center Murnau, Murnau, Germany
| | - Ingo Marzi
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
19
|
Kayiran O, Cuzdan SS, Uysal A, Kocer U. Ethyl pyruvate improves skin flap survival after ischaemia reperfusion injury. Indian J Med Res 2018; 146:369-374. [PMID: 29355144 PMCID: PMC5793472 DOI: 10.4103/ijmr.ijmr_1428_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES Reperfusion after ischaemia is detrimental to the tissues. The oxidative stress created and cytokines released are mostly responsible in this process. In this study, ethyl pyruvate, a known agent for its anti-inflammatory and antioxidant properties, was used to investigate the effects on ischaemia/reperfusion injury on skin island flaps in rats. METHODS Sixty rats were randomly distributed in three groups (non-ischaemic, ischaemic and medication groups). Ethyl pyruvate was administered in the medication group with a dose of 50 mg/kg. After 24 h and one week, the animals were sacrificed, and the flaps were analyzed macroscopically, histopathologically, biochemically (total nitrite, malondialdehyde and myeloperoxidase). RESULTS Biochemical markers indicating oxidative stress, were found elevated in ischaemic group, whereas medication with ethyl pyruvate significantly reduced these values. There was a significant reduction (P<0.05) in the levels of these markers between ischaemic and medication groups. Ethyl pyruvate improved all the parameters significantly. INTERPRETATION & CONCLUSION Ethyl pyruvate showed strong scavenger activity against reactive oxygen species. It could be a potential candidate to improve the flap viability in reconstructive microsurgery, especially in free tissue transfers. However, more studies are warranted in experimental models to confirm these findings.
Collapse
Affiliation(s)
- Oguz Kayiran
- Department Plastic & Reconstructive Surgery, Izmir University, Izmir, Turkey
| | | | - Afsin Uysal
- Plastic & Reconstructive Surgery Clinic, TOBB ETU Hospital, Ankara, Turkey
| | - Ugur Kocer
- Plastic & Reconstructive Surgery Clinic, Ankara Training & Research Hospital, Ankara, Turkey
| |
Collapse
|
20
|
Jung SM, Lee J, Baek SY, Lee J, Jang SG, Hong SM, Park JS, Cho ML, Park SH, Kwok SK. Ethyl pyruvate ameliorates inflammatory arthritis in mice. Int Immunopharmacol 2017; 52:333-341. [PMID: 28987932 DOI: 10.1016/j.intimp.2017.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Ethyl pyruvate (EP) is the ethyl ester of pyruvate and has antioxidative and anti-inflammatory effects. This study aimed to evaluate the therapeutic effect of EP in inflammatory arthritis and to identify the underlying mechanisms. METHODS Mice with collagen-induced arthritis (CIA) were treated with the vehicle control or EP at 20mg/kg, and clinical and histological analyses were performed on the animals. The differentiation of murine CD4+ T cells into T helper 17 (Th17) cells in the presence of EP was investigated in vitro. The effects of EP on osteoclastogenesis were determined by staining for tartrate-resistant acid phosphatase, and measuring the mRNA levels of osteoclastogenesis-related genes. The expression of high-mobility group box 1 (HMGB1) was evaluated after EP therapy using immunohistochemical staining and Western blotting. RESULTS EP significantly improved the clinical and histological features of arthritis in CIA mice. EP suppressed the differentiation of CD4+ T cells into Th17 cells, and inhibited the expression of RORγt. The generation of osteoclasts and osteoclastogenic markers from murine and human monocytes was significantly reduced in the presence of EP. The expression of HMGB1 in the synovium was significantly lower in CIA mice treated with EP, compared to control CIA mice. During osteoclastogenesis, HMGB1 release from monocytes was inhibited in the presence of EP. CONCLUSIONS EP attenuated synovial inflammation and bone destruction in the experimental arthritis model through suppression of IL-17 and HMGB-1. The data suggests that EP could be a novel therapeutic agent for the treatment of inflammatory arthritis, such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeseon Lee
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Ye Baek
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Juhyun Lee
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Se Gwang Jang
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Min Hong
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Sil Park
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Rheumatism Research Center, Catholic Institutes of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Ethyl pyruvate modulates delayed paralysis following thoracic aortic ischemia reperfusion in mice. J Vasc Surg 2017; 64:1433-1443. [PMID: 27776698 DOI: 10.1016/j.jvs.2015.06.214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Delayed paralysis is an unpredictable problem for patients undergoing complex repair of the thoracic/thoracoabdominal aorta. These experiments were designed to determine whether ethyl pyruvate (EP), a potent anti-inflammatory and antioxidant agent, might ameliorate delayed paralysis following thoracic aortic ischemia reperfusion (TAR). METHODS C57BL6 mice were subjected to 5 minutes of thoracic aortic ischemia followed by reperfusion for up to 48 hours. Mice received either 300 mg/kg EP or lactated ringers (LR) at 30 minutes before ischemia and 3 hours after reperfusion. Neurologic function was assessed using an established rodent scale. Spinal cord tissue was analyzed for markers of inflammation (keratinocyte chemoattractant [KC], interleukin-6 [IL-6]), microglial activation (ionized calcium-binding adapter molecule-1 [Iba-1]), and apoptosis (Bcl-2, Bax, and terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL] staining) at 24 and 48 hours after TAR. Nissl body stained motor neurons were counted in the anterior horns sections from L1-L5 segments. RESULTS Ninety-three percent of the LR mice developed dense delayed paralysis between 40 and 48 hours after TAR, whereas only 39% of EP mice developed delayed paralysis (P < .01). Bcl-2 expression was higher (P < .05) and Iba-1 expression was lower (P < .05) in the EP group only at 24 hours reperfusion. At 48 hours, the number of motor neurons was higher (P < .01) and the number and TUNEL-positive cells was lower (P < .001) in the EP-treated mice. EP decreased the expression of KC (P < .01) and IL-6 (P < .001) at 48 hours after TAR. CONCLUSIONS The protection provided by EP against delayed paralysis correlated with preservation of motor neurons, higher expression of antiapoptotic molecules, decreased microglial cell activation, and decreased spinal cord inflammation. EP may be a treatment for humans at risk for delayed paralysis.
Collapse
|
22
|
Lee HK, Kim ID, Kim SW, Lee H, Park JY, Yoon SH, Lee JK. Anti-inflammatory and anti-excitoxic effects of diethyl oxopropanamide, an ethyl pyruvate bioisoster, exert robust neuroprotective effects in the postischemic brain. Sci Rep 2017; 7:42891. [PMID: 28220827 PMCID: PMC5318887 DOI: 10.1038/srep42891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/16/2017] [Indexed: 12/21/2022] Open
Abstract
Ethyl pyruvate (EP) is a simple aliphatic ester of pyruvic acid and has been shown to have robust neuroprotective effects via its anti-inflammatory, anti-oxidative, and anti-apoptotic functions. In an effort to develop novel EP derivatives with greater protective potencies than EP, we generated four EP isosteres, among them the neuroprotective potency of N,N-diethyl-2-oxopropanamide (DEOPA), in which the ethoxy group of EP was replaced with diethylamine, was far greater than that of EP. When DEOPA was administered intravenously (5 mg/kg) to rat middle cerebral artery occlusion (MCAO) model at 6 hrs post-surgery, it suppressed infarct formation, ameliorated neurological and sensory/motor deficits, and inhibited microglial activation and neutrophil infiltrations in the postischemic brain more effectively than EP. In particular, DEOPA markedly suppressed LPS-induced nitrite production and cytokine/chemokine inductions in microglia, neutrophils, and endothelial cells and these effects are attributable to inhibition of the activity of NF-κB by suppressing IκB-α degradation and p65 to DNA binding. In addition, DEOPA suppressed NMDA-induced neuronal cell death in primary cortical neuron cultures by NAD replenishment and suppression of NF-κB activity. Together, these results indicate DEOPA has multi-modal protective effects against ischemic brain damage targeting numerous cell types in the brain and also against other inflammation-related diseases.
Collapse
Affiliation(s)
- Hye-Kyung Lee
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Il-Doo Kim
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Seung-Woo Kim
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Department of Biomedical Sciences, Inha University School of Medicine, Inchon, Republic of Korea
| | - Hahnbie Lee
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| | - Ju-Young Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sung-Hwa Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Inchon, Republic of Korea.,Medical Research Center, Inha University School of Medicine, Inchon, Republic of Korea
| |
Collapse
|
23
|
Shim HS, Lee WG, Kim YA, Han JY, Park M, Song YG, Kim JS, Shin IW. Anti-apoptotic and myocardial protective effects of ethyl pyruvate after regional ischaemia/reperfusion myocardial damage in an in vivo rat model. Singapore Med J 2016; 58:557-561. [PMID: 27995262 DOI: 10.11622/smedj.2016190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The integration of reactive oxygen species is strongly associated with important pathophysiological mechanisms that mediate myocardial ischaemia/reperfusion (I/R) damage. Pyruvate is an efficacious scavenger of reactive oxygen species and a previous study has shown that ethyl pyruvate (EP) has a myocardial protective effect against regional I/R damage in an in vivo rat model. The purpose of this study was to determine whether the myocardial protective effect of EP is associated with anti-apoptosis. METHODS Rats were allocated to receive EP dissolved in lactated Ringer's solution or lactated Ringer's solution alone, via intraperitoneal infusion one hour before ischaemia. They were exposed to 30 minutes of ischaemia followed by reperfusion of the left coronary artery territory over two hours. Anti-apoptotic effects were checked using several biochemical parameters after two hours of reperfusion. Apoptosis was analysed using measured caspase-3 activity, Western blotting of B-cell lymphoma 2 (Bcl-2) family protein cleaved by caspase-3, and assessment of DNA laddering patterns and the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining test. RESULTS In ischaemic myocardium, EP increased Bcl-2 expression, but reduced Bcl-2-associated X protein and cleaved caspase-3 expressions. EP reduced the expression of DNA laddering and the number of myocardial I/R-damaged TUNEL-positive cells. CONCLUSION This study demonstrated that EP has an anti-apoptotic effect after regional I/R damage in an in vivo rat heart model. The myocardial protective effect of EP may be related to its anti-apoptotic effect.
Collapse
Affiliation(s)
- Haeng Seon Shim
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Wang Gyu Lee
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Yeon A Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Jeong Yeol Han
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Miyeong Park
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Changwon, Republic of Korea
| | - Yun Gyu Song
- Department of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Joon Soo Kim
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Il-Woo Shin
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Jinju, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
24
|
Najafi G, Atashfaraz E, Farokhi F. Attenuation of Methotrexate-Induced Embryotoxicity and Oxidative Stress by Ethyl Pyruvate. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2016; 10:232-8. [PMID: 27441057 PMCID: PMC4948076 DOI: 10.22074/ijfs.2016.4914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 08/01/2015] [Indexed: 01/24/2023]
Abstract
Background Methotrexate (MTX), as an anti-folate agent, is widely used in the
treatment of rheumatic disorders and malignant tumors, however it damages reproductive sys-
tem in mice. The aim of this research was to study the effects of ethyl pyruvate (EP) on embryo
development and oxidative stress changes in the testis of mice treated with MTX.
Materials and Methods In this experimental study, thirty-two adult male Naval
Medical Research Institute mice, with average weight of 26 ± 2 g, were divided into
four groups. The first group (control) received distilled water (0.1 ml/mice/day), while
the second group was intraperitoneally (IP) treated with 20 mg/kg MTX once per
week. The third group was IP treated with 40 mg/kg/day EP, and the fourth group was
IP treated with both 20 mg/kg MTX and 40 mg/kg/day EP for 30 days. At the end of
treatment fertilization rate and embryonic development were evaluated. Differences
between these groups were assessed by ANOVA using the SPSS software package for
Windows with a Tukey-Kramer multiple post-hoc comparison test. Results MTX treatment caused significant (P<0.05) increase in malondialdehyde
(MDA) and reduced catalase (CAT), as well as leading to in vitro fertilization (IVF) and
embryonic development. The improved effects of EP on the IVF were determined by the
reduced level of MDA (index of oxidative stress) and significant increased level of CAT
(a key antioxidant). We observed significant increase in fertilization rate and embryonic
development in the treated group with both MTX and EP. Conclusion It is suggested that EP can be useful in ameliorating testicular
damages and embryotoxicity induced by MTX. These effects could be attributed to its
antioxidant properties.
Collapse
Affiliation(s)
- Gholamreza Najafi
- Department of Basic Sciences (Anatomy and Embryology), Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elham Atashfaraz
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Farah Farokhi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| |
Collapse
|
25
|
Topaloğlu N, Küçük A, Yıldırım Ş, Tekin M, Erdem H, Deniz M. Glucagon-like peptide-2 exhibits protective effect on hepatic ischemia-reperfusion injury in rats. Front Med 2015; 9:368-73. [PMID: 26290282 DOI: 10.1007/s11684-015-0403-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) has potent anti-inflammatory effects and protects against experimental ischemia/reperfusion (I/R) injury in pulmonary, intestinal, and myocardial tissue. However, its protective abilities against I/R injury in the liver are unknown. We investigated the potential role of GLP-2 pretreatment on hepatic I/R injury in rats. A total of 24 rats were randomly divided into three groups (n = 8). The first group was the control group; the second group was the vehicle-treated hepatic ischemia/reperfusion (HIR, vehicle saline-treated) group; and the third group was the GLP-2 pretreated I/R (GLP2-IR) group. Each rat in the third group was intraperitoneally administered 5 µg GLP-2 for 5 d before the procedure. A portal triad was created to induce ischemia with a vascular atraumatic clamp. After 40 min, the clamp was released to initiate hepatic reperfusion for 6 h. Blood samples and tissue specimens from the liver were obtained. Alanine aminotransferase, aspartate aminotransferase, and total bilirubin levels significantly increased in the salinetreated HIR group (P < 0.001), whereas GLP-2 pretreatment significantly decreased their levels (P < 0.01). Our data suggested that GLP-2 pretreatment may have a protective effect on liver I/R injury. However, dose-response studies are necessary to determine the most effective dose.
Collapse
Affiliation(s)
- Naci Topaloğlu
- Medical Faculty, Department of Pediatrics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | | | | | | | | | | |
Collapse
|
26
|
MicroRNA 26a inhibits HMGB1 expression and attenuates cardiac ischemia-reperfusion injury. J Pharmacol Sci 2015; 131:6-12. [PMID: 26320674 DOI: 10.1016/j.jphs.2015.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 12/21/2022] Open
Abstract
Ischemia reperfusion (IR) injury is a major issue in cardiac transplantation and inflammatory processes play a major role in myocardial IR injury. MicroRNA 26a (Mir-26a) plays important roles in cellular differentiation, cell growth, cell apoptosis and metastasis. Mir-26a has been demonstrated to modulate regulatory T cells expansion and attenuates renal IR injury. However, the role of Mir-26a in the cardiac IR injury has never been investigated. In our study, hearts of C57BL/6 mice were flushed and stored in cold Bretschneider solution for 8 hours and then transplanted into syngeneic recipients. The results demonstrate a crucial role for Mir-26a in inhibiting high mobility group box-1 (HMGB1) expression and attenuating cardiac IR injury. Mir-26a overexpression results in attenuated cardiac IR injury and inhibited HMGB1 expression. Mir-26a also inhibits inflammatory cells infiltration and cytokines expression. Furthermore, the attenuated cardiac IR injury induced by Mir-26a was abrogated by additional administration of recombinant HMGB1 (rHMGB1). In conclusion, Mir-26a plays a protective role in cardiomyocyte IR injury and this is associated with inhibited HMGB1 expression.
Collapse
|
27
|
Role of high-mobility group box-1 in myocardial ischemia/reperfusion injury and the effect of ethyl pyruvate. Exp Ther Med 2015; 9:1537-1541. [PMID: 25780465 PMCID: PMC4353799 DOI: 10.3892/etm.2015.2290] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/29/2015] [Indexed: 12/26/2022] Open
Abstract
High-mobility group box-1 (HMGB1) acts as a proinflammatory cytokine that triggers and amplifies the inflammation cascade following ischemia/reperfusion (I/R). Ethyl pyruvate (EP) has been reported to inhibit HMGB1 release in several I/R models. This study was designed to investigate the potential role of HMGB1 in a rat myocardial I/R model and to determine the effect of EP. Male Sprague Dawley rats were subjected to 30 min myocardial ischemia and 48 h reperfusion. In protocol 1, the rats were assigned to one of four groups (n=16 per group): Phosphate-buffered saline (PBS) or recombinant human HMGB1 (rhHMGB1) at three different doses (1, 10 or 100 μg/kg). In protocol 2, the rats were also assigned to one of four groups (n=16 per group): Sham, control, EP and EP + rhHMGB1. EP (40 mg/kg) or rhHMGB1 (100 μg/kg) was injected intravenously prior to reperfusion. Hemodynamic measurements were performed, and myocardial infarct size (IS) was calculated. Western blotting was conducted to evaluate HMGB1, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression levels. In the protocol 1 rats, the IS was markedly increased in the rhHMGB1 (100 μg/kg) group compared with that in the PBS group, and this increase was accompanied by elevated levels of TNF-α and IL-6. In the protocol 2 rats, I/R resulted a 4.8-fold increase in HMGB1 expression with an increased IS and impaired cardiac function compared with the sham group. EP significantly inhibited the elevated HMGB1 level, suppressed the activated TNF-α and IL-6 and reduced cardiac dysfunction. This cardioprotection was abolished by rhHMGB1. In conclusion, accumulation of HMGB1 is deleterious to the heart following myocardial I/R. EP can exert a strong protective effect against myocardial I/R injury, and these benefits are associated with a reduction in HMGB1.
Collapse
|
28
|
The regulation role of interferon regulatory factor-1 gene and clinical relevance. Hum Immunol 2014; 75:1110-4. [DOI: 10.1016/j.humimm.2014.09.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 11/20/2022]
|
29
|
Kelle I, Akkoc H, Tunik S, Nergiz Y, Erdinc M, Erdinc L. Protective effects of ethyl pyruvate in cisplatin-induced nephrotoxicity. BIOTECHNOL BIOTEC EQ 2014; 28:674-680. [PMID: 26019553 PMCID: PMC4433950 DOI: 10.1080/13102818.2014.942489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/21/2014] [Indexed: 01/06/2023] Open
Abstract
This study was performed to investigate the effect of ethyl pyruvate on changes in renal functions and oxidative stress related renal injury caused by cisplatin (cis-dichlorodiammine platinum-II; CDDP). Male Wistar albino rats were divided into four groups (n = 8): (1) control group (1 ml Ringer's lactate solution i.p.); (2) ethyl pyruvate (EP) group (50 mg/kg Ringer's EP solution (REPS) i.p.); (3) cisplatin group (a single dose of cisplatin (5 mg/kg, i.p.); and (4) cisplatin + EP group (a single dose of cisplatin (5 mg/kg, i.p.) + REPS 50 mg/kg/day, i.p.) for five days. At the sixth day, kidneys of rats were mounted to a Langendorff apparatus. Renal perfusion pressures were recorded. Blood samples were taken for serum urea, creatinine, total oxidant status (TOS), total antioxidant status (TAS) and oxidative stres index (OSI) evaluations. Kidney tissues were obtained for malondialdehyde (MDA) analyses and histopathological examination. Perfusion pressures, serum urea, creatinine, TOS, OSI and tissue MDA levels were found significantly higher, whereas TAS was notably lower in cisplatin group. Histopathological examination showed apparent renal paranchymal injury in cisplatin group. In cisplatin + REPS group, perfusion pressures, serum urea, creatinine and tissue MDA levels were decreased. Moreover, EP co-administration provided less inflammatory cell infiltration, tubular dilatation, whereas TOS, TAS and OSI improved significantly versus cisplatin group. These findings show that EP has protective effects against cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Ilker Kelle
- Department of Pharmacology, School of Medicine, Dicle University , Diyarbakir , Turkey
| | - Hasan Akkoc
- Department of Pharmacology, School of Medicine, Dicle University , Diyarbakir , Turkey
| | - Selcuk Tunik
- Department of Histology and Embryology, School of Medicine, Dicle University , Diyarbakir , Turkey
| | - Yusuf Nergiz
- Department of Histology and Embryology, School of Medicine, Dicle University , Diyarbakir , Turkey
| | - Meral Erdinc
- Department of Pharmacology, School of Medicine, Dicle University , Diyarbakir , Turkey
| | - Levent Erdinc
- Department of Biochemistry, School of Medicine, Dicle University , Diyarbakir , Turkey
| |
Collapse
|
30
|
Olek RA, Ziolkowski W, Flis DJ, Fedeli D, Fiorini D, Wierzba TH, Gabbianelli R. The effect of ethyl pyruvate supplementation on rat fatty liver induced by a high-fat diet. J Nutr Sci Vitaminol (Tokyo) 2014; 59:232-7. [PMID: 23883694 DOI: 10.3177/jnsv.59.232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Continuous positive energy imbalance leads to obesity, which increases the risk of developing non-alcoholic fatty liver disease. The hepatoprotective effect of ethyl pyruvate has been revealed in several studies. Therefore, we examined the effect of ethyl pyruvate supplementation on liver cell damage, metabolism, membrane fluidity, and oxidative stress markers in rats fed a high-fat diet. After 6-wk feeding of a control or high-fat diet, Wistar rats were divided into 4 groups: control diet, control diet and ethyl pyruvate, high-fat diet, and high-fat diet and ethyl pyruvate. Ethyl pyruvate was administered as a 0.3% solution in drinking water, for the following 6 wk. Ethyl pyruvate intake attenuated the increase in activities of plasma transaminases and liver TNF-α. However, the supplementation was without effect in the lipid profiles, membrane fluidity or oxidative metabolism in liver induced by the high-fat diet. Our data confirm the potency of ethyl pyruvate against cell liver damage. Nevertheless, prolonged intake did not affect the development of a fatty liver.
Collapse
Affiliation(s)
- Robert Antoni Olek
- Biochemistry Department, Gdansk University of Physical Education and Sport, Poland.
| | | | | | | | | | | | | |
Collapse
|
31
|
Shen M, Lu J, Dai W, Wang F, Xu L, Chen K, He L, Cheng P, Zhang Y, Wang C, Wu D, Yang J, Zhu R, Zhang H, Zhou Y, Guo C. Ethyl pyruvate ameliorates hepatic ischemia-reperfusion injury by inhibiting intrinsic pathway of apoptosis and autophagy. Mediators Inflamm 2013; 2013:461536. [PMID: 24453420 PMCID: PMC3886226 DOI: 10.1155/2013/461536] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is a pivotal clinical problem occurring in many clinical conditions such as transplantation, trauma, and hepatic failure after hemorrhagic shock. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Ethyl pyruvate, a stable and simple lipophilic ester, has been shown to have anti-inflammatory properties. In this study, the purpose is to explore both the effect of ethyl pyruvate on hepatic I/R injury and regulation of intrinsic pathway of apoptosis and autophagy. METHODS Three doses of ethyl pyruvate (20 mg/kg, 40 mg/kg, and 80 mg/kg) were administered 1 h before a model of segmental (70%) hepatic warm ischemia was established in Balb/c mice. All serum and liver tissues were obtained at three different time points (4 h, 8 h, and 16 h). RESULTS Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and pathological features were significantly ameliorated by ethyl pyruvate (80 mg/kg). The expression of Bcl-2, Bax, Beclin-1, and LC3, which play an important role in the regulation of intrinsic pathway of apoptosis and autophagy, was also obviously decreased by ethyl pyruvate (80 mg/kg). Furthermore, ethyl pyruvate inhibited the HMGB1/TLR4/ NF-κb axis and the release of cytokines (TNF-α and IL-6). CONCLUSION Our results showed that ethyl pyruvate might attenuate to hepatic I/R injury by inhibiting intrinsic pathway of apoptosis and autophagy, mediated partly through downregulation of HMGB1/TLR4/ NF-κb axis and the competitive interaction with Beclin-1 of HMGB1.
Collapse
Affiliation(s)
- Miao Shen
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Ling Xu
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Lei He
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Ping Cheng
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Yan Zhang
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Chengfen Wang
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Dong Wu
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Jing Yang
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Rong Zhu
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Huawei Zhang
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Yinqun Zhou
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Chuanyong Guo
- Department of Gastroenterology, The Tenth People's Hospital of Tongji University, Shanghai 200072, China
| |
Collapse
|
32
|
Kim SW, Lee HK, Shin JH, Lee JK. Up-down regulation of HO-1 and iNOS gene expressions by ethyl pyruvate via recruiting p300 to Nrf2 and depriving It from p65. Free Radic Biol Med 2013; 65:468-476. [PMID: 23891677 DOI: 10.1016/j.freeradbiomed.2013.07.028] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 06/27/2013] [Accepted: 07/19/2013] [Indexed: 11/22/2022]
Abstract
Ethyl pyruvate (EP), a simple ester of pyruvic acid, has been shown to exert robust neuroprotection in various neuropathological conditions, such as, cerebral ischemia and KA-induced seizure animal models. The neuroprotective effect of EP is attributable to the anti-inflammatory, anti-oxidative, and anti-apoptotic effects. In the present study, we investigated convergence of anti-inflammatory and anti-oxidative functions of EP and present a novel molecular mechanism underlying anti-inflammatory effects of EP, which is conveyed by p300, a transcriptional co-activator for both Nuclear factor E2-related factor 2 (Nrf2) and p65. In BV2 cells, a microglia cell line, EP induced translocation of Nrf2 from the cytosol to the nucleus and enhanced the expression of hemeoxygenase 1 (HO-1) in a dose-dependent manner and 1h incubation with 10mM EP increased HO-1 to 4.9-fold. Nrf2 was found to translocate from the cytosol to the nucleus beginning 30 min after EP-treatment and binds to the antioxidant response element (ARE) located on HO-1 promoter. Interestingly, LPS-induced inducible NO synthase (iNOS) induction was substantially suppressed in EP-pre-treated BV2 cells and it was reverted by Nrf2 knockdown. We found that EP-induced Nrf2 accumulation in the nucleus recruits p300, a transcriptional co-activator of both Nrf2 and p65, inhibiting p65-p300 interaction. Competition between Nrf2 and p65 for p300 binding was confirmed by glutathione S-transferase (GST) pull down assay and reporter gene analysis. These results demonstrate that EP induced nuclear translocation of Nrf2 which binds to ARE along with p300 and hampers iNOS expression via depleting p300 from p65. This is a novel anti-inflammatory mechanism conveyed by EP, which enhances protective effect by converging anti-inflammatory and anti-oxidative effects and might be applicable to various Nrf2-activating agents, such as phytochemicals.
Collapse
Affiliation(s)
- Seung-Woo Kim
- Department of Anatomy, Center for Advanced Medical Education (BK21 project), Inha University School of Medicine, Incheon, Korea
| | - Hye-Kyung Lee
- Department of Anatomy, Center for Advanced Medical Education (BK21 project), Inha University School of Medicine, Incheon, Korea
| | - Joo-Hyun Shin
- Department of Anatomy, Center for Advanced Medical Education (BK21 project), Inha University School of Medicine, Incheon, Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Center for Advanced Medical Education (BK21 project), Inha University School of Medicine, Incheon, Korea.
| |
Collapse
|
33
|
Effect of ethyl pyruvate on skeletal muscle metabolism in rats fed on a high fat diet. Nutrients 2013; 5:2372-83. [PMID: 23857218 PMCID: PMC3738978 DOI: 10.3390/nu5072372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/09/2013] [Accepted: 06/14/2013] [Indexed: 01/27/2023] Open
Abstract
Impaired mitochondrial capacity may be implicated in the pathology of chronic metabolic diseases. To elucidate the effect of ethyl pyruvate supplementation on skeletal muscles metabolism we examined changes in activities of mitochondrial and antioxidant enzymes, as well as sulfhydryl groups oxidation (an indirect marker of oxidative stress) during the development of obesity. After 6 weeks feeding of control or high fat diet, Wistar rats were divided into four groups: control diet, control diet and ethyl pyruvate, high fat diet, and high fat diet and ethyl pyruvate. Ethyl pyruvate was administered as 0.3% solution in drinking water, for the following 6 weeks. High fat diet feeding induced the increase of activities 3-hydroxyacylCoA dehydrogenase, citrate synthase, and fumarase. Moreover, higher catalase and superoxide dismutase activities, as well as sulfhydryl groups oxidation, were noted. Ethyl pyruvate supplementation did not affect the mitochondrial enzymes’ activities, but induced superoxide dismutase activity and sulfhydryl groups oxidation. All of the changes were observed in soleus muscle, but not in extensor digitorum longus muscle. Additionally, positive correlations between fasting blood insulin concentration and activities of catalase (p = 0.04), and superoxide dismutase (p = 0.01) in soleus muscle were noticed. Prolonged ethyl pyruvate consumption elevated insulin concentration, which may cause modifications in oxidative type skeletal muscles.
Collapse
|
34
|
Hoque R, Vodovotz Y, Mehal W. Therapeutic strategies in inflammasome mediated diseases of the liver. J Hepatol 2013; 58:1047-52. [PMID: 23266490 PMCID: PMC4113326 DOI: 10.1016/j.jhep.2012.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022]
Abstract
Tissue stress and cell death result in inflammation even in the absence of pathogens. Such sterile inflammation is dependent on a cytosolic complex of proteins inside immune cells termed the inflammasome. This complex converts two groups of extracellular signals into an inflammatory response via activation of caspase-1 and secretion of IL-1β and IL-18. Group 1 signals are typically TOLL like receptor agonists and result in transcriptional upregulation of inflammasome components and pro-cytokines. Group 2 signals are diverse, ranging from uric acid to ATP, and lead to assembly and activation of the inflammasome complex. Inflammasome components are required for a wide range of acute and chronic pathologies, including experimental alcoholic and non-alcoholic steatohepatitis, and drug-induced liver injury. Collectively, group 1 and 2 signals, inflammasome components, and cytokine receptors provide a rich source of therapeutic targets. Many of the advances in the field have come from standard reductionist experiments. Progress in the understanding of complex human systems will, however, be dependent on novel strategies such as systems analysis, which analyze large data sets to provide new insights.
Collapse
Affiliation(s)
- Rafaz Hoque
- Section of Digestive Diseases, Yale University, and West Haven Veterans Medical Center, New Haven, CT, United States
| | | | | |
Collapse
|
35
|
Choi SS, Koh WU, Nam JS, Shin JW, Leem JG, Suh JH. Effect of ethyl pyruvate on Paclitaxel-induced neuropathic pain in rats. Korean J Pain 2013; 26:135-41. [PMID: 23614074 PMCID: PMC3629339 DOI: 10.3344/kjp.2013.26.2.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 01/08/2023] Open
Abstract
Background Although paclitaxel is a widely used chemotherapeutic agent for the treatment of solid cancers, side effects such as neuropathic pain lead to poor compliance and discontinuation of the therapy. Ethyl pyruvate (EP) is known to have analgesic effects in several pain models and may inhibit apoptosis. The present study was designed to investigate the analgesic effects of EP on mechanical allodynia and apoptosis in dorsal root ganglion (DRG) cells after paclitaxel administration. Methods Rats were randomly divided into 3 groups: 1) a control group, which received only vehicle; 2) a paclitaxel group, which received paclitaxel; and 3) an EP group, which received EP after paclitaxel administration. Mechanical allodynia was tested before and at 7 and 14 days after final paclitaxel administration. Fourteen days after paclitaxel treatment, DRG apoptosis was determined by activated caspase-3 immunoreactivity (IR). Results Post-treatment with EP did not significantly affect paclitaxel-induced allodynia, although it tended to slightly reduce sensitivities to mechanical stimuli after paclitaxel administration. After paclitaxel administration, an increase in caspase-3 IR in DRG cells was observed, which was co-localized with NF200-positive myelinated neurons. Post-treatment with EP decreased the paclitaxel-induced caspase-3 IR. Paclitaxel administration or post-treatment with EP did not alter the glial fibrillary acidic protein IRs in DRG cells. Conclusions Inhibition of apoptosis in DRG neurons by EP may not be critical in paclitaxel-induced mechanical allodynia.
Collapse
Affiliation(s)
- Seong Soo Choi
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
36
|
Wang Y, Yin P, Huang S, Wang J, Sun R. Ethyl pyruvate protects against lipopolysaccharide-induced white matter injury in the developing rat brain. Int J Dev Neurosci 2012; 31:181-8. [PMID: 23280059 DOI: 10.1016/j.ijdevneu.2012.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022] Open
Abstract
The neuroprotective effects of ethyl pyruvate (EP) have been proved in several brain injury models, yet very little is known about its action on neonatal white matter injury. To investigate the effect of EP on white matte damage, a stereotactic intracerebral injection of lipopolysaccharide (LPS, 1mg/kg) was performed on postnatal day 5 Sprague-Dawley rat pups, and EP was administrated intraperitoneally at a dose of 40mg/kg immediately, 1h and 12h after LPS exposure. Significantly, treatment with EP reduced LPS-induced ventricle dilation, loss of O4+ and O1+ oligodendrocytes, apoptosis of oligodendrocytes, and hypomyelination. The protective effect of EP was associated with suppressed inflammatory responses, indicated by the inhibition of activation of microglia and astrocytes, as well as the decreased expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) in rat brains. Also, EP prevented the elevation of cleaved caspase-3 in periventricular white matter tissue after LPS insult. Taken together, these results suggest that EP confers potent protection against LPS-induced white matter injury via its anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Yingyan Wang
- Pediatric Department of Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | | | | | | | | |
Collapse
|
37
|
Wang LW, Wang LK, Chen H, Fan C, Li X, He CM, Gong ZJ. Ethyl pyruvate protects against experimental acute-on-chronic liver failure in rats. World J Gastroenterol 2012; 18:5709-18. [PMID: 23155311 PMCID: PMC3484339 DOI: 10.3748/wjg.v18.i40.5709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/21/2012] [Accepted: 07/28/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protective effects of ethyl pyruvate (EP) on acute-on-chronic liver failure (ACLF) in rats.
METHODS: An ACLF model was established in rats, and animals were randomly divided into normal, model and EP treatment groups. The rats in EP treatment group received EP (40 mg/kg) at 3 h, 6 h, 12 h and 24 h after induction of ACLF. Serum endotoxin, high mobility group box-1 (HMGB1), alanine transaminase (ALT), tumor necrosis factor-α (TNF-α), interferon-α (IFN-γ), interleukin (IL)-10 and IL-18 levels, changes of liver histology and HMGB1 expressions in liver tissues were detected at 48 h after induction of ACLF. The effects of EP on the survival of ACLF rats were also observed.
RESULTS: Serum levels of endotoxin (0.394 ± 0.066 EU/mL vs 0.086 ± 0.017 EU/mL, P < 0.001), HMGB1 (35.42 ± 10.86 μg/L vs 2.14 ± 0.27 μg/L, P < 0.001), ALT (8415.87 ± 3567.54 IU/L vs 38.64 ± 8.82 IU/L, P < 0.001), TNF-α (190.77 ± 12.34 ng/L vs 124.40 ± 4.12 ng/L, P < 0.001), IFN-γ (715.38 ± 86.03 ng/L vs 398.66 ± 32.91 ng/L, P < 0.001), IL-10 (6.85 ± 0.64 ng/L vs 3.49 ± 0.24 ng/L, P < 0.001) and IL-18 (85.19 ± 3.49 ng/L vs 55.38 ± 1.25 ng/L, P < 0.001) were significantly increased, and liver tissues presented severe pathological injury in the model group compared with the normal group. However, EP administration significantly improved hepatic histopathology and reduced the serum levels of endotoxin (0.155 ± 0.045 EU/mL vs 0.394 ± 0.066 EU/mL, P < 0.001) and inflammatory cytokines (11.13 ± 2.58 μg/L vs 35.42 ± 10.86 μg/L for HMGB1, 3512.86 ± 972.67 IU/L vs 8415.87 ± 3567.54 IU/L for ALT, 128.55 ± 5.76 ng/L vs 190.77 ± 12.34 ng/L for TNF-α, 438.16 ± 38.10 ng/L vs 715.38 ± 86.03 ng/L for IFN-γ, 3.55 ± 0.36 ng/L vs 6.85 ± 0.64 ng/L for IL-10, and 60.35 ± 1.63 ng/L vs 85.19 ± 3.49 ng/L for IL-18, respectively, P < 0.001), and the levels of HMGB1 in liver tissues regardless of treatment time after induction of ACLF. EP treatment at the four time points prolonged the median survival time of ACLF rats (60 h) to 162 h, 120 h, 102 h and 78 h, respectively (χ2 = 41.17, P < 0.0001).
CONCLUSION: EP administration can protect against ACLF in rats, and is a potential and novel therapeutic agent for severe liver injury.
Collapse
|
38
|
Choi DK, Leem JG, Shin JW, Suh JH. Effects of Ethyl Pyruvate on Allodynia, TNF-α Expression, and Apoptosis in the Dorsal Root Ganglion after Spinal Nerve Ligation Injury. Korean J Pain 2012; 25:213-20. [PMID: 23091681 PMCID: PMC3468797 DOI: 10.3344/kjp.2012.25.4.213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/12/2012] [Accepted: 08/23/2012] [Indexed: 01/23/2023] Open
Abstract
Background It has been demonstrated that the expression of tumor necrosis factor-α (TNF-α) and apoptotic cell death in the dorsal root ganglion (DRG) following spinal nerve constriction injury play a role in the initiation and continuation of hyperalgesia and allodynia. The present study was designed to investigate the effects of ethyl pyruvate (EP) on mechanical and cold allodynia, TNF-α expression, and apoptosis in DRG after spinal nerve ligation injury. Methods Rats were divided into 3 groups: control, pre-EP, and post-EP. EP (50 mg/kg) was intraperitoneally injected 30 minutes before (pre-EP) or after (post-EP) surgery. Behavioral tests to determine mechanical and cold allodynia were conducted before surgery and 4 and 7 days after surgery. Seven days after surgery, TNF-α protein levels in DRG were evaluated by enzyme-linked immunosorbent assay, and DRG apoptosis was determined by immunohistochemical detection of activated caspase-3. Results Treatment with EP significantly reduced mechanical and cold allodynia following spinal nerve ligation injury. TNF-α protein levels in the pre-EP (4.7 ± 1.2 pg/200 µg; P < 0.001) and post-EP (6.4 ± 1.8 pg/200 µg; P < 0.001) groups were 2-3 times lower than the control group (14.4 ± 1.2 pg/200 µg). The percentages of neurons and satellite cells that co-localized with caspase-3 were also significantly lower in the pre-EP and post-EP groups than the control group. Conclusions These results demonstrate that EP has a strong anti-allodynic effect that acts through the inhibition of TNF-α expression and apoptosis in DRG after spinal nerve ligation injury.
Collapse
Affiliation(s)
- Dae Kee Choi
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
39
|
Kondo K, Yamada N, Suzuki Y, Toyoda K, Hashimoto T, Takahashi A, Kobayashi A, Shoda T, Kuno H, Sugai S. Enhancement of acetaminophen-induced chronic hepatotoxicity in restricted fed rats: a nonclinical approach to acetaminophen-induced chronic hepatotoxicity in susceptible patients. J Toxicol Sci 2012; 37:911-29. [DOI: 10.2131/jts.37.911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Kazuma Kondo
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Naohito Yamada
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Yusuke Suzuki
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Kaoru Toyoda
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Tatsuji Hashimoto
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Akemi Takahashi
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Akio Kobayashi
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Toshiyuki Shoda
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Hideyuki Kuno
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | - Shoichiro Sugai
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| |
Collapse
|
40
|
Higher hypochlorous acid scavenging activity of ethyl pyruvate compared to its sodium salt. Biosci Biotechnol Biochem 2011; 75:500-4. [PMID: 21389621 DOI: 10.1271/bbb.100728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although a number of studies have focused on the higher ethyl pyruvate antioxidative activity than its sodium salt under various stress conditions, and the greater protective properties of the ester form have been suggested as the effect of better cell membrane penetration, the molecular mechanism has remained unclear. The aim of the present study was therefore to compare the antioxidative activities of sodium and ethyl pyruvate under in vitro conditions by using a liver homogenate as the model for cell membrane transport deletion. The potential effect of ethanol was also evaluated, and hypochlorous acid was used as an oxidant. Our data indicate the concentration-dependent scavenging potency of both sodium and ethyl pyruvate, with the ester having higher activity. This effect was not related to the presence of ethanol. Better protection of the liver homogenate by ethyl pyruvate was also apparent, despite the fact that cell membrane transport was omitted.
Collapse
|
41
|
Effects of Ethyl Pyruvate and Other α-Keto Carboxylic Acid Derivatives in a Rat Model of Multivisceral Ischemia and Reperfusion. J Surg Res 2011; 165:151-7. [DOI: 10.1016/j.jss.2009.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/20/2009] [Accepted: 07/08/2009] [Indexed: 11/18/2022]
|
42
|
Jang IS, Park MY, Shin IW, Sohn JT, Lee HK, Chung YK. Ethyl pyruvate has anti-inflammatory and delayed myocardial protective effects after regional ischemia/reperfusion injury. Yonsei Med J 2010; 51:838-44. [PMID: 20879048 PMCID: PMC2995973 DOI: 10.3349/ymj.2010.51.6.838] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Ethyl pyruvate has anti-inflammatory properties and protects organs from ischemia/reperfusion (I/R)-induced tissue injury. The aim of this study was to determine whether ethyl pyruvate decreases the inflammatory response after regional I/R injury and whether ethyl pyruvate protects against delayed regional I/R injury in an in vivo rat heart model after a 24 hours reperfusion. MATERIALS AND METHODS Rats were randomized to receive lactated Ringer's solution or ethyl pyruvate dissolved in Ringer's solution, which was given by intraperitoneal injection 1 hour prior to ischemia. Rats were subjected to 30 min of ischemia followed by reperfusion of the left coronary artery territory. After a 2 hours reperfusion, nuclear factor κB, myocardial myeloperoxidase activity, and inflammatory cytokine levels were determined. After the 24 hours reperfusion, the hemodynamic function and myocardial infarct size were evaluated. RESULTS At 2 hours after I/R injury, ethyl pyruvate attenuated I/R-induced nuclear factor κB translocation and reduced myeloperoxidase activity in myocardium. The plasma circulating levels of inflammatory cytokines decreased significantly in the ethyl pyruvate-treated group. At 24 hours after I/R injury, ethyl pyruvate significantly improved cardiac function and reduced infarct size after regional I/R injury. CONCLUSION Ethyl pyruvate has the ability to inhibit neutrophil activation, inflammatory cytokine release, and nuclear factor κB translocation. Ethyl pyruvate is associated with a delayed myocardial protective effect after regional I/R injury in an in vivo rat heart model.
Collapse
Affiliation(s)
- In-Seok Jang
- Department of Cardiothoracic and Vascular Surgery, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Mi-Young Park
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Il-Woo Shin
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Heon-Keun Lee
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Young-Kyun Chung
- Department of Anesthesiology and Pain Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
43
|
Pyruvate: immunonutritional effects on neutrophil intracellular amino or alpha-keto acid profiles and reactive oxygen species production. Amino Acids 2010; 40:1077-90. [PMID: 20839016 PMCID: PMC3061003 DOI: 10.1007/s00726-010-0731-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 08/23/2010] [Indexed: 01/19/2023]
Abstract
For the first time the immunonutritional role of pyruvate on neutrophils (PMN), free α-keto and amino acid profiles, important reactive oxygen species (ROS) produced [superoxide anion (O(2) (-)), hydrogen peroxide (H(2)O(2))] as well as released myeloperoxidase (MPO) acitivity has been investigated. Exogenous pyruvate significantly increased PMN pyruvate, α-ketoglutarate, asparagine, glutamine, aspartate, glutamate, arginine, citrulline, alanine, glycine and serine in a dose as well as duration of exposure dependent manner. Moreover, increases in O(2) (-) formation, H(2)O(2)-generation and MPO acitivity in parallel with intracellular pyruvate changes have also been detected. Regarding the interesting findings presented here we believe, that pyruvate fulfils considerably the criteria for a potent immunonutritional molecule in the regulation of the PMN dynamic α-keto and amino acid pools. Moreover it also plays an important role in parallel modulation of the granulocyte-dependent innate immune regulation. Although further research is necessary to clarify pyruvate's sole therapeutical role in critically ill patients' immunonutrition, the first scientific successes seem to be very promising.
Collapse
|
44
|
Andersson U, Lindberg J, Wang S, Balasubramanian R, Marcusson-Ståhl M, Hannula M, Zeng C, Juhasz PJ, Kolmert J, Bäckström J, Nord L, Nilsson K, Martin S, Glinghammar B, Cederbrant K, Schuppe-Koistinen I. A systems biology approach to understanding elevated serum alanine transaminase levels in a clinical trial with ximelagatran. Biomarkers 2010; 14:572-86. [PMID: 19780643 DOI: 10.3109/13547500903261354] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ximelagatran was developed for the prevention and treatment of thromboembolic conditions. However, in long-term clinical trials with ximelagatran, the liver injury marker, alanine aminotransferase (ALT) increased in some patients. Analysis of plasma samples from 134 patients was carried out using proteomic and metabolomic platforms, with the aim of finding predictive biomarkers to explain the ALT elevation. Analytes that were changed after ximelagatran treatment included 3-hydroxybutyrate, pyruvic acid, CSF1R, Gc-globulin, L-glutamine, protein S and alanine, etc. Two of these analytes (pyruvic acid and CSF1R) were studied further in human cell cultures in vitro with ximelagatran. A systems biology approach applied in this study proved to be successful in generating new hypotheses for an unknown mechanism of toxicity.
Collapse
Affiliation(s)
- Ulf Andersson
- Safety Assessment, Molecular Toxicology, AstraZeneca R&D, Södertälje, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The biochemical basis for the anti-inflammatory and cytoprotective actions of ethyl pyruvate and related compounds. Biochem Pharmacol 2010; 80:151-9. [PMID: 20230800 DOI: 10.1016/j.bcp.2010.03.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/04/2010] [Accepted: 03/08/2010] [Indexed: 12/12/2022]
Abstract
Pyruvate is an important metabolic intermediate, and also is an effective scavenger of hydrogen peroxide and other reactive oxygen species (ROS). Pharmacological administration of pyruvate has been shown to improve organ function in animal models of oxidant-mediated cellular injury. However, pyruvate is relatively unstable in aqueous solutions, which could limit the therapeutic potential of this compound. Ethyl pyruvate (EP), a simple derivative of pyruvic acid, is also an ROS scavenger, but seems to exert pharmacological effects, such as suppression of inflammation, which are at least quantitatively different and in some instances are qualitatively distinct from those exerted by pyruvate anion. Treatment with EP has been shown to improve survival and/or ameliorate organ dysfunction in a wide variety of pre-clinical models of acute illnesses, such as severe sepsis, acute pancreatitis and stroke. Using other animal models, some studies have demonstrated that more prolonged treatment with EP can ameliorate inflammatory bowel disease or slow the rate of growth of malignant tumors. In a clinical trial of patients undergoing cardiac surgery, treatment with EP was shown to be safe, but it failed to improve outcome. The true therapeutic potential of EP and related compounds remains to be elucidated. In this review, some of the biochemical mechanisms, which might be responsible for the pharmacological effects of EP, are discussed.
Collapse
|
46
|
Shen H, Hu X, Liu C, Wang S, Zhang W, Gao H, Stetler RA, Gao Y, Chen J. Ethyl pyruvate protects against hypoxic-ischemic brain injury via anti-cell death and anti-inflammatory mechanisms. Neurobiol Dis 2009; 37:711-22. [PMID: 20026271 DOI: 10.1016/j.nbd.2009.12.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/02/2009] [Accepted: 12/08/2009] [Indexed: 10/20/2022] Open
Abstract
Ethyl pyruvate (EP) is protective in experimental models of many illnesses. This study investigates whether EP can protect against neonatal hypoxic-ischemic (H-I) brain injury. Pre-treatment with EP significantly reduced brain damage at 7 days post-H-I, with 50 mg/kg EP achieving over 50% recovery in tissue loss compared to vehicle-treated animals. Delayed treatment with EP until 30 min after H-I was still neuroprotective. EP-afforded brain protection, together with neurological function improvement, was observed up to 2 months after H-I. We further demonstrated an inhibitory effect of EP on cell death, both in an in vivo model of H-I and in in vitro neuronal cultures subjected to OGD, by reducing calpain activation and calcium dysregulation. Moreover, EP exerted an anti-inflammatory effect in microglia by inhibiting NF-kappaB activation and subsequent release of inflammatory mediators. Taken together, our results suggest that EP confers potent neuroprotection against neonatal H-I brain injury via its anti-cell death and anti-inflammatory actions. EP is a potential novel therapeutic agent for neonatal H-I brain injury.
Collapse
Affiliation(s)
- Hongxia Shen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liang X, Chavez ARDV, Schapiro NE, Loughran P, Thorne SH, Amoscato AA, Zeh HJ, Beer-Stolz D, Lotze MT, de Vera ME. Ethyl pyruvate administration inhibits hepatic tumor growth. J Leukoc Biol 2009; 86:599-607. [PMID: 19584311 DOI: 10.1189/jlb.0908578] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
EP is a potent inhibitor of HMGB1 release that has significant anti-inflammatory activities and exerts a protective effect in animal models of inflammation. As inflammation is linked to cancer growth, we hypothesized that EP would have anti-tumor activity and explored its effects in a liver tumor model. Mice injected intraportally with MC38 colorectal cancer cells led to the growth of visible hepatic tumors within 2 weeks. Pretreatment with EP 30 min prior to infusion of tumor cells and continuing daily for 9 days inhibited tumor growth significantly in a dose-dependent manner, with 80 mg/kg EP achieving >70% reduction in the number of tumor nodules when compared with untreated animals. Delayed treatment with EP also suppressed tumor growth significantly, although to a lesser extent. Tumors had early, marked leukocytic infiltrates, and EP administration decreased innate (NK cells, monocytes) and adaptive (T and B cell lymphocytic) immune cell infiltrates acutely and significantly in the liver. Serum IL-6 and HMGB1 levels, which were elevated following tumor injection, were decreased significantly in EP-treated animals. Tumors showed an increase in apoptosis in EP treated mice, and tumor cells treated in vitro with EP had marked increases in LC3-II and cleaved PARP, consistent with enhanced autophagic flux and apoptosis. Thus, EP inhibition of tumor growth in the liver was mediated by tumor (induction of apoptosis) and host (decreased inflammation) effects. EP administration may have a therapeutic role in the treatment of cancer in conjunction with other therapeutic agents.
Collapse
Affiliation(s)
- Xiaoyan Liang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Haga S, Remington SJ, Morita N, Terui K, Ozaki M. Hepatic ischemia induced immediate oxidative stress after reperfusion and determined the severity of the reperfusion-induced damage. Antioxid Redox Signal 2009; 11:2563-72. [PMID: 19489709 DOI: 10.1089/ars.2009.2681] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Noninvasive evaluation of organ redox states provides invaluable information in many clinical settings. We evaluated a newly developed reduction/oxidation-sensitive green fluorescent protein (roGFP) probe that reports cellular redox potentials and their dynamic changes in live cells. On hypoxia/reoxygenation (H/R) of AML12 liver cells, roGFP indicated mild reduction during hypoxia, but immediate transient oxidation after reoxygenation. The roGFP probe confirmed the antioxidative effects of N-acetylcysteine, catalase, redox factor-1, and Mn-SOD/CuZn-SOD against H/R-induced cellular oxidative stress (OS). In a mouse liver ischemia/reperfusion (I/R) model, roGFP transduced by using an adenoviral vector revealed immediate reduction of the liver under ischemia, and two distinct peaks of OS: (a) early, observed within 60 min after reperfusion, similar to the in vitro study; and (b) later, at 24 h. The early peak levels paralleled the ischemic time up to 75 min and the postischemic liver injury (sGOT/GPT/LDH) in the later phase (6 and 24 h after I/R). The roGFP probe successfully indicated postischemic OS of the liver in living mice, accurately predicting postischemic liver injury. This probe may represent an effective OS marker indicating organ redox states and also predicting the damage/function.
Collapse
Affiliation(s)
- Sanae Haga
- Department of Molecular Surgery, Hokkaido University School of Medicine, Sapporo, Hokkaido, 060-8638 Japan
| | | | | | | | | |
Collapse
|
49
|
Cardinal J, Pan P, Dhupar R, Ross M, Nakao A, Lotze M, Billiar T, Geller D, Tsung A. Cisplatin prevents high mobility group box 1 release and is protective in a murine model of hepatic ischemia/reperfusion injury. Hepatology 2009; 50:565-74. [PMID: 19492424 DOI: 10.1002/hep.23021] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED The nuclear protein high mobility group box 1 (HMGB1) is an important inflammatory mediator involved in the pathogenesis of liver ischemia/reperfusion (I/R) injury. Strategies aimed at preventing its release from stressed or damaged cells may be beneficial in preventing inflammation after I/R. Cisplatin is a member of the platinating chemotherapeutic agents and can induce DNA lesions that are capable of retaining high mobility group proteins inside the nucleus of cells. In vitro studies in primary cultured rat hepatocytes show that nontoxic concentrations of cisplatin can sequester HMGB1 inside the nucleus of hypoxic cells. Similarly, the in vivo administration of nontoxic doses of cisplatin prevents liver damage associated with a well-established murine model of hepatic I/R as measured by lower circulating serum aminotransferase levels, lower hepatic inflammatory cytokine levels including tumor necrosis factor alpha and interleukin-6, lower inducible NO synthase expression, and fewer I/R-associated histopathologic changes. The mechanism of action in vivo appears to involve the capacity of cisplatin to prevent the I/R-induced release of HMGB1 as well as to alter cell survival and stress signaling in the form of autophagy and mitogen-activated protein kinase activation, respectively. CONCLUSION Low, nontoxic doses of cisplatin can sequester HMGB1 inside the nucleus of redox-stressed hepatocytes in vitro and prevent its release in vivo in a murine model of hepatic I/R. Furthermore, cell survival and stress signaling pathways are altered by low-dose cisplatin. Therefore, platinating agents may provide a novel approach to mitigating the deleterious effects of I/R-mediated disease processes.
Collapse
Affiliation(s)
- Jon Cardinal
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schmeding M, Hunold G, Ariyakhagorn V, Rademacher S, Boas-Knoop S, Lippert S, Neuhaus P, Neumann UP. Erythropoietin reduces ischemia-reperfusion injury after liver transplantation in rats. Transpl Int 2009; 22:738-46. [DOI: 10.1111/j.1432-2277.2009.00861.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|