1
|
Schuppe MC, Porebski P, Hahn KK, Liao K, Uhmann A, Braun A, Dasari P, Schön MP, Buhl T. Triclosan exacerbates atopic dermatitis in mouse models via thymic stromal lymphopoietin. J Dermatol Sci 2025; 118:1-8. [PMID: 40059030 DOI: 10.1016/j.jdermsci.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Triclosan, a common antimicrobial agent, is widely used in personal-care products and as a topical antiseptic in atopic dermatitis (AD). OBJECTIVE This study aimed to evaluate the topical and systemic effect of triclosan on AD in murine models, with a specific focus on the role of thymic stromal lymphopoietin (TSLP). METHODS AD-like skin disease was induced by topical application of MC903 and house dust mites in female wildtype BALB/c, C57BL/6 J, and TSLP receptor (TSLPR)-knockout mouse strains. Mice were treated with triclosan both topically and systemically. Skin inflammation was assessed by measuring ear thickness. Infiltration of immune cells was analyzed by flow cytometry and immunohistochemistry (IHC). Cytokine expression was determined by quantitative real-time PCR. RESULTS Triclosan application induced skin inflammation in a dose-dependent manner. Topical triclosan treatment increased ear inflammation and immune cell infiltration in AD-like mouse models. Systemic administration of triclosan also enhanced local AD-like skin reactions. Triclosan-induced skin inflammation was reduced in TSLP-receptor-knockout mice or by blocking TSLP, thus indicating the pivotal role of TSLP in mediating the immunological effects of triclosan. CONCLUSIONS Topical and systemic administration of triclosan exacerbates AD-like skin inflammation in murine models, with TSLP being a central mediator of this process. The translational relevance of these findings to human disease remains uncertain, as no direct human data are available.
Collapse
MESH Headings
- Animals
- Thymic Stromal Lymphopoietin
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/pathology
- Dermatitis, Atopic/chemically induced
- Triclosan/adverse effects
- Triclosan/administration & dosage
- Cytokines/metabolism
- Cytokines/genetics
- Disease Models, Animal
- Female
- Mice, Knockout
- Mice
- Skin/immunology
- Skin/pathology
- Skin/drug effects
- Mice, Inbred C57BL
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Mice, Inbred BALB C
- Pyroglyphidae/immunology
- Anti-Infective Agents, Local/administration & dosage
- Anti-Infective Agents, Local/adverse effects
- Humans
- Immunoglobulins
Collapse
Affiliation(s)
- Marie Charlotte Schuppe
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany.
| | - Patryk Porebski
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Katharina Klara Hahn
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Kexin Liao
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Anja Uhmann
- Institute of Human Genetics, University Medical Centre Göttingen, Göttingen, Germany
| | - Andrea Braun
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Prasad Dasari
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany
| | - Michael Peter Schön
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany; Lower Saxony Institute of Occupational Dermatology, University Medical Centre Göttingen, Göttingen, Germany
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Göttingen, Germany; Lower Saxony Institute of Occupational Dermatology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Wu W, Song L, Wang H, Feng L, Li Z, Li Y, Li L, Peng L. Supercritical CO 2 fluid extract from Stellariae Radix ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis by inhibit M1 macrophages polarization via AMPK activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:3188-3197. [PMID: 38356236 DOI: 10.1002/tox.24145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024]
Abstract
Yin chai hu (Radix Stellariae) is a root medicine that is frequently used in Chinese traditional medicine to treat fever and malnutrition. In modern medicine, it has been discovered to have anti-inflammatory, anti-allergic, and anticancer properties. In a previous study, we were able to extract lipids from Stellariae Radix using supercritical CO2 extraction (SRE), and these sterol lipids accounted for up to 88.29% of the extract. However, the impact of SRE on the development of atopic dermatitis (AD) has not yet been investigated. This study investigates the inhibitory effects of SRE on AD development using a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model. Treatment with SRE significantly reduced the dermatitis score and histopathological changes compared with the DNCB group. The study found that treatment with SRE resulted in a decrease of pro-inflammatory cytokines TNF-α, CXC-10, IL-12, and IL-1β in skin lesions. Additionally, immunohistochemical analysis revealed that SRE effectively suppressed M1 macrophage infiltration into the AD lesion. Furthermore, the anti-inflammatory effect of SRE was evaluated in LPS + INF-γ induced bone marrow-derived macrophages (BMDMs) M1 polarization, SRE inhibited the production of TNF-α, CXC-10, IL-12, and IL-1β and decreased the expression of NLRP3. Additionally, SRE was found to increase p-AMPKT172, but had no effect on total AMPK expression, after administration of the AMPK inhibitor Compound C, the inhibitory effect of SRE on M1 macrophages was partially reversed. The results indicate that SRE has an inhibitory effect on AD, making it a potential therapeutic agent for this atopic disorder.
Collapse
Affiliation(s)
- Wei Wu
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Le Song
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Hong Wang
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Lu Feng
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Zhenkai Li
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Yanqing Li
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Le Li
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Li Peng
- School of Life Sciences, Ningxia University, Yinchuan, China
| |
Collapse
|
3
|
Acharya M, Gautam R, Yang S, Jo J, Maharjan A, Lee D, Ghimire NP, Min B, Kim C, Kim H, Heo Y. Evaluation of Artemisia dubia folium extract-mediated immune efficacy through developing a murine model for acute and chronic stages of atopic dermatitis. Lab Anim Res 2024; 40:13. [PMID: 38582857 PMCID: PMC10999079 DOI: 10.1186/s42826-024-00201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a biphasic type of skin inflammation characterized by a predominance of type-2 (TH2) and type-1 (TH1) helper T cell-biased immune responses at the acute and persistent chronic phases, respectively. The present study was aimed to evaluate the efficacy of Artemisia dubia folium extract (ADFE) on AD-like skin lesions through developing a murine model for acute and chronic stages of AD. To induce acute phase AD, the dorsal skin of BALB/c mice was sensitized twice a week with 1% 2, 4-dinitrochlorobenzene (DNCB), followed by challenge (twice) in the following week with 0.2% DNCB. To induce persistent chronic AD, some mice were challenged twice a week for 4 more weeks. After the second challenge, the dorsal skin was exposed to 3% ADFE (five times per week) for 2 weeks (acute phase) or 4 weeks (persistent chronic phase). RESULTS The paradigm of TH2 or TH1 predominance at the acute and chronic phase, respectively, was observed in this mouse model. During the acute phase, we observed an increased IL-4/IFN-γ ratio in splenic culture supernatants, an increased IgG1/IgG2a ratio in serum, and elevated serum IgE levels; however, the skew toward TH2 responses was diminished during the chronic stage. Compared with vehicle controls, ADFE reduced the IL-4/IFN-γ and IgG1/IgG2a ratios in acute AD, but both ratios increased during the chronic stage. CONCLUSIONS Our results suggest that ADFE concomitantly suppresses the TH2 predominant response in acute AD, as well as the TH1 predominant response in chronic AD. Thus, ADFE is a candidate therapeutic for AD.
Collapse
Affiliation(s)
- Manju Acharya
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - Ravi Gautam
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - SuJeong Yang
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - JiHun Jo
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - Anju Maharjan
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - DaEun Lee
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | | | - ByeongSun Min
- College of Pharmacy, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - ChangYul Kim
- Department of Toxicology, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yong Heo
- Department of Health and Safety, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea.
- Department of Toxicology, Graduate School, Daegu Catholic University, Gyeongsan-Si, Gyeongbuk Province, 38430, Republic of Korea.
| |
Collapse
|
4
|
Bertlich M, Freytag S, Huber P, Dombrowski T, Oppel E, Gröger M. Serological Cross-Reactivity of Various Aspergillus spp. with Aspergillus fumigatus: A Diagnostic Blind Spot. Int Arch Allergy Immunol 2024; 185:767-774. [PMID: 38537619 DOI: 10.1159/000538082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/23/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Aspergillus fumigatus is the most common airborne allergen of the Aspergillus family. However, allergies to Aspergillus spp. are increasing, and subsequently, allergies to Aspergillus species other than fumigatus are also on the rise. Commercial diagnostic tools are still limited to Aspergillus fumigatus. Hence, there is a need for improved tests. We decided to investigate the correlation between serological sensitization to A. fumigatus and other Aspergillus species. METHODS Hundred and seven patients with positive skin prick tests to A. fumigatus were included in this study. Immunoglobulin E (IgE) concentrations against A. fumigatus, A. terreus, A. niger, A. flavus, and A. versicolor were measured from specimens by fluorescent enzyme-linked immunoassays. RESULTS Patients showed considerably higher IgE concentrations against A. fumigatus (6.00 ± 15.05 kUA/L) than A. versicolor (0.30 ± 1.01 kUA/L), A. niger (0.62 ± 1.59 kUA/L), A. terreus (0.45 ± 1.12 kUA/L), or A. flavus (0.41 ± 0.97 kUA/L). Regression analysis yielded weak positive correlations for all Aspergillus spp., but low r2 values and heteroscedastic distribution indicate an overall poor fit of the calculated models. CONCLUSION Serological sensitization against A. fumigatus does not correlate with sensitization against other Aspergillus spp. To detect sensitization against these, other diagnostic tools like a skin prick test solution of different Aspergillus spp. are needed.
Collapse
Affiliation(s)
- Mattis Bertlich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Tobias Dombrowski
- Department of Otorhinolarnygology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Eva Oppel
- Department of Dermatology and Allergy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Moritz Gröger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
5
|
Teo WY, Lim YYE, Sio YY, Say YH, Reginald K, Chew FT. Atopic dermatitis-associated genetic variants regulate LOC100294145 expression implicating interleukin-27 production and type 1 interferon signaling. World Allergy Organ J 2024; 17:100869. [PMID: 38298829 PMCID: PMC10827559 DOI: 10.1016/j.waojou.2023.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Background Atopic dermatitis (AD) is a complex inflammatory disease with a strong genetic component. A singular approach of genome wide association studies (GWAS) can identify AD-associated genetic variants, but is unable to explain their functional relevance in AD. This study aims to characterize AD-associated genetic variants and elucidate the mechanisms leading to AD through a multi-omics approach. Methods GWAS identified an association between genetic variants at 6p21.32 locus and AD. Genotypes of 6p21.32 locus variants were evaluated against LOC100294145 expression in peripheral blood mononuclear cells (PBMCs). Their influence on LOC100294145 promoter activity was measured in vitro via a dual-luciferase assay. The function of LOC100294145 was then elucidated through a combination of co-expression analyses and gene enrichment with g:Profiler. Mendelian randomization was further used to assess the causal regulatory effect of LOC100294145 on its co-expressed genes. Results Minor alleles of rs116160149 and rs115388857 at 6p21.32 locus were associated with increased AD risk (p = 2.175 × 10-8, OR = 1.552; p = 2.805 × 10-9, OR = 1.55) and higher LOC100294145 expression in PBMCs (adjusted p = 0.182; 8.267 × 10-12). LOC100294145 expression was also found to be increased in those with AD (adjusted p = 3.653 × 10-2). The genotype effect of 6p21.32 locus on LOC100294145 promoter activity was further validated in vitro. Co-expression analyses predicted LOC100294145 protein's involvement in interleukin-27 and type 1 interferon signaling, which was further substantiated through mendelian randomization. Conclusion Genetic variants at 6p21.32 locus increase AD susceptibility through raising LOC100294145 expression. A multi-omics approach enabled the deduction of its pathogenesis model comprising dysregulation of hub genes involved in type 1 interferon and interleukin 27 signaling.
Collapse
Affiliation(s)
- Wei Yi Teo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yi Ying Eliza Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Perak, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
6
|
Chua W, Marsh CO, Poh SE, Koh WL, Lee MLY, Koh LF, Tang XZE, See P, Ser Z, Wang SM, Sobota RM, Dawson TL, Yew YW, Thng S, O'Donoghue AJ, Oon HH, Common JE, Li H. A Malassezia pseudoprotease dominates the secreted hydrolase landscape and is a potential allergen on skin. Biochimie 2024; 216:181-193. [PMID: 37748748 DOI: 10.1016/j.biochi.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Malassezia globosa is abundant and prevalent on sebaceous areas of the human skin. Genome annotation reveals that M. globosa possesses a repertoire of secreted hydrolytic enzymes relevant for lipid and protein metabolism. However, the functional significance of these enzymes is uncertain and presence of these genes in the genome does not always translate to expression at the cutaneous surface. In this study we utilized targeted RNA sequencing from samples isolated directly from the skin to quantify gene expression of M. globosa secreted proteases, lipases, phospholipases and sphingomyelinases. Our findings indicate that the expression of these enzymes is dynamically regulated by the environment in which the fungus resides, as different growth phases of the planktonic culture of M. globosa show distinct expression levels. Furthermore, we observed significant differences in the expression of these enzymes in culture compared to healthy sebaceous skin sites. By examining the in situ gene expression of M. globosa's secreted hydrolases, we identified a predicted aspartyl protease, MGL_3331, which is highly expressed on both healthy and disease-affected dermatological sites. However, molecular modeling and biochemical studies revealed that this protein has a non-canonical active site motif and lacks measurable proteolytic activity. This pseudoprotease MGL_3331 elicits a heightened IgE-reactivity in blood plasma isolated from patients with atopic dermatitis compared to healthy individuals and invokes a pro-inflammatory response in peripheral blood mononuclear cells. Overall, our study highlights the importance of studying fungal proteins expressed in physiologically relevant environments and underscores the notion that secreted inactive enzymes may have important functions in influencing host immunity.
Collapse
Affiliation(s)
- Wisely Chua
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Carl O Marsh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Si En Poh
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Winston Lc Koh
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Melody Li Ying Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Li Fang Koh
- A∗STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Xin-Zi Emily Tang
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Peter See
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Shi Mei Wang
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Thomas L Dawson
- A∗STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore; College of Pharmacy, Department of Drug Discovery, Medical University of South Carolina, USA
| | - Yik Weng Yew
- National Skin Centre, National Healthcare Group, 1 Mandalay Rd, 308205, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - Steven Thng
- National Skin Centre, National Healthcare Group, 1 Mandalay Rd, 308205, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, United States
| | - Hazel H Oon
- National Skin Centre, National Healthcare Group, 1 Mandalay Rd, 308205, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - John E Common
- A∗STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - Hao Li
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
7
|
Lee MF, Wang NM, Chen YH, Wu CS, Lee MH, Chu YW. An atopic dermatitis-like murine model by skin-brushed cockroach Per a 2 and oral tolerance induction by Lactococcus lactis-derived Per a 2. PLoS One 2023; 18:e0291162. [PMID: 37676892 PMCID: PMC10484430 DOI: 10.1371/journal.pone.0291162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Atopic dermatitis (AD) is a complex, chronic inflammatory skin disease. An estimated 57.5% of asthmatic patients and 50.7% of rhinitis patients are allergic to cockroaches in Taiwan. However, the role of cockroaches in the pathogenesis of AD is undetermined. Oral tolerance might be another strategy for protecting against AD and allergic inflammation by regulating T helper 2 (Th2) immune responses. Aim to examine the underlying immunologic mechanism, we developed an AD-like murine model by skin-brushing with cockroach Per a 2. We also investigated whether the systemic inflammation of AD in this murine model could be improved by specific tolerance to Lactococcus lactis-expressing Per a 2, which was administered orally. Repeated painting of Per a 2 without adjuvant to the skin of mice resulted in increased total IgE, Per a 2-specific IgE, and IgG1, but not IgG2a. In addition, epidermal thickening was significantly increased, there were more scratch episodes, and there were increases in total white blood cells (eosinophil, neutrophil, and lymphocyte) and Th2 cytokines (Interleukin (IL)-4, IL-5, IL-9, and IL-13) in a dose-dependent manner. The results revealed that oral administration of L. lactis-Per a 2 ameliorated Per a 2-induced scratch behavior and decreased the production of total IgE, Per a 2-specific IgE, and IgG1. Furthermore, L. lactis-Per a 2 treatment also suppressed inflammatory infiltration, expressions of thymic stromal lymphopoietin (TSLP) and IL-31 in skin lesions, and downregulated splenic IL-4 and IL-13 in Per a 2-induced AD mice. This study provides evidence supporting that repeated brushing of aeroallergens to the skin leads to atopic dermatitis phenotypes and oral allergen-specific immune tolerance can ameliorate AD-like symptoms and systemic inflammation and prevent progression of atopic march.
Collapse
Affiliation(s)
- Mey-Fann Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Nancy M. Wang
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Yi-Hsing Chen
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chi-Sheng Wu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Hao Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Wen Chu
- Department of Pharmacy, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
8
|
Zeng H, Zhao B, Zhang D, Rui X, Hou X, Chen X, Zhang B, Yuan Y, Deng H, Ge G. Viola yedoensis Makino formula alleviates DNCB-induced atopic dermatitis by activating JAK2/STAT3 signaling pathway and promoting M2 macrophages polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154228. [PMID: 35689898 DOI: 10.1016/j.phymed.2022.154228] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Atopic dermatitis (AD), a common inflammatory skin disorder, severely affects the life quality of patients and renders heavy financial burden on patient's family. The Chinese medicine Viola yedoensis Makino formula (VYAC) has been widely used for treating various skin disorders. Previous studies have reported that VYAC is effective in relieving DNCB-induced AD and inflammation. However, the anti-inflammatory mechanism of VYAC is still ill-defined and poorly understood. This study aims to investigate the therapeutic effects of VYAC on DNCB-induced AD and to elucidate the underlying anti-inflammatory mechanisms. METHODOLOGY VYAC were extracted with 70% ethanol and lyophilized for use. AD mice were established by DNCB. The therapeutic effects of VYAC were evaluated by oral administration VYAC (150, 300 and 600 mg/kg) daily in vivo. The histopathological and immunohistochemistry were used to analyze skin lesion and macrophages infiltration, RT-qPCR and Elisa were used to analyze the inflammatory factors in skin tissues and serum. To explore the underlying mechanism of VYAC against AD in vitro. RAW264.7 cells and bone-marrow-derived macrophages (BMDMs) were employed for macrophage polarization analysis. Flow cytometer, immunofluorescence and western blot were used to analyze M2 macrophages markers. STAT3 siRNA were transfected into both cells to validate the effects of VYAC-induced macrophages M2 polarization via JAK2/STAT3 signaling pathway. RESULTS VYAC ameliorated skin lesion of DNCB-induced AD mice by decreased clinical scores and epidermal thickness, decreased the level of pro-inflammatory factors (IL-1β, TNF-α and IL-18) and enhanced IL-10 anti-inflammatory factor level, inhibited macrophages infiltration and promoted M2 macrophages polarization in vivo. VYAC significantly promoted M2 macrophages polarization in vitro. It is observed that VYAC not only inhibited the phosphorylation of JAK2 and STAT3 in RAW264.7 cells and BMDMs, but also accelerated the translocation to the nucleus. What's more, VYAC reduced the polarization of M2 macrophage by activating JAK2/STAT3 signaling pathway was observed in both cells. CONCLUSIONS Our findings demonstrate that VYAC significantly ameliorates skin lesion of DNCB-induced AD mice and reduces the levels of inflammatory factors by activating JAK2/STAT3 signaling pathway and promoting M2 macrophages polarization.
Collapse
Affiliation(s)
- Hairong Zeng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Die Zhang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xin Rui
- Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xudong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xingxing Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Benrui Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yi Yuan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Čelakovská J, Čermákova E, Vaňková R, Boudková P, Andrýs C, Krejsek J. Kiwi allergy in atopic dermatitis patients – analysis of specific IgE results in ALEX2 multiplex examination. Latex fruit syndrome. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2095985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- J. Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - E. Čermákova
- Department of Medical Biophysic, Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - R. Vaňková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - P. Boudková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - C. Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - J. Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
10
|
Čelakovská J, Cermakova E, Vaňková R, Boudkova P, Krejsek J, Andrýs C. Sensitivity, specificity and positive predictive value of ALEX2 multiplex examination in patients suffering from atopic dermatitis and reaction to egg. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2085672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- J. Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - E. Cermakova
- Department of Medical Biophysic, Medical Faculty of Charles University, Hradec Králové, Czech republic
| | - R. Vaňková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - P. Boudkova
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - J. Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - C. Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
11
|
Immunological Pathomechanisms of Spongiotic Dermatitis in Skin Lesions of Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms23126682. [PMID: 35743125 PMCID: PMC9223609 DOI: 10.3390/ijms23126682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic pruritic skin disease with a complex pathogenesis underlying its heterogeneous clinical phenotypes and endotypes. The skin manifestation of AD reflects the cytokine milieu of a type-2-dominant immunity axis induced by genetic predisposition, innate immunity dysregulation, epidermal barrier defects, and allergic inflammation. However, the detailed pathomechanism of eczematous dermatitis, which is the principal characteristic of AD, remains unclear. This review examines previous studies demonstrating research progress in this area and considers the immunological pathomechanism of “spongiotic dermatitis”, which is the histopathological hallmark of eczematous dermatitis. Studies in this field have revealed the importance of IgE-mediated delayed-type hypersensitivity, the Fas/Fas-ligand system, and cell-mediated cytotoxicity in inducing the apoptosis of keratinocytes in spongiotic dermatitis. Recent studies have demonstrated that, together with infiltrating CD4 T cells, IgE-expressing dendritic cells (i.e., inflammatory dendritic epidermal cells and Langerhans cells) that capture specific allergens (i.e., house dust mites) are present in the spongiotic epidermis of lichenified eczema in patients with IgE-allergic AD. These findings suggest that IgE-mediated delayed-type hypersensitivity plays a pivotal role in the pathogenesis of spongiotic dermatitis in the skin lesions of AD.
Collapse
|
12
|
Chong AC, Chwa WJ, Ong PY. Aeroallergens in Atopic Dermatitis and Chronic Urticaria. Curr Allergy Asthma Rep 2022; 22:67-75. [PMID: 35362938 DOI: 10.1007/s11882-022-01033-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW While aeroallergens are a well-established trigger of asthma and allergic rhinitis, their role in allergic skin diseases such as atopic dermatitis and chronic urticaria remains controversial. This paper reviews the pathophysiology and clinical evidence for aeroallergens in these allergic skin diseases and summarizes current strategies for evaluation and management. RECENT FINDINGS Current evidence implicates aeroallergens as triggers of cutaneous reactions in atopic dermatitis. Direct skin contact is the likely route of trigger. Aeroallergens may also trigger chronic urticaria, though mechanistic studies are limited. These allergens may cross the skin barrier and directly trigger neurons to release substance P, resulting in mast cell degranulation and dumping of histamine and prostaglandin D2. Many studies link aeroallergen sensitization to chronic urticaria, and case reports suggest the utility of avoidance strategies. The role of aeroallergens as a trigger is clear in atopic dermatitis and becoming emergent in chronic urticaria. Skin prick testing or serum-specific immunoglobulin E testing may be used to determine sensitivities. Management at this time centers on avoidance, and further studies are necessary to evaluate the efficacy of aeroallergen immunotherapy for both conditions.
Collapse
Affiliation(s)
- Albert C Chong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Won Jong Chwa
- Saint Louis University School of Medicine, Saint Louis University, Saint Louis, MO, USA
| | - Peck Y Ong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. .,Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Lee MJ, Park YM, Kim B, Tae IH, Kim NE, Pranata M, Kim T, Won S, Kang NJ, Lee YK, Lee DW, Nam MH, Hong SJ, Kim BS. Disordered development of gut microbiome interferes with the establishment of the gut ecosystem during early childhood with atopic dermatitis. Gut Microbes 2022; 14:2068366. [PMID: 35485368 PMCID: PMC9067516 DOI: 10.1080/19490976.2022.2068366] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome influences the development of allergic diseases during early childhood. However, there is a lack of comprehensive understanding of microbiome-host crosstalk. Here, we analyzed the influence of gut microbiome dynamics in early childhood on atopic dermatitis (AD) and the potential interactions between host and microbiome that control this homeostasis. We analyzed the gut microbiome in 346 fecal samples (6-36 months; 112 non-AD, 110 mild AD, and 124 moderate to severe AD) from the Longitudinal Cohort for Childhood Origin of Asthma and Allergic Disease birth cohort. The microbiome-host interactions were analyzed in animal and in vitro cell assays. Although the gut microbiome maturated with age in both AD and non-AD groups, its development was disordered in the AD group. Disordered colonization of short-chain fatty acids (SCFA) producers along with age led to abnormal SCFA production and increased IgE levels. A butyrate deficiency and downregulation of GPR109A and PPAR-γ genes were detected in AD-induced mice. Insufficient butyrate decreases the oxygen consumption rate of host cells, which can release oxygen to the gut and perturb the gut microbiome. The disordered gut microbiome development could aggravate balanced microbiome-host interactions, including immune responses during early childhood with AD.
Collapse
Affiliation(s)
- Min-Jung Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Yoon Mee Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Byunghyun Kim
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - in Hwan Tae
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Nam-Eun Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Marina Pranata
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheonan, Republic of Korea
| | - Taewon Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| | - Yun Kyung Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheonan, Republic of Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
14
|
Čelakovská J, Čermákova E, Vaňková R, Andrýs C, Krejsek J. ALEX2 multiplex examination – results of specific IgE to fish and shrimps in patients suffering from atopic dermatitis. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.2005546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- J. Čelakovská
- Department of Dermatology and Venereology Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - E. Čermákova
- Department of Medical Biophysic, Medical Faculty of Charles University, Hradec Králové, Czech republic
| | - R. Vaňková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - C. Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | - J. Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
15
|
Jahn S, Föhr J, Diamanti E, Herbst M. [Treatment of atopic dermatitis with dupilumab : A retrospective cohort analysis from dermatological practice]. DER HAUTARZT 2021; 72:1071-1078. [PMID: 34328514 PMCID: PMC8323538 DOI: 10.1007/s00105-021-04868-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
Wir präsentieren die Ergebnisse einer retrospektiven Datenauswertung von 44 Patienten einer Praxiskohorte, deren atopische Dermatitis (AD) über bis zu 3 Jahre mit dem IL(Interleukin)-4/13-Rezeptor-Antikörper Dupilumab behandelt wurde. Die Betreuung erfolgte in den letzten 21 Monaten in einer Spezialsprechstunde Immundermatologie, in der die aufwendige Dokumentation realisiert werden konnte. Die Charakteristika der Kohorte hinsichtlich Alters- und Geschlechterverteilung, Schwere und Dauer der Erkrankung sind vergleichbar mit den großen Patientenkollektiven der Zulassungsstudien. Die therapeutische Effizienz unter Praxis-Alltagsbedingungen erwies sich als sehr gut (Anteil Patienten EASI [Eczema Area and Severity Index] 50, 75, 90 nach 16 Wochen: 94, 84, 60 %) und anhaltend (86 % EASI 90 nach 52 Wochen Therapie). Etwa die Hälfte unserer Patienten hatte anamnestisch oder bei Therapiebeginn eine Beteiligung der Gesichtshaut und/oder Augen. Diese Patientengruppe erwies sich als betreuungsintensiver, weil die Gesichts- und periorbitale Dermatitis sowie begleitende Konjunktividen verzögert abheilten, zu Rezidiven neigten und häufig einer zusätzlichen topischen Therapie bedurften. Wir haben keine schweren Nebenwirkungen in den hier ausgewerteten 48 Patientenjahren festgestellt. Dupilumab erwies sich als sichere und effiziente Therapie für die atopische Dermatitis in der dermatologischen Praxis.
Collapse
Affiliation(s)
- Sigbert Jahn
- Dermatologische Praxis Dr. Herbst & Kollegen, Rheinstr. 7, 64283, Darmstadt, Deutschland.
| | - Julia Föhr
- Dermatologische Praxis Dr. Herbst & Kollegen, Rheinstr. 7, 64283, Darmstadt, Deutschland
| | - Evangelia Diamanti
- Dermatologische Praxis Dr. Herbst & Kollegen, Rheinstr. 7, 64283, Darmstadt, Deutschland
| | - Matthias Herbst
- Dermatologische Praxis Dr. Herbst & Kollegen, Rheinstr. 7, 64283, Darmstadt, Deutschland
| |
Collapse
|
16
|
Kader HA, Azeem M, Jwayed SA, Al-Shehhi A, Tabassum A, Ayoub MA, Hetta HF, Waheed Y, Iratni R, Al-Dhaheri A, Muhammad K. Current Insights into Immunology and Novel Therapeutics of Atopic Dermatitis. Cells 2021; 10:1392. [PMID: 34200009 PMCID: PMC8226506 DOI: 10.3390/cells10061392] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent inflammatory disease among non-fatal skin diseases, affecting up to one fifth of the population in developed countries. AD is characterized by recurrent pruritic and localized eczema with seasonal fluctuations. AD initializes the phenomenon of atopic march, during which infant AD patients are predisposed to progressive secondary allergies such as allergic rhinitis, asthma, and food allergies. The pathophysiology of AD is complex; onset of the disease is caused by several factors, including strong genetic predisposition, disrupted epidermal barrier, and immune dysregulation. AD was initially characterized by defects in the innate immune system and a vigorous skewed adaptive Th2 response to environmental agents; there are compelling evidences that the disorder involves multiple immune pathways. Symptomatic palliative treatment is the only strategy to manage the disease and restore skin integrity. Researchers are trying to more precisely define the contribution of different AD genotypes and elucidate the role of various immune axes. In this review, we have summarized the current knowledge about the roles of innate and adaptive immune responsive cells in AD. In addition, current and novel treatment strategies for the management of AD are comprehensively described, including some ongoing clinical trials and promising therapeutic agents. This information will provide an asset towards identifying personalized targets for better therapeutic outcomes.
Collapse
Affiliation(s)
- Hidaya A. Kader
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Muhammad Azeem
- Department of Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Suhib A. Jwayed
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Aaesha Al-Shehhi
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Attia Tabassum
- Department of Dermatology, Mayo Hospital, Lahore 54000, Pakistan;
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Rabah Iratni
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| | - Ahmed Al-Dhaheri
- Department of Dermatology, Tawam Hospital, Al Ain 15551, United Arab Emirates;
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates; (H.A.K.); (S.A.J.); (A.A.-S.); (M.A.A.); (R.I.)
| |
Collapse
|
17
|
Wollenberg A, Thomsen SF, Lacour JP, Jaumont X, Lazarewicz S. Targeting immunoglobulin E in atopic dermatitis: A review of the existing evidence. World Allergy Organ J 2021; 14:100519. [PMID: 33815652 PMCID: PMC8005850 DOI: 10.1016/j.waojou.2021.100519] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Immunoglobulin E (IgE) plays an essential role in many allergic diseases. This review highlights the role of IgE in atopic dermatitis (AD), a common, chronic, and complex skin inflammation, and the available therapeutic approaches that target IgE in AD. We examine the existing data showing the use of omalizumab, the only biologic anti-IgE therapy available in clinical use, plasma apheresis, and a combination of both therapeutic approaches for the treatment of AD. Existing data on the efficacy of omalizumab in AD are inconclusive. A limited number of randomised controlled studies, few uncontrolled prospective and retrospective reports, as well as multiple case series and case reports observed varying degrees of the efficacy of omalizumab in AD. Omalizumab displays a trend of higher efficacy in AD patients with low IgE levels compared with those with very high-to-extremely high serum IgE concentrations. Plasma apheresis and its combination with omalizumab show good efficacy, even in patients with unusually high serum IgE concentrations. Combining apheresis and anti-IgE treatment may serve as a comprehensive therapeutic approach for patients with elevated levels of IgE. Dedicated clinical studies with robust study designs are needed to establish the therapeutic efficacy of omalizumab in AD.
Collapse
Affiliation(s)
- Andreas Wollenberg
- Department of Dermatology and Allergy, Ludwig-Maximilian-University, Munich, Germany
- Corresponding author.
| | - Simon Francis Thomsen
- Department of Dermato-Venereology and Wound Healing Centre, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jean-Philippe Lacour
- Department of Dermatology, Archet Hospital, Université Côte D'Azur, Centre Hospitalier Universitaire Nice, Nice, France
| | | | | |
Collapse
|
18
|
Wang X, Li S, Liu J, Kong D, Han X, Lei P, Xu M, Guan H, Hou D. Ameliorative effects of sea buckthorn oil on DNCB induced atopic dermatitis model mice via regulation the balance of Th1/Th2. BMC Complement Med Ther 2020; 20:263. [PMID: 32843010 PMCID: PMC7449066 DOI: 10.1186/s12906-020-02997-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a worldwide chronic skin disease which burden public health. Sea buckthorn (SBT) (Hippophae rhamnoides L., Elaeagnaceae) oil, as a traditional herbal medicine, has been used for disease treatment for many years. The effects of SBT oil on AD mouse model induced by repeated administration of 2,4-dinitrochlorobenzene (DNCB) in BALB/c mice was evaluated in this study. METHODS Mice were divided into four groups including the normal control group, AD model group, AD model group treated with SBT oil (5 ml/kg) and AD model group treated with SBT oil (10 ml/kg). Same volume at different concentrations of SBT oil was applied daily on the latter two groups by gavage for 15 days following AD model induction. The function of skin barrier and the production of IL-4, IFN-γ, TNF-α and TSLP were examined after animal sacrifice. The migration and mature of langerhans cell (LCs) in lymph node was further assessed by flow cytometry. RESULTS SBT oil alleviated dermatitis scores, decreased ear thickness, prevented infiltration of mast cell, reduced lymph node weight and depressed activity of Th2 cells. SBT oil also reduced the expression of IL-4, IFN-γ, TNF-α and TSLP in ear tissue, IgE level in serum and mRNA relative expression of IL-4, IFN-γ, TNF-α in lymph node. Moreover, SBT oil inhibited the migration of LCs cells from local lesions to lymph node and it's mature in lymph node. CONCLUSIONS These results suggest SBT oil had a beneficial effect either systemic or regional on DNCB-induced AD mice via maintain the balance of Th1/Th2 and may be a potential complementary candidate for AD treatment.
Collapse
Affiliation(s)
- Xinxin Wang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China.,Basic Medical and Forensic Medicine, Baotou Medical college, Baotou, Inner Mongolia, PR China
| | - Sijia Li
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, PR China
| | - Jiping Liu
- Neurosurgery Department, Northern Hospital of Inner Mongolia, Baotou, Inner Mongolia, PR China
| | - Dongning Kong
- Liaoning Dongning Pharmceutical Co., Ltd., Fuxin, Liaoning, PR China
| | - Xiaowei Han
- College of Integrated Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Chongshan Road NO.79, Shenyang, Liaoning, 110847, P.R. China
| | - Ping Lei
- College of Integrated Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Chongshan Road NO.79, Shenyang, Liaoning, 110847, P.R. China
| | - Ming Xu
- College of Integrated Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Chongshan Road NO.79, Shenyang, Liaoning, 110847, P.R. China
| | - Hongquan Guan
- College of Integrated Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Chongshan Road NO.79, Shenyang, Liaoning, 110847, P.R. China.
| | - Diandong Hou
- College of Integrated Traditional Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Chongshan Road NO.79, Shenyang, Liaoning, 110847, P.R. China.
| |
Collapse
|
19
|
Bumbacea RS, Corcea SL, Ali S, Dinica LC, Fanfaret IS, Boda D. Mite allergy and atopic dermatitis: Is there a clear link? (Review). Exp Ther Med 2020; 20:3554-3560. [PMID: 32905207 DOI: 10.3892/etm.2020.9120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD) represents a widespread chronic skin disease associated with different atopic disorders and allergies. These associations, similar to overall AD pathophysiology, are entangled, multifactorial and they are yet to be clarified. IgE and non IgE mediated pathomechanisms appear to be implicated in AD. Allergens constitute key aspects in AD pathogenesis, as they may serve as trigger factors. This review emphasizes mainly house dust mites (HDM), as they are likely the most relevant airborne allergen for AD. Here we review in a concise form the mite allergens, the role of molecular diagnosis and the treatment strategies for HDM. Strategies of avoiding allergens, with a few exceptions, are not enough to control children's AD; recent studies show HDM avoidance procedures in diagnosed AD are insufficient. Regardless, some guidelines acknowledge the benefit of mattress and pillow covers in patients with dust mite sensitization that are unresponsive to optimal AD management. Most clinical trials investigating allergen-specific immunotherapy (AIT) as a potential treatment for AD were done with adult patients; a scarce number of studies looked into the efficacy of AIT as a treatment option in children suffering from AD, with conflicting data among them. One of the most feasible of these studies showed significant improvement of AD outcomes only in the mild/moderate group, but not in the severe group. Uncontrolled studies are hard to interpret, considering the natural history of remitting and relapsing of AD, in many of the patients, without clinical interventions. More AIT studies, especially pediatric studies, are required in order to either prove the reproducibility of positive results or to deny its effectiveness.
Collapse
Affiliation(s)
- Roxana Silvia Bumbacea
- Department of Allergy, 'Dr. Carol Davila' Nefrology Clinical Hospital, 010731 Bucharest, Romania.,Department of Allergy, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sabina Loredana Corcea
- Department of Physiopathology and Immunology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Selda Ali
- Department of Allergy, 'Dr. Carol Davila' Nefrology Clinical Hospital, 010731 Bucharest, Romania.,Department of Allergy, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Dinica
- Department of Allergy, 'Dr. Carol Davila' Nefrology Clinical Hospital, 010731 Bucharest, Romania
| | - Ioan Serban Fanfaret
- Department of Pediatrics, Centre Hospitalier Régional d'Orléans, 45100 Orléans, France
| | - Daniel Boda
- Dermatology Research Laboratory, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Carol Medical Center, 010626 Bucharest, Romania
| |
Collapse
|
20
|
Review-Current Concepts in Inflammatory Skin Diseases Evolved by Transcriptome Analysis: In-Depth Analysis of Atopic Dermatitis and Psoriasis. Int J Mol Sci 2020; 21:ijms21030699. [PMID: 31973112 PMCID: PMC7037913 DOI: 10.3390/ijms21030699] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
During the last decades, high-throughput assessment of gene expression in patient tissues using microarray technology or RNA-Seq took center stage in clinical research. Insights into the diversity and frequency of transcripts in healthy and diseased conditions provide valuable information on the cellular status in the respective tissues. Growing with the technique, the bioinformatic analysis toolkit reveals biologically relevant pathways which assist in understanding basic pathophysiological mechanisms. Conventional classification systems of inflammatory skin diseases rely on descriptive assessments by pathologists. In contrast to this, molecular profiling may uncover previously unknown disease classifying features. Thereby, treatments and prognostics of patients may be improved. Furthermore, disease models in basic research in comparison to the human disease can be directly validated. The aim of this article is not only to provide the reader with information on the opportunities of these techniques, but to outline potential pitfalls and technical limitations as well. Major published findings are briefly discussed to provide a broad overview on the current findings in transcriptomics in inflammatory skin diseases.
Collapse
|
21
|
Schmid‐Grendelmeier P, Takaoka R, Ahogo K, Belachew W, Brown S, Correia J, Correia M, Degboe B, Dorizy‐Vuong V, Faye O, Fuller L, Grando K, Hsu C, Kayitenkore K, Lunjani N, Ly F, Mahamadou G, Manuel R, Kebe Dia M, Masenga E, Muteba Baseke C, Ouedraogo A, Rapelanoro Rabenja F, Su J, Teclessou J, Todd G, Taïeb A. Position Statement on Atopic Dermatitis in Sub-Saharan Africa: current status and roadmap. J Eur Acad Dermatol Venereol 2019; 33:2019-2028. [PMID: 31713914 PMCID: PMC6899619 DOI: 10.1111/jdv.15972] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The first International Society of Atopic Dermatitis (ISAD) global meeting dedicated to atopic dermatitis (AD) in Sub-Saharan Africa (SSA) was held in Geneva, Switzerland in April 2019. A total of 30 participants were present at the meeting, including those from 17 SSA countries, representatives of the World Health Organization (WHO), the International Foundation for Dermatology (IFD) (a committee of the International League of Dermatological Societies, ILDS www.ilds.org), the Fondation pour la Dermatite Atopique, as well as specialists in telemedicine, artificial intelligence and therapeutic patient education (TPE). RESULTS AD is one of the most prevalent chronic inflammatory skin diseases in SSA. Besides neglected tropical diseases (NTDs) with a dermatological presentation, AD requires closer attention from the WHO and national Departments of Health. CONCLUSIONS A roadmap has been defined with top priorities such as access to essential medicines and devices for AD care, in particular emollients, better education of primary healthcare workers for adequate triage (e.g. better educational materials for skin diseases in pigmented skin generally and AD in particular, especially targeted to Africa), involvement of traditional healers and to a certain extent also patient education, bearing in mind the barriers to effective healthcare faced in SSA countries such as travel distances to health facilities, limited resources and the lack of dermatological expertise. In addition, several initiatives concerning AD research in SSA were discussed and should be implemented in close collaboration with the WHO and assessed at follow-up meetings, in particular, at the next ISAD meeting in Seoul, South Korea and African Society of Dermatology and Venereology (ASDV) meeting in Nairobi, Kenya, both in 2020.
Collapse
Affiliation(s)
| | - R. Takaoka
- Department of DermatologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - K.C. Ahogo
- Département de médecine et Spécialités MédicalesDermatologie et VénérologieCHU TreichvilleUniversité Félix Houphouët‐Boigny UFR Sciences MédicalesAbidjanCôte d'Ivoire
| | - W.A. Belachew
- College of Health ScienceAyder Comprehensive Specialized Teaching HospitalMekelle UniversityMekelleEthiopia
| | - S.J. Brown
- Skin Research GroupSchool of MedicineNinewells Hospital & Medical SchoolUniversity of DundeeDundeeUK
| | - J.C. Correia
- Division of Therapeutic Education for Chronic DiseasesWHO Collaborating CenterDepartment of First Aid MedecineGeneva University HospitalsGenevaSwitzerland
| | - M. Correia
- Department of DermatologyHospital Cuf Descobertas and Hospital Cuf Torres VedrasTorres VedrasPortugal
| | - B. Degboe
- Department of DermatologyFaculty of Health SciencesNational and Teaching Hospital HKM of CotonouUniversity of Abomey‐CalaviCotonouBenin
| | - V. Dorizy‐Vuong
- Department of Adult and Pediatric DermatologyCHU BordeauxBordeauxFrance
- INSERM U 1035University of BordeauxBordeauxFrance
| | - O. Faye
- Department of DermatologyFaculty of MedicineCNAMBamakoMali
| | - L.C. Fuller
- Chair of International Foundation for DermatologyChelsea and Westminster HospitalLondonUK
| | - K. Grando
- Allergy UnitDepartment of DermatologyUniversity HospitalZurichSwitzerland
| | - C. Hsu
- Department of DermatologyTeledermatology and AIUniversity Hospital of BaselBaselSwitzerland
| | - K. Kayitenkore
- Kigali Dermatology CenterUniversity of RwandaKigaliRwanda
| | - N. Lunjani
- University of Cape TownCape TownSouth Africa
| | - F. Ly
- Université Cheikh Anta DiopDakarSenegal
| | - G. Mahamadou
- Department of Adult and Pediatric DermatologyCHU BordeauxBordeauxFrance
- Service de Dermatologie‐VénéréologieCHU Sylvanus OlympioLoméTogo
| | - R.C.F. Manuel
- Department of DermatologyMinistry of HealthHospital Central de MaputoMaputoMozambique
| | | | - E.J. Masenga
- Regional Dermatology Training CenterKilimanjaro Christian Medical University CollegeMoshiTanzania
| | | | - A.N. Ouedraogo
- University Hospital Yalgado Ouedraogo of OuagadougouUniversity Ouaga I Pr Joseph Ki‐Zerbo OuagadougouOuagadougouBurkina Faso
| | - F. Rapelanoro Rabenja
- Department of DermatologyUniversity Hospital Joseph Raseta BefelatananaAntananarivoMadagascar
| | - J. Su
- Department of PaediatricsMurdoch Children's Research InstituteRoyal Children's HospitalThe University of MelbourneParkvilleVictoriaAustralia
| | - J.N. Teclessou
- Service dermatologie et ISTCHU Sylvanus OlympioUniversité de LoméLoméTogo
| | - G. Todd
- Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - A. Taïeb
- Department of Adult and Pediatric DermatologyCHU BordeauxBordeauxFrance
- INSERM U 1035University of BordeauxBordeauxFrance
| |
Collapse
|
22
|
Molva V, Nesvorna M, Hubert J. Feeding Interactions Between Microorganisms and the House Dust Mites Dermatophagoides pteronyssinus and Dermatophagoides farinae (Astigmata: Pyroglyphidae). JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1669-1677. [PMID: 31145461 DOI: 10.1093/jme/tjz089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 05/24/2023]
Abstract
The feeding interactions between house dust mites (HDM) and microorganisms are key factors in the survival of mites in human environments. The suitability of different microbes for HDM is not known. Here, microbial species isolated from HDM cultures were offered to HDM in food preference tests under laboratory conditions. The microbial species were added to the rearing diet of mites to reach 7% of Saccharomyces cerevisiae and 10% of each tested microorganism. The suitability of each microbe-supplemented diet for Dermatophagoides pteronyssinus and Dermatophagoides farinae was compared in terms of mite population growth and mite preference in a cafeteria test. The effect of mite feeding on the respiration of microorganisms in the diet was observed in microcosms. HDM were able to feed and reproduce on some bacterial and fungal species, but the suitability of microbial species differed. Increasing the yeast Sa. cerevisiae in the diet from 7 to 17% appeared the most suitable for both mite species. Staphylococcus spp. bacteria were preferred for D. farinae and were suitable for reproduction. The population growth and feeding preferences of D. pteronyssinus and D. farinae with respect to microorganisms indicate that D. farinae can develop on a diet with bacterial (Staphylococcus nepalensis and Staphylococcus kloosii) additions, whereas D. pteronyssinus was successful on a diet with fungal (Aspergillus jensenii and Aspergillus ruber) additions. The bacteria Kocuria rhizophila and Bacillus cereus decreased population growth in D. pteronyssinus, whereas the yeasts Hyphopichia pseudoburtonii, Hyphopichia burtonii, and Candida ciferrii decreased population growth in D. farinae. These results indicate that some microorganisms are an important food source for HDM.
Collapse
Affiliation(s)
- Vit Molva
- Crop Research Institute, Drnovska, Prague, Czechia
- Charles University, Faculty of Science, Department of Parasitology, Vinicna, Prague, Czechia
| | | | - Jan Hubert
- Crop Research Institute, Drnovska, Prague, Czechia
| |
Collapse
|
23
|
Roesner LM, Werfel T. Autoimmunity (or Not) in Atopic Dermatitis. Front Immunol 2019; 10:2128. [PMID: 31552053 PMCID: PMC6746887 DOI: 10.3389/fimmu.2019.02128] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD), one of the most frequent inflammatory skin diseases worldwide, is believed to result from a disturbed skin barrier as well as aberrant immune reactions against per se harmless allergens. Starting mostly during childhood with a chronic, remitting relapsing course, the disease can persist into adulthood in about one fifth of patients. Immune reactions to self-proteins have been observed in AD patients already in the beginning of the Twentieth century, when human cellular extracts were shown to provoke skin lesions. However, the term “autoimmunity” has never been claimed, since AD is first and foremost an atopic disease. In contrast, this IgE-hallmarked autoreactivity was termed “autoallergy” and is ongoing discussed regarding its impact on the disease. Since severely affected patients tend to develop IgE-hypersensitivity reactions to numerous environmental allergens, the impact of immune responses to self-proteins is difficult to determine. On the other hand: any autoreactivity, irrespective of the magnitude, implicates the potential of driving the chronification of the disease while shaping the immune response. This review article revisits the observations made on autoallergy from an actual point of view and tries to approach the question whether these still point to a contribution to the disease.
Collapse
Affiliation(s)
- Lennart M Roesner
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hanover, Germany
| |
Collapse
|
24
|
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory skin disease characterized by pruritus, inflammatory erythematous skin lesions, and skin-barrier defect. Current mainstay treatments of emollients, steroids, calcineurin inhibitors, and immunosuppressants have limited efficacy and potentially serious side effects. Recent advances and understanding of the pathogenesis of AD have resulted in new therapies that target specific pathways with increased efficacy and the potential for less systemic side effects. New FDA-approved therapies for AD are crisaborole and dupilumab. The JAK-STAT inhibitors (baricitinib, upadacitinib, PF-04965842, ASN002, tofacitinib, ruxolitinib, and delgocitinib) have the most promising results of the emerging therapies. Other drugs with potential include the aryl hydrocarbon receptor modulating agent tapinarof, the IL-4/IL-13 antagonists lebrikizumab and tralokinumab, and the IL-31Rα antagonist nemolizumab. In this review, new and emerging AD therapies will be discussed along with their mechanisms of action and their potential based on clinical study data.
Collapse
Affiliation(s)
- Henry L Nguyen
- Department of Dermatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55902, USA
| | - Katelyn R Anderson
- Department of Dermatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55902, USA
| | - Megha M Tollefson
- Department of Dermatology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55902, USA.
| |
Collapse
|
25
|
Yu S, Li Y, Zhou Y, Follansbee T, Hwang ST. Immune mediators and therapies for pruritus in atopic dermatitis and psoriasis. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2019. [DOI: 10.1002/cia2.12049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sebastian Yu
- Department of Dermatology; University of California Davis School of Medicine; Sacramento California
- Department of Dermatology; Kaohsiung Medical University Hospital; Kaohsiung Medical University; Kaohsiung Taiwan
- Department of Dermatology; College of Medicine; Kaohsiung Medical University; Kaohsiung Taiwan
| | - Yanxi Li
- Department of Dermatology; University of California Davis School of Medicine; Sacramento California
| | - Yan Zhou
- Department of Dermatology; University of California Davis School of Medicine; Sacramento California
| | - Taylor Follansbee
- Department of Neurobiology, Physiology and Behavior; University of California Davis; Davis California
| | - Samuel T. Hwang
- Department of Dermatology; University of California Davis School of Medicine; Sacramento California
| |
Collapse
|
26
|
Meng Y, Liu Z, Zhai C, Di T, Zhang L, Zhang L, Xie X, Lin Y, Wang N, Zhao J, Wang Y, Li P. Paeonol inhibits the development of 1‑chloro‑2,4‑dinitrobenzene‑induced atopic dermatitis via mast and T cells in BALB/c mice. Mol Med Rep 2019; 19:3217-3229. [PMID: 30816506 PMCID: PMC6423638 DOI: 10.3892/mmr.2019.9985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Our previous studies suggested that paeonol, the active constituent of the traditional Chinese medicine Cortex Moutan, may be an effective treatment for inflammatory disorders. In the present study, the therapeutic potential of paeonol on atopic dermatitis (AD) was investigated using animal and cell experiments. AD‑like lesions were induced by repeated application of 1‑chloro‑2,4‑dinitrobenzene (DNCB) to the shaved dorsal skin of BALB/c mice, and P815 cells were used for in vitro assays. The skin lesions, serum and spleens of the mice were analyzed using lesion severity scoring, histological analysis, flow cytometry, reverse transcription‑quantitative polymerase chain reaction, western blotting and ELISA, in order to investigate the anti‑AD effects of paeonol. In addition, western blotting and ELISA were conducted for in vitro analysis of P815 cells. The results demonstrated that oral administration of paeonol inhibited the development of DNCB‑induced AD‑like lesions in the BALB/c mice by reducing severity of the lesions, epidermal thickness and mast cell infiltration; this was accompanied by reduced levels of immunoglobulin E and inflammatory cytokines [interleukin (IL)‑4, histamine, IL‑13, IL‑31 and thymic stromal lymphopoietin], along with regulation of the T helper (Th) cell subset (Th1/Th2) ratio. Application of paeonol also reduced the protein expression levels of phosphorylated (p)‑p38 and p‑extracellular signal‑regulated kinase (ERK) in skin lesions. In vitro, paeonol reduced the expression levels of tumor necrosis factor‑α and histamine in P815 cells, and inhibited p38/ERK/mitogen‑activated protein kinase signaling. The present findings indicated that paeonol may relieve dermatitis by acting on cluster of differentiation 4+ T and mast cells; therefore, paeonol may represent a potential therapeutic strategy for the treatment of allergic inflammatory conditions via immunoregulation.
Collapse
Affiliation(s)
- Yujiao Meng
- Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Zhengrong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing 100010, P.R. China
| | - Chunyan Zhai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing 100010, P.R. China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing 100010, P.R. China
| | - Lu Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing 100010, P.R. China
| | - Lei Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing 100010, P.R. China
| | - Xinran Xie
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing 100010, P.R. China
| | - Yan Lin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing 100010, P.R. China
| | - Ning Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing 100010, P.R. China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing 100010, P.R. China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing 100010, P.R. China
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| |
Collapse
|
27
|
Valenta R, Karaulov A, Niederberger V, Gattinger P, van Hage M, Flicker S, Linhart B, Campana R, Focke-Tejkl M, Curin M, Eckl-Dorna J, Lupinek C, Resch-Marat Y, Vrtala S, Mittermann I, Garib V, Khaitov M, Valent P, Pickl WF. Molecular Aspects of Allergens and Allergy. Adv Immunol 2018; 138:195-256. [PMID: 29731005 DOI: 10.1016/bs.ai.2018.03.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunoglobulin E (IgE)-associated allergy is the most common immune disorder. More than 30% of the population suffer from symptoms of allergy which are often severe, disabling, and life threatening such as asthma and anaphylaxis. Population-based birth cohort studies show that up to 60% of the world population exhibit IgE sensitization to allergens, of which most are protein antigens. Thirty years ago the first allergen-encoding cDNAs have been isolated. In the meantime, the structures of most of the allergens relevant for disease in humans have been solved. Here we provide an update regarding what has been learned through the use of defined allergen molecules (i.e., molecular allergology) and about mechanisms of allergic disease in humans. We focus on new insights gained regarding the process of sensitization to allergens, allergen-specific secondary immune responses, and mechanisms underlying allergic inflammation and discuss open questions. We then show how molecular forms of diagnosis and specific immunotherapy are currently revolutionizing diagnosis and treatment of allergic patients and how allergen-specific approaches may be used for the preventive eradication of allergy.
Collapse
Affiliation(s)
- Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia.
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marianne van Hage
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sabine Flicker
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Birgit Linhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Christian Lupinek
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yvonne Resch-Marat
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irene Mittermann
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Victoria Garib
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; International Network of Universities for Molecular Allergology and Immunology, Vienna, Austria
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|