1
|
Rutkowska-Zapała M, Grabowska-Gurgul A, Lenart M, Szaflarska A, Kluczewska A, Mach-Tomalska M, Baj-Krzyworzeka M, Siedlar M. Gene Signature of Regulatory T Cells Isolated from Children with Selective IgA Deficiency and Common Variable Immunodeficiency. Cells 2024; 13:417. [PMID: 38474381 PMCID: PMC10930802 DOI: 10.3390/cells13050417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Selective IgA deficiency (SIgAD) is the most common form and common variable immunodeficiency (CVID) is the most symptomatic form of predominant antibody deficiency. Despite differences in the clinical picture, a similar genetic background is suggested. A common feature of both disorders is the occurrence of autoimmune conditions. Regulatory T cells (Tregs) are the major immune cell type that maintains autoimmune tolerance. As the different types of abnormalities of Treg cells have been associated with autoimmune disorders in primary immunodeficiency (PID) patients, in our study we aimed to analyze the gene expression profiles of Treg cells in CVID and SIgAD patients compared to age-matched healthy controls. The transcriptome-wide gene profiling was performed by microarray technology. As a result, we analyzed and visualized gene expression patterns of isolated population of Treg cells. We showed the differences at the gene level between patients with and without autoimmunizations. Our findings suggest that the gene signatures of Treg cells isolated from SIgAD and CVID patients differ from age-matched healthy controls and from each other, presenting transcriptional profiles enriched in innate immune or Th response, respectively. The occurrence of autoimmunity in both types of PID is associated with down-regulation of class I IFNs signaling pathways. In summary, our findings improve our understanding of Treg dysfunctions in patients with common PIDs and associated autoimmunity.
Collapse
Affiliation(s)
- Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Agnieszka Grabowska-Gurgul
- Department of Medical Genetics, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland;
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Monika Mach-Tomalska
- Department of Clinical Immunology, University Children’s Hospital, Wielicka 265, 30-663 Krakow, Poland;
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| |
Collapse
|
2
|
Rutkowska-Zapała M, Grabowska A, Lenart M, Kluczewska A, Szaflarska A, Kobylarz K, Pituch-Noworolska A, Siedlar M. Transcriptome profiling of regulatory T cells from children with transient hypogammaglobulinemia of infancy. Clin Exp Immunol 2023; 214:275-288. [PMID: 37936298 PMCID: PMC10719223 DOI: 10.1093/cei/uxad116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
Transient hypogammaglobulinemia of infancy (THI) is one of the most common forms of hypogammaglobulinemia in the early childhood. THI is usually associated with chronic, recurrent bacterial and viral infections, life-threatening in some cases, yet its pathogenesis is still largely unknown. As our previous findings indicated the possible role of Treg cells in the pathomechanism of THI, the aim of the current study was to investigate gene expression profile of Treg cells isolated from THI patients. The transcriptome-wide gene profiling was performed using microarray technology on THI patients in two time-points: during (THI-1), and in resolution phase (THI-2) of hypogammaglobulinemia. As a result, a total of 1086 genes were differentially expressed in THI-1 patients, when compared to THI-2 as well as control group. Among them, 931 were up- and 155 downregulated, and part of them encodes genes important for Treg lymphocyte biology and function, i.e. transcription factors/cofactors that regulate FOXP3 expression. Thus, we postulate that Treg cells isolated from THI patients during hypogammaglobulinemia display enhanced suppressor transcriptome signature. Treg expression profile of THI children after normalization of Ig levels largely resembles the results obtained in healthy control group, suggesting THI Treg transcriptome seems to return to that observed in healthy children. Taken together, we suggest that THI pathomechanism is associated not only with transiently elevated Treg cell numbers, but also with their enhanced regulatory/inhibitory functions. These findings expand our knowledge of human Treg cells and may be useful for the future diagnosis or management of THI.
Collapse
Affiliation(s)
- Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Agnieszka Grabowska
- Department of Medical Genetics, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Krzysztof Kobylarz
- Department of Anesthesiology and Intensive Care, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Anna Pituch-Noworolska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| |
Collapse
|
3
|
Tripathi S, Tsang JS, Park K. Systems immunology of regulatory T cells: can one circuit explain it all? Trends Immunol 2023; 44:766-781. [PMID: 37690962 PMCID: PMC10543564 DOI: 10.1016/j.it.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
Regulatory T (Treg) cells play vital roles in immune homeostasis and response, including discrimination between self- and non-self-antigens, containment of immunopathology, and inflammation resolution. These diverse functions are orchestrated by cellular circuits involving Tregs and other cell types across space and time. Despite dramatic progress in our understanding of Treg biology, a quantitative framework capturing how Treg-containing circuits give rise to these diverse functions is lacking. Here, we propose that different facets of Treg function can be interpreted as distinct operating regimes of the same underlying circuit. We discuss how a systems immunology approach, involving quantitative experiments, computational modeling, and machine learning, can advance our understanding of Treg function, and help identify general operating and design principles underlying immune regulation.
Collapse
Affiliation(s)
- Shubham Tripathi
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - John S Tsang
- Yale Center for Systems and Engineering Immunology and Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - Kyemyung Park
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA; Graduate School of Health Science and Technology and Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
4
|
Zhao N, Zhang C, Ding J, Wu H, Cheng W, Li M, Zhu R, Li H. Altered T lymphocyte subtypes and cytokine profiles in follicular fluid associated with diminished ovary reserve. Am J Reprod Immunol 2022; 87:e13522. [PMID: 35006631 DOI: 10.1111/aji.13522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/05/2021] [Accepted: 12/30/2021] [Indexed: 01/07/2023] Open
Abstract
PROBLEM Diminished ovarian reserve (DOR) is a daunting obstacle in in vitro fertilization (IVF) or intra cytoplasmic sperm injection (ICSI), leading to poor reproductive outcomes. We aim to characterize the T cell and cytokine profiles in follicular fluid (FF) and elucidate its contribution to the development of DOR. METHOD OF STUDY A total of 92 infertile women were enrolled in the study. We assessed the ultrastructure, proliferation, and apoptosis of granulosa cells (GCs). The levels of CCL5 and cytokines in FF was measured. Additionally, we classified the T cells and analyzed cytokines production in T cell. We further verified whether CCL5 can recruit specific T cell subcytes to the follicles. RESULTS Cytoplasmic vacuolization, nucleolar dissociation, partial shortening, swelling, and fusion of mitochondrial cristae were obvious in GCs with DOR. The proliferation of GCs decreased and the proportion of apoptosis increased in DOR. The down-regulation of Bcl-2 and up-regulation of caspase3 were seen in GCs with DOR. The number of CD8+ T cells and proportion of CD8+ /CD4+ T cells in DOR exceeded the control. Higher positive percentage of CD69, CCR5, and IFN-γ in CD8+ T cells, lower positive percentage of IL-10 in CD4+ T cells and PD-1 in CD8+ T cells were detected in DOR. CCL5 accumulated promoting the recruitment of CD8+ T cells to the follicles on interaction with CCR5. CONCLUSION The abnormal proportion of CD8+ T cells and elevated CCL5 and IFN-γ may change the immune balance in FF and impair the growth of GCs, which in turn fuel the progression of DOR.
Collapse
Affiliation(s)
- Nannan Zhao
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ce Zhang
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Ding
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Huihua Wu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Cheng
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mingqing Li
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hong Li
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Jacobse J, Li J, Rings EHHM, Samsom JN, Goettel JA. Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Front Immunol 2021; 12:716499. [PMID: 34421921 PMCID: PMC8371910 DOI: 10.3389/fimmu.2021.716499] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are a specialized population of CD4+ T cells that restrict immune activation and are essential to prevent systemic autoimmunity. In the intestine, the major function of Treg cells is to regulate inflammation as shown by a wide array of mechanistic studies in mice. While Treg cells originating from the thymus can home to the intestine, the majority of Treg cells residing in the intestine are induced from FOXP3neg conventional CD4+ T cells to elicit tolerogenic responses to microbiota and food antigens. This process largely takes place in the gut draining lymph nodes via interaction with antigen-presenting cells that convert circulating naïve T cells into Treg cells. Notably, dysregulation of Treg cells leads to a number of chronic inflammatory disorders, including inflammatory bowel disease. Thus, understanding intestinal Treg cell biology in settings of inflammation and homeostasis has the potential to improve therapeutic options for patients with inflammatory bowel disease. Here, the induction, maintenance, trafficking, and function of intestinal Treg cells is reviewed in the context of intestinal inflammation and inflammatory bowel disease. In this review we propose intestinal Treg cells do not compose fixed Treg cell subsets, but rather (like T helper cells), are plastic and can adopt different programs depending on microenvironmental cues.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pediatrics, Sophia Children’s Hospital, Erasmus University, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Janneke N. Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeremy A. Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Chang Y, Roy S, Pan Z. Store-Operated Calcium Channels as Drug Target in Gastroesophageal Cancers. Front Pharmacol 2021; 12:668730. [PMID: 34012400 PMCID: PMC8126661 DOI: 10.3389/fphar.2021.668730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Gastroesophageal cancers, including tumors occurring in esophagus and stomach, usually have poor prognosis and lack effective chemotherapeutic drugs for treatment. The association between dysregulated store-operated calcium entry (SOCE), a key intracellular Ca2+ signaling pathway and gastroesophageal cancers are emerging. This review summarizes the recent advances in understanding the contribution of SOCE-mediated intracellular Ca2+ signaling to gastroesophageal cancers. It assesses the pathophysiological role of each component in SOCE machinery, such as Orais and STIMs in the cancer cell proliferation, migration, and invasion as well as stemness maintenance. Lastly, it discusses efforts towards development of more specific and potent SOCE inhibitors, which may be a new set of chemotherapeutic drugs appearing at the horizon, to provide either targeted therapy or adjuvant treatment to overcome drug resistance for gastroesophageal cancers.
Collapse
Affiliation(s)
- Yan Chang
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Souvik Roy
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX, United States
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
7
|
Shinwari K, Bolkov M, Tuzankina IA, Chereshnev VA. Newborn Screening through TREC, TREC/KREC System for Primary Immunodeficiency with limitation of TREC/KREC. Comprehensive Review. Antiinflamm Antiallergy Agents Med Chem 2020; 20:132-149. [PMID: 32748762 DOI: 10.2174/1871523019999200730171600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/11/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Newborn screening (NBS) by quantifying T cell receptor excision circles (TRECs) and Kappa receptor excision circles in neonatal dried blood spots (DBS) enables early diagnosis of different types of primary immune deficiencies. Global newborn screening for PID, using an assay to detect T-cell receptor excision circles (TREC) in dried blood spots (DBS), is now being performed in all states in the United States. In this review, we discuss the development and outcomes of TREC, TREC/KREC combines screening, and continued challenges to implementation. OBJECTIVE To review the diagnostic performance of published articles for TREC and TREC/ KREC based NBS for PID and its different types. METHODS Different research resources were used to get an approach for the published data of TREС and KREC based NBS for PID like PubMed, Scopus, Google Scholar, Research gate EMBASE. We extracted TREC and KREC screening Publisher with years of publication, content and cut-off values, and a number of retests, repeat DBS, and referrals from the different published pilot, pilot cohort, Case series, and cohort studies. RESULTS We included the results of TREC, combined TREC/KREC system based NBS screening from different research articles, and divided these results between the Pilot studies, case series, and cohort. For each of these studies, different parameter data are excluded from different articles. Thirteen studies were included, re-confirming 89 known SCID cases in case series and reporting 53 new SCID cases in 3.15 million newborns. Individual TREC contents in all SCID patients were <25 TRECs/μl (except in those evaluated with the New York State assay). CONCLUSION TREC and KREC sensitivity for typical SCID and other types of PID was 100 %. It shows its importance and anticipating the significance of implementation in different undeveloped and developed countries in the NBS program in upcoming years. Data adapting the screening algorithm for pre-term/ill infants reduce the amount of false-positive test results.
Collapse
Affiliation(s)
- Khyber Shinwari
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Mikhail Bolkov
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Irina A Tuzankina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Valery A Chereshnev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| |
Collapse
|
8
|
Zhang Q, Boisson B, Béziat V, Puel A, Casanova JL. Human hyper-IgE syndrome: singular or plural? Mamm Genome 2018; 29:603-617. [PMID: 30094507 PMCID: PMC6317873 DOI: 10.1007/s00335-018-9767-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022]
Abstract
Spectacular progress has been made in the characterization of human hyper-IgE syndrome (HIES) over the last 50 years. HIES is a primary immunodeficiency defined as an association of atopy in a context of very high serum IgE levels, characteristic bacterial and fungal diseases, low-level clinical and biological inflammation, and various non-hematopoietic developmental manifestations. Somewhat arbitrarily, three disorders were successively put forward as the underlying cause of HIES: autosomal dominant (AD) STAT3 deficiency, the only disorder corresponding to the original definition of HIES, and autosomal recessive (AR) DOCK8 and PGM3 deficiencies, in which atopy and high serum IgE levels occur in a context of manifestations not seen in patients with typical HIES. Indeed, these three disorders disrupt different molecular pathways, affect different cell types, and underlie different clinical phenotypes. Surprisingly, several other inherited inborn errors of immunity in which serum IgE levels are high, sometimes almost as high as those in HIES patients, are not considered to belong to the HIES group of diseases. Studies of HIES have been further complicated by the lack of a high serum IgE phenotype in all mouse models of the disease other than two Stat3 mutant strains. The study of infections in mutant mice has helped elucidate only some forms of HIES and infection. Mouse models of these conditions have also been used to study non-hematopoietic phenotypes for STAT3 deficiency, tissue-specific immunity for DOCK8 deficiency, and cell lineage maturation for PGM3 deficiency. We review here the history of the field of HIES since the first clinical description of this condition in 1966, together with the three disorders commonly referred to as HIES, focusing, in particular, on their mouse models. We propose the restriction of the term "HIES" to patients with an AD STAT3-deficiency phenotype, including the most recently described AR ZNF341 deficiency, thus excluding AR DOCK8 and PGM3 deficiencies from the definition of this disease.
Collapse
Affiliation(s)
- Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, 75015, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
9
|
Azizi G, Ziaee V, Tavakol M, Alinia T, Yazdai R, Mohammadi H, Abolhassani H, Aghamohammadi A. Approach to the Management of Autoimmunity in Primary Immunodeficiency. Scand J Immunol 2017; 85:13-29. [PMID: 27862144 DOI: 10.1111/sji.12506] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022]
Abstract
Primary immunodeficiency diseases (PIDs) consist of a genetically heterogeneous group of immune disorders that affect distinct elements of the immune system. PID patients are more prone to infections and non-infectious complications, particularly autoimmunity. The concomitance of immunodeficiency and autoimmunity appears to be paradoxical and leads to difficulty in the management of autoimmune complications in PID patients. Therefore, management of autoimmunity in patients with PID requires special considerations because dysregulations and dysfunctions of the immune system along with persistent inflammation impair the process of diagnosis and treatment.
Collapse
Affiliation(s)
- G Azizi
- Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - V Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - M Tavakol
- Department of Allergy and Clinical Immunology, Shahid Bahonar Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - T Alinia
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - R Yazdai
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H Mohammadi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Liu Y, Hoang TK, Wang T, He B, Tran DQ, Zhou J, Tatevian N, Rhoads JM. Circulating L-selectin expressing-T cell subsets correlate with the severity of Foxp3 deficiency autoimmune disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2016; 9:899-909. [PMID: 29805726 PMCID: PMC5967842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
L-selectin (CD62L) is normally highly expressed in naïve T cells. The expression levels of CD62L have been reported to be decreased on T cells during the inflammatory state. It is currently unknown whether the frequency of CD62L+ T cell subsets in the peripheral blood can be used as a marker to indicate is disease severity during inflammation. Our study evaluated whether circulating CD62L+ T cell subsets correlate with the severity of disease by testing an autoimmune condition of scurfy (sf) mouse associated with multi-organ inflammation due to regulatory T cell deficiency. We observed that scurfy mice spontaneously developed an inflammatory phenotype with a significant decrease in the percentage of CD62L-expressing CD4+ T and CD8+ T cells in the peripheral blood. The percentage of CD62L+CD4+ T and CD62L+CD8+ T cells negatively correlated with disease severity, as determined by the weight of spleen and liver, as well as the mean area of lymphocyte infiltrates in lung and liver. The percentage of CD8+ T cells also correlated directly with these markers of disease severity. To conclude, our results support the concept that circulating CD62L-expressing T cells may be used as markers of disease severity in sf mice which is equivalent to a syndrome characterized by immune dysregulation with polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX syndrome) in humans, or in other autoimmune or inflammatory conditions.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Pediatrics Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School (UT Health), Houston, TX 77030, USA
- Department of Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School (UT Health), Houston, TX 77030, USA
| | - Thomas K Hoang
- Department of Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School (UT Health), Houston, TX 77030, USA
| | - Ting Wang
- Department of Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School (UT Health), Houston, TX 77030, USA
| | - Baokun He
- Department of Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School (UT Health), Houston, TX 77030, USA
| | - Dat Q Tran
- Department of Pediatrics Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School (UT Health), Houston, TX 77030, USA
| | - Jain Zhou
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston McGovern Medical School (UT Health), Houston, TX 77030, USA
| | - Nina Tatevian
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston McGovern Medical School (UT Health), Houston, TX 77030, USA
| | - J Marc Rhoads
- Department of Pediatrics Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School (UT Health), Houston, TX 77030, USA
- Department of Pediatrics Gastroenterology, The University of Texas Health Science Center at Houston McGovern Medical School (UT Health), Houston, TX 77030, USA
| |
Collapse
|
11
|
Learning from other diseases: protection and pathology in chronic fungal infections. Semin Immunopathol 2015; 38:239-48. [DOI: 10.1007/s00281-015-0523-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022]
|
12
|
Boland BS, Widjaja CE, Banno A, Zhang B, Kim SH, Stoven S, Peterson MR, Jones MC, Su HI, Crowe SE, Bui JD, Ho SB, Okugawa Y, Goel A, Marietta EV, Khosroheidari M, Jepsen K, Aramburu J, López-Rodríguez C, Sandborn WJ, Murray JA, Harismendy O, Chang JT. Immunodeficiency and autoimmune enterocolopathy linked to NFAT5 haploinsufficiency. THE JOURNAL OF IMMUNOLOGY 2015; 194:2551-60. [PMID: 25667416 DOI: 10.4049/jimmunol.1401463] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The link between autoimmune diseases and primary immunodeficiency syndromes has been increasingly appreciated. Immunologic evaluation of a young man with autoimmune enterocolopathy and unexplained infections revealed evidence of immunodeficiency, including IgG subclass deficiency, impaired Ag-induced lymphocyte proliferation, reduced cytokine production by CD8(+) T lymphocytes, and decreased numbers of NK cells. Genetic evaluation identified haploinsufficiency of NFAT5, a transcription factor regulating immune cell function and cellular adaptation to hyperosmotic stress, as a possible cause of this syndrome. Inhibition or deletion of NFAT5 in normal human and murine cells recapitulated several of the immune deficits identified in the patient. These results provide evidence of a primary immunodeficiency disorder associated with organ-specific autoimmunity linked to NFAT5 deficiency.
Collapse
Affiliation(s)
- Brigid S Boland
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, CA 92093
| | | | - Asoka Banno
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Bing Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Stephanie H Kim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | | | - Michael R Peterson
- Western Washington Pathology and Multicare Health System, Tacoma, WA 98405
| | - Marilyn C Jones
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA 92093
| | - H Irene Su
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093
| | - Sheila E Crowe
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jack D Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Samuel B Ho
- Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246; Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX 75246; Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246
| | | | - Mahdieh Khosroheidari
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093
| | - Kristen Jepsen
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA 92093
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08003 Spain; and
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08003 Spain; and
| | - William J Sandborn
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, CA 92093
| | | | - Olivier Harismendy
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093; Inflammatory Bowel Disease Center, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
13
|
Zui PAN, JianJie MA. Open Sesame: treasure in store-operated calcium entry pathway for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2014; 58:48-53. [PMID: 25481035 PMCID: PMC4765918 DOI: 10.1007/s11427-014-4774-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/21/2014] [Indexed: 11/26/2022]
Abstract
Store-operated Ca2+ entry (SOCE) controls intracellular Ca2+ homeostasis and regulates a wide range of cellular events including proliferation, migration and invasion. The discovery of STIM proteins as Ca2+ sensors and Orai proteins as Ca2+ channel pore forming units provided molecular tools to understand the physiological function of SOCE. Many studies have revealed the pathophysiological roles of Orai and STIM in tumor cells. This review focuses on recent advances in SOCE and its contribution to tumorigenesis. Altered Orai and/or STIM functions may serve as biomarkers for cancer prognosis, and targeting the SOCE pathway may provide a novel means for cancer treatment.
Collapse
Affiliation(s)
- PAN Zui
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Corresponding author (; )
| | - MA JianJie
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Corresponding author (; )
| |
Collapse
|
14
|
Formula-feeding is associated with shift towards Th1 cytokines. Eur J Nutr 2014; 54:129-38. [PMID: 24691724 DOI: 10.1007/s00394-014-0693-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Breast-feeding (BF) versus formula-feeding (FF) may be a factor for the development and differentiation of T-cell subsets and cytokine production in infancy and childhood. We therefore investigated T-cell subpopulations and their cytokine production by flow cytometry as well as cytokine levels in serum samples in breast-fed versus formula-fed infants and children. METHODS Heparinised blood was taken from 191 healthy infants and children. Peripheral blood mononuclear cells were stimulated with phorbol-mystriate-acetate and ionomycin in the presence of brefeldin. T-cell subsets and cytokines were determined by flow cytometry. Furthermore, serum concentrations of IFNγ and IL4 were measured using ELISA. An IFNγ/IL4 ratio was calculated to estimate the Th1/Th2 balance. RESULTS Children who were formula-fed show higher numbers of memory T and T helper cells. After stimulation, the number of IFNγ-positive memory T-cells was increased up to the age of 6 years. Breast-fed infants show higher percentages of IL4-positive T helper cells. At ELISA determination, formula-fed children showed higher IFNγ levels than breast-fed children, while IL4 levels did not differ. The IFNγ/IL4 ratio (FACS and ELISA) was elevated in formula-fed infants and children. CONCLUSION This systematic analysis of cytokine profiles during childhood in dependency of BF allows a better understanding of immune maturation and demonstrates the influence of early feeding on immune function throughout childhood, even after cessation of BF. FF induces a shift towards Th1 cytokines in children. This may have an influence on the development of autoimmune disease in later life.
Collapse
|
15
|
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders: an evolving web of heritable autoimmune diseases. Curr Opin Pediatr 2013; 25:708-14. [PMID: 24240290 PMCID: PMC4047515 DOI: 10.1097/mop.0000000000000029] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW To summarize recent progress in our understanding of immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders. RECENT FINDINGS A number of Mendelian disorders of immune dysregulation and autoimmunity have been noted to result from defects in T regulatory cell, development and function. The best characterized of these is IPEX, resulting from mutations affecting FOXP3. A number of other gene defects that affect T regulatory cell function also give rise to IPEX-related phenotypes, including loss-of-function mutations in CD25, STAT5b and ITCH. Recent progress includes the identification of gain-of-function mutations in STAT1 as a cause of an IPEX-like disease, emerging FOXP3 genotype/phenotype relationships in IPEX, and the elucidation of a role for the microbiota in the immune dysregulation associated with regulatory T cell deficiency. SUMMARY An expanding spectrum of genetic defects that compromise T regulatory cell function underlies human disorders of immune dysregulation and autoimmunity. Collectively, these disorders offer novel insights into pathways of peripheral tolerance and their disruption in autoimmunity.
Collapse
|
16
|
Thongprayoon C, Tantrachoti P, Phatharacharukul P, Buranapraditkun S, Klaewsongkram J. Associated Immunological Disorders and Cellular Immune Dysfunction in Thymoma: A Study of 87 Cases from Thailand. Arch Immunol Ther Exp (Warsz) 2012; 61:85-93. [DOI: 10.1007/s00005-012-0207-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/21/2012] [Indexed: 02/07/2023]
|
17
|
Current World Literature. Curr Opin Allergy Clin Immunol 2012; 12:670-5. [DOI: 10.1097/aci.0b013e32835af232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|