1
|
Smith BC, Thornton C, Stirling RE, Besné GM, Gascoigne SJ, Evans N, Taylor PN, Leiberg K, Karoly PJ, Wang Y. More variable circadian rhythms in epilepsy captured by long-term heart rate recordings from wearable sensors. Epilepsia 2025. [PMID: 40286232 DOI: 10.1111/epi.18424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVE The circadian rhythm synchronizes physiological and behavioral patterns with the 24-h light-dark cycle. Disruption to the circadian rhythm is linked to various health conditions, although optimal methods to describe these disruptions remain unclear. An emerging approach is to examine the intraindividual variability in measurable properties of the circadian rhythm over extended periods. Epileptic seizures are modulated by circadian rhythms, but the relevance of circadian rhythm disruption in epilepsy remains unexplored. Our study investigates intraindividual circadian variability in epilepsy and its relationship with seizures. METHODS We retrospectively analyzed >70 000 h of wearable smartwatch data (Fitbit) from 143 people with epilepsy (PWE) and 31 healthy controls. Circadian oscillations in heart rate time series were extracted, daily estimates of circadian period, acrophase, and amplitude properties were produced, and estimates of the intraindividual variability of these properties over an entire recording were calculated. RESULTS PWE exhibited greater intraindividual variability in period (76 vs. 57 min, d = .66, p < .001) and acrophase (64 vs. 48 min, d = .49, p = .004) compared to controls, but not in amplitude (2 beats per minute, d = -.15, p = .49). Variability in circadian properties showed no correlation with seizure frequency nor any differences between weeks with and without seizures. SIGNIFICANCE For the first time, we show that heart rate circadian rhythms are more variable in PWE, detectable via consumer wearable devices. However, no association with seizure frequency or occurrence was found, suggesting that this variability might be underpinned by the epilepsy etiology rather than being a seizure-driven effect.
Collapse
Affiliation(s)
- Billy C Smith
- Computational Neurology, Neuroscience and Psychiatry Lab, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Christopher Thornton
- Computational Neurology, Neuroscience and Psychiatry Lab, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
- School of Computing, Engineering, & Digital Technologies, Teesside University, Middlesbrough, UK
| | - Rachel E Stirling
- Graeme Clark Institute and Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Guillermo M Besné
- Computational Neurology, Neuroscience and Psychiatry Lab, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Sarah J Gascoigne
- Computational Neurology, Neuroscience and Psychiatry Lab, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Nathan Evans
- Computational Neurology, Neuroscience and Psychiatry Lab, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Peter N Taylor
- Computational Neurology, Neuroscience and Psychiatry Lab, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- University College London Queen Square Institute of Neurology, Queen Square, London, UK
| | - Karoline Leiberg
- Computational Neurology, Neuroscience and Psychiatry Lab, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Philippa J Karoly
- Graeme Clark Institute and Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Yujiang Wang
- Computational Neurology, Neuroscience and Psychiatry Lab, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- University College London Queen Square Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
2
|
Kafashan M, Lebovitz L, Greenspan R, Zhao S, Kim T, Husain M, Hershey T, Cristancho P, Hogan RE, Palanca BJA, Farber NB. Investigating the impact of electroconvulsive therapy on brain networks and sleep: an observational study protocol. BMJ Open 2025; 15:e098859. [PMID: 40054874 DOI: 10.1136/bmjopen-2025-098859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/12/2025] Open
Abstract
INTRODUCTION Electroconvulsive therapy (ECT) is a highly effective treatment for refractory depression, but it may also cause cognitive side effects. Despite decades of use, the mechanisms by which ECT exerts both its antidepressant and cognitive effects are still poorly understood, with the latter substantially limiting referral and adherence to therapy. ECT induces changes in correlated neural activity-functional connectivity-across various brain networks, which may underlie both its clinical efficacy and associated cognitive side effects. Electroencephalography (EEG) could address these knowledge gaps by identifying biomarkers that predict therapeutic outcomes or cognitive side effects. Such developments could ultimately improve patient selection and adherence. Such markers likely span large-scale functional brain networks or temporal dynamics of brain activity during sleep. We hypothesise that enhancement in slow wave sleep mediates the relationship between antidepressant effects and changes in functional connectivity throughout the course of ECT. METHODS AND ANALYSIS Disruptions of Brain Networks and Sleep by Electroconvulsive Therapy (DNS-ECT) is an ongoing observational study investigating the impact of ECT on large-scale brain functional networks and their relationships to sleep slow waves, an EEG marker linked to synaptic plasticity. The novelty of this study stems from our focus on the assessment of EEG markers during sleep, wakefulness and ECT-induced seizures over the course of therapy. Graph-based network analyses of high-density EEG signals allow characterisation of functional networks locally in specific subnetworks and globally over large-scale functional networks. Longitudinal assessments of EEG alongside clinical and cognitive outcomes provide a unique opportunity to improve our understanding of the circuit mechanisms underlying the development of cognitive impairments and antidepressant effects incurred during ECT. ETHICS AND DISSEMINATION Recruitment for this 5-year study started in March 2023. Dissemination plans include presentations at scientific conferences and peer-reviewed publications. This study has been registered with ClinicalTrials.gov registry under identifier. TRIAL REGISTRATION NUMBER NCT05905705.
Collapse
Affiliation(s)
- MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Lucas Lebovitz
- Department of Psychiatry, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Robby Greenspan
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Sijia Zhao
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Tae Kim
- Department of Neurology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, England, UK
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Psychological and Brain Sciences, Washington University in St Louis, St. Louis, Missouri, USA
| | - Pilar Cristancho
- Department of Psychiatry, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - R Edward Hogan
- Department of Neurology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Ben Julian Agustin Palanca
- Department of Anesthesiology, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St Louis, St. Louis, Missouri, USA
| | - Nuri B Farber
- Department of Psychiatry, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Liu WK, Kothare S, Jain S. Sleep and Epilepsy. Semin Pediatr Neurol 2023; 48:101087. [PMID: 38065633 DOI: 10.1016/j.spen.2023.101087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 12/18/2023]
Abstract
The relationship between sleep and epilepsy is both intimate and bidirectional. The molecular mechanisms which control circadian rhythm and the sleep/wake cycle are dysregulated in epileptogenic tissue and are themselves effected by molecular pathways for epilepsy. Sleep affects the frequency of interictal epileptiform discharges and recent research has raised new questions regarding the impact of discharges on sleep function and cognition. Epileptiform discharges themselves affect sleep architecture and increase the risk of sleep disorders. Several sleep-related epilepsy syndromes have undergone changes in their classification which highlights their intimate relationship to sleep and novel screening tools have been developed to help clinicians better differentiate epileptic seizures from sleep-related paroxysmal events. Improving sleep and addressing sleep disorders has been associated with improved seizure control and increased well-being in people with epilepsy. These interactions are discussed in detail in this review.
Collapse
Affiliation(s)
- Wei K Liu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital, Cincinnati, OH.
| | - Sanjeev Kothare
- Division of Pediatric Neurology, Department of Pediatrics, Cohen Children's Medical Center, New York, NY
| | - Sejal Jain
- Department of Anesthesiology and Pain Medicine, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
4
|
Ojemann WKS, Scheid BH, Mouchtaris S, Lucas A, LaRocque JJ, Aguila C, Ashourvan A, Caciagli L, Davis KA, Conrad EC, Litt B. Resting-state background features demonstrate multidien cycles in long-term EEG device recordings. Brain Stimul 2023; 16:1709-1718. [PMID: 37979654 DOI: 10.1016/j.brs.2023.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Longitudinal EEG recorded by implanted devices is critical for understanding and managing epilepsy. Recent research reports patient-specific, multi-day cycles in device-detected epileptiform events that coincide with increased likelihood of clinical seizures. Understanding these cycles could elucidate mechanisms generating seizures and advance drug and neurostimulation therapies. OBJECTIVE/HYPOTHESIS We hypothesize that seizure-correlated cycles are present in background neural activity, independent of interictal epileptiform spikes, and that neurostimulation may temporarily interrupt these cycles. METHODS We analyzed regularly-recorded seizure-free data epochs from 20 patients implanted with a responsive neurostimulation (RNS) device for at least 1.5 years, to explore the relationship between cycles in device-detected interictal epileptiform activity (dIEA), clinician-validated interictal spikes, background EEG features, and neurostimulation. RESULTS Background EEG features tracked the cycle phase of dIEA in all patients (AUC: 0.63 [0.56-0.67]) with a greater effect size compared to clinically annotated spike rate alone (AUC: 0.55 [0.53-0.61], p < 0.01). After accounting for circadian variation and spike rate, we observed significant population trends in elevated theta and beta band power and theta and alpha connectivity features at the cycle peaks (sign test, p < 0.05). In the period directly after stimulation we observe a decreased association between cycle phase and EEG features compared to background recordings (AUC: 0.58 [0.55-0.64]). CONCLUSIONS Our findings suggest that seizure-correlated dIEA cycles are not solely due to epileptiform discharges but are associated with background measures of brain state; and that neurostimulation may temporarily interrupt these cycles. These results may help elucidate mechanisms underlying seizure generation, provide new biomarkers for seizure risk, and facilitate monitoring, treating, and managing epilepsy with implantable devices.
Collapse
Affiliation(s)
- William K S Ojemann
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA.
| | - Brittany H Scheid
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Sofia Mouchtaris
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Alfredo Lucas
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA; University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Joshua J LaRocque
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA; Hospital of the University of Pennsylvania, Department of Neurology, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Carlos Aguila
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Arian Ashourvan
- The University of Kansas, Department of Psychology, 1415 Jayhawk Blvd, Lawrence, KS, 66045, USA
| | - Lorenzo Caciagli
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Kathryn A Davis
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA; Hospital of the University of Pennsylvania, Department of Neurology, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Erin C Conrad
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA; Hospital of the University of Pennsylvania, Department of Neurology, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Brian Litt
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA; Hospital of the University of Pennsylvania, Department of Neurology, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Conrad EC, Revell AY, Greenblatt AS, Gallagher RS, Pattnaik AR, Hartmann N, Gugger JJ, Shinohara RT, Litt B, Marsh ED, Davis KA. Spike patterns surrounding sleep and seizures localize the seizure-onset zone in focal epilepsy. Epilepsia 2023; 64:754-768. [PMID: 36484572 PMCID: PMC10045742 DOI: 10.1111/epi.17482] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Interictal spikes help localize seizure generators as part of surgical planning for drug-resistant epilepsy. However, there are often multiple spike populations whose frequencies change over time, influenced by brain state. Understanding state changes in spike rates will improve our ability to use spikes for surgical planning. Our goal was to determine the effect of sleep and seizures on interictal spikes, and to use sleep and seizure-related changes in spikes to localize the seizure-onset zone (SOZ). METHODS We performed a retrospective analysis of intracranial electroencephalography (EEG) data from patients with focal epilepsy. We automatically detected interictal spikes and we classified different time periods as awake or asleep based on the ratio of alpha to delta power, with a secondary analysis using the recently published SleepSEEG algorithm. We analyzed spike rates surrounding sleep and seizures. We developed a model to localize the SOZ using state-dependent spike rates. RESULTS We analyzed data from 101 patients (54 women, age range 16-69). The normalized alpha-delta power ratio accurately classified wake from sleep periods (area under the curve = .90). Spikes were more frequent in sleep than wakefulness and in the post-ictal compared to the pre-ictal state. Patients with temporal lobe epilepsy had a greater wake-to-sleep and pre- to post-ictal spike rate increase compared to patients with extra-temporal epilepsy. A machine-learning classifier incorporating state-dependent spike rates accurately identified the SOZ (area under the curve = .83). Spike rates tended to be higher and better localize the seizure-onset zone in non-rapid eye movement (NREM) sleep than in wake or REM sleep. SIGNIFICANCE The change in spike rates surrounding sleep and seizures differs between temporal and extra-temporal lobe epilepsy. Spikes are more frequent and better localize the SOZ in sleep, particularly in NREM sleep. Quantitative analysis of spikes may provide useful ancillary data to localize the SOZ and improve surgical planning.
Collapse
Affiliation(s)
- Erin C. Conrad
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Andrew Y. Revell
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA
| | | | - Ryan S. Gallagher
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Akash R. Pattnaik
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Nicole Hartmann
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - James J. Gugger
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Russell T. Shinohara
- Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia, PA
- Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA
| | - Brian Litt
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Eric D. Marsh
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
- Division of Child Neurology, Department of Biostatistics, University of Pennsylvania, Epidemiology, & Informatics, Philadelphi Department of Biostatistics, University of Pennsylvania, Epidemiology, & Informatics, Philadelphi Pediatric Epilepsy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kathryn A. Davis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Ayala-Guerrero F, Castro-Domínguez D, Mateos-Salgado EL, Mexicano-Medina G, Gutiérrez-Chávez CA. Effect of valproate on sleep patterns disturbed by epilepsy. Physiol Behav 2023; 259:114054. [PMID: 36502893 DOI: 10.1016/j.physbeh.2022.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Nocturnal epilepsy is a neurological disease that has a significant effect on sleep. Various treatments have been implemented to help mitigate these effects and improve patients' quality of life. The use of experimental animal models for epilepsy has facilitated efficacy assessment and the development of different medications to treat the symptoms of this disease. The objective of this study was to evaluate the effect of valproate on sleep patterns altered by epilepsy. Chronically implanted Wistar rats were used to study sleep patterns over three consecutive days under different experimental conditions. The animals were separated into two groups. The first day was considered the control recording; on the second day, one group received pentylenetetrazol (PTZ) alone, and the other group received valproate prior to induction of convulsive seizures with PTZ administration. The results show that in addition to its antiepileptic effect, valproate has hypnotic properties. It is considered to facilitate the action of GABAergic mechanisms to mitigate the effect of convulsive seizures and increase the occurrence of sleep.
Collapse
|
7
|
Roebber JK, Lewis PA, Crunelli V, Navarrete M, Hamandi K. Effects of Anti-Seizure Medication on Sleep Spindles and Slow Waves in Drug-Resistant Epilepsy. Brain Sci 2022; 12:1288. [PMID: 36291222 PMCID: PMC9599317 DOI: 10.3390/brainsci12101288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 09/23/2023] Open
Abstract
There is a close bidirectional relationship between sleep and epilepsy. Anti-seizure medications (ASM) act to reduce seizure frequency but can also impact sleep; this remains a relatively unexplored field given the importance of sleep on seizure occurrence, memory consolidation, and quality of life. We compared the effect of poly-ASM treatment on a night of sleep compared to an unmedicated night in patients with drug-resistant epilepsy, where ASMs were withdrawn and later restored as part of their pre-surgical evaluation. Within-subject analysis between medicated and unmedicated nights showed ASMs increased spindle (11-16 Hz) power and decreased slow wave (0.1-2 Hz) amplitude. Spindles became less strongly coupled to slow waves in the ASM night compared to no-ASM night, with effects to both the phase and strength of coupling and correlated with slow wave reduction. These effects were not seen in age-matched controls from the same unit where ASMs were not changed between two nights. Overall, we found that ASM polytherapy not only changed specific sleep waveforms, but also the fine interplay of spindle/slow wave coupling. Since these sleep oscillations impact both seizure occurrence and memory consolidation, our findings provide evidence towards a decoupling impact of ASMs on sleep that should be considered in future studies of sleep and memory disruption in people with epilepsy.
Collapse
Affiliation(s)
- Jennifer K. Roebber
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Penelope A. Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
8
|
Ahmed GK, Darwish AM, Khalifa H, Haridy NA. Relationship between Attention Deficit Hyperactivity Disorder and epilepsy: a literature review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00482-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurological disorder. ADHD has been linked to epilepsy.
Main body
ADHD was found to be present in 30–40% of epileptic children. Researchers have developed numerous theories to explain how and why ADHD and epilepsy coexist. Whether ADHD and epilepsy symptoms are caused by co-occurring psychiatric disorders or by the temporary effects of epileptic discharges or by antiepileptic medicines is critical to consider. Diagnosis and treatment of individuals with ADHD and epilepsy are complicated and challenging from the clinical base.
Conclusions
Comorbidity between ADHD and epilepsy is still challenging to understand. The two diseases have a bidirectional link, so the association may not be coincidental. A disputable point is whether co-occurring ADHD and epilepsy symptoms represent a comorbid psychiatric disorder or are the epileptic discharges’ temporary effects, and are they related to antiepileptic drugs (AEDs). It is recommended to follow up with children with epilepsy or ADHD as they may develop comorbidity after a while.
Collapse
|
9
|
Garg D, Charlesworth L, Shukla G. Sleep and Temporal Lobe Epilepsy – Associations, Mechanisms and Treatment Implications. Front Hum Neurosci 2022; 16:849899. [PMID: 35558736 PMCID: PMC9086778 DOI: 10.3389/fnhum.2022.849899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
In this systematic review, we aim to describe the association between temporal lobe epilepsy (TLE) and sleep, with bidirectional links in mechanisms and therapeutic aspects. Sleep stages may variably impact seizure occurrence, secondary generalization and the development, frequency and distribution of interictal epileptiform discharges. Conversely, epilepsy affects sleep micro- and macroarchitecture. TLE, the most frequent form of drug resistant epilepsy (DRE), shares an enduring relationship with sleep, with some intriguing potential mechanisms specific to anatomic localization, linking the two. Sleep characteristics of TLE may also inform localizing properties in persons with DRE, since seizures arising from the temporal lobe seem to be more common during wakefulness, compared to seizures of extratemporal origin. Polysomnographic studies indicate that persons with TLE may experience excessive daytime somnolence, disrupted sleep architecture, increased wake after sleep onset, frequent shifts in sleep stages, lower sleep efficiency, decreased rapid eye movement (REM) sleep, and possibly, increased incidence of sleep apnea. Limited literature suggests that effective epilepsy surgery may remedy many of these objective and subjective sleep-related concerns, via multipronged effects, apart from reduced seizure frequency. Additionally, sleep abnormalities also seem to influence memory, language and cognitive-executive function in both medically controlled and refractory TLE. Another aspect of the relationship pertains to anti-seizure medications (ASMs), which may contribute significantly to sleep characteristics and abnormalities in persons with TLE. Literature focused on specific aspects of TLE and sleep is limited, and heterogeneous. Future investigations are essential to understand the pathogenetic mechanisms linking sleep abnormalities on epilepsy outcomes in the important sub-population of TLE.
Collapse
Affiliation(s)
- Divyani Garg
- Department of Neurology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | | | - Garima Shukla
- Division of Epilepsy and Sleep Medicine, Queen’s University, Kingston, ON, Canada
- *Correspondence: Garima Shukla,
| |
Collapse
|
10
|
Guo M, Shen B, Li J, Huang X, Hu J, Wei X, Wang S, Yuan R, He C, Li Y. Diffusion Abnormality in Temporal Lobe Epilepsy Patients With Sleep Disorders: A Diffusion Kurtosis Imaging Study. Front Psychiatry 2022; 13:885477. [PMID: 35693954 PMCID: PMC9177985 DOI: 10.3389/fpsyt.2022.885477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Patients with temporal lobe epilepsy (TLE) frequently complain of poor sleep quality, which is a condition that clinicians are typically neglecting. In this study, Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), and Athens Insomnia Scale (AIS) were used to assess the sleep status of patients with temporal lobe epilepsy (TLE). Simultaneously diffusion kurtosis imaging (DKI) was applied to examine the white matter microstructure abnormalities in patients with TLE and sleep disorders. METHODS TLE patients who have been diagnosed in the cardio-cerebrovascular ward of the Yanan University Affiliated Hospital from October 2020 to August 2021 were recruited. Finally, 51 patients and 30 healthy controls were enrolled in our study, with all subjects completing the sleep evaluation questionnaire and undergoing a DKI examination. Using independent sample t-test, analysis of variance (ANOVA), and Mann-Whitney U test to compare groups. RESULTS Thirty patients (58.82%) complained of long-term sleep difficulties. The overall differences among the evaluation of AIS, ESS, and PSQI are significant (P = 0.00, P = 0.00, P = 0.03). The scores of AIS, ESS in Left and Right-TLE (L/R-TLE) with sleep disorders, as well as PSQI in L-TLE, are statistically higher than the control group (P = 0.00, P = 0.00, P = 0.00, P = 0.00, P = 0.02). L-TLE with sleep disorders showed decreased MK on affected sides (P = 0.01). However, statistical differences in MD and FA have not been observed (P = 0.34, P = 0.06); R-TLE with sleep disorders showed significantly decreased MK and increased MD on affected sides (P = 0.00, P = 0.00), but FA's statistical difference has not been observed (P = 0.20). CONCLUSIONS TLE patients with sleep disorders have different DKI parameters than individuals who do not have sleep issues. During this process, the kurtosis parameter (MK) was more sensitive than the tensor parameters (MD, FA) in detecting the patient's aberrant white matter diffusion. DKI may be a better choice for in vivo investigation of anomalous craniocerebral water diffusion.
Collapse
Affiliation(s)
- Min Guo
- Department of Radiology, Yanan University Affiliated Hospital, Yanan, China
| | - Boxing Shen
- Department of Radiology, Yanan University Affiliated Hospital, Yanan, China
| | - Jinhong Li
- Department of Radiology, Yanan University Affiliated Hospital, Yanan, China
| | - Xiaoqi Huang
- Department of Radiology, Yanan University Affiliated Hospital, Yanan, China
| | - Jie Hu
- Department of Radiology, Yanan University Affiliated Hospital, Yanan, China
| | | | - Shaoyu Wang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, China
| | - Ruohan Yuan
- Department of Radiology, Yanan University Affiliated Hospital, Yanan, China
| | - Chengcheng He
- Department of Radiology, Yanan University Affiliated Hospital, Yanan, China
| | - Yanjing Li
- Department of Radiology, Yanan University Affiliated Hospital, Yanan, China
| |
Collapse
|
11
|
Bonilla-Jaime H, Zeleke H, Rojas A, Espinosa-Garcia C. Sleep Disruption Worsens Seizures: Neuroinflammation as a Potential Mechanistic Link. Int J Mol Sci 2021; 22:12531. [PMID: 34830412 PMCID: PMC8617844 DOI: 10.3390/ijms222212531] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances, such as insomnia, obstructive sleep apnea, and daytime sleepiness, are common in people diagnosed with epilepsy. These disturbances can be attributed to nocturnal seizures, psychosocial factors, and/or the use of anti-epileptic drugs with sleep-modifying side effects. Epilepsy patients with poor sleep quality have intensified seizure frequency and disease progression compared to their well-rested counterparts. A better understanding of the complex relationship between sleep and epilepsy is needed, since approximately 20% of seizures and more than 90% of sudden unexpected deaths in epilepsy occur during sleep. Emerging studies suggest that neuroinflammation, (e.g., the CNS immune response characterized by the change in expression of inflammatory mediators and glial activation) may be a potential link between sleep deprivation and seizures. Here, we review the mechanisms by which sleep deprivation induces neuroinflammation and propose that neuroinflammation synergizes with seizure activity to worsen neurodegeneration in the epileptic brain. Additionally, we highlight the relevance of sleep interventions, often overlooked by physicians, to manage seizures, prevent epilepsy-related mortality, and improve quality of life.
Collapse
Affiliation(s)
- Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Área de Biología Conductual y Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico CP 09340, Mexico;
| | - Helena Zeleke
- Neuroscience and Behavioral Biology Program, College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA;
| | - Asheebo Rojas
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Claudia Espinosa-Garcia
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Kadam SD. You Snooze You Seize: GABAergic Potentiation of Genetic Generalized Seizures During NREM. Epilepsy Curr 2021; 21:290-292. [PMID: 34690570 PMCID: PMC8512913 DOI: 10.1177/15357597211012454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Impaired State-Dependent Potentiation of GABAergic Synaptic Currents Triggers Seizures in a Genetic Generalized Epilepsy Model Zhang C-Q, Catron MA, Ding L, Hanna CM, Gallagher MJ, Macdonald RL, Zhou C. Cereb Cortex . 2021;31(2):768-784. doi:10.1093/cercor/bhaa256. https://pubmed.ncbi.nlm.nih.gov/32930324/ Epileptic activity in genetic generalized epilepsy (GGE) patients preferentially appears during sleep and its mechanism remains unknown. Here, we found that sleep-like slow-wave oscillations (0.5 Hz SWOs) potentiated excitatory and inhibitory synaptic currents in layer V cortical pyramidal neurons from wild-type (wt) mouse brain slices. In contrast, SWOs potentiated excitatory, but not inhibitory, currents in cortical neurons from a heterozygous (het) knock-in (KI) Gabrg2+Q/390X model of Dravet epilepsy syndrome. This created an imbalance between evoked excitatory and inhibitory currents to effectively prompt neuronal action potential firings. Similarly, physiologically similar up-/down-state induction (present during slow-wave sleep) in cortical neurons also potentiated excitatory synaptic currents within brain slices from wt and het KI mice. Moreover, this state-dependent potentiation of excitatory synaptic currents entailed some signaling pathways of homeostatic synaptic plasticity. Consequently, in het KI mice, in vivo SWO induction (using optogenetic methods) triggered generalized epileptic spike-wave discharges (SWDs), being accompanied by sudden immobility, facial myoclonus, and vibrissa twitching. In contrast, in wt littermates, SWO induction did not cause epileptic SWDs and motor behaviors. To our knowledge, this is the first mechanism to explain why epileptic SWDs preferentially happen during non-rapid eye-movement sleep and quiet-wakefulness in human GGE patients.
Collapse
|
13
|
Dell KL, Payne DE, Kremen V, Maturana MI, Gerla V, Nejedly P, Worrell GA, Lenka L, Mivalt F, Boston RC, Brinkmann BH, D'Souza W, Burkitt AN, Grayden DB, Kuhlmann L, Freestone DR, Cook MJ. Seizure likelihood varies with day-to-day variations in sleep duration in patients with refractory focal epilepsy: A longitudinal electroencephalography investigation. EClinicalMedicine 2021; 37:100934. [PMID: 34386736 PMCID: PMC8343264 DOI: 10.1016/j.eclinm.2021.100934] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND While the effects of prolonged sleep deprivation (≥24 h) on seizure occurrence has been thoroughly explored, little is known about the effects of day-to-day variations in the duration and quality of sleep on seizure probability. A better understanding of the interaction between sleep and seizures may help to improve seizure management. METHODS To explore how sleep and epileptic seizures are associated, we analysed continuous intracranial electroencephalography (EEG) recordings collected from 10 patients with refractory focal epilepsy undergoing ordinary life activities between 2010 and 2012 from three clinical centres (Austin Health, The Royal Melbourne Hospital, and St Vincent's Hospital of the Melbourne University Epilepsy Group). A total of 4340 days of sleep-wake data were analysed (average 434 days per patient). EEG data were sleep scored using a semi-automated machine learning approach into wake, stages one, two, and three non-rapid eye movement sleep, and rapid eye movement sleep categories. FINDINGS Seizure probability changes with day-to-day variations in sleep duration. Logistic regression models revealed that an increase in sleep duration, by 1·66 ± 0·52 h, lowered the odds of seizure by 27% in the following 48 h. Following a seizure, patients slept for longer durations and if a seizure occurred during sleep, then sleep quality was also reduced with increased time spent aroused from sleep and reduced rapid eye movement sleep. INTERPRETATION Our results suggest that day-to-day deviations from regular sleep duration correlates with changes in seizure probability. Sleeping longer, by 1·66 ± 0·52 h, may offer protective effects for patients with refractory focal epilepsy, reducing seizure risk. Furthermore, the occurrence of a seizure may disrupt sleep patterns by elongating sleep and, if the seizure occurs during sleep, reducing its quality.
Collapse
Affiliation(s)
- Katrina L. Dell
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Level 4, 29 Regent Street, Fitzroy, Victoria 3065, Australia
- Corresponding author.
| | - Daniel E. Payne
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Level 4, 29 Regent Street, Fitzroy, Victoria 3065, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, United States
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Matias I. Maturana
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Level 4, 29 Regent Street, Fitzroy, Victoria 3065, Australia
- Seer Medical, Melbourne, Victoria, Australia
| | - Vaclav Gerla
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Petr Nejedly
- Department of Neurology, Mayo Clinic, Rochester, United States
| | | | - Lhotska Lenka
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Filip Mivalt
- Department of Neurology, Mayo Clinic, Rochester, United States
| | - Raymond C. Boston
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Level 4, 29 Regent Street, Fitzroy, Victoria 3065, Australia
- Department of Clinical Studies - NBC, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA, United States
| | | | - Wendyl D'Souza
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Level 4, 29 Regent Street, Fitzroy, Victoria 3065, Australia
| | - Anthony N. Burkitt
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - David B. Grayden
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Levin Kuhlmann
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Level 4, 29 Regent Street, Fitzroy, Victoria 3065, Australia
- Department of Data Science and AI, Faculty of Information and Technology, Monash University, Clayton, Victoria, Australia
| | | | - Mark J. Cook
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Level 4, 29 Regent Street, Fitzroy, Victoria 3065, Australia
| |
Collapse
|
14
|
Chen X, Ma XB, Zhang Q, Yin Q, Li XH. A Scale for Predicting the Outcomes of Patients with Epilepsy: A Study of 141 Cases. Int J Gen Med 2021; 14:1565-1574. [PMID: 33953604 PMCID: PMC8089470 DOI: 10.2147/ijgm.s302735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Objective This study aimed to identify the factors relevant for developing a scale to estimate the prognosis of patients with epilepsy. Methods This study followed 141 patients with newly or previously diagnosed epilepsy for between four and nine years. The patients were divided into three groups on the basis of their outcomes during the follow-up period: patients that were seizure-free without anti-epileptic drugs (AEDs) (group A, n = 48), patients with pharmacoresponsive epilepsy (group B, n = 52), and patients with pharmacoresistant epilepsy (group C, n = 41). The predictors of the prognosis of epilepsy were determined using logistic regression models and optimum subsets regression, and a scale for estimating the prognosis of epilepsy (SEPE) was developed. Results The SEPE was able to distinguish between better and worse outcomes for the three groups. A score ≤3 on the SEPE predicted that a patient would become seizure-free without the use of AEDs, with a specificity of 67% and a sensitivity of 50%. A score ≤4 on the SEPE predicted that a patient may have a positive outcome; scores in this range were assigned to 97.9% of patients that were seizure-free without the use of AEDs and 65% of patients with pharmacoresponsive epilepsy, with a specificity of 80%, a sensitivity of 81%. Scores ≥6 on the SEPE predicted a poor outcome. Conclusion Of the patients with a SEPE score ≤3, some were able to become seizure-free without the use of AEDs, while for other patients, it may be possible that AED use can be discontinued. Patients with a SEPE score ≤4 have the potential to achieve long-term remission. Patients with a SEPE score ≥6 are more likely to have pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Xu Chen
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Department of Neurology, ShuLan (Hangzhou) Hospital, Hangzhou, People's Republic of China
| | - Xiao-Bo Ma
- Department of Neurology, Jen Ching Memorial Hospital, Kunshan, People's Republic of China
| | - Qiang Zhang
- Department of Neurology, Jen Ching Memorial Hospital, Kunshan, People's Republic of China
| | - Qing Yin
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiao-Hong Li
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
15
|
Maganti RK, Jones MV. Untangling a Web: Basic Mechanisms of the Complex Interactions Between Sleep, Circadian Rhythms, and Epilepsy. Epilepsy Curr 2021; 21:105-110. [PMID: 33541118 PMCID: PMC8010879 DOI: 10.1177/1535759721989674] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Seizures have sleep–wake and circadian patterns in various epilepsies and, in turn, disrupt sleep and circadian rhythms. The resultant sleep deprivation (SD) is an exacerbating factor for seizures that sets up a vicious cycle that can potentially lead to disease progression and even to epilepsy-related mortality. A variety of cellular or network electrophysiological changes and changes in expression of clock-controlled genes or other transcription factors underlie sleep–wake and circadian distribution of seizures, as well as the disruptions seen in both. A broad understanding of these mechanisms may help in designing better treatments to prevent SD-induced seizure exacerbation, disrupt the vicious cycle of disease progression, and reduce epilepsy-related mortality.
Collapse
Affiliation(s)
- Rama K Maganti
- Department of Neurology, 5228University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mathew V Jones
- Department of Neuroscience, 5228University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
16
|
Peng W, Ding J, Wang X. The Management and Alternative Therapies for Comorbid Sleep Disorders in Epilepsy. Curr Neuropharmacol 2021; 19:1264-1272. [PMID: 33380304 PMCID: PMC8719297 DOI: 10.2174/1570159x19666201230142716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/29/2020] [Accepted: 12/06/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND There is a complex and interactive relationship between sleep and epilepsy. Sleep disorders are common in patients with epilepsy, and methods for managing sleep disorders in patients with epilepsy are limited. OBJECTIVE This review addresses the relationship among sleep, sleep disorders, and epilepsy, focusing on the management of sleep disorders in epilepsy, including some complementary and alternative therapies. METHODS The terms related to "sleep" and "epilepsy" were searched in "Pubmed" and "Cochrane Library". RESULTS Sleep stages differently affect both seizures and interictal epileptiform discharges. Seizures disrupt sleep architecture greatly, especially when occurring during sleep in the night. Insomnia and obstructive sleep apnea (OSA) are the most frequent types of comorbid sleep disorders in patients with epilepsy. Pharmacological agents with both anti-convulsant and sedative effects are the priorities for comorbid sleep disorders in epilepsy. Continuous positive airway pressure (CPAP) therapy is the most effective non-pharmacological method to improve OSA and reduce seizures. Complementary and alternative therapies such as Chinese traditional medicine, cognitive behavioral therapy, meditation, yoga, neurofeedback, and acupuncture may have benefits in reducing seizures and improving sleep quality simultaneously by alleviating stress and seizure triggers; however, evidence- based therapies are still deficient. CONCLUSION Management of sleep disorders in patients with epilepsy is challenging. Large-scale randomized controlled clinical trials are in demand to guide the treatments in the future.
Collapse
Affiliation(s)
| | - Jing Ding
- Address correspondence to this author at the Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China; Tel: 86-21-64041990-2926; Fax: 86-21-34160748; E-mail:
| | | |
Collapse
|
17
|
Abstract
There is increasing recognition that epilepsy can be associated with a broad spectrum of comorbidities. While epileptic seizures are an essential element of epilepsy in children, there is a spectrum of neurological, mental health and cognitive disorders that add to the disease burden of childhood epilepsy resulting in a decreased quality of life. The most common comorbid conditions in childhood epilepsy include depression, anxiety, autism spectrum disorders, sleep disorders, attention deficits, cognitive impairment, and migraine. While epilepsy can result in comorbidities, many of the comorbidities of childhood have a bi-directional association, with the comorbid condition increasing risk for epilepsy and epilepsy increasing the risk for the comorbid condition. The bidirectional feature of epilepsy and the comorbidities suggest a common underlying pathological basis for both the seizures and comorbid condition. While recognition of the comorbid conditions of pediatric epilepsies is increasing, there has been a lag in the development of effective therapies partly out of concern that drugs used to treat the comorbid conditions could increase seizure susceptibility. There is now some evidence that most drugs used for comorbid conditions are safe and do not lower seizure threshold. Unfortunately, the evidence showing drugs are effective in treating many of the childhood comorbidities of epilepsy is quite limited. There is a great need for randomized, placebo-controlled drug trials for efficacy and safety in the treatment of comorbidities of childhood epilepsy.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Stafford Hall, 118C, Burlington, VT, 05405, USA.
| |
Collapse
|
18
|
Payne DE, Dell KL, Karoly PJ, Kremen V, Gerla V, Kuhlmann L, Worrell GA, Cook MJ, Grayden DB, Freestone DR. Identifying seizure risk factors: A comparison of sleep, weather, and temporal features using a Bayesian forecast. Epilepsia 2020; 62:371-382. [PMID: 33377501 DOI: 10.1111/epi.16785] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Most seizure forecasting algorithms have relied on features specific to electroencephalographic recordings. Environmental and physiological factors, such as weather and sleep, have long been suspected to affect brain activity and seizure occurrence but have not been fully explored as prior information for seizure forecasts in a patient-specific analysis. The study aimed to quantify whether sleep, weather, and temporal factors (time of day, day of week, and lunar phase) can provide predictive prior probabilities that may be used to improve seizure forecasts. METHODS This study performed post hoc analysis on data from eight patients with a total of 12.2 years of continuous intracranial electroencephalographic recordings (average = 1.5 years, range = 1.0-2.1 years), originally collected in a prospective trial. Patients also had sleep scoring and location-specific weather data. Histograms of future seizure likelihood were generated for each feature. The predictive utility of individual features was measured using a Bayesian approach to combine different features into an overall forecast of seizure likelihood. Performance of different feature combinations was compared using the area under the receiver operating curve. Performance evaluation was pseudoprospective. RESULTS For the eight patients studied, seizures could be predicted above chance accuracy using sleep (five patients), weather (two patients), and temporal features (six patients). Forecasts using combined features performed significantly better than chance in six patients. For four of these patients, combined forecasts outperformed any individual feature. SIGNIFICANCE Environmental and physiological data, including sleep, weather, and temporal features, provide significant predictive information on upcoming seizures. Although forecasts did not perform as well as algorithms that use invasive intracranial electroencephalography, the results were significantly above chance. Complementary signal features derived from an individual's historic seizure records may provide useful prior information to augment traditional seizure detection or forecasting algorithms. Importantly, many predictive features used in this study can be measured noninvasively.
Collapse
Affiliation(s)
- Daniel E Payne
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katrina L Dell
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Phillipa J Karoly
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia.,Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Vaclav Gerla
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Levin Kuhlmann
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Data Science and AI, Faculty of IT, Monash University, Clayton, Victoria, Australia
| | | | - Mark J Cook
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia.,Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dean R Freestone
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Moffet EW, Verhagen R, Jones B, Findlay G, Juan E, Bugnon T, Mensen A, Aparicio MK, Maganti R, Struck AF, Tononi G, Boly M. Local Sleep Slow-Wave Activity Colocalizes With the Ictal Symptomatogenic Zone in a Patient With Reflex Epilepsy: A High-Density EEG Study. Front Syst Neurosci 2020; 14:549309. [PMID: 33192347 PMCID: PMC7609881 DOI: 10.3389/fnsys.2020.549309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022] Open
Abstract
Background: Slow-wave activity (SWA) during non-rapid eye movement (NREM) sleep reflects synaptic potentiation during preceding wakefulness. Epileptic activity may induce increases in state-dependent SWA in human brains, therefore, localization of SWA may prove useful in the presurgical workup of epileptic patients. We analyzed high-density electroencephalography (HDEEG) data across vigilance states from a reflex epilepsy patient with a clearly localizable ictal symptomatogenic zone to provide a proof-of-concept for the testability of this hypothesis. Methods: Overnight HDEEG recordings were obtained in the patient during REM sleep, NREM sleep, wakefulness, and during a right facial motor seizure then compared to 10 controls. After preprocessing, SWA (i.e., delta power; 1–4 Hz) was calculated at each channel. Scalp level and source reconstruction analyses were computed. We assessed for statistical differences in maximum SWA between the patient and controls within REM sleep, NREM sleep, wakefulness, and seizure. Then, we completed an identical statistical comparison after first subtracting intrasubject REM sleep SWA from that of NREM sleep, wakefulness, and seizure SWA. Results: The topographical analysis revealed greater left hemispheric SWA in the patient vs. controls in all vigilance states except REM sleep (which showed a right hemispheric maximum). Source space analysis revealed increased SWA in the left inferior frontal cortex during NREM sleep and wakefulness. Ictal data displayed poor source-space localization. Comparing each state to REM sleep enhanced localization accuracy; the most clearly localizing results were observed when subtracting REM sleep from wakefulness. Conclusion: State-dependent SWA during NREM sleep and wakefulness may help to identify aspects of the potential epileptogenic zone. Future work in larger cohorts may assess the clinical value of sleep SWA to help presurgical planning.
Collapse
Affiliation(s)
- Eric W Moffet
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ruben Verhagen
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States.,Department of Philosophy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Benjamin Jones
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Graham Findlay
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Elsa Juan
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States.,Department of Philosophy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Tom Bugnon
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Armand Mensen
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Rama Maganti
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States
| | - Aaron F Struck
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Melanie Boly
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
20
|
Christensen J, Yamakawa GR, Shultz SR, Mychasiuk R. Is the glymphatic system the missing link between sleep impairments and neurological disorders? Examining the implications and uncertainties. Prog Neurobiol 2020; 198:101917. [PMID: 32991958 DOI: 10.1016/j.pneurobio.2020.101917] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Until recently, both the purpose of the biological need for sleep and the mechanism by which the central nervous system eliminated metabolic waste products were unknown. The glymphatic system is the recently discovered macroscopic waste clearance system for the CNS, which predominantly functions during sleep states. Important implications for the glymphatic system exist for a significant proportion of neurological disorders, including traumatic brain injury, epilepsy, stroke, migraine, and Alzheimer's disease. Within the limited amount of research pertaining to this novel system there exists controversy regarding several of the key structural and functional aspects of the glymphatic system. In this review we address evidence from both standpoints regarding the prominent debates surrounding the glymphatic system, including the functional differences in wakefulness vs. sleep, the role of glial aquaporin-4 water channels, and whether it reflects a convective flow or a passive diffusion process. The answers that underlie these questions will have crucial and distinct outcomes for the future of the glymphatic system and the disorders it has been implicated in. However, this review also summarizes the potential role of the glymphatic system in the development and progression of the aforementioned neurological disorders. Furthermore, the possible contribution of the orexinergic system to this relationship between the glymphatic system, sleep, and these neurological disorders is also explored. Overall, in order to develop and utilize therapeutic interventions centred around the glymphatic system we must first dedicate further investigation to elucidating these discrepancies and unanswered questions.
Collapse
Affiliation(s)
- Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Abstract
We aimed to explore the link between NREM sleep and epilepsy. Based on human and experimental data we propose that a sleep-related epileptic transformation of normal neurological networks underlies epileptogenesis. Major childhood epilepsies as medial temporal lobe epilepsy (MTLE), absence epilepsy (AE) and human perisylvian network (PN) epilepsies - made us good models to study. These conditions come from an epileptic transformation of the affected functional systems. This approach allows a system-based taxonomy instead of the outworn generalized-focal classification. MTLE links to the memory-system, where epileptic transformation results in a switch of normal sharp wave-ripples to epileptic spikes and pathological high frequency oscillations, compromising sleep-related memory consolidation. Absence epilepsy (AE) and juvenile myoclonic epilepsy (JME) belong to the corticothalamic system. The burst-firing mode of NREM sleep normally producing sleep-spindles turns to an epileptic working mode ejecting bilateral synchronous spike-waves. There seems to be a progressive transition from AE to JME. Shared absences and similar bilateral synchronous discharges show the belonging of the two conditions, while the continuous age windows - AE affecting schoolchildren, JME the adolescents - and the increased excitability in JME compared to AE supports the notion of progression. In perisylvian network epilepsies - idiopathic focal childhood epilepsies and electrical status epilepticus in sleep including Landau-Kleffner syndrome - centrotemporal spikes turn epileptic, with the potential to cause cognitive impairment. Postinjury epilepsies modeled by the isolated cortex model highlight the shared way of epileptogenesis suggesting the derailment of NREM sleep-related homeostatic plasticity as a common step. NREM sleep provides templates for plasticity derailing to epileptic variants under proper conditions. This sleep-origin explains epileptiform discharges' link and similarity with NREM sleep slow oscillations, spindles and ripples. Normal synaptic plasticity erroneously overgrowing homeostatic processes may derail toward an epileptic working-mode manifesting the involved system's features. The impact of NREM sleep is unclear in epileptogenesis occurring in adolescence and adulthood, when plasticity is lower. The epileptic process interferes with homeostatic synaptic plasticity and may cause cognitive impairment. Its type and degree depends on the affected network's function. We hypothesize a vicious circle between sleep end epilepsy. The epileptic derailment of normal plasticity interferes with sleep cognitive functions. Sleep and epilepsy interconnect by the pathology of plasticity.
Collapse
Affiliation(s)
- Péter Halász
- Szentágothai János School of Ph.D Studies, Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Anna Szűcs
- Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
Chan SYS. Sleep architecture and homeostasis in children with epilepsy: a neurodevelopmental perspective. Dev Med Child Neurol 2020; 62:426-433. [PMID: 31879946 DOI: 10.1111/dmcn.14437] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
Although the influence of sleep on epilepsy has long been recognized, this relationship has yet to be fully exploited to benefit patients. The past decade has seen significant advances in understanding paediatric sleep, providing a framework by which to properly evaluate the sleep of children with epilepsy, which itself has been subject to increasing scrutiny. The role of sleep in learning and the potential for interictal discharges to disrupt sleep-related memory consolidation provide a novel perspective for understanding the association of childhood epilepsy with a high rate of intellectual disability. In this review, I outline the evolution of sleep duration, architecture, and homeostasis across childhood, relating this to the development of cognitive functions. I describe how these may be disrupted or preserved in children with epilepsy; in particular, collating data from polysomnography. Finally, I explore how sleep may, in the future, be modulated to improve cognitive outcome in these patients. WHAT THIS PAPER ADDS: Children with epilepsy have less rapid eye movement sleep than controls, but this improves with seizure cessation. Deep or slow-wave sleep is highly conserved in children with epilepsy. Sleep homeostasis may be disrupted either at a local or global level by the presence of interictal epileptiform discharges.
Collapse
Affiliation(s)
- Samantha Yuen-Sum Chan
- Clinical Neurosciences Section, Developmental Neurosciences Programme, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
23
|
Changes in Physiological and Pathological Behaviours Produced by Deep Microelectrode Implantation Surgery in Rats: A Temporal Analysis. Behav Neurol 2020; 2020:4385706. [PMID: 32211080 PMCID: PMC7085361 DOI: 10.1155/2020/4385706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/21/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
Physiological behaviours such as the sleep-wake cycle and exploratory behaviours are important parameters in intact and sham-operated animals and are usually thought to be unaffected by experimental protocols in which neurosurgery is performed. However, there is insufficient evidence in the literature on the behavioural and cognitive effects observed after deep microelectrode implantation surgery in animal models of neurological diseases. Similarly, in studies that utilize animal models of neurological diseases, the impact of surgery on the pathological phenomena being studied is often minimized. Based on these considerations, we performed a temporal analysis of the effects of deep microelectrode implantation surgery in the hippocampus of rats on quiet wakefulness, sleep, and exploratory activity and the pathological behaviours such as convulsive seizures according to the Racine scale. Male Wistar rats (210-300 g) were used and grouped in sham and epileptic animals. Single doses of pilocarpine hydrochloride (2.4 mg/2 μl; i.c.v.) were administered to the animals to generate spontaneous and recurrent seizures. Deep microelectrode implantation surgeries in both groups and analysis of Fast ripples were performed. Physiological and pathological behaviours were recorded through direct video monitoring of animals (24/7). Our principal findings showed that in epileptic animals, one of the main behaviours affected by surgery is sleep; as a consequence of this behavioural change, a decrease in exploratory activity was also found as well as the mean time spent daily in seizures of scale 4 and the number of seizure events of scales 4 and 5 was increased after surgery. No significant correlations between the occurrence of FR and seizure events of scale 4 (rho 0.63, p value 0.25) or 5 (rho -0.7, p value 0.18) were observed. In conclusion, microelectrode implantation surgeries modified some physiological and pathological behaviours; therefore, it is important to consider this fact when it is working with animal models.
Collapse
|
24
|
Conrad EC, Tomlinson SB, Wong JN, Oechsel KF, Shinohara RT, Litt B, Davis KA, Marsh ED. Spatial distribution of interictal spikes fluctuates over time and localizes seizure onset. Brain 2020; 143:554-569. [PMID: 31860064 PMCID: PMC7537381 DOI: 10.1093/brain/awz386] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
The location of interictal spikes is used to aid surgical planning in patients with medically refractory epilepsy; however, their spatial and temporal dynamics are poorly understood. In this study, we analysed the spatial distribution of interictal spikes over time in 20 adult and paediatric patients (12 females, mean age = 34.5 years, range = 5-58) who underwent intracranial EEG evaluation for epilepsy surgery. Interictal spikes were detected in the 24 h surrounding each seizure and spikes were clustered based on spatial location. The temporal dynamics of spike spatial distribution were calculated for each patient and the effects of sleep and seizures on these dynamics were evaluated. Finally, spike location was assessed in relation to seizure onset location. We found that spike spatial distribution fluctuated significantly over time in 14/20 patients (with a significant aggregate effect across patients, Fisher's method: P < 0.001). A median of 12 sequential hours were required to capture 80% of the variability in spike spatial distribution. Sleep and postictal state affected the spike spatial distribution in 8/20 and 4/20 patients, respectively, with a significant aggregate effect (Fisher's method: P < 0.001 for each). There was no evidence of pre-ictal change in the spike spatial distribution for any patient or in aggregate (Fisher's method: P = 0.99). The electrode with the highest spike frequency and the electrode with the largest area of downstream spike propagation both localized the seizure onset zone better than predicted by chance (Wilcoxon signed-rank test: P = 0.005 and P = 0.002, respectively). In conclusion, spikes localize seizure onset. However, temporal fluctuations in spike spatial distribution, particularly in relation to sleep and post-ictal state, can confound localization. An adequate duration of intracranial recording-ideally at least 12 sequential hours-capturing both sleep and wakefulness should be obtained to sufficiently sample the interictal network.
Collapse
Affiliation(s)
- Erin C Conrad
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel B Tomlinson
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeremy N Wong
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelly F Oechsel
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology and Informatics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Litt
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Eric D Marsh
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
25
|
Mooij AH, Frauscher B, Gotman J, Huiskamp GJM. A skew-based method for identifying intracranial EEG channels with epileptic activity without detecting spikes, ripples, or fast ripples. Clin Neurophysiol 2019; 131:183-192. [PMID: 31805492 DOI: 10.1016/j.clinph.2019.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/11/2019] [Accepted: 10/16/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To develop a method for identifying intracranial EEG (iEEG) channels with epileptic activity without the need to detect spikes, ripples, or fast ripples. METHODS We compared the skew of the distribution of power values from five minutes non-rapid eye movement stage N3 sleep for the 5-80 Hz, 80-250 Hz (ripple), and 250-500 Hz (fast ripple) bands of epileptic (located in seizure-onset or irritative zone) and non-epileptic iEEG channels recorded in patients with drug-resistant focal epilepsy. We optimized settings in 120 bipolar channels from 10 patients, compared the results to 120 channels from another 10 patients, and applied the method to channels of 12 individual patients. RESULTS The distribution of power values was more skewed in epileptic than in non-epileptic channels in all three frequency bands. The differences in skew were correlated with the presence of spikes, ripples, and fast ripples. When classifying epileptic and non-epileptic channels, the mean accuracy over 12 patients was 0.82 (sensitivity: 0.76, specificity: 0.91). CONCLUSIONS The 'skew method' can distinguish epileptic from non-epileptic channels with good accuracy and, in particular, high specificity. SIGNIFICANCE This is an easy-to-apply method that circumvents the need to visually mark or automatically detect interictal epileptic events.
Collapse
Affiliation(s)
- Anne H Mooij
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Geertjan J M Huiskamp
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
26
|
Stefanatou M, Gatzonis S, Peskostas A, Paraskevas G, Koutroumanidis M. Drug-responsive versus drug-refractory mesial temporal lobe epilepsy: a single-center prospective outcome study. Postgrad Med 2019; 131:479-485. [PMID: 31513436 DOI: 10.1080/00325481.2019.1663126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objectives: To evaluate clinical, electrophysiological, and neuroradiological factors which correlate with the prognosis in patients with mesial temporal lobe epilepsy (MTLE). Methods: This was a single-center prospective outcome study in patients with MTLE. The patients' family history, clinical characteristics, neurophysiological data (electroencephalography - EEG), neuroimaging, antiepileptic therapy, and outcome were collected and analyzed. The population was divided into four groups depending on the frequency of the seizures when they attended their last follow up. All variables and outcome measures were compared between the four groups. Results: In total 83 consecutive patients were included within the four groups. Group 1 (seizure-free) consisted of 7 patients, (9%), Group 2 (rare seizures) consisted of 15 patients (18%), Group 3 (often seizures) consisted of 30 patients (36%), and Group 4 (very often seizures) consisted of 31 patients (37%). The groups did not differ significantly in demographic characteristics. There was a strong positive correlation between resistance to therapy and sleep activation on EEG (p = 0.005), occurrence of focal to bilateral seizures (p = 0.007), automatisms (p = 0.004), and the number of previously used antiepileptic drugs (AEDs) (p = 0.002). There was no association between febrile convulsions (FC), hippocampal sclerosis (HS), and the outcome that was found. Conclusion: MTLE is a heterogeneous syndrome. Establishing the factors responsible for, and associated with, drug resistance is important for optimal management and treatment, as early identification of drug resistance should then ensure a timely referral for surgical treatment is made. This prospective study shows that sleep activation on EEG, ictal automatisms, occurrence of focal to bilateral tonic-clonic seizures, and increased number of tried AEDs are negative prognostic factors.
Collapse
Affiliation(s)
- Maria Stefanatou
- 1st Department of Neurology, National and Kapodistrian University of Athens, Aeginition Hospital , Athens , Greece.,Department of Clinical Neurophysiology and Epilepsies, Guy's and St. Thomas' NHS Foundation Trust , London , UK
| | - Stylianos Gatzonis
- 1st Department of Neurosurgery, Epilepsy Centre, National and Kapodistrian University of Athens, "Evangelismos" Hospital , Athens , Greece
| | - Antonis Peskostas
- Department of Statistics and Insurance Science, University of Piraeus , Piraeus , Greece
| | - George Paraskevas
- 1st Department of Neurology, National and Kapodistrian University of Athens, Aeginition Hospital , Athens , Greece
| | - Michael Koutroumanidis
- Department of Clinical Neurophysiology and Epilepsies, Guy's and St. Thomas' NHS Foundation Trust , London , UK
| |
Collapse
|
27
|
Ayala-Guerrero F, Mexicano G, Gutiérrez-Chávez CA, Lazo LA, Mateos EL. Effect of gabapentin on sleep patterns disturbed by epilepsy. Epilepsy Behav 2019; 92:290-296. [PMID: 30731295 DOI: 10.1016/j.yebeh.2018.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/18/2022]
Abstract
For a long time, numerous sleep alterations induced by nocturnal epilepsy have been described. Such alterations include sleep fragmentation, decrement of sleep efficiency, increment of the wake time after sleep onset (WASO), increment of light sleep, and decrement of sleep depth. On the other hand, gabapentin (GBP), an antiepileptic drug analog of γ-aminobutyric acid (GABA) used as adjunctive and eventually, as a monotherapeutic treatment, induces a significant improvement in patients with both focal and secondarily generalized partial seizures. In experimental epilepsy models, this drug protects against pentylenetetrazol (PTZ)-induced convulsions. In consideration of such GBP properties, the aim of this work was to investigate its efficacy to protect against sleep disturbances provoked by convulsive seizures induced by the administration of PTZ. Nine-hour (9-hour) polygraphic studies were carried out in chronically implanted male adult Wistar rats separated into 4 different groups of 6 individuals. Control recordings in each group were done after saline administration. One group received a SC Subcutaneous (SC) injection of 50 mg/kg of PTZ alone while the other three groups were injected with either 15, 30, or 60 mg/kg IP Intraperitoneal (IP) of GBP 30 min prior to PTZ (50 mg/kg SC) administration. Animals displayed the whole range of electrophysiological and behavioral manifestations of the disease during the epileptic episodes induced by PTZ administration, and the states of vigilance were significantly altered. Insomnia occurred immediately after PTZ injection preceding the appearance of the first epileptic symptoms. Thus, both slow wave sleep (SWS) and rapid eye movement sleep (REM sleep) were completely inhibited during a relatively long period of time. The disturbing effects of epilepsy on sleep decreased when animals were under GBP treatment. Improvement of sleep was dependent on the administered dose of this antiepileptic drug.
Collapse
Affiliation(s)
| | - Graciela Mexicano
- Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico
| | | | | | | |
Collapse
|
28
|
Halász P, Bódizs R, Ujma PP, Fabó D, Szűcs A. Strong relationship between NREM sleep, epilepsy and plastic functions - A conceptual review on the neurophysiology background. Epilepsy Res 2019; 150:95-105. [PMID: 30712997 DOI: 10.1016/j.eplepsyres.2018.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/08/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
The aim of this review is to summarize and discuss the strong bond between NREM sleep and epilepsy underlain by the shared link and effect on brain plasticity. Beyond the seizure occurrence rate, sleep relatedness may manifest in the enhancement of interictal epileptic discharges (spikes and pathological ripples). The number of the discharges as well as their propagation increase during NREM sleep, unmasking the epileptic network that is hidden during wakefulness. The interictal epileptic discharges associate with different sleep constituents (sleep slow waves, spindling and high frequency oscillations); known to play essential role in memory and learning. We highlight three major groups of epilepsies, in which sleep-related plastic functions suffer an epileptic derailment. In absence epilepsy mainly involving the thalamo-cortical system, sleep spindles transform to generalized spike-wave activity. In mesio-temporal epilepsy affecting the hippocampal declarative memory system, the sharp wave ripples derail to dysfunctional epileptic oscillations (spikes and pathological ripples). Idiopathic childhood epilepsies affecting the perisylvian network may progress to catastrophic status electricus during NREM sleep. In these major epilepsies, NREM sleep has a pivotal role in the development and course of the disorder. Epilepsy is born in-, and exhibits its pathological properties during NREM sleep. Interictal discharges are important causative agents in this process.
Collapse
Affiliation(s)
- Péter Halász
- National Institute of Clinical Neuroscience, Amerikai út 57. Budapest, H-1145, Hungary.
| | - Róbert Bódizs
- Semmelweis University, Institute of Behavioral Sciences, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Péter Przemyslaw Ujma
- Semmelweis University, Institute of Behavioral Sciences, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Dániel Fabó
- National Institute of Clinical Neuroscience, Amerikai út 57. Budapest, H-1145, Hungary
| | - Anna Szűcs
- National Institute of Clinical Neuroscience, Amerikai út 57. Budapest, H-1145, Hungary
| |
Collapse
|
29
|
Reddy DS, Chuang SH, Hunn D, Crepeau AZ, Maganti R. Neuroendocrine aspects of improving sleep in epilepsy. Epilepsy Res 2018; 147:32-41. [PMID: 30212766 PMCID: PMC6192845 DOI: 10.1016/j.eplepsyres.2018.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022]
Abstract
Sleep plays an intricate role in epilepsy and can affect the frequency and occurrence of seizures. With nearly 35% of U.S. adults failing to obtain the recommended 7 h of sleep every night, understanding the complex relationship between sleep and epilepsy is of utmost relevance. Sleep deprivation is a common trigger of seizures in many persons with epilepsy and sleep patterns play a role in the occurrence of seizures. Some patients have their first seizure or repeated seizures after an "all-nighter" at college or after a long period of chronic sleep deprivation. The strength of the relationship between sleep and seizures varies between patients, but improving sleep and optimizing seizure control can have significant positive effects on the quality of life for all these patients. Research has shown that the changes in the brain's electrical and hormonal activity occurring during normal sleep-wake cycles can be linked to both sleep and seizure patterns. Many questions remain to be answered about sleep and epilepsy. How can sleep deprivation trigger an epileptic seizure? How do circadian and hormonal changes influence sleep pattern and seizure occurrence? Can hormones or sleeping pills help with sleep in epilepsy? In this article we discuss these and many other questions on sleep in epilepsy, with an emphasis on sleep architecture, hormone changes, mechanistic factors, and possible prevention strategies.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX 77807, USA.
| | - Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX 77807, USA
| | - Dayton Hunn
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center College of Medicine, Bryan, TX 77807, USA
| | - Amy Z Crepeau
- Department of Neurology, Mayo Clinic Hospital, Phoenix, AZ 85054, USA
| | - Rama Maganti
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
30
|
Janca R, Krsek P, Jezdik P, Cmejla R, Tomasek M, Komarek V, Marusic P, Jiruska P. The Sub-Regional Functional Organization of Neocortical Irritative Epileptic Networks in Pediatric Epilepsy. Front Neurol 2018; 9:184. [PMID: 29628910 PMCID: PMC5876241 DOI: 10.3389/fneur.2018.00184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Between seizures, irritative network generates frequent brief synchronous activity, which manifests on the EEG as interictal epileptiform discharges (IEDs). Recent insights into the mechanism of IEDs at the microscopic level have demonstrated a high variance in the recruitment of neuronal populations generating IEDs and a high variability in the trajectories through which IEDs propagate across the brain. These phenomena represent one of the major constraints for precise characterization of network organization and for the utilization of IEDs during presurgical evaluations. We have developed a new approach to dissect human neocortical irritative networks and quantify their properties. We have demonstrated that irritative network has modular nature and it is composed of multiple independent sub-regions, each with specific IED propagation trajectories and differing in the extent of IED activity generated. The global activity of the irritative network is determined by long-term and circadian fluctuations in sub-region spatiotemporal properties. Also, the most active sub-region co-localizes with the seizure onset zone in 12/14 cases. This study demonstrates that principles of recruitment variability and propagation are conserved at the macroscopic level and that they determine irritative network properties in humans. Functional stratification of the irritative network increases the diagnostic yield of intracranial investigations with the potential to improve the outcomes of surgical treatment of neocortical epilepsy.
Collapse
Affiliation(s)
- Radek Janca
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Pavel Krsek
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czechia
| | - Petr Jezdik
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Roman Cmejla
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Martin Tomasek
- Department of Neurology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czechia
| | - Vladimir Komarek
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czechia
| | - Petr Marusic
- Department of Neurology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czechia
| | - Premysl Jiruska
- Department of Developmental Epileptology, Institute of Physiology, The Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
31
|
Impact of sleep disorders on the risk of seizure recurrence in juvenile myoclonic epilepsy. Epilepsy Behav 2018; 80:21-24. [PMID: 29396358 DOI: 10.1016/j.yebeh.2017.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the presence of sleep disturbances in patients with juvenile myoclonic epilepsy (JME) using sleep questionnaires. Further, we tried to evaluate whether alterations in sleep quality may influence the clinical expression of JME. METHODS Sixty-two patients with JME treated with levetiracetam were included. Demographic and clinical variables were collected. Moreover, all patients submitted the Pittsburgh Sleep Quality index (PSQI) and the Epworth Sleepiness Scale (ESS) in order to respectively assess sleep quality during the last month and daytime sleepiness. All patients were followed up for a 6-month period and divided in two groups: seizure-free (Group 1) and seizure recurrence (Group 2). The PSQI and ESS scores were synthesized as binary variables <5/≥5 and <10/≥10, respectively. A comprehensive analysis was performed to evaluate the independent effect of the sleep quality and daytime sleepiness on the risk of having seizures during the follow-up. RESULTS Both reduced sleep quality during the last month and daytime sleepiness were associated with an increased risk of suffering from seizures during the follow-up period. In fact, a PSQI score<5 or an ESS score<10 resulted significantly associated with the absence of seizure recurrence (p<0.004 and p<0.001, respectively). Increasing age had a significantly protective effect in the risk of seizure relapse. CONCLUSIONS Our findings show that reduced sleep quality and daytime sleepiness in patients with JME increase the risk of seizure occurrence in spite of an appropriate pharmacological treatment. This negative effect seems to be more relevant in younger patients. Sleep disorders and their specific correction should be taken into consideration for the management of patients with JME.
Collapse
|
32
|
Epileptic interictal discharges are more frequent during NREM slow wave downstates. Neurosci Lett 2017; 658:37-42. [PMID: 28811195 DOI: 10.1016/j.neulet.2017.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/26/2017] [Accepted: 08/08/2017] [Indexed: 11/22/2022]
Abstract
Epileptiform activity in various but not all epilepsy and recording types and cerebral areas is more frequent in NREM sleep, and especially during sleep periods with high-amplitude EEG slow waves. Slow waves synchronize high-frequency oscillations: physiological activity from the theta through the gamma band usually appears during scalp-positive upstates while epileptiform activity occurs at transitory phases and the scalp-negative downstate. It has been proposed that interictal discharges (IIDs) are facilitated by the high degree of neuronal firing synchrony during slow wave transitory and downstates. This would suggest that their occurrence increases as a function of slow wave synchronization, indicated by greater amplitude, steeper slopes and higher EEG signal synchronization. We investigated the occurrence of IIDs during NREM sleep slow waves in epileptic patients undergoing presurgical electrophysiological monitoring. Intracranially registered IIDs preferentially occurred during the scalp-negative downstates of frontal scalp slow waves in all subjects. IID occurrence was more frequent during larger slow waves in the pooled sample and a subset of subjects. However, slow wave slope steepness and EEG signal synchronization between two frontal scalp channels was not significantly associated with IID occurrence. Our results indicate that IIDs indeed do not occur at the same slow wave phase as physiological rhythms, but contrary to previous hypotheses their occurrence is not strongly affected by EEG synchronization.
Collapse
|
33
|
Boly M, Jones B, Findlay G, Plumley E, Mensen A, Hermann B, Tononi G, Maganti R. Altered sleep homeostasis correlates with cognitive impairment in patients with focal epilepsy. Brain 2017; 140:1026-1040. [PMID: 28334879 DOI: 10.1093/brain/awx017] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/20/2016] [Indexed: 11/13/2022] Open
Abstract
In animal studies, both seizures and interictal spikes induce synaptic potentiation. Recent evidence suggests that electroencephalogram slow wave activity during sleep reflects synaptic potentiation during wake, and that its homeostatic decrease during the night is associated with synaptic renormalization and its beneficial effects. Here we asked whether epileptic activity induces plastic changes that can be revealed by high-density electroencephalography recordings during sleep in 15 patients with focal epilepsy and 15 control subjects. Compared to controls, patients with epilepsy displayed increased slow wave activity power during non-rapid eye movement sleep over widespread, bilateral scalp regions. This global increase in slow wave activity power was positively correlated with the frequency of secondarily generalized seizures in the 3-5 days preceding the recordings. Individual patients also showed local increases in sleep slow wave activity power at scalp locations matching their seizure focus. This local increase in slow wave activity power was positively correlated with the frequency of interictal spikes during the last hour of wakefulness preceding sleep. By contrast, frequent interictal spikes during non-rapid eye movement sleep predicted a reduced homeostatic decrease in the slope of sleep slow waves during the night, which in turn predicted reduced daytime learning. Patients also showed an increase in sleep spindle power, which was negatively correlated with intelligence quotient. Altogether, these findings suggest that both seizures and interictal spikes may induce long-lasting changes in the human brain that can be sensitively detected by electroencephalographic markers of sleep homeostasis. Furthermore, abnormalities in sleep markers are correlated with cognitive impairment, suggesting that not only seizures, but also interictal spikes can have negative consequences.
Collapse
Affiliation(s)
- Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, USA.,Department of Psychiatry, University of Wisconsin, Madison, USA
| | - Benjamin Jones
- Department of Neurology, University of Wisconsin, Madison, USA.,Department of Psychiatry, University of Wisconsin, Madison, USA
| | - Graham Findlay
- Department of Neurology, University of Wisconsin, Madison, USA.,Department of Psychiatry, University of Wisconsin, Madison, USA
| | - Erin Plumley
- Department of Neurology, University of Wisconsin, Madison, USA
| | - Armand Mensen
- Department of Psychiatry, University of Wisconsin, Madison, USA
| | - Bruce Hermann
- Department of Neurology, University of Wisconsin, Madison, USA
| | - Guilio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, USA
| | - Rama Maganti
- Department of Neurology, University of Wisconsin, Madison, USA
| |
Collapse
|
34
|
González-Cuevas M, Romero O, Toledo M, Quintana M, Cambrodí R, Santamarina E, Jurado MJ, Ferrer A, Salas-Puig X. Effect of adjunctive perampanel on the quality of sleep and daytime somnolence in patients with epilepsy. EPILEPSY & BEHAVIOR CASE REPORTS 2016; 7:13-15. [PMID: 28066710 PMCID: PMC5200874 DOI: 10.1016/j.ebcr.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/05/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022]
Abstract
This prospective uncontrolled study evaluated the effect of low-dose adjunctive perampanel therapy (4 mg/day for 3 months) on the sleep-wake cycle and daytime somnolence in adult patients (n = 10) with focal seizures. A > 50% reduction in the number of seizures was reported in 80% of the study patients; treatment had no significant effect on any sleep parameters as evident by the Maintenance of Wakefulness Test, Pittsburgh Sleep Quality Index and Epworth Sleepiness Scale scores. Two patients reported dizziness with treatment. In conclusion, low-dose perampanel may improve seizure control without affecting the sleep characteristics or daytime somnolence in patients with epilepsy.
Collapse
Affiliation(s)
| | - Odile Romero
- Sleep Unit, Neurophysiology Department, Hospital Vall Hebron, Barcelona, Spain
| | - Manuel Toledo
- Epilepsy Unit, Neurology Department, Hospital Vall Hebron, Barcelona, Spain
| | - Manuel Quintana
- Epilepsy Unit, Neurology Department, Hospital Vall Hebron, Barcelona, Spain
| | - Roser Cambrodí
- Sleep Unit, Neurophysiology Department, Hospital Vall Hebron, Barcelona, Spain
| | - Estevo Santamarina
- Epilepsy Unit, Neurology Department, Hospital Vall Hebron, Barcelona, Spain
| | - Maria José Jurado
- Sleep Unit, Neurophysiology Department, Hospital Vall Hebron, Barcelona, Spain
| | - Alex Ferrer
- Sleep Unit, Neurophysiology Department, Hospital Vall Hebron, Barcelona, Spain
| | - Xavier Salas-Puig
- Epilepsy Unit, Neurology Department, Hospital Vall Hebron, Barcelona, Spain
| |
Collapse
|
35
|
Cho KH, Cho YJ, Lee BI, Heo K. Atrophy of the pedunculopontine nucleus region in patients with sleep-predominant seizures: A voxel-based morphometry study. Epilepsia 2016; 57:e151-4. [PMID: 27287030 DOI: 10.1111/epi.13431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 11/28/2022]
Abstract
Non-rapid eye movement (NREM) sleep increases interictal epileptiform discharges and frequency of seizures, whereas REM sleep suppresses them. The pedunculopontine nucleus (PPN), one of the REM sleep-modulating structures, is postulated to have a potent antiepileptogenic role. We asked if patients with sleep-predominant seizures (SPS) show volume changes in the region of the PPN compared to those with seizures occurring during awake state only (nSPS). The volume of the PPN region was assessed in patients with SPS, those with nSPS, and healthy volunteers, through voxel-based morphometry and automated, nonbiased region of interest (ROI) analysis of T1 magnetic resonance (MR) images. The volume of PPN region was statistically smaller in patients with SPS (n = 33) than in those with nSPS (n = 40) and healthy controls (n = 30) after controlling for covariates. These results suggest that a structural change in the PPN may be associated with sleep-predominant timing of seizure occurrence. Our findings might help understand the intervening pathomechanism that lies between the human sleep-wake cycle and epilepsy.
Collapse
Affiliation(s)
- Kyoo Ho Cho
- Department of Neurology, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yang-Je Cho
- Department of Neurology, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Byung In Lee
- Department of Neurology, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Heo
- Department of Neurology, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
|
37
|
Frequency of Restless Legs Syndrome in adults with epilepsy in Turkey. Epilepsy Behav 2016; 57:192-195. [PMID: 26970995 DOI: 10.1016/j.yebeh.2016.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Restless Legs Syndrome (RLS) is a common disorder characterized by an irresistible urge to move the legs particularly during rest in the evenings often leading to insomnia and daytime impairment. No prior studies estimate the prevalence of RLS in a diverse sample of adults with epilepsy using standard diagnostic criteria. MATERIAL AND METHOD A total of 225 patients with epilepsy (61.8% female; mean age 33.3 ± 12.3 years) seen in the epilepsy clinic of Çukurova University Neurology Department were included. Restless Legs Syndrome diagnosis was based on structured interviews using internationally accepted criteria. Demographic and epilepsy-related variables were obtained through medical record review. RESULTS The prevalence of RLS was 5.8% (n=13). Mean score on the International RLS Study Group rating scale for these subjects was 9.3 ± 3.6 (6-18). Ten (76.9%) patients with RLS scored in the mild range and the remainder in the moderate range of severity. Patients with RLS were not significantly different from others in terms of demographics, epilepsy classification or duration, treatment regimen (polytherapy vs. monotherapy), patient-reported sleep assessment, or relevant laboratory data. CONCLUSION The prevalence of RLS in adults with epilepsy was similar to that observed in the adult general Turkish population (3.18-5.2%), although we excluded subjects with conditions associated with RLS, rendering ours a conservative estimate. While preliminary, these findings support the need for future studies exploring RLS in epilepsy given the potential impact of untreated sleep disorders and sleep deprivation on seizures and quality of life in people with epilepsy.
Collapse
|
38
|
|
39
|
Gibbs SA, Proserpio P, Terzaghi M, Pigorini A, Sarasso S, Lo Russo G, Tassi L, Nobili L. Sleep-related epileptic behaviors and non-REM-related parasomnias: Insights from stereo-EEG. Sleep Med Rev 2016; 25:4-20. [DOI: 10.1016/j.smrv.2015.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/13/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
|
40
|
Clemens B, Puskás S, Spisák T, Lajtos I, Opposits G, Besenyei M, Hollódy K, Fogarasi A, Kovács NZ, Fekete I, Emri M. Increased resting-state EEG functional connectivity in benign childhood epilepsy with centro-temporal spikes. Seizure 2016; 35:50-5. [PMID: 26794010 DOI: 10.1016/j.seizure.2016.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 11/15/2015] [Accepted: 01/03/2016] [Indexed: 01/23/2023] Open
Abstract
PURPOSE To explore intrahemispheric, cortico-cortical EEG functional connectivity (EEGfC) in benign childhood epilepsy with rolandic spikes (BECTS). METHODS 21-channel EEG was recorded in 17 non-medicated BECTS children and 19 healthy controls. 180s of spike- and artifact-free activity was selected for EEGfC analysis. Correlation of Low Resolution Electromagnetic Tomography- (LORETA-) defined current source density time series were computed between two cortical areas (region of interest, ROI). Analyses were based on broad-band EEGfC results. Groups were compared by statistical parametric network (SPN) method. Statistically significant differences between group EEGfC values were emphasized at p<0.05 corrected for multiple comparison by local false discovery rate (FDR). RESULTS (1) Bilaterally increased beta EEGfC occurred in the BECTS group as compared to the controls. Greatest beta abnormality emerged between frontal and frontal, as well as frontal and temporal ROIs. (2) Locally increased EEGfC emerged in all frequency bands in the right parietal area. CONCLUSIONS Areas of increased EEGfC topographically correspond to cortical areas that, based on relevant literature, are related to speech and attention deficit in BECTS children.
Collapse
Affiliation(s)
- Béla Clemens
- Kenézy Gyula Hospital, Department of Neurology, Debrecen, Hungary
| | - Szilvia Puskás
- University of Debrecen, Medical Center, Department of Neurology, Debrecen, Hungary.
| | - Tamás Spisák
- University of Debrecen, Institute of Nuclear Medicine, Debrecen, Hungary
| | - Imre Lajtos
- University of Debrecen, Institute of Nuclear Medicine, Debrecen, Hungary
| | - Gábor Opposits
- University of Debrecen, Institute of Nuclear Medicine, Debrecen, Hungary
| | - Mónika Besenyei
- University of Debrecen, Medical Center, Department of Pediatrics, Debrecen, Hungary
| | | | - András Fogarasi
- Epilepsy Center, Bethesda Children's Hospital, Budapest, Hungary
| | | | - István Fekete
- University of Debrecen, Medical Center, Department of Neurology, Debrecen, Hungary
| | - Miklós Emri
- University of Debrecen, Institute of Nuclear Medicine, Debrecen, Hungary
| |
Collapse
|
41
|
Latency of interictal epileptiform discharges in long-term EEG recordings in epilepsy patients. Seizure 2015; 29:20-5. [DOI: 10.1016/j.seizure.2015.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/04/2015] [Accepted: 03/17/2015] [Indexed: 11/23/2022] Open
|
42
|
|
43
|
Hudson JD, Guptill JT, Byrnes W, Yates SL, Williams P, D’Cruz O. Assessment of the effects of lacosamide on sleep parameters in healthy subjects. Seizure 2015; 25:155-9. [DOI: 10.1016/j.seizure.2014.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/16/2014] [Accepted: 10/18/2014] [Indexed: 01/20/2023] Open
|
44
|
Ujma PP, Simor P, Ferri R, Fabó D, Kelemen A, Erőss L, Bódizs R, Halász P. Increased interictal spike activity associated with transient slow wave trains during non-rapid eye movement sleep. Sleep Biol Rhythms 2014. [DOI: 10.1111/sbr.12101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Péter Przemyslaw Ujma
- Institute of Behavioural Sciences; Semmelweis University; Budapest Hungary
- Department of Functional Neurosurgery; National Institute of Clinical Neuroscience; Budapest Hungary
| | - Péter Simor
- Department of Cognitive Sciences; Budapest University of Technology and Economics; Budapest Hungary
- Nyírő Gyula Hospital; National Institute of Psychiatry and Addictions; Budapest Hungary
| | - Raffaele Ferri
- Sleep Research Centre; Department of Neurology I.C.; Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS); Troina Italy
| | - Dániel Fabó
- Department of Neurology; National Institute of Clinical Neuroscience, Epilepsy Centrum; Budapest Hungary
| | - Anna Kelemen
- Department of Neurology; National Institute of Clinical Neuroscience, Epilepsy Centrum; Budapest Hungary
| | - Loránd Erőss
- Department of Functional Neurosurgery; National Institute of Clinical Neuroscience; Budapest Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences; Semmelweis University; Budapest Hungary
- Department of General Psychology; Pázmány Péter Catholic University; Piliscsaba Hungary
| | - Péter Halász
- Department of Neurology; National Institute of Clinical Neuroscience, Epilepsy Centrum; Budapest Hungary
| |
Collapse
|
45
|
Halász P, Hegyi M, Siegler Z, Fogarasi A. Encephalopathy with Electrical Status Epilepticus in Slow Wave Sleep – a review with an emphasis on regional (perisylvian) aspects. JOURNAL OF EPILEPTOLOGY 2014. [DOI: 10.1515/joepi-2015-0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SUMMARYAim.The aim of this article is to review criticaly the Electrical Status Epilepticus in Slow Sleep (ESES) phenomenon from a neurophysiological mechanisms aspect as well as terminological and classification issues.Methods.The review includes all the relevant papers published during the last 43 years on the subject of ESES and Continous Spike – Wave in Sleep (CSWS).These papers were identified in various large databases via the internet.Rewiev and remarks.ESES/CSWS phenomena can be held as a common final pathway originating from different etiologies, including patients with early brain damage (probably involving thalamic structures), but also patients without structural pathology as in atypical evolution of idiopathic regional childhood hyperexcitability syndromes (with Rolandic epilepsy as a prototype). There are hints that genetic predisposition might be an important factor in the development of this process. The two large patient groups (lesional and non-lesional) show the same EEG evolution and encephalopathic cognitive consequences. The sleep EEG activation can be held as a common endophenotype. ESES represents an extreme sleep activation/potentiation of the local/regional interictal discharges, enhancing them in frequency, territorial extension, intra and trans-hemispherial propagation, synchrony and continuity. This process is most probably not identical with the development of bilateral spike-wave pattern in „generalized” epilepsies which involves primarily or secondarily the thalamocortical system as it had been explored by Gloor (1979) for idiopathic generalized rpilepsy and Steriade and Amzica (2003) for different types of generalized spike and wave discharges.Conclusions and syndromological embedding of ESES.In an overwhelming majority of the investigated cases, the maps of the single discharges constituting sleep activation are identical; with focal/regional interictal spikes followed by slow closing wave, as it is seen in childhood regional age dependent hyperexcitability syndromes (prototype of the centro-temporal spikes of Rolandic epilepsy). The main mechanism of the developing cognitive impairment is most probably the consequence of interference with plastic function of slow wave sleep by obliterating synaptic decline during sleep. Presently, the consensus and co-operative research is highly obstacled by the terminological chaos, the controversial definitions and views around this still striking and enigmatic phenomenon.
Collapse
|
46
|
Al-Biltagi MA. Childhood epilepsy and sleep. World J Clin Pediatr 2014; 3:45-53. [PMID: 25254184 PMCID: PMC4162437 DOI: 10.5409/wjcp.v3.i3.45] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/16/2014] [Accepted: 06/10/2014] [Indexed: 02/06/2023] Open
Abstract
Sleep and epilepsy are two well recognized conditions that interact with each other in a complex bi-directional way. Some types of epilepsies have increased activity during sleep disturbing it; while sleep deprivation aggravates epilepsy due to decreased seizure threshold. Epilepsy can deteriorate the sleep-related disorders and at the same time; the parasomnias can worsen the epilepsy. The secretion of sleep-related hormones can also be affected by the occurrence of seizures and supplementation of epileptic patients with some of these sleep-related hormones may have a beneficial role in controlling epilepsy.
Collapse
|
47
|
Lawn N, Lieblich S, Lee J, Dunne J. Are seizures in the setting of sleep deprivation provoked? Epilepsy Behav 2014; 33:122-5. [PMID: 24657503 DOI: 10.1016/j.yebeh.2014.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 11/16/2022]
Abstract
It is generally accepted that sleep deprivation contributes to seizures. However, it is unclear whether a seizure occurring in the setting of sleep deprivation should be considered as provoked or not and whether this is influenced by seizure type and etiology. This information may have an important impact on epilepsy diagnosis and management. We prospectively analyzed the influence of sleep deprivation on the risk of seizure recurrence in patients with first-ever unprovoked seizures and compared the findings with patients with first-ever provoked seizures. Of 1026 patients with first-ever unprovoked seizures, 204 (20%) were associated with sleep deprivation. While the overall likelihood of seizure recurrence was slightly lower in sleep-deprived patients with first-ever seizures (log-rank p=0.03), sleep deprivation was not an independent predictor of seizure recurrence on multivariate analysis. Seizure recurrence following a first-ever unprovoked seizure associated with sleep deprivation was far more likely than for 174 patients with a provoked first-ever seizure (log-rank p<0.0001). Our findings support the International League Against Epilepsy recommendation that seizures occurring in the setting of sleep deprivation should not be regarded as provoked.
Collapse
Affiliation(s)
- Nicholas Lawn
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia.
| | - Sam Lieblich
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Judy Lee
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - John Dunne
- Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
48
|
Gast H, Müller M, Rummel C, Roth C, Mathis J, Schindler K, Bassetti CL. Epileptic seizures as condensed sleep: an analysis of network dynamics from electroencephalogram signals. J Sleep Res 2013; 23:268-73. [DOI: 10.1111/jsr.12113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 10/12/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Heidemarie Gast
- Department of Neurology; Inselspital; Bern University Hospital; University Bern; Bern Switzerland
| | - Markus Müller
- Facultad de Ciencias; Universidad Autónoma del Estado de Morelos; Cuernavaca Morelos México
- Centro Internacional de Ciencias; Universidad Nacional Autónoma de México; Cuernavaca Morelos México
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN); University Institute of Diagnostic and Interventional Neuroradiology; University Hospital; Inselspital; University of Bern; Bern Switzerland
| | - Corinne Roth
- Department of Neurology; Inselspital; Bern University Hospital; University Bern; Bern Switzerland
| | - Johannes Mathis
- Department of Neurology; Inselspital; Bern University Hospital; University Bern; Bern Switzerland
| | - Kaspar Schindler
- Department of Neurology; Inselspital; Bern University Hospital; University Bern; Bern Switzerland
| | - Claudio L. Bassetti
- Department of Neurology; Inselspital; Bern University Hospital; University Bern; Bern Switzerland
| |
Collapse
|
49
|
Sleep and epilepsy. EPILEPSY RESEARCH AND TREATMENT 2013; 2013:483248. [PMID: 24236231 PMCID: PMC3819916 DOI: 10.1155/2013/483248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 11/18/2022]
|
50
|
Halász P. How sleep activates epileptic networks? EPILEPSY RESEARCH AND TREATMENT 2013; 2013:425697. [PMID: 24159386 PMCID: PMC3789502 DOI: 10.1155/2013/425697] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/24/2013] [Indexed: 11/17/2022]
Abstract
Background. The relationship between sleep and epilepsy has been long ago studied, and several excellent reviews are available. However, recent development in sleep research, the network concept in epilepsy, and the recognition of high frequency oscillations in epilepsy and more new results may put this matter in a new light. Aim. The review address the multifold interrelationships between sleep and epilepsy networks and with networks of cognitive functions. Material and Methods. The work is a conceptual update of the available clinical data and relevant studies. Results and Conclusions. Studies exploring dynamic microstructure of sleep have found important gating mechanisms for epileptic activation. As a general rule interictal epileptic manifestations seem to be linked to the slow oscillations of sleep and especially to the reactive delta bouts characterized by A1 subtype in the CAP system. Important link between epilepsy and sleep is the interference of epileptiform discharges with the plastic functions in NREM sleep. This is the main reason of cognitive impairment in different forms of early epileptic encephalopathies affecting the brain in a special developmental window. The impairment of cognitive functions via sleep is present especially in epileptic networks involving the thalamocortical system and the hippocampocortical memory encoding system.
Collapse
Affiliation(s)
- Peter Halász
- National Institute of Clinical Neuroscience, Lotz K. Straße 18, Budapest 1026, Hungary
| |
Collapse
|