1
|
Lee MW, Lee HJ, Moon S, Shin KH. Usefulness of Component-Resolved Diagnosis of Pollen-Food Allergy Syndrome. Ann Lab Med 2024; 44:378-380. [PMID: 38373793 PMCID: PMC10961617 DOI: 10.3343/alm.2023.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Affiliation(s)
- Moon Won Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hyun Ji Lee
- Department of Laboratory Medicine, Pusan National University School of Medicine, Busan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Busan, Korea
| | - Seulgi Moon
- Department of Laboratory Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Kyung-Hwa Shin
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Laboratory Medicine, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
2
|
Ding J, Qi L, Zhong L, Shang S, Zhu C, Lin S. Conformation-Activity Mechanism of Alcalase Hydrolysis for Reducing In Vitro Allergenicity of Instant Soy Milk Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10627-10639. [PMID: 38664940 DOI: 10.1021/acs.jafc.4c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Effective reduction of the allergenicity of instant soy milk powder (ISMP) is practically valuable for expanding its applications. This study optimized the enzymolysis technology of ISMP using single-factor experiments and response surface methodology, combined serological analysis, cellular immunological models, bioinformatics tools, and multiple spectroscopy techniques to investigate the effects of alcalase hydrolysis on allergenicity, spatial conformation, and linear epitopes of ISMP. Under the optimal process, special IgE and IgG1 binding abilities and allergenic activity to induce cell degranulation of alcalase-hydrolyzed ISMP were reduced by (64.72 ± 1.76)%, (56.79 ± 3.72)%, and (73.3 ± 1.19)%, respectively (P < 0.05). Moreover, the spatial conformation of instant soy milk powder hydrolysates (ISMPH) changed, including decreased surface hydrophobicity, a weaker peak of amide II band, lower contents of α-helix and β-sheet, and an enhanced content of random coil. Furthermore, the linear epitopes of major soy allergens, 9 from glycinin and 13 from β-conglycinin, could be directionally disrupted by alcalase hydrolysis. Overall, the structure-activity mechanism of alcalase hydrolysis to reduce ISMP allergenicity in vitro was preliminarily clarified. It provided a new research direction for the breakthrough in the desensitization of ISMP and a theoretical basis for revealing the potential mechanism of alcalase enzymolysis to reduce the allergenicity of ISMP.
Collapse
Affiliation(s)
- Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food of Liaoning Province, Engineering Research Center of Special Dietary Food of Liaoning Province, Dalian 116034, P. R. China
| | - Libo Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Limin Zhong
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Shan Shang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chunyan Zhu
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food of Liaoning Province, Engineering Research Center of Special Dietary Food of Liaoning Province, Dalian 116034, P. R. China
- Ganzhou Quanbiao Biological Technology Co. Ltd., Ganzhou 341100, P. R. China
| |
Collapse
|
3
|
Dinardo G, Dahdah L, Cafarotti A, Arasi S, Fierro V, Pecora V, Mazzuca C, Urbani S, Artesani MC, Riccardi C, Valluzzi RL, Indolfi C, Miraglia Del Giudice M, Fiocchi A. Botanical Impurities in the Supply Chain: A New Allergenic Risk Exacerbated by Geopolitical Challenges. Nutrients 2024; 16:628. [PMID: 38474756 DOI: 10.3390/nu16050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The supply chains of food raw materials have recently been heavily influenced by geopolitical events. Products that came from, or transited through, areas currently in conflict are now preferentially supplied from alternative areas. These changes may entail risks for food safety. METHODS We review the potential allergenicity of botanical impurities, specifically vegetable contaminants, with particular attention to the contamination of vegetable oils. We delve into the diverse types of botanical impurities, their sources, and the associated allergenic potential. Our analysis encompasses an evaluation of the regulatory framework governing botanical impurities in food labeling. RESULTS Unintended plant-derived contaminants may manifest in raw materials during various stages of food production, processing, or storage, posing a risk of allergic reactions for individuals with established food allergies. Issues may arise from natural occurrence, cross-contamination in the supply chain, and contamination at during production. The food and food service industries are responsible for providing and preparing foods that are safe for people with food allergies: we address the challenges inherent in risk assessment of botanical impurities. CONCLUSIONS The presence of botanical impurities emerges as a significant risk factor for food allergies in the 2020s. We advocate for regulatory authorities to fortify labeling requirements and develop robust risk assessment tools. These measures are necessary to enhance consumer awareness regarding the potential risks posed by these contaminants.
Collapse
Affiliation(s)
- Giulio Dinardo
- Department of Woman, Child and of General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Lamia Dahdah
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, 0165 Rome, Italy
| | - Arianna Cafarotti
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, 0165 Rome, Italy
| | - Stefania Arasi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, 0165 Rome, Italy
| | - Vincenzo Fierro
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, 0165 Rome, Italy
| | - Valentina Pecora
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, 0165 Rome, Italy
| | - Carmen Mazzuca
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, 0165 Rome, Italy
| | - Sara Urbani
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, 0165 Rome, Italy
| | - Maria Cristina Artesani
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, 0165 Rome, Italy
| | - Carla Riccardi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, 0165 Rome, Italy
| | - Rocco Luigi Valluzzi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, 0165 Rome, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and of General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alessandro Fiocchi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, 0165 Rome, Italy
| |
Collapse
|
4
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
5
|
Investigation of differences in allergenicity of protein from different soybean cultivars through LC/MS-MS. Int J Biol Macromol 2022; 220:1221-1230. [PMID: 36041578 DOI: 10.1016/j.ijbiomac.2022.08.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022]
Abstract
Soybean allergy is a health-threatening issue and identifying raw soybeans with low allergenicity is important for producing hypoallergenic soybean products. Soybean allergy is mainly triggered by soybean proteins. In this study, the protein profiles, allergen compositions, and epitopes in protein from different soybean cultivars (R1, R2 and R3) were evaluated by SDS-PAGE and LC/MS-MS, and their allergenicity was assessed by indirect ELISA and Western blot analysis using the serum IgE of patients allergic to soybeans. The lowest allergenicity was observed in R3, probably resulting from the low concentration of Gly m 4-Gly m 6. The allergenicity of soybeans is affected by multiple allergens rather than a single allergen. Venn diagram, PCA, heatmap, and peptide map analyses have shown the differences in protein and peptide profiles among soybean proteins from different soybean cultivars. Epitope analysis further demonstrated that low contents of dominant epitopes in Gly m 4 and Gly m 5 contributed to low allergenicity in R3, although R3 contained high contents of no-dominant epitopes.
Collapse
|
6
|
Skypala IJ, Hunter H, Krishna MT, Rey-Garcia H, Till SJ, du Toit G, Angier E, Baker S, Stoenchev KV, Luyt DK. BSACI guideline for the diagnosis and management of pollen food syndrome in the UK. Clin Exp Allergy 2022; 52:1018-1034. [PMID: 35975576 DOI: 10.1111/cea.14208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023]
Abstract
Pollen food syndrome (PFS) is a highly prevalent food allergy affecting pollen-sensitized children and adults. Sufferers experience allergic symptoms when consuming raw plant foods, due to the homology between the pollen allergens and unstable proteins in these foods. The triggers involved can vary depending on the pollen sensitization, which in turn is affected by geographical location. The British Society of Allergy and Clinical Immunology (BSACI) Standards of Care Committee (SOCC) identified a need to develop a guideline for the diagnosis and management of PFS in the United Kingdom (UK). Guidelines produced by the BSACI use either the GRADE or SIGN methodology; due to a lack of high-quality evidence these recommendations were formulated using the SIGN guidelines, which is acknowledged to be less robust than the GRADE approach. The correct diagnosis of PFS ensures the avoidance of a misdiagnosis of a primary peanut or tree nut allergy or confusion with another plant food allergy to non-specific lipid transfer proteins. The characteristic foods involved, and rapid-onset oropharyngeal symptoms, mean PFS can often be diagnosed from the clinical history alone. However, reactions involving tree nuts, peanuts and soya milk or severe/atypical reactions to fruits and vegetables may require additional diagnostic tests. Management is through the exclusion of known trigger foods, which may appear to be simple, but is highly problematic if coupled with a pre-existing food allergy or for individuals following a vegetarian/vegan diet. Immunotherapy to pollens is not an effective treatment for PFS, and although oral or sublingual immunotherapy to foods seems more promising, large, controlled studies are needed. The typically mild symptoms of PFS can lead to an erroneous perception that this condition is always easily managed, but severe reactions can occur, and anxiety about the onset of symptoms to new foods can have a profound effect on quality of life.
Collapse
Affiliation(s)
- Isabel J Skypala
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK.,Inflammation, Repair & Development Section, National Heart & Lung Institute, Imperial College, London, UK
| | - Hannah Hunter
- Department of Allergy, Guys & St Thomas NHS Foundation Trust, London, UK.,Kings College, London, UK
| | - Mamidipudi Thirumala Krishna
- Department of Allergy and Immunology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Helena Rey-Garcia
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK
| | - Stephen J Till
- Department of Allergy, Guys & St Thomas NHS Foundation Trust, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - George du Toit
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,Children's Allergy Service, Evelina Children's Hospital, Guy's and St. Thomas's NHS Foundation Trust, London, UK.,Department Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK
| | - Elizabeth Angier
- Primary Care, Population Science and Medical Education, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Kostadin V Stoenchev
- Department of Allergy & Clinical Immunology, Royal Brompton & Harefield Hospitals, Part of Guys & St Thomas NHS Foundation Trust, London, UK
| | | |
Collapse
|
7
|
Wang J, He Z, Raghavan V. Soybean allergy: characteristics, mechanisms, detection and its reduction through novel food processing techniques. Crit Rev Food Sci Nutr 2022; 63:6182-6195. [PMID: 35075969 DOI: 10.1080/10408398.2022.2029345] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human beings have consumed soybean as an excellent food source for thousand years due to its rich protein, fatty acids, minerals, and fibers. However, soybeans were recognized as one of the big eight allergens resulting in allergic symptoms and even could lead to death. With the increasing demand for soybean products, the challenges caused by soybean allergy need to be solved urgently. This review detailly described the pathogenesis and clinical characteristics of soybean allergy, and also the advantages and disadvantages of four different diagnostic methods were summarized. The major soybean allergens and their structures were summarized. Three types of soybean allergy including Type I, III, and IV, which could trigger allergic reactions were reported in this review. Summary in four different diagnostic methods showed that double-blind, placebo-controlled food challenge is recognized as a gold standard for diagnosing soybean allergy. Three types of processing techniques in reducing soybean allergy were discussed, and the results concluded that some novel food processing techniques such as ultrasound, cold-plasma treatment, showed potential application in the reduction of soybean allergenicity. Further, some suggestions regarding the management and treatment of food allergies were addressed in this review.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Zhaoyi He
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Bamidis A, Hofmann SC. Isotretinoin-associated exercise-induced anaphylaxis in a patient with birch pollinosis and soybean sensitization: case presentation and literature review. Allergy Asthma Clin Immunol 2021; 17:101. [PMID: 34627369 PMCID: PMC8501703 DOI: 10.1186/s13223-021-00604-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background Peanut and soybean allergies are listed as contraindication in the package leaflet of isotretinoin, a widely used treatment of acne vulgaris. Cross-reactivity between PR10-proteins in peanut, tree nuts, and soybean is particularly common in patients with birch pollinosis and may lead to anaphylactic reactions in sensitized patients after intake of soybean oil containing isotretinoin capsules. Case presentation Here, we describe a young man with hazelnut and birch pollen allergy, who experienced exercise-induced anaphylaxis after isotretinoin intake on the third day of treatment. A complete allergy work-up was carried out, and sensitization to both peanut and soybean PR10-proteins was confirmed. However, oral provocation with isotretinoin remained negative in the absence of intense physical activity and longterm treatment was well tolerated. Conclusion To our knowledge, this is the first report of an exercise-induced anaphylaxis due to isotretinoin therapy. Our literature review to assess tolerability of isotretinoin in patients allergic to peanut, tree nuts or soybean revealed only one other case of anaphylaxis in a cashew-nut allergic patient sensitized to soybean PR10-protein Gly m 4. While there are no reports on soybean allergic patients treated with isotretinoin, the vast majority of peanut or tree nut allergic patients tolerated isotretinoin. Therefore, we conclude that sensitization to soybean, peanut or tree nuts should not preclude isotretinoin therapy. Particular caution is however warranted in patients with soybean sensitization. Pre-treatment oral challenges with isotretinoin may be recommended and physicians should be aware of the potential role of cofactors.
Collapse
Affiliation(s)
- Anna Bamidis
- Department of Dermatology, Allergology and Dermatosurgery, Helios University Hospital Wuppertal, University Witten/Herdecke, Heusnerstr. 40, 42283, Wuppertal, Germany
| | - Silke C Hofmann
- Department of Dermatology, Allergology and Dermatosurgery, Helios University Hospital Wuppertal, University Witten/Herdecke, Heusnerstr. 40, 42283, Wuppertal, Germany.
| |
Collapse
|
9
|
Worm M, Reese I, Ballmer-Weber B, Beyer K, Bischoff SC, Bohle B, Brockow K, Claßen M, Fischer PJ, Hamelmann E, Jappe U, Kleine-Tebbe J, Klimek L, Koletzko B, Lange L, Lau S, Lepp U, Mahler V, Nemat K, Raithel M, Saloga J, Schäfer C, Schnadt S, Schreiber J, Szépfalusi Z, Treudler R, Wagenmann M, Werfel T, Zuberbier T. Update of the S2k guideline on the management of IgE-mediated food allergies. Allergol Select 2021; 5:195-243. [PMID: 34263109 PMCID: PMC8276640 DOI: 10.5414/alx02257e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Margitta Worm
- Allergology and Immunology, Department of Dermatology, Venereology, and Allergology, Charité – Universitätsmedizin Berlin, Germany
| | - Imke Reese
- Nutritional Counseling and Therapy, Focus on Allergology, Munich, Germany
| | - Barbara Ballmer-Weber
- University Hospital Zurich, Department of Dermatology, Zurich, Switzerland, and Cantonal Hospital St. Gallen, Department of Dermatology and Allergology, St. Gallen, Switzerland
| | - Kirsten Beyer
- Clinic of Pediatrics m. S. Pneumology, Immunology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Germany
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine and Prevention, University of Hohenheim, Stuttgart, Germany
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Knut Brockow
- Department of Dermatology and Allergology, Biederstein, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Martin Claßen
- Klinik für Kinder und Jugendmedizin/Päd. Intensivmedizin, Eltern-Kind-Zentrum Prof. Hess Klinikum Bremen-Mitte
| | - Peter J. Fischer
- Practice for Pediatric and Adolescent Medicine m. S. Allergology and Pediatric Pneumology, Schwäbisch Gmünd
| | - Eckard Hamelmann
- University Clinic for Pediatric and Adolescent Medicine, Evangelisches Klinikum Bethel gGmbH, Bielefeld
| | - Uta Jappe
- Research Group Clinical and Molecular Allergology, Research Center Borstel, Airway Research Center North (ARCN), member of the German Center for Lung Research (DZL), Borstel
- Interdisciplinary Allergy Outpatient Clinic, Medical Clinic III, University Hospital Schleswig-Holstein, Lübeck
| | | | | | - Berthold Koletzko
- Pediatric Clinic and Pediatric Polyclinic, Dr. von Haunersches Kinderspital, Department of Metabolic and Nutritional Medicine, Ludwig-Maximilians-University, Munich
| | - Lars Lange
- Pediatric and Adolescent Medicine, St.- Marien-Hospital, Bonn
| | - Susanne Lau
- Clinic of Pediatrics m. S. Pneumology, Immunology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Germany
| | - Ute Lepp
- Practice for Pulmonary Medicine and Allergology, Buxtehude
| | | | - Katja Nemat
- Practice for Pediatric Pneumology/Allergology at the Children’s Center Dresden (Kid), Dresen
| | | | - Joachim Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz
| | - Christiane Schäfer
- Nutritional Therapy, Focus on Allergology and Gastroenterology, Schwarzenbek, Germany
| | - Sabine Schnadt
- German Allergy and Asthma Association, Mönchengladbach, Germany
| | - Jens Schreiber
- Pneumology, University Hospital of Otto von Guericke University, Magdeburg, Germany
| | - Zsolt Szépfalusi
- University Hospital for Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Regina Treudler
- Clinic of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Germany
| | | | - Thomas Werfel
- Clinic of Dermatology, Allergology and Venerology, Hannover Medical School, Germany, and
| | - Torsten Zuberbier
- Department of Dermatology, Venerology and Allergology, Charité – Universitätsmedizin Berlin
| |
Collapse
|
10
|
Presence of soy in cereals and cereal products: validation of an ELISA technique and monitoring of products from the Italian market. J Verbrauch Lebensm 2021. [DOI: 10.1007/s00003-021-01333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Durban R, Groetch M, Meyer R, Coleman Collins S, Elverson W, Friebert A, Kabourek J, Marchand SM, McWilliam V, Netting M, Skypala I, Van Brennan T, Vassilopoulou E, Vlieg-Boerstra B, Venter C. Dietary Management of Food Allergy. Immunol Allergy Clin North Am 2021; 41:233-270. [PMID: 33863482 DOI: 10.1016/j.iac.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide food allergy prevalence is increasing, especially in children. Food allergy management strategies include appropriate avoidance measures and identifying suitable alternatives for a nutritionally sound diet. Individualized dietary intervention begins teaching label reading, which differs among countries or regions. Dietary intervention must result in a nutritionally sound plan including alternatives to support optimal growth and development. Inappropriate or incomplete dietary advice may increase the risk of adverse reactions, growth faltering, and nutrient deficiencies. Evidence indicates input from a registered dietitian improves nutritional outcomes. Nutritional input plays a critical role managing nutritional disorders related to food allergy.
Collapse
Affiliation(s)
- Raquel Durban
- Carolina Asthma & Allergy Center, 2600 E 7th St unit a, Charlotte, NC 28204, USA
| | - Marion Groetch
- Division of Allergy & Immunology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1198, New York, NY 10029, USA
| | - Rosan Meyer
- Department of Pediatrics, Imperial College, London, UK
| | | | - Wendy Elverson
- Boston Children's Hospital Center for Nutrition, 333 Longwood Avenue, 4th floor, Boston, MA 02115, USA
| | - Alyssa Friebert
- Allergy and Immunology Clinic, 13123 East 16th Avenue Box 270, Aurora, CO 80045, USA
| | - Jamie Kabourek
- University of Nebraska-Lincoln, Food Innovation Center, Room 279c, 1901 North 21 Street, Lincoln, NE 68588, USA
| | - Stephanie M Marchand
- Department of Pediatrics, The Warren Alpert School of Medicine at Brown University, 593 Eddy Street, Providence, RI 02903, USA; Food and Nutrition Services, Hasbro Children's Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Vicki McWilliam
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia; Murdoch Children's Research Institute, Melbourne, Australia
| | - Merryn Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute, 72 King William Road, North Adelaide, South Australia 5006, Australia; Department of Pediatrics, University of Adelaide, Adelaide, South Australia, Australia; Nurition Department, Women's and Children's Health Network, North Adelaide 5006, South Australia, Australia
| | - Isabel Skypala
- Imperial College, London, UK; Department of Allergy and Clinical Immunology, Royal Brompton & Harefield NHS Foundation Trust, Royal Brompton Hospital, 4th Floor Fulham Wing, Sydney Street, London SW3 6NP, UK
| | - Taryn Van Brennan
- Children's Hospital of Colorado, 13123 East 16th Avenue Box B518 Anschutz Medical Campus, Aurora CO 80045, USA
| | - Emillia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki 57400, Greece
| | - Berber Vlieg-Boerstra
- Department of Pediatrics, OLVG Hospital, PO Box 95500, Amsterdam 1090HM, The Netherlands
| | - Carina Venter
- Children's Hospital of Colorado, 13123 East 16th Avenue Box B518 Anschutz Medical Campus, Aurora CO 80045, USA.
| |
Collapse
|
12
|
Silva JGS, Caramês ETDS, Pallone JAL. Additives and soy detection in powder rice beverage by vibrational spectroscopy as an alternative method for quality and safety control. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Treudler R, Franke A, Schmiedeknecht A, Ballmer-Weber B, Worm M, Werfel T, Jappe U, Biedermann T, Schmitt J, Brehler R, Kleinheinz A, Kleine-Tebbe J, Brüning H, Ruëff F, Ring J, Saloga J, Schäkel K, Holzhauser T, Vieths S, Simon JC. BASALIT trial: double-blind placebo-controlled allergen immunotherapy with rBet v 1-FV in birch-related soya allergy. Allergy 2017; 72:1243-1253. [PMID: 27998002 DOI: 10.1111/all.13112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Conflicting results exist on the effect of allergen immunotherapy (AIT) on pollen-related food allergy. We aimed to investigate the efficacy of one-year AIT with the folding variant (FV) of recombinant (r) Bet v 1 on birch-related soya allergy. METHODS Of 138 subjects with Bet v 1 sensitization, 82 were positive at double-blind placebo-controlled food challenge (DBPCFC) with soya. A total of 56 of 82 were randomized in the ratio of 2:1 (active: placebo). Per-protocol population (PPP) had received ≥150 μg of allergen or placebo preparation. OUTCOME MEASURES lowest observed adverse effect levels (LOAEL), postinterventional occurrence of objective signs (objS) at any dose level, sIgE/IgG4 against Bet v 1 and Gly m 4. Between-group changes were investigated (ancova, Mann-Whitney U-test, Fisher exact test). RESULTS Baseline characteristics including LOAELs were comparable in both groups with objS and subjS occurring in 82% and 95% of active (n = 38) vs 78% and 83% of placebo group (n = 18). After AIT, objS occurred in 24% and 47%, respectively. LOAEL group differences showed a beneficial tendency (P = 0.081) for LOAELobjective in PPP (30 active, 15 placebo). sIgG4 raised only in active group (Bet v 1: P = 0.054, Gly m 4: P = 0.037), and no relevant changes occurred for sIgE. Only 56% of the intended sample size was recruited. CONCLUSION For the first time, we present data on the effect of rBet v 1-FV on birch-related soya allergy. rBet v 1-FV AIT induced significant immunogenic effects. Clinical assessment showed a tendency in favour of the active group but did not reach statistical significance.
Collapse
Affiliation(s)
- R Treudler
- Department of Dermatology, Venerology and Allergology, Universität Leipzig, Leipzig, Germany
| | - A Franke
- Clinical Trial Centre Leipzig (ZKS), Universität Leipzig, Leipzig, Germany
| | - A Schmiedeknecht
- Clinical Trial Centre Leipzig (ZKS), Universität Leipzig, Leipzig, Germany
| | - B Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zürich and Centre of Dermatology and Allergology, Luzerner Kantonsspital, Luzern, Germany
| | - M Worm
- Allergy Center Charité, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - T Werfel
- Department of Dermatology and Allergology, MH Hannover, Hannover, Germany
| | - U Jappe
- Division of Clinical & Molecular Allergology Research Center Borstel, Airway Research Center North (ARCN) and Member of the German Center for Lung Research (DZL), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Internal Medicine, University of Lübeck, Lübeck, Germany
| | - T Biedermann
- Department of Dermatology, Universität Tübingen, Tübingen, Germany
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - J Schmitt
- Department of Dermatology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
- Center for Evidence-based Healthcare, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - R Brehler
- Department of Dermatology, Universität Münster, Münster, Germany
| | - A Kleinheinz
- Department of Dermatology, Elbekliniken Buxtehude, Buxtehude, Germany
| | | | - H Brüning
- Day care clinic for Allergy and Dermatology, Kiel, Germany
| | - F Ruëff
- Department of Dermatology and Allergology, Ludwig-Maximilian University, Munich, Germany
| | - J Ring
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - J Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - K Schäkel
- Department of Dermatology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - T Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - S Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - J C Simon
- Department of Dermatology, Venerology and Allergology, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Schoos AMM, Chawes BL, Melén E, Bergström A, Kull I, Wickman M, Bønnelykke K, Bisgaard H, Rasmussen MA. Sensitization trajectories in childhood revealed by using a cluster analysis. J Allergy Clin Immunol 2017; 140:1693-1699. [PMID: 28347735 DOI: 10.1016/j.jaci.2017.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Assessment of sensitization at a single time point during childhood provides limited clinical information. We hypothesized that sensitization develops as specific patterns with respect to age at debut, development over time, and involved allergens and that such patterns might be more biologically and clinically relevant. OBJECTIVE We sought to explore latent patterns of sensitization during the first 6 years of life and investigate whether such patterns associate with the development of asthma, rhinitis, and eczema. METHODS We investigated 398 children from the at-risk Copenhagen Prospective Studies on Asthma in Childhood 2000 (COPSAC2000) birth cohort with specific IgE against 13 common food and inhalant allergens at the ages of ½, 1½, 4, and 6 years. An unsupervised cluster analysis for 3-dimensional data (nonnegative sparse parallel factor analysis) was used to extract latent patterns explicitly characterizing temporal development of sensitization while clustering allergens and children. Subsequently, these patterns were investigated in relation to asthma, rhinitis, and eczema. Verification was sought in an independent unselected birth cohort (BAMSE) constituting 3051 children with specific IgE against the same allergens at 4 and 8 years of age. RESULTS The nonnegative sparse parallel factor analysis indicated a complex latent structure involving 7 age- and allergen-specific patterns in the COPSAC2000 birth cohort data: (1) dog/cat/horse, (2) timothy grass/birch, (3) molds, (4) house dust mites, (5) peanut/wheat flour/mugwort, (6) peanut/soybean, and (7) egg/milk/wheat flour. Asthma was solely associated with pattern 1 (odds ratio [OR], 3.3; 95% CI, 1.5-7.2), rhinitis with patterns 1 to 4 and 6 (OR, 2.2-4.3), and eczema with patterns 1 to 3 and 5 to 7 (OR, 1.6-2.5). All 7 patterns were verified in the independent BAMSE cohort (R2 > 0.89). CONCLUSION This study suggests the presence of specific sensitization patterns in early childhood differentially associated with development of clinical outcomes. Using such patterns in future research might provide more robust and clinically relevant results.
Collapse
Affiliation(s)
- Ann-Marie M Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo L Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Sachs Children's Hospital, Södersjukhuset, Stockholm, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Inger Kull
- Sachs Children's Hospital, Södersjukhuset, Stockholm, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Wickman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Sachs Children's Hospital, Södersjukhuset, Stockholm, Sweden
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| | - Morten A Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Kleine-Tebbe J, Waßmann-Otto A, Mönnikes H. [Food Allergy and Intolerance : Distinction, Definitions and Delimitation]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 59:705-22. [PMID: 27215624 DOI: 10.1007/s00103-016-2356-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunologically mediated hypersensitivity to foods is defined as food allergy, mainly due to immunglobulins of class E (IgE) triggering immediate reactions (type I hypersensitivity) with possible involvement of mucosa, skin, airways, intestinal tract, and the vascular system. Primary food allergy is based on (early) IgE sensitization against animal (e. g., cow's milk, hen's eggs) or plant proteins (e. g. peanut, hazelnut or wheat). In the case of secondary food allergies, IgE against pollen proteins (e. g., birch) reacts to structurally related food proteins (with cross-reactions to stone and pit fruits). Non-immunological food intolerance reactions are mostly based on carbohydrate malassimilation (e. g., lactose intolerance, fructose malabsorption) and are rarely due to pseudo-allergies (e. g., flavors, dyes, preservatives) primarily in patients with chronic urticaria. Common intestinal symptoms are mainly due to functional disorders (e. g., irritable bowel disease), rarely because of inflammatory intestinal diseases (e. g., celiac disease). Histamine intolerance, gluten hypersensitivity, and so-called food type III hypersensitivities are controversial diagnoses. The aforementioned disease entities/models are of variable importance for the affected individuals, the public health system, and society in general.
Collapse
Affiliation(s)
- Jörg Kleine-Tebbe
- Allergie- und Asthma-Zentrum Westend, Praxis Hanf, Ackermann u. Kleine-Tebbe, Spandauer Damm 130, Haus 9, 14050, Berlin, Deutschland.
| | - Anja Waßmann-Otto
- Ernährungsberatung und -therapie, Dermatologisches Ambulatorium Hamburg-Alstertal, Hamburg, Deutschland
| | - Hubert Mönnikes
- Martin-Luther-Krankenhaus, Klinik für Innere Medizin, Berlin, Deutschland
| |
Collapse
|
16
|
Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, Aalberse RC, Agache I, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilò MB, Blank S, Bohle B, Bosshard PP, Breiteneder H, Brough HA, Caraballo L, Caubet JC, Crameri R, Davies JM, Douladiris N, Ebisawa M, EIgenmann PA, Fernandez-Rivas M, Ferreira F, Gadermaier G, Glatz M, Hamilton RG, Hawranek T, Hellings P, Hoffmann-Sommergruber K, Jakob T, Jappe U, Jutel M, Kamath SD, Knol EF, Korosec P, Kuehn A, Lack G, Lopata AL, Mäkelä M, Morisset M, Niederberger V, Nowak-Węgrzyn AH, Papadopoulos NG, Pastorello EA, Pauli G, Platts-Mills T, Posa D, Poulsen LK, Raulf M, Sastre J, Scala E, Schmid JM, Schmid-Grendelmeier P, van Hage M, van Ree R, Vieths S, Weber R, Wickman M, Muraro A, Ollert M. EAACI Molecular Allergology User's Guide. Pediatr Allergy Immunol 2016; 27 Suppl 23:1-250. [PMID: 27288833 DOI: 10.1111/pai.12563] [Citation(s) in RCA: 539] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The availability of allergen molecules ('components') from several protein families has advanced our understanding of immunoglobulin E (IgE)-mediated responses and enabled 'component-resolved diagnosis' (CRD). The European Academy of Allergy and Clinical Immunology (EAACI) Molecular Allergology User's Guide (MAUG) provides comprehensive information on important allergens and describes the diagnostic options using CRD. Part A of the EAACI MAUG introduces allergen molecules, families, composition of extracts, databases, and diagnostic IgE, skin, and basophil tests. Singleplex and multiplex IgE assays with components improve both sensitivity for low-abundance allergens and analytical specificity; IgE to individual allergens can yield information on clinical risks and distinguish cross-reactivity from true primary sensitization. Part B discusses the clinical and molecular aspects of IgE-mediated allergies to foods (including nuts, seeds, legumes, fruits, vegetables, cereal grains, milk, egg, meat, fish, and shellfish), inhalants (pollen, mold spores, mites, and animal dander), and Hymenoptera venom. Diagnostic algorithms and short case histories provide useful information for the clinical workup of allergic individuals targeted for CRD. Part C covers protein families containing ubiquitous, highly cross-reactive panallergens from plant (lipid transfer proteins, polcalcins, PR-10, profilins) and animal sources (lipocalins, parvalbumins, serum albumins, tropomyosins) and explains their diagnostic and clinical utility. Part D lists 100 important allergen molecules. In conclusion, IgE-mediated reactions and allergic diseases, including allergic rhinoconjunctivitis, asthma, food reactions, and insect sting reactions, are discussed from a novel molecular perspective. The EAACI MAUG documents the rapid progression of molecular allergology from basic research to its integration into clinical practice, a quantum leap in the management of allergic patients.
Collapse
Affiliation(s)
- P M Matricardi
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - J Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic Ackermann, Hanf, & Kleine-Tebbe, Berlin, Germany
| | - H J Hoffmann
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - R Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - C Hilger
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - S Hofmaier
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - R C Aalberse
- Sanquin Research, Department of Immunopathology, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - I Agache
- Department of Allergy and Clinical Immunology, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - R Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - B Ballmer-Weber
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - D Barber
- IMMA-School of Medicine, University CEU San Pablo, Madrid, Spain
| | - K Beyer
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - T Biedermann
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | - M B Bilò
- Allergy Unit, Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Ancona, Italy
| | - S Blank
- Center of Allergy and Environment (ZAUM), Helmholtz Center Munich, Technical University of Munich, Munich, Germany
| | - B Bohle
- Division of Experimental Allergology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Vienna, Austria
| | - P P Bosshard
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - H Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - H A Brough
- Paediatric Allergy, Department of Asthma, Allergy and Respiratory Science, King's College London, Guys' Hospital, London, UK
| | - L Caraballo
- Institute for Immunological Research, The University of Cartagena, Cartagena de Indias, Colombia
| | - J C Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - R Crameri
- Swiss Institute of Allergy and Asthma Research, University of Zürich, Davos, Switzerland
| | - J M Davies
- School of Biomedical Sciences, Institute of Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - N Douladiris
- Allergy Unit, 2nd Paediatric Clinic, National & Kapodistrian University, Athens, Greece
| | - M Ebisawa
- Department of Allergy, Clinical Research Center for Allergology and Rheumatology, Sagamihara National Hospital, Kanagawa, Japan
| | - P A EIgenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - M Fernandez-Rivas
- Allergy Department, Hospital Clinico San Carlos IdISSC, Madrid, Spain
| | - F Ferreira
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - G Gadermaier
- Division of Allergy and Immunology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - M Glatz
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - R G Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Hawranek
- Department of Dermatology, Paracelsus Private Medical University, Salzburg, Austria
| | - P Hellings
- Department of Otorhinolaryngology, Academic Medical Center (AMC), Amsterdam, The Netherlands
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
| | - K Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - T Jakob
- Department of Dermatology and Allergology, University Medical Center Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - U Jappe
- Division of Clinical and Molecular Allergology, Research Centre Borstel, Airway Research Centre North (ARCN), Member of the German Centre for Lung Research (DZL), Borstel, Germany
- Interdisciplinary Allergy Division, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - M Jutel
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - S D Kamath
- Molecular Allergy Research Laboratory, Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville City, Qld, Australia
| | - E F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Korosec
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - A Kuehn
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - G Lack
- King's College London, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
- Division of Asthma, Allergy and Lung Biology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A L Lopata
- Department of Clinical Immunology, 'ALL-MED' Medical Research Institute, Wrocław Medical University, Wrocław, Poland
| | - M Mäkelä
- Skin and Allergy Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - M Morisset
- National Service of Immuno-Allergology, Centre Hospitalier Luxembourg (CHL), Luxembourg, UK
| | - V Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - A H Nowak-Węgrzyn
- Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N G Papadopoulos
- Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, UK
| | - E A Pastorello
- Unit of Allergology and Immunology, Niguarda Ca' Granda Hospital, Milan, Italy
| | - G Pauli
- Service de Pneumologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - T Platts-Mills
- Department of Microbiology & Immunology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - D Posa
- Paediatric Pneumology and Immunology, Charitè Medical University, Berlin, Germany
| | - L K Poulsen
- Allergy Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - M Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-University Bochum (IPA), Bochum, Germany
| | - J Sastre
- Allergy Division, Fundación Jimenez Díaz, Madrid, Spain
| | - E Scala
- Experimental Allergy Unit, IDI-IRCCS, Rome, Italy
| | - J M Schmid
- Department of Respiratory Diseases and Allergy, Institute of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - P Schmid-Grendelmeier
- Allergy Unit, Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - M van Hage
- Department of Medicine Solna, Clinical Immunology and Allergy Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - R van Ree
- Departments of Experimental Immunology and of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Vieths
- Department of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - R Weber
- School of Medicine, University of Colorado, Denver, CO, USA
- Department of Medicine, National Jewish Health Service, Denver, CO, USA
| | - M Wickman
- Sachs' Children's Hospital, Karolinska Institutet, Stockholm, Sweden
| | - A Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region, Department of Mother and Child Health, University of Padua, Padua, Italy
| | - M Ollert
- Department of Infection & Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Savage J, Sicherer S, Wood R. The Natural History of Food Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:196-203; quiz 204. [DOI: 10.1016/j.jaip.2015.11.024] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/01/2023]
|
18
|
Worm M, Reese I, Ballmer-Weber B, Beyer K, Bischoff SC, Classen M, Fischer PJ, Fuchs T, Huttegger I, Jappe U, Klimek L, Koletzko B, Lange L, Lepp U, Mahler V, Niggemann B, Rabe U, Raithel M, Saloga J, Schäfer C, Schnadt S, Schreiber J, Szépfalusi Z, Treudler R, Wagenmann M, Watzl B, Werfel T, Zuberbier T, Kleine-Tebbe J. Guidelines on the management of IgE-mediated food allergies: S2k-Guidelines of the German Society for Allergology and Clinical Immunology (DGAKI) in collaboration with the German Medical Association of Allergologists (AeDA), the German Professional Association of Pediatricians (BVKJ), the German Allergy and Asthma Association (DAAB), German Dermatological Society (DDG), the German Society for Nutrition (DGE), the German Society for Gastroenterology, Digestive and Metabolic Diseases (DGVS), the German Society for Oto-Rhino-Laryngology, Head and Neck Surgery, the German Society for Pediatric and Adolescent Medicine (DGKJ), the German Society for Pediatric Allergology and Environmental Medicine (GPA), the German Society for Pneumology (DGP), the German Society for Pediatric Gastroenterology and Nutrition (GPGE), German Contact Allergy Group (DKG), the Austrian Society for Allergology and Immunology (Æ-GAI), German Professional Association of Nutritional Sciences (VDOE) and the Association of the Scientific Medical Societies Germany (AWMF). ALLERGO JOURNAL INTERNATIONAL 2015; 24:256-293. [PMID: 27069841 PMCID: PMC4792347 DOI: 10.1007/s40629-015-0074-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Margitta Worm
- />Department of Dermatology, Venereology, and Allergology, Charité University Hospital, Berlin, Germany
- />Allergy-Center-Charité Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Imke Reese
- />Nutrition Counseling and Treatment with Specialist Focus on Allergy, Munich, Germany
| | | | - Kirsten Beyer
- />Department of Pediatrics, Division of Pneumology and Immunology, Charité University Hospital, Berlin, Germany
| | - Stephan C. Bischoff
- />Institute for Nutritional Medicine and Prevention, Hohenheim University, Stuttgart, Germany
| | - Martin Classen
- />Department of Pediatric and Adolescent Medicine, Klinikum Links der Weser gGmbH, Bremen, Germany
| | - Peter J. Fischer
- />Specialist Practice for Pediatric and Adolescent Medicine with Focus on Allergology and Pediatric Pneumology, Schwäbisch Gmünd, Germany
| | - Thomas Fuchs
- />Department of Dermatology, Georg-August University, Gõttingen, Germany
| | - Isidor Huttegger
- />University Clinic for Pediatric and Adolescent Medicine, Paracelsus Private Medical University, Salzburg Regional Clinics, Salzburg, Austria
| | - Uta Jappe
- />Department of Dermatology, Allergology, and Venereology, Schleswig-Holstein University Hospital, Lübeck, Germany
| | - Ludger Klimek
- />Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Berthold Koletzko
- />Dr. von Haunersches Children‘s Hospital, Division of Metabolic Diseases and and Nutritional Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Lars Lange
- />Pediatric and Adolescent Medicine, St.-Marien Hospital, Bonn, Germany
| | | | - Vera Mahler
- />Department of Dermatology, Erlangen University Hospital, Erlangen, Germany
| | - Bodo Niggemann
- />Department of Pediatrics, Division of Pneumology and Immunology, Charité University Hospital, Berlin, Germany
| | - Ute Rabe
- />Specialist Department of Pneumology, Division for Asthma and Allergology, Johanniter Hospital Treuenbrietzen gGmbH, Treuenbrietzen, Germany
| | - Martin Raithel
- />Gastroenterology, Pneumology, and Endocrinology, Erlangen University, Erlangen, Germany
| | - Joachim Saloga
- />Department of Dermatology, Mainz University Hospital, Mainz, Germany
| | | | - Sabine Schnadt
- />German Allergy and Asthma Association, Monchengladbach, Germany
| | - Jens Schreiber
- />Division of Pneumology, University Hospital of the Otto-von-Guericke University, Magdeburg, Germany
| | - Zsolt Szépfalusi
- />Department of Pediatric and Adolescent Medicine, Vienna Medical University, Vienna, Austria
| | - Regina Treudler
- />Department of Dermatology, Venereology, and Allergology, Leipzig University, Leipzig, Germany
| | - Martin Wagenmann
- />Department of Oto-Rhino-Laryngology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Bernhard Watzl
- />Max-Rubner Institute, Nutritional Physiology and Biochemistry, Karlsruhe, Germany
| | - Thomas Werfel
- />Department of Dermatology, Allergology, and Venereology, Hannover Medical University, Hannover, Germany
| | - Torsten Zuberbier
- />Department of Dermatology, Venereology, and Allergology, Charité University Hospital, Berlin, Germany
| | | |
Collapse
|
19
|
|
20
|
Werfel T, Asero R, Ballmer-Weber BK, Beyer K, Enrique E, Knulst AC, Mari A, Muraro A, Ollert M, Poulsen LK, Vieths S, Worm M, Hoffmann-Sommergruber K. Position paper of the EAACI: food allergy due to immunological cross-reactions with common inhalant allergens. Allergy 2015; 70:1079-90. [PMID: 26095197 DOI: 10.1111/all.12666] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2015] [Indexed: 01/22/2023]
Abstract
In older children, adolescents, and adults, a substantial part of all IgE-mediated food allergies is caused by cross-reacting allergenic structures shared by inhalants and foods. IgE stimulated by a cross-reactive inhalant allergen can result in diverse patterns of allergic reactions to various foods. Local, mild, or severe systemic reactions may occur already after the first consumption of a food containing a cross-reactive allergen. In clinical practice, clinically relevant sensitizations are elucidated by skin prick testing or by the determination of specific IgE in vitro. Component-resolved diagnosis may help to reach a diagnosis and may predict the risk of a systemic reaction. Allergy needs to be confirmed in cases of unclear history by oral challenge tests. The therapeutic potential of allergen immunotherapy with inhalant allergens in pollen-related food allergy is not clear, and more placebo-controlled studies are needed. As we are facing an increasing incidence of pollen allergies, a shift in sensitization patterns and changes in nutritional habits, and the occurrence of new, so far unknown allergies due to cross-reactions are expected.
Collapse
Affiliation(s)
- T. Werfel
- Department of Dermatology and Allergy; Hannover Medical University; Hannover Germany
| | - R. Asero
- Ambulatorio di Allergologia; Clinica San Carlo; Paderno Dugnano; Milan Italy
| | - B. K. Ballmer-Weber
- Allergy Unit; Department of Dermatology; University Hospital Zürich; Zürich Switzerland
| | - K. Beyer
- Division of Paediatric Pneumology and Immunology; Charité University Hospital; Berlin Germany
| | - E. Enrique
- Allergy Division; Hospital General de Castellón; Castellón Spain
| | - A. C. Knulst
- Department of Dermatology/Allergology; University Medical Center Utrecht; Utrecht The Netherlands
| | - A. Mari
- Associated Center for Molecular Allergology (CAAM); Latina Italy
| | - A. Muraro
- The Referral Centre for Food Allergy Diagnosis and Treatment Veneto Region; Department of Mother and Child Health; University of Padua; Padua Italy
| | - M. Ollert
- Department of Infection and Immunity; Luxembourg Institute of Health; Esch-sur-Alzette; Luxembourg and Department of Dermatology and Allergy; Biederstein; Technische Universität München (TUM); Munich Germany
| | - L. K. Poulsen
- Allergy Clinic Copenhagen University Hospital at Gentofte; Copenhagen Denmark
| | - S. Vieths
- Division of Allergology; Paul-Ehrlich Institute; Langen Germany
| | - M. Worm
- Department of Dermatology and Allergy; of Charité - Universitätsmedizin Berlin; Berlin Germany
| | - K. Hoffmann-Sommergruber
- Department of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
| |
Collapse
|
21
|
Rentzos G, Lundberg V, Lundqvist C, Rodrigues R, van Odijk J, Lundell AC, Pullerits T, Telemo E. Use of a basophil activation test as a complementary diagnostic tool in the diagnosis of severe peanut allergy in adults. Clin Transl Allergy 2015; 5:22. [PMID: 26075055 PMCID: PMC4464723 DOI: 10.1186/s13601-015-0064-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background Diagnosis of severe peanut allergy is difficult and delays in making an accurate diagnosis may place the patient at risk. Adults with a history of anaphylaxis must strictly avoid any contact with peanuts or products that may contain traces of peanuts. For these persons, conventional evaluations with skin prick testing (SPT) and IgE tests may not be sufficient to assess the risk of anaphylaxis. Therefore, we investigated whether the basophil activation test (BAT) could be used for the diagnosis of severe peanut allergy in adults. We compared the non-invasive BAT with conventional laboratory diagnostic tests, including SPT and specific IgE to allergen extracts and components, for the diagnosis of severe peanut allergy. Methods Forty-seven persons with severe allergy to peanuts and a clinical diagnosis of anaphylaxis (PA-group), 22 subjects with peanut sensitization (PS-group) and 22 control (C-group) subjects, all in the age range of 18–60 years, were recruited retrospectively and prospectively into the study. Thirty-four patients with peanut allergy and 11 peanut-sensitized patients were sensitized to soy, while 36 patients in the PA-group and 20 patients in the PS-group were sensitized to birch pollen. All the patients and control subjects were investigated with BAT and SPT for responses to peanut, soy and birch extracts and their serum samples were assayed for the presence of specific IgE to peanut, soy and birch extracts, as well as IgE to allergen components (ISAC). Results In a multivariate factor analysis, severe peanut allergy (PA) was positively associated with SPT to peanut, IgE to peanut, BAT to peanut and IgE to rAra h 1, 2, 3 and 6 peanut components, as well as to soy components (nGly m 5 and nGly m 6). In contrast, peanut sensitization was positively associated with increased levels of IgE to rAra h 8, birch and birch-related components. BAT-detected reactivity to peanut was significantly higher in patients who had a history of severe allergy to peanuts, as compared with patients who were sensitized to peanuts (p < 0.001), and the receiver operating curve (ROC) analysis showed that BAT had high sensitivity and specificity for predicting severe peanut allergy, with a ROC area under the curve of 0.862. However, in the PA-group, the BAT results for peanut correlated only weakly with the levels of IgE to rAra h 1, 2 and 3 and nAra h 6. Study limitations: oral provocation in the patients with a history of severe peanut allergy could not be performed to compare clinical reactivity with the BAT result due to ethical constraints. Neither was it possible to perform BAT with peanut recombinant allergens which were not available at the time the study commenced Conclusions BAT is useful in determining the severity of peanut allergy and may be used as a complementary diagnostic tool to ensure accurate diagnosis of severe peanut allergy in adults. Thus, it may reduce the need to subject these patients to further tests, including an open challenge with peanuts. Electronic supplementary material The online version of this article (doi:10.1186/s13601-015-0064-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Georgios Rentzos
- Sahlgrenska University Hospital, Section of Allergology, Gothenburg, Sweden ; Department of Respiratory Medicine and Allergology, Section of Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Vanja Lundberg
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina Lundqvist
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rui Rodrigues
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenny van Odijk
- Sahlgrenska University Hospital, Section of Allergology, Gothenburg, Sweden
| | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Teet Pullerits
- Sahlgrenska University Hospital, Section of Allergology, Gothenburg, Sweden
| | - Esbjörn Telemo
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Abstract
The prevalence of food allergy is rising for unclear reasons, with prevalence estimates in the developed world approaching 10%. Knowledge regarding the natural course of food allergies is important because it can aid the clinician in diagnosing food allergies and in determining when to consider evaluation for food allergy resolution. Many food allergies with onset in early childhood are outgrown later in childhood, although a minority of food allergy persists into adolescence and even adulthood. More research is needed to improve food allergy diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Jessica Savage
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Smith Building, Room 516c, Boston, MA 02115, USA; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Smith Building, Room 626, Boston, MA 02215, USA.
| | - Christina B Johns
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Smith Building, Room 516c, Boston, MA 02115, USA
| |
Collapse
|
23
|
Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3894] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Sampson HA, Aceves S, Bock SA, James J, Jones S, Lang D, Nadeau K, Nowak-Wegrzyn A, Oppenheimer J, Perry TT, Randolph C, Sicherer SH, Simon RA, Vickery BP, Wood R, Bernstein D, Blessing-Moore J, Khan D, Lang D, Nicklas R, Oppenheimer J, Portnoy J, Randolph C, Schuller D, Spector S, Tilles SA, Wallace D, Sampson HA, Aceves S, Bock SA, James J, Jones S, Lang D, Nadeau K, Nowak-Wegrzyn A, Oppenheimer J, Perry TT, Randolph C, Sicherer SH, Simon RA, Vickery BP, Wood R. Food allergy: a practice parameter update-2014. J Allergy Clin Immunol 2014; 134:1016-25.e43. [PMID: 25174862 DOI: 10.1016/j.jaci.2014.05.013] [Citation(s) in RCA: 572] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 02/06/2023]
Abstract
This parameter was developed by the Joint Task Force on Practice Parameters, representing the American Academy of Allergy, Asthma & Immunology (AAAAI); the American College of Allergy, Asthma & Immunology (ACAAI); and the Joint Council of Allergy, Asthma & Immunology (JCAAI). The AAAAI and the ACAAI have jointly accepted responsibility for establishing "Food Allergy: A practice parameter update-2014." This is a complete and comprehensive document at the current time. The medical environment is a changing one, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, ACAAI, and JCAAI. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Collapse
|
25
|
Celakovska J, Bukač J. Food allergy in patients suffering from atopic dermatitis – association with concomitant allergic diseases. FOOD AGR IMMUNOL 2014. [DOI: 10.1080/09540105.2014.914470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
26
|
Čelakovská J, Ettlerová K, Ettler K, Vaněčková J, Bukač J. Evaluation of allergy to soy in patients with atopic dermatitis older than 14 years of age. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2013.864604] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
27
|
Natarajan S, Luthria D, Bae H, Lakshman D, Mitra A. Transgenic soybeans and soybean protein analysis: an overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11736-43. [PMID: 24099420 DOI: 10.1021/jf402148e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To meet the increasing global demand for soybeans for food and feed consumption, new high-yield varieties with improved quality traits are needed. To ensure the safety of the crop, it is important to determine the variation in seed proteins along with unintended changes that may occur in the crop as a result various stress stimuli, breeding, and genetic modification. Understanding the variation of seed proteins in the wild and cultivated soybean cultivars is useful for determining unintended protein expression in new varieties of soybeans. Proteomic technology is useful to analyze protein variation due to various stimuli. This short review discusses transgenic soybeans, different soybean proteins, and the approaches used for protein analysis. The characterization of soybean protein will be useful for researchers, nutrition professionals, and regulatory agencies dealing with soy-derived food products.
Collapse
Affiliation(s)
- Savithiry Natarajan
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | | | | | | | | |
Collapse
|
28
|
Klemans RJB, Knol EF, Michelsen-Huisman A, Pasmans SGMA, de Kruijf-Broekman W, Bruijnzeel-Koomen CAFM, van Hoffen E, Knulst AC. Components in soy allergy diagnostics: Gly m 2S albumin has the best diagnostic value in adults. Allergy 2013; 68:1396-402. [PMID: 24117462 DOI: 10.1111/all.12259] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Thus far, four soy allergens have been characterized. Their diagnostic value was assessed only using a case-control design with controls not suspected of soy allergy or in a soy-allergic population without controls. Our objective was to analyze the diagnostic value of specific immunoglobulin E (sIgE) to Gly m 2S albumin, Gly m 4, 5, and 6, and their possible relation with severity or culprit soy product. METHODS Adult patients suspected of soy allergy were included (n = 46). Allergy was confirmed by challenge (n = 19) or history (n = 16) and excluded by challenge in 11 patients. Soy components were analyzed by ImmunoCAP. Diagnostic value was assessed in the challenged patient group by an area under receiver operating characteristic (ROC) curve (AUC). RESULTS Specific immunoglobulin E to Gly m 2S albumin had the highest AUC (0.79), comparable to skin prick test (SPT) and sIgE to soy extract (0.76 and 0.77, respectively). All patients were sensitized to either soy extract or Gly m 4 (sIgE ≥ 0.35 kU/l). sIgE to soy extract, Gly m 5, and Gly m 6 was significantly higher in patients with mild symptoms (P = 0.04, 0.02 and 0.02, respectively). Patients only reacting to soy milk had higher sIgE levels to Gly m 4 (median 9.8 vs 1.1 kU/l, P = 0.01). CONCLUSION Specific immunoglobulin E to Gly m 2S albumin had the best accuracy in diagnosing soy allergy. Gly m 5 and 6 were related to mild symptoms. Higher levels of Gly m 4 were related to allergy to soy milk.
Collapse
Affiliation(s)
- R J B Klemans
- Department of (Paediatric) Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ebisawa M, Brostedt P, Sjölander S, Sato S, Borres MP, Ito K. Gly m 2S albumin is a major allergen with a high diagnostic value in soybean-allergic children. J Allergy Clin Immunol 2013; 132:976-8.e1-5. [PMID: 23763971 DOI: 10.1016/j.jaci.2013.04.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 03/21/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Guhsl EE, Hofstetter G, Hemmer W, Ebner C, Vieths S, Vogel L, Breiteneder H, Radauer C. Vig r 6, the cytokinin-specific binding protein from mung bean (Vigna radiata) sprouts, cross-reacts with Bet v 1-related allergens and binds IgE from birch pollen allergic patients' sera. Mol Nutr Food Res 2013; 58:625-34. [PMID: 23996905 PMCID: PMC4135424 DOI: 10.1002/mnfr.201300153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 11/05/2022]
Abstract
SCOPE Birch pollen associated allergy to mung bean sprouts is caused by cross-reactivity between the birch pollen allergen Bet v 1 and the mung bean allergen Vig r 1. We aimed to determine the allergenicity of the cytokinin-specific binding protein from mung bean (Vig r 6), another allergen related to Bet v 1 with only 31% sequence identity. METHODS AND RESULTS Bet v 1, Gly m 4, Vig r 1, and Vig r 6 were produced in Escherichia coli. In an ELISA, 73 and 32% of Bet v 1-sensitized birch-allergic patients' sera (n = 60) showed IgE binding to Vig r 1 and Vig r 6, respectively. Of 19 patients who reported allergic reactions or had positive prick-to-prick tests to mung bean sprouts, 79% showed IgE binding to Vig r 1 and 63% showed IgE binding to Vig r 6. Bet v 1 completely inhibited IgE binding to both mung bean allergens. Vig r 6 showed partial cross-reactivity with Vig r 1 and activated basophils sensitized with mung bean allergic patients' sera. CONCLUSION We demonstrated IgE cross-reactivity despite low sequence identity between Vig r 6 and other Bet v 1-related allergens. Thus, IgE binding to Vig r 6 may contribute to birch pollinosis-associated mung bean sprout allergy.
Collapse
Affiliation(s)
- Eva Elisabeth Guhsl
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Jarmila C, Květuše E, Karel E, Jaroslava V, Josef B. Soy allergy in patients suffering from atopic dermatitis. Indian J Dermatol 2013; 58:325. [PMID: 23919016 PMCID: PMC3726893 DOI: 10.4103/0019-5154.113938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aim: The evaluation of soy allergy in patients over 14 years of age suffering from atopic dermatitis. The evaluation of the correlation to the occurence of peanut and pollen allergy. Materials and Methods: Altogether 175 persons suffering from atopic dermatitis were included in the study: Specific IgE, skin prick tests, atopy patch tests to soy, history and food allergy to peanut and pollen allergy were evaluated. Results: The early allergic reaction to soy was recorded in 2.8% patients. Sensitization to soy was found in another 27.2% patients with no clinical manifestation after soy ingestion. The correlation between the positive results of examinations to soy and between the occurence of peanut and pollen allergy was confirmed in statistics. Conclusion: Almost one third of patients suffering from atopic dermatitis are sensitized to soy without clinical symptoms. The early allergic reaction to soy occur in minority of patients suffering from atopic dermatitis.
Collapse
Affiliation(s)
- Celakovská Jarmila
- Department of Dermatology and Venereology, University Hospital and Medical Faculty of Charles University, Hradec Králové, Czech Republic
| | | | | | | | | |
Collapse
|
32
|
|
33
|
|
34
|
Akkerdaas J, Finkina EI, Balandin SV, Santos Magadán S, Knulst A, Fernandez-Rivas M, Asero R, van Ree R, Ovchinnikova TV. Lentil (Lens culinaris) lipid transfer protein Len c 3: a novel legume allergen. Int Arch Allergy Immunol 2011; 157:51-7. [PMID: 21912173 DOI: 10.1159/000324946] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 02/07/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lentils are increasingly consumed in many parts of the world.Two allergens, Len c 1 and 2, have been reported previously. Recently, peanut and green bean lipid transfer proteins (LTPs) have been identified as the first two members of an important group of allergens that might be associated with severe food allergies. OBJECTIVE To investigate lentil LTP as a potential new allergen. METHODS Efficacy of LTP extraction was monitored at different acidic pH values, using immunoblotting with cross-reactive anti-peach LTP antiserum. Natural LTP was purified from lentil extract and expressed as recombinant allergen in Escherichia coli. Sera from 10 lentil-allergic and/or -sensitized patients (Spain: 6, Italy: 1 and the Netherlands: 3) were used to further characterize lentil LTP. RESULTS Natural lentil LTP, purified from the homogenized germinated seeds and optimally extracted at pH 3, was identified and designated as allergen Len c 3. By CAP, 9/10 sera showed specific IgE to Len c 3. Recombinant (r) Len c 3 was successfully purified. The natural (n) Len c 3 CAP was completely inhibited by rLen c 3/rPru p 3. IgE binding to lentil pH 3 extract blot was completely inhibited by rLen c 3. CONCLUSION The availability of immunochemically active nLen/rLen c 3 as a novel legume allergen facilitates further development and implementation of a third (next to peanut and green bean) legume LTP in component-resolved diagnosis strategies and contributes to evaluate the clinical importance of legume LTPs. Preferential extraction of Len c 3 (pH 3) will affect the production of sensitive extract-based diagnostic tests.
Collapse
|
35
|
Ito K, Sjölander S, Sato S, Movérare R, Tanaka A, Söderström L, Borres M, Poorafshar M, Ebisawa M. IgE to Gly m 5 and Gly m 6 is associated with severe allergic reactions to soybean in Japanese children. J Allergy Clin Immunol 2011; 128:673-5. [PMID: 21555150 DOI: 10.1016/j.jaci.2011.04.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
|
36
|
Vivancos PD, Driscoll SP, Bulman CA, Ying L, Emami K, Treumann A, Mauve C, Noctor G, Foyer CH. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration. PLANT PHYSIOLOGY 2011; 157:256-68. [PMID: 21757634 PMCID: PMC3165874 DOI: 10.1104/pp.111.181024] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/04/2011] [Indexed: 05/05/2023]
Abstract
The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Christine H. Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom (P.D.V., S.P.D., C.H.F.); Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, Campus Universitario de Espinardo, 30100 Murcia, Spain (P.D.V.); School of Agriculture, Food, and Rural Development, University of Newcastle Upon Tyne, Newcastle Upon Tyne NE1 7RU, United Kingdom (C.A.B., L.Y.); North East Protein Analysis Facility, Newcastle Upon Tyne NE1 7RU, United Kingdom (K.E., A.T.); College of Food Engineering, Harbin University of Commerce, Harbin 150076, China (L.Y.); Institut de Biologie des Plantes, Université de Paris Sud 11, 91405 Orsay cedex, France (C.M., G.N.)
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To review and discuss recent studies on molecular diagnosis of peanut and other legume allergy. RECENT FINDINGS Studies from the UK and France suggest that quantification of Ara h 2-specific IgE may accurately discriminate peanut allergy from tolerance. However, the pattern of allergenic component recognition in peanut-sensitized patients from different populations or geographical areas varies, reflecting different pollen and dietary exposures. In the USA, peanut-allergic patients are commonly sensitized to Ara h 1-3, in Spain to Ara h 9 and in Sweden to Ara h 8. Patients with soybean allergy sensitized to Gly m 5 or Gly m 6 allergens may be at greater risk of experiencing severe allergic reactions. SUMMARY Accurate diagnosis of peanut and legume allergy is challenging and essential. Measurement of IgE response to specific allergenic molecules may be more useful in predicting the presence and severity of clinical allergy than currently used skin or blood tests based on whole extracts. However, given the heterogeneity in component recognition patterns observed in different geographical areas, further studies are essential to identify and confirm potentially useful molecular diagnostic and prognostic markers. Until such markers are confirmed and replicated in different age groups, oral food challenge (OFC) remains the gold standard for accurate diagnosis.
Collapse
|
38
|
Green BJ, Cummings KJ, Rittenour WR, Hettick JM, Bledsoe TA, Blachere FM, Siegel PD, Gaughan DM, Kullman GJ, Kreiss K, Cox-Ganser J, Beezhold DH. Occupational sensitization to soy allergens in workers at a processing facility. Clin Exp Allergy 2011; 41:1022-30. [PMID: 21545549 DOI: 10.1111/j.1365-2222.2011.03756.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Exposure to soy antigens has been associated with asthma in community outbreaks and in some workplaces. Recently, 135 soy flake processing workers (SPWs) in a Tennessee facility were evaluated for immune reactivity to soy. Allergic sensitization to soy was common and was five times more prevalent than in health care worker controls (HCWs) with no known soy exposure. OBJECTIVE To characterize sensitization to soy allergens in SPWs. METHODS Sera that were positive to soy ImmunoCAP (n=27) were tested in IgE immunoblots. Wild-type (WT) and transgenic (TG) antigens were sequenced using nanoscale Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry (nanoUPLC MS/MS). IgE reactivity towards 5-enolpyruvylshikimate-3-phosphate synthase (CP4-EPSP), a protein found in TG soy, was additionally investigated. De-identified sera from 50 HCWs were used as a control. RESULTS Immunoblotting of WT and TG soy flake extracts revealed IgE against multiple soy antigens with reactivity towards 48, 54, and 62 kDa bands being the most common. The prominent proteins that bound SPW IgE were identified by nanoUPLC MS/MS analysis to be the high molecular weight soybean storage proteins, β-conglycinin (Gly m 5), and Glycinin (Gly m 6). No specific IgE reactivity could be detected to lower molecular weight soy allergens, Gly m 1 and Gly m 2, in soybean hull (SH) extracts. IgE reactivity was comparable between WT and TG extracts; however, IgE antibodies to CP4-EPSP could not be detected. CONCLUSIONS AND CLINICAL RELEVANCE SPWs with specific IgE to soy reacted most commonly with higher molecular weight soybean storage proteins compared with the lower molecular weight SH allergens identified in community asthma studies. IgE reactivity was comparable between WT and TG soy extracts, while no IgE reactivity to CP4-EPSP was observed. High molecular weight soybean storage allergens, Gly m 5 and Gly m 6, may be respiratory sensitizers in occupational exposed SPWs.
Collapse
Affiliation(s)
- B J Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505-2888,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Platteau C, Cucu T, De Meulenaer B, Devreese B, De Loose M, Taverniers I. Effect of protein glycation in the presence or absence of wheat proteins on detection of soybean proteins by commercial ELISA. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:127-35. [DOI: 10.1080/19440049.2010.539627] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Kosma P, Sjölander S, Landgren E, Borres MP, Hedlin G. Severe reactions after the intake of soy drink in birch pollen-allergic children sensitized to Gly m 4. Acta Paediatr 2011; 100:305-6. [PMID: 20942860 DOI: 10.1111/j.1651-2227.2010.02049.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To study the connection between reaction to soy milk and IgE sensitization to Gly m 4. METHODS Four subjects who experienced unforeseen and severe symptoms after the ingestion of soymilk were studied. RESULTS All children were birch pollen allergic, had high IgE responses to the PR-10 proteins from birch and soybean, Bet v 1 and Gly m 4. All reactions took place after the ingestion of soymilk during the peak pollen season. CONCLUSION This is the first time soybean-dependant pollen-food cross-reaction has been reported in children experiencing reactions during the birch pollen season. These findings may well be helpful to doctors in identifying individuals at risk of severe reactions upon the ingestion of soymilk, and we foresee an increase in the number of similar cases as soy drinks are promoted for health purposes.
Collapse
|
41
|
Rouquié D, Capt A, Eby WH, Sekar V, Hérouet-Guicheney C. Investigation of endogenous soybean food allergens by using a 2-dimensional gel electrophoresis approach. Regul Toxicol Pharmacol 2010; 58:S47-53. [PMID: 20932868 DOI: 10.1016/j.yrtph.2010.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 11/28/2022]
Abstract
As part of the safety assessment of genetically modified (GM) soybean, 2-dimensional gel electrophoresis analyses were performed with the isoxaflutole and glyphosate tolerant soybean FG72, its non-GM near-isogenic counterpart (Jack) and three commercial non-GM soybean lines. The objective was to compare the known endogenous human food allergens in seeds in the five different soybean lines in order to evaluate any potential unintended effect(s) of the genetic modification. In total, 37 protein spots representing five well known soybean food allergen groups were quantified in each genotype. Qualitatively, all the allergenic proteins were detected in the different genetic backgrounds. Quantitatively, among 37 protein spots, the levels of accumulation of three allergens were slightly lower in the GM soybean than in the non-GM counterparts. Specifically, while the levels of two of these three allergens fell within the normal range of variation observed in the four non-GM varieties, the level of the third allergen was slightly below the normal range. Overall, there was no significant increase in the level of allergens in FG72 soybean seeds. Therefore, the FG72 soybean can be considered as safe as its non-GM counterpart with regards to endogenous allergenicity. Additional research is needed to evaluate the biological variability in the levels of endogenous soybean allergens and the correlation between level of allergens and allergenic potential in order to improve the interpretation of these data in the safety assessment of GM soybean context.
Collapse
|
42
|
van Zuuren EJ, Terreehorst I, Tupker RA, Hiemstra PS, Akkerdaas JH. Anaphylaxis after consuming soy products in patients with birch pollinosis. Allergy 2010; 65:1348-9. [PMID: 20219061 DOI: 10.1111/j.1398-9995.2010.02357.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E J van Zuuren
- Dermatology Department B1-Q, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Development and progress made in the field of recombinant allergens have allowed for the development of a new concept in allergy diagnosis, molecular diagnosis (MD), which makes it possible to identify potential disease-eliciting molecules. Microarray-based testing performed with a small amount of serum sample enables clinicians to determine specific-IgE antibodies against multiple recombinants or purified natural allergen components. Performance characteristics of allergens so far tested are comparable with current diagnostic tests, but have to be confirmed in larger studies. The use of allergen components and the successful interpretation of test results in the clinic require some degree of knowledge about the basis of allergen components and their clinical implications. Allergen components can be classified by protein families based on their function and structure. This review provides a brief overview of basic information on allergen components, recombinants or purified, currently available or soon to become commercially available in ImmunoCAP or ISAC systems, including names, protein family and function. Special consideration is given to primary or species-specific sensitization and possible cross-reactivity, because one of the most important clinical utility of MD is its ability to reveal whether the sensitization is genuine in nature (primary, species-specific) or if it is due to cross-reactivity to proteins with similar protein structures, which may help to evaluate the risk of reaction on exposure to different allergen sources. MD can be a support tool for choosing the right treatment for the right patient with the right timing. Such information will eventually give clinicians the possibility to individualize the actions taken, including an advice on targeted allergen exposure reduction, selection of suitable allergens for specific immunotherapy, or the need to perform food challenges. Nevertheless, all in vitro tests should be evaluated together with the clinical history, because allergen sensitization does not necessarily imply clinical responsiveness.
Collapse
Affiliation(s)
- J Sastre
- Allergy Department, Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
44
|
Kemp A, Chiang WC, Gerez I, Goh A, Liew WK, Shek L, Van Bever HPS, Lee BW. Childhood Food Allergy: A Singaporean Perspective. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2010. [DOI: 10.47102/annals-acadmedsg.v39n5p404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Food allergy is defined as reaction to a food which has an immunologic mechanism. Its prevalence is increasing in children globally and is therefore of increasing clinical importance. A useful clinical approach is to distinguish food allergic reactions by the timing of clinical reaction in relation to food exposure and classified as immediate (generally IgE-mediated) and delayed (generally non-IgE-mediated), with the exception of eczema and eosinophilic gastrointestinal disease, which, when associated with food allergy may be associated with either mechanism. This review is aimed at providing the clinician with a Singaporean perspective on the clinical approach and management of these disorders.
Key words: Asia, Children, Food allergy
Collapse
Affiliation(s)
| | | | - Irvin Gerez
- Children’s Medical Institute, National University Hospital, Singapore
| | - Anne Goh
- KK Children and Women’s Hospital, Singapore
| | | | - Lynette Shek
- Children’s Medical Institute, National University Hospital, Singapore
| | - Hugo PS Van Bever
- Children’s Medical Institute, National University Hospital, Singapore
| | - Bee Wah Lee
- Children’s Medical Institute, National University Hospital, Singapore
| |
Collapse
|
45
|
Savage JH, Kaeding AJ, Matsui EC, Wood RA. The natural history of soy allergy. J Allergy Clin Immunol 2010; 125:683-6. [PMID: 20226303 DOI: 10.1016/j.jaci.2009.12.994] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/18/2009] [Accepted: 12/24/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND Soy allergy is very common, affecting approximately 0.4% of children. It is generally thought that the majority of children with soy allergy develop tolerance in early childhood; however, this has not been examined in a large cohort with soy allergy. OBJECTIVE We sought to describe the natural history of soy allergy and identify predictors of oral tolerance/outgrowing soy allergy. METHODS The records of patients with soy allergy seen in a tertiary referral clinic were reviewed. Data collected included soy allergy-related symptoms, history of other food allergies and atopic diseases, soy-specific IgE levels, peanut-specific IgE levels, and food challenge results. RESULTS One hundred thirty-three patients were studied (96 male and 37 female patients). Eighty-five (64%) had asthma, 95 (71%) had allergic rhinitis, and 108 (85%) had atopic dermatitis. Eighty-eight percent had concomitant peanut allergy. The median age at the initial visit was 1 year (range, 2 months to 17.5 years); the median duration of follow-up was 5 years (range, 1-19 years). Kaplan-Meier analysis predicted resolution of soy allergy in 25% by age 4 years, 45% by age 6 years, and 69% by age 10 years. By age 6 years, 59% of children with a peak soy IgE level of less than 5 kU/L, 53% of children with a peak s-IgE level of 5 to 9.9 kU/L, 45% of children with a peak s-IgE level of 10 to 49.9 kU/L, and 18% of children with a peak s-IgE level of greater than 50 kU/L had outgrown soy allergy (P < .01 for trend). CONCLUSIONS In this referral population approximately 50% of children with soy allergy outgrew their allergy by age 7 years. Absolute soy IgE levels were useful predictors of outgrowing soy allergy.
Collapse
Affiliation(s)
- Jessica H Savage
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md, USA
| | | | | | | |
Collapse
|
46
|
Hauser M, Roulias A, Ferreira F, Egger M. Panallergens and their impact on the allergic patient. Allergy Asthma Clin Immunol 2010; 6:1. [PMID: 20298513 PMCID: PMC2830198 DOI: 10.1186/1710-1492-6-1] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/18/2010] [Indexed: 12/16/2022] Open
Abstract
The panallergen concept encompasses families of related proteins, which are involved in general vital processes and thus, widely distributed throughout nature. Plant panallergens share highly conserved sequence regions, structure, and function. They are responsible for many IgE cross-reactions even between unrelated pollen and plant food allergen sources. Although usually considered as minor allergens, sensitization to panallergens might be problematic as it bears the risk of developing multiple sensitizations. Clinical manifestations seem to be tightly connected with geographical and exposure factors. Future population- and disease-based screenings should provide new insights on panallergens and their contribution to disease manifestations. Such information requires molecule-based diagnostics and will be valuable for developing patient-tailored prophylactic and therapeutic approaches. In this article, we focus on profilins, non-specific lipid transfer proteins, polcalcins, and Bet v 1-related proteins and discuss possible consequences of panallergen sensitization for the allergic patient. Based on their pattern of IgE cross-reactivity, which is reflected by their distribution in the plant kingdom, we propose a novel classification of panallergens into ubiquitously spread "real panallergens" (e.g. profilins) and widespread "eurallergens" (e.g. polcalcins). "Stenallergens" display more limited distribution and cross-reactivity patterns, and "monallergens" are restricted to a single allergen source.
Collapse
Affiliation(s)
- Michael Hauser
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | |
Collapse
|
47
|
|
48
|
Cross-reactivity of pollen and food allergens: soybean Gly m 4 is a member of the Bet v 1 superfamily and closely resembles yellow lupine proteins. Biosci Rep 2009; 29:183-92. [DOI: 10.1042/bsr20080117] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In many cases, patients allergic to birch pollen also show allergic reactions after ingestion of certain fruits or vegetables. This observation is explained at the molecular level by cross-reactivity of IgE antibodies induced by sensitization to the major birch pollen allergen Bet v 1 with homologous food allergens. As IgE antibodies recognize conformational epitopes, a precise structural characterization of the allergens involved is necessary to understand cross-reactivity and thus to develop new methods of allergen-specific immunotherapy for allergic patients. Here, we report the three-dimensional solution structure of the soybean allergen Gly m 4, a member of the superfamily of Bet v 1 homologous proteins and a cross-reactant with IgE antibodies originally raised against Bet v 1 as shown by immunoblot inhibition and histamine release assays. Although the overall fold of Gly m 4 is very similar to that of Bet v 1, the three-dimensional structures of these proteins differ in detail. The Gly m 4 local structures that display those differences are also found in proteins from yellow lupine with known physiological function. The three-dimensional structure of Gly m 4 may thus shed some light on the physiological function of this subgroup of PR10 proteins (class 10 of pathogenesis-related proteins) and, in combination with immunological data, allow us to propose surface patches that might represent cross-reactive epitopes.
Collapse
|
49
|
Patil DN, Datta M, Chaudhary A, Tomar S, Sharma AK, Kumar P. Isolation, purification, crystallization and preliminary crystallographic studies of chitinase from tamarind (Tamarindus indica) seeds. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:343-5. [PMID: 19342775 DOI: 10.1107/s1744309109006472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 02/22/2009] [Indexed: 11/11/2022]
Abstract
A protein with chitinase activity has been isolated and purified from tamarind (Tamarindus indica) seeds. N-terminal amino-acid sequence analysis of this protein confirmed it to be an approximately 34 kDa endochitinase which belongs to the acidic class III chitinase family. The protein was crystallized by the vapour-diffusion method using PEG 4000. The crystals belonged to the tetragonal space group P4(1), with two molecules per asymmetric unit. Diffraction data were collected to a resolution of 2.6 A.
Collapse
Affiliation(s)
- Dipak N Patil
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | | | | | | | | | | |
Collapse
|