1
|
Ye T, Fan Y, Zeng X, Wang X, Xiao H. Induction of M1 polarization in BV2 cells by propofol intervention promotes perioperative neurocognitive disorders through the NGF/CREB signaling pathway: an experimental research. Int J Surg 2025; 111:2439-2452. [PMID: 39869375 DOI: 10.1097/js9.0000000000002257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025]
Abstract
Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses. The exact molecular mechanism by which propofol regulates microglial polarization and induces neuroinflammation via the NGF/CREB signaling axis remains unclear. This study aims to investigate the specific mechanisms by which propofol induces perioperative neurocognitive disorders through microglial M1 polarization and neuroinflammation via the NGF/CREB signaling pathway. We demonstrated that propofol impairs neurocognitive function in mice, as evidenced by behavioral deficits. It reduces NGF expression in hippocampal microglia and BV2 cells, where protein-protein interactions between NGF and CREB suggest that NGF primarily regulates neurocognitive function by modulating p-CREB. Propofol intervention and inhibition of the NGF/CREB pathway promote M1 polarization in hippocampal microglia and BV2 cells, leading to reduced cell proliferation, increased apoptosis, elevated oxidative stress, and higher levels of the inflammatory marker TNF-α. Exogenous NGF does not alter the expression of NGF or total CREB but significantly upregulates p-CREB, indicating its regulatory role in signaling pathways associated with microglial activation. Moreover, exogenous NGF mitigates propofol-induced cognitive impairments and M1 polarization, reducing apoptosis and oxidative stress levels. Our findings suggest that propofol downregulates the expression of NGF and CREB, subsequently reducing p-CREB levels. This downregulation induces M1 polarization of microglia, promoting the progression of neuroinflammation and contributing to the development of perioperative neurocognitive disorders.
Collapse
Affiliation(s)
- Ting Ye
- Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China
| | - Yiwei Fan
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiangye Zeng
- Nanchang University Jiangxi Medical College, Nanchang, Jiangxi Province, China
| | - Xiaojing Wang
- Nanchang University Jiangxi Medical College, Nanchang, Jiangxi Province, China
| | - Huaping Xiao
- Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
Wang Z, Zhang L, Wu T, Pan X, Li L, Yang X, Zhang M, Liu Y. Mechanism of dexmedetomidine in brain injury of infant rats via the IRE1α/NF-κB/CHOP pathway. World J Biol Psychiatry 2025; 26:103-115. [PMID: 39815639 DOI: 10.1080/15622975.2024.2446817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
OBJECTIVE We investigated the mechanism of Dexmedetomidine (Dex) in infant rats with brain injury. METHODS The infant rats underwent brain injury modelling. The motor function, spatial learning and memory abilities in rats, and the hippocampal CA1 region Nissl body level and apoptosis were evaluated by behavioural tests and histological stainings. Levels of the hippocampal CA1 region p-IRE1α, nuclear/cytoplasmic p65, CHOP, Bax and Bcl-2 proteins were determined by Western blot. RESULTS Propofol anaesthesia caused brain injury in infant rats. Dex increased the hippocampal CA1 region Nissl body level, abated cell apoptosis, reduced p-IRE1α, ATF6, p-PERK/PERK and CHOP levels, decreased the Bax protein level, elevated the Bcl-2 protein level, and alleviated brain injury in infant rats. After ERS induction and the NF-κB pathway inhibition, the hippocampal CA1 region nuclear/cytoplasmic p65 ratio, CHOP level, and apoptosis were reduced in infant rats with brain injury treated with Dex, while the learning and memory abilities of rats were enhanced. CONCLUSION Dex reduced the hippocampal CA1 region cell apoptosis and enhanced learning and memory abilities by inhibiting the ERS-mediated IRE1α/NF-κB/CHOP pathway, thereby alleviating brain injury in infant rats.
Collapse
Affiliation(s)
- Zhi Wang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Lina Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Ting Wu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Xu Pan
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Le Li
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Xin Yang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Miao Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Ying Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
- Department of Anesthesiology, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|
3
|
Eryilmaz NC, Arslan M, Kucuk A, Tuna AT, Guney S, Kaplanoglu GT, Kavutcu M. Evaluation of the Effects of Repetitive Anaesthesia Administration on the Brain Tissues and Cognitive Functions of Rats with Experimental Alzheimer's Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1266. [PMID: 39202547 PMCID: PMC11356554 DOI: 10.3390/medicina60081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024]
Abstract
Introduction: We evaluated the effects of repeated ketamine, propofol, and ketamine + propofol administration on cognitive functions and brain tissue of elderly rat models with streptozotocin-induced Alzheimer's disease. Materials and Methods: Thirty elderly male Wistar Albino rats were divided into five groups: control (Group C), Alzheimer's (Group A), Alzheimer's + ketamine (Group AK), Alzheimer's + propofol (Group AP), and Alzheimer's + propofol + ketamine (Group APK). Alzheimer's disease was induced in Groups A, AK, AP, and APK via intracerebroventricular streptozotocin. Four weeks after surgery, ketamine, propofol, and ketamine + propofol were administered intraperitoneally for 3 days to Groups AK, AP, and APK, respectively. The radial arm maze test (RAMT) was performed in the initial, 1st, 2nd, 3rd, and 4th weeks after surgery and daily following anaesthesia. Blood and brain tissue samples were obtained. Results: The RAMT results of Groups A, AK, AP, and APK decreased compared to Group C 2 weeks after Alzheimer's disease onset. Compared to Group A, the RAMT results increased in Groups AK and APK after the first anaesthesia, and in Group AP after the second anaesthesia. Brain tissue paraoxonase-1 (PON-1) and catalase (CAT) activities were low, and the thiobarbituric acid reactive substance (TBARS) level was high in Group A compared to Group C. TBARS levels of Groups AP and APK were lower than Group A, while CAT activity was higher. PON-1 activity was higher in Groups AK, AP, and APK than in Group A. Histopathological changes decreased in Groups AP and AK. A decrease in p53 was found in Group C compared to Group A. Ketamine and propofol were found to be effective at Bcl-2 immunoexpression, but a decrease in Caspase-3 was observed in Group APK. GFAP immunoexpression increased in Group A compared to Group C and in Group AP compared to Group AK. Conclusions: Repetitive anaesthesia application was found to positively affect cognitive functions. This was supported by histopathological and biochemical markers.
Collapse
Affiliation(s)
- Nuray Camgoz Eryilmaz
- Department of Anesthesiology and Reanimation, Gazi University Faculty of Medicine, 06500 Ankara, Türkiye; (N.C.E.); (M.A.)
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Gazi University Faculty of Medicine, 06500 Ankara, Türkiye; (N.C.E.); (M.A.)
| | - Aysegul Kucuk
- Department of Physiology, Kutahya Health Sciences University Faculty of Medicine, 43020 Kutahya, Türkiye
| | - Ayca Tas Tuna
- Department of Anesthesiology and Reanimation, Sakarya University Faculty of Medicine, 54050 Sakarya, Türkiye;
| | - Sevin Guney
- Department of Physiology, Gazi University Faculty of Medicine, 06500 Ankara, Türkiye;
| | - Gulnur Take Kaplanoglu
- Department of Histology and Embryology, Gazi University Faculty of Medicine, 06500 Ankara, Türkiye;
| | - Mustafa Kavutcu
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, 06500 Ankara, Türkiye;
| |
Collapse
|
4
|
Li R, Zhang Y, Zhu Q, Wu Y, Song W. The role of anesthesia in peri‑operative neurocognitive disorders: Molecular mechanisms and preventive strategies. FUNDAMENTAL RESEARCH 2024; 4:797-805. [PMID: 39161414 PMCID: PMC11331737 DOI: 10.1016/j.fmre.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Peri-operative neurocognitive disorders (PNDs) include postoperative delirium (POD) and postoperative cognitive dysfunction (POCD). Children and the elderly are the two populations most vulnerable to the development of POD and POCD, which results in both high morbidity and mortality. There are many factors, including neuroinflammation and oxidative stress, that are associated with POD and POCD. General anesthesia is a major risk factor of PNDs. However, the molecular mechanisms of PNDs are poorly understood. Dexmedetomidine (DEX) is a useful sedative agent with analgesic properties, which significantly improves POCD in elderly patients. In this review, the current understanding of anesthesia in PNDs and the protective effects of DEX are summarized, and the underlying mechanisms are further discussed.
Collapse
Affiliation(s)
- Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qinxin Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yili Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| | - Weihong Song
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| |
Collapse
|
5
|
Hang WX, Yang YC, Hu YH, Fang FQ, Wang L, Qian XH, Mcquillan PM, Xiong H, Leng JH, Hu ZY. General anesthetic agents induce neurotoxicity through oligodendrocytes in the developing brain. Zool Res 2024; 45:691-703. [PMID: 38766750 PMCID: PMC11188601 DOI: 10.24272/j.issn.2095-8137.2023.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 05/22/2024] Open
Abstract
General anesthetic agents can impact brain function through interactions with neurons and their effects on glial cells. Oligodendrocytes perform essential roles in the central nervous system, including myelin sheath formation, axonal metabolism, and neuroplasticity regulation. They are particularly vulnerable to the effects of general anesthetic agents resulting in impaired proliferation, differentiation, and apoptosis. Neurologists are increasingly interested in the effects of general anesthetic agents on oligodendrocytes. These agents not only act on the surface receptors of oligodendrocytes to elicit neuroinflammation through modulation of signaling pathways, but also disrupt metabolic processes and alter the expression of genes involved in oligodendrocyte development and function. In this review, we summarize the effects of general anesthetic agents on oligodendrocytes. We anticipate that future research will continue to explore these effects and develop strategies to decrease the incidence of adverse reactions associated with the use of general anesthetic agents.
Collapse
Affiliation(s)
- Wen-Xin Hang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yan-Chang Yang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yu-Han Hu
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Fu-Quan Fang
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Lang Wang
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, China
| | - Xing-Hua Qian
- Department of Anesthesiology, Jiaxing Maternity and Childcare Health Hospital, Jiaxing, Zhejiang 314009, China
| | - Patrick M Mcquillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Hui Xiong
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jian-Hang Leng
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China. E-mail:
| | - Zhi-Yong Hu
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China. E-mail:
| |
Collapse
|
6
|
İZGİ M, SUR E. Determination of the embryotoxic effects of propofol injected into eggs on the cerebellum and spinal cord using histologic methods: an animal study. Turk J Med Sci 2023; 54:1-15. [PMID: 38812654 PMCID: PMC11031173 DOI: 10.55730/1300-0144.5760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/15/2024] [Accepted: 11/29/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim This study aims to determine the possible embryotoxic effects of propofol on the cerebellum and spinal cord using fertile chicken eggs. Materials and methods A total of 430 fertile eggs were divided into 5 groups: control, saline, 2.5 mg.kg-1, 12.5 mg.kg-1, and 37.5 mg.kg-1 propofol. Injections were made immediately before incubation via the air chamber. On the 15th, 18th, and 21st day of incubation, 6 embryos from each group were evaluated. Serial paraffin sections taken from the cerebellum and spinal cord were stained with hematoxylin-eosin, Kluver-Barrera, toluidine blue, and periodic acid-Schiff's reaction. The outer granular layer and total cortex thickness were measured, and the linear density of the Purkinje cells was determined. The ratios of the substantia grisea surface area to the total surface area of the spinal cord were calculated. The transverse and longitudinal diameters of the canalis centralis were also assessed. Results No structural malformation was observed in any embryos examined macroscopically. No significant difference was observed between the groups in terms of development and histologic organization of the cerebellum and spinal cord. However, on the 15th, 18th, and 21st day, the outer granular layer (p < 0.001 for all days) and the total cortex thickness (p < 0.01, p < 0.001, and p < 0.001, respectively) decreased significantly in different propofol dose groups in varying degrees in the cerebellum. Similarly, in the spinal cord, there were significant changes in the ratios of the substantia grisea surface area to the total surface area (p < 0.01 and p < 0.001, respectively). Conclusion It was concluded that the in-ovo-administered propofol given immediately before incubation has adverse effects on the developing cerebellum and spinal cord. Therefore, it is important for anesthesiologists always to remain vigilant when treating female patients of childbearing age.
Collapse
Affiliation(s)
- Murat İZGİ
- Department of Anaesthesiology and Reanimation, Faculty of Medicine, Hacettepe University, Ankara,
Turkiye
| | - Emrah SUR
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Selçuk University, Konya,
Turkiye
| |
Collapse
|
7
|
Liu Y, Yang W, Xue J, Chen J, Liu S, Zhang S, Zhang X, Gu X, Dong Y, Qiu P. Neuroinflammation: The central enabler of postoperative cognitive dysfunction. Biomed Pharmacother 2023; 167:115582. [PMID: 37748409 DOI: 10.1016/j.biopha.2023.115582] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The proportion of advanced age patients undergoing surgical procedures is on the rise owing to advancements in surgical and anesthesia technologies as well as an overall aging population. As a complication of anesthesia and surgery, older patients frequently suffer from postoperative cognitive dysfunction (POCD), which may persist for weeks, months or even longer. POCD is a complex pathological process involving multiple pathogenic factors, and its mechanism is yet unclear. Potential theories include inflammation, deposition of pathogenic proteins, imbalance of neurotransmitters, and chronic stress. The identification, prevention, and treatment of POCD are still in the exploratory stages owing to the absence of standardized diagnostic criteria. Undoubtedly, comprehending the development of POCD remains crucial in overcoming the illness. Neuroinflammation is the leading hypothesis and a crucial component of the pathological network of POCD and may have complex interactions with other mechanisms. In this review, we discuss the possible ways in which surgery and anesthesia cause neuroinflammation and investigate the connection between neuroinflammation and the development of POCD. Understanding these mechanisms may likely ensure that future treatment options of POCD are more effective.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Wei Yang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China
| | - Juntong Chen
- Zhejiang University School of Medicine, Hangzhou 311121, Zhejiang province, China
| | - Shiqing Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Shijie Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiaohui Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning province, China.
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
8
|
Jia D, Wang F, Bai Z, Chen X. BDNF-TrkB/proBDNF-p75 NTR pathway regulation by lipid emulsion rescues bupivacaine-induced central neurotoxicity in rats. Sci Rep 2023; 13:18364. [PMID: 37884604 PMCID: PMC10603093 DOI: 10.1038/s41598-023-45572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
Bupivacaine (BPV) can cause severe central nervous system toxicity when absorbed into the blood circulation system. Rapid intravenous administration of lipid emulsion (LE) could be used to treat local anaesthetic toxicity. This study aimed to investigate the mechanism by which the BDNF-TrkB/proBDNF-p75NTR pathway regulation by LE rescues BPV induced neurotoxicity in hippocampal neurons in rats. Seven- to nine-day-old primary cultured hippocampal neurons were randomly divided into 6 groups: the blank control group (Ctrl), the bupivacaine group (BPV), the lipid emulsion group (LE), the bupivacaine + lipid emulsion group (BPV + LE), the bupivacaine + lipid emulsion + tyrosine kinase receptor B (TrkB) inhibitor group (BPV + LE + K252a), the bupivacaine + lipid emulsion + p75 neurotrophic factor receptor (p75NTR) inhibitor group (BPV + LE + TAT-Pep5). All hippocampal neurons were incubated for 24 h, and their growth state was observed by light microscopy. The relative TrkB and p75NTR mRNA levels were detected by real-time PCR. The protein expression levels of brain-derived neurotrophic factor (BDNF), proBDNF, TrkB, p75NTR and cleaved caspase-3 were detected by western blotting. The results showed that primary hippocampal neuron activity was reduced by BPV. As administration of LE elevated hippocampal neuronal activity, morphology was also somewhat improved. The protein expression and mRNA levels of TrkB and p75NTR were decreased when BPV induced hippocampal neuronal toxicity, while the expression of BDNF was increased. At the same time, BPV increased the original generation of cleaved caspase-3 protein content by hippocampal neurons, while the content of cleaved caspase-3 protein in hippocampal neurons cotreated with LE and BPV was decreased. Thus, this study has revealed LE may reduce apoptosis and promote survival of hippocampal neurons by regulating the BDNF-TrkB pathway and the proBDNF-p75NTR pathway to rescue BPV induced central neurotoxicity in rats.
Collapse
Affiliation(s)
- Danting Jia
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fang Wang
- Department of Anaesthesiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, Ningxia, China
| | - Zhixia Bai
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xuexin Chen
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
9
|
Zhu X, Chen X, Zheng X, Lyu H, Chen J, Yan A, Liu Q, Li S, Zhang Y, Wang T, Duan G, Huang H. Effects of single-use alfentanil versus propofol on cognitive functions after colonoscopy: A randomized controlled trial. Heliyon 2023; 9:e17061. [PMID: 37389042 PMCID: PMC10300329 DOI: 10.1016/j.heliyon.2023.e17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/01/2023] Open
Abstract
Purpose Colonoscopy is often accompanied by short-term postoperative cognitive decline. We aimed to explore whether single-use alfentanil for patients undergoing elective colonoscopy could reduce cognitive impairment at discharge compared with propofol. Patients and methods 172 adult patients undergoing elective colonoscopy were randomized to receive intravenous propofol at 2 mg/kg (group P) or alfentanil at 10 μg/kg (group A); 40 healthy volunteers were included in the blank group. Cognitive function was considered the primary outcome and was measured using five neuropsychological tests before sedation and discharge. The z-score method was used to determine cognitive dysfunction according to z-score >1.96 in two types of neuropsychological tests. Other outcomes included discharge time, vital signs, associated adverse events during colonoscopy, and the satisfaction level of patients and endoscopic physicians. Results 164 patients (78 in group A and 86 in group P) completed the study protocol. At discharge, the incidence of cognitive dysfunction in group P was 23% and was significantly lower in the alfentanil group (2.5%), with a relative risk of 0.11 (95% confidence interval: 0.03-0.46, P < 0.001). The incidence of hypotension in group A was lower than that in group P (3.8% vs 22.1%, relative risk = 0.17 [95% confidence interval: 0.05-0.46, P = 0.001]), and the discharge time in group A was shorter than that in group P (5 [(Rutter and et al., 2016; Zhang and et al., 2013; Hirsh and et al., 2006; Zhou and et al., 2021; Singh and et al., 2008; Ko and et al., 2010; Sargin et al., 2019) 3-93-9 vs 13 [(Ekmekci and et al., 2017; Eberl and et al., 2012; Eberl and et al., 2014; N'Kaoua and et al., 2002; Chung et al., 1995; Berger and et al., 2019; Quan and et al., 2019; Deng and et al., 2021; Gualtieri and Johnson, 2006) 10-1810-18 min, P < 0.001). Conclusion For patients undergoing colonoscopy, single-use alfentanil causes less damage to postoperative cognitive function, less risk of hypotension, and shorter discharge time than propofol.
Collapse
Affiliation(s)
- Xiwen Zhu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuehan Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuemei Zheng
- Department of Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Hongyao Lyu
- Department of Preventive Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Jie Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ai Yan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qi Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiqi Li
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yamei Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ting Wang
- Department of Psychology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Zhang J, Li Y. Propofol-Induced Developmental Neurotoxicity: From Mechanisms to Therapeutic Strategies. ACS Chem Neurosci 2023; 14:1017-1032. [PMID: 36854650 DOI: 10.1021/acschemneuro.2c00755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Propofol is the most commonly used intravenous general anesthetic in clinical anesthesia, and it is also widely used in general anesthesia for pregnant women and infants. Some clinical and preclinical studies have found that propofol causes damage to the immature nervous system, which may lead to neurodevelopmental disorders and cognitive dysfunction in infants and children. However, its potential molecular mechanism has not been fully elucidated. Recent in vivo and in vitro studies have found that some exogenous drugs and interventions can effectively alleviate propofol-induced neurotoxicity. In this review, we focus on the relevant preclinical studies and summarize the latest findings on the potential mechanisms and therapeutic strategies of propofol-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Department of Medicine, Qingdao University, Qingdao 266000, China
| | - Yu Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
11
|
She YJ, Xu HP, Gao Y, Wang Q, Zheng J, Ruan X. Calpain-TRPC6 signaling pathway contributes to propofol-induced developmental neurotoxicity in rats. Neurotoxicology 2023; 95:56-65. [PMID: 36640868 DOI: 10.1016/j.neuro.2023.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Growing animal studies suggest a risk of neuronal damage following early childhood exposure to anesthesia and sedation drugs including propofol. Inhibition of transient receptor potential canonical 6 (TRPC6) degradation has been shown to protect neurons from neuronal damage induced by multiple brain injury models. Our aim was to investigate whether calpain-TRPC6 pathway is a target in propofol-induced neurotoxicity. Postnatal day (PND) 7 rats were exposed to five bolus injections of 25 mg/kg propofol or 10 % intralipid at hourly intervals. Neuronal injury was assessed by the expression pattern of TUNEL staining and cleaved-caspase-3. The Morris water maze test was used to evaluate learning and memory functions in later life. Pretreatments consisting of intracerebroventricular injections of a TRPC6 agonist, TRPC6 inhibitor, or calpain inhibitor were used to confirm the potential role of the calpain-TRPC6 pathway in propofol-induced neurotoxicity. Prolonged exposure to propofol induced neuronal injury, downregulation of TRPC6, and enhancement of calpain activity in the cerebral cortex up to 24 h after anesthesia. It also induced long-term behavioral disorders, manifesting as longer escape latency at PND40 and PND41 and as fewer platform-crossing times and less time spent in the target quadrant at PND42. These propofol-induced effects were attenuated by treatment with the TRPC6 agonist and exaggerated by the TRPC6 inhibitor. Pretreatment with the calpain inhibitor alleviated the propofol-induced TRPC6 downregulation and neuronal injury in the cerebral cortex. In conclusion, our data suggest that a calpain-TRPC6 signaling pathway contributes to propofol-induced acute cortical neuron injury and long-term behavioral disorders in rats.
Collapse
Affiliation(s)
- Ying-Jun She
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Hai-Ping Xu
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Yin Gao
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Qiong Wang
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510600, China
| | - Jun Zheng
- Department of Anesthesiology and Pain Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiangcai Ruan
- Department of Anesthesiology and Pain Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
12
|
Serrao JM, Goodchild CS. Alfaxalone anaesthesia increases brain derived neurotrophic factor levels and preserves postoperative cognition by activating pregnane-X receptors: an in vitro study and a double blind randomised controlled trial. BMC Anesthesiol 2022; 22:401. [PMID: 36564723 PMCID: PMC9789577 DOI: 10.1186/s12871-022-01940-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Alfaxalone is a fast acting intravenous anaesthetic with high therapeutic index. It is an analogue of the naturally-occurring neurosteroid allopregnanolone responsible for maintenance of cognition and neuroprotection by activation of brain pregnane X receptors and consequent increased production of mature brain-derived neurotrophic factor (m-BDNF). Two studies are reported here: an in vitro study investigated whether alfaxalone activates human pregnane X receptors (h-PXR) as effectively as allopregnanolone; and a clinical study that measured postoperative changes in serum m-BDNF and cognition in patients after alfaxalone anaesthesia compared with propofol and sevoflurane. METHODS In vitro Activation of h-PXR by allopregnanolone and alfaxalone solutions (206 - 50,000 nM) was measured using human embryonic kidney cells expressing h-PXR hybridised and linked to the firefly luciferase gene. Light emission by luciferase stimulated by each ligand binding with h-PXR was measured. Clinical A double blind prospective randomised study of patients undergoing hip arthroplasty anaesthetised with alfaxalone TIVA (n = 8) or propofol TIVA (n = 3) or propofol plus sevoflurane inhalational anaesthesia (n = 4). The doses of anaesthetics were titrated to the same depth of anaesthesia (BIS 40-60). Subjects' cognitive performance was assessed using the Grooved Pegboard Test, Digit Symbol Substitution Test (DSST) and Mini Mental State examination (MMSE) for 7 days postoperatively. Serum m-BDNF concentrations were measured for 7 postoperative days. RESULTS In vitro Allopregnanolone and alfaxalone both activated h-PXR, alfaxalone being more efficacious than allopregnanolone: 50,000 nM, p = 0.0019; 16,700 nM, p = 0.0472; 5600 nM, p = 0.0031. Clinical Alfaxalone treated subjects scored better than propofol and sevoflurane anaesthetised patients in the cognition tests: (MMSE p = 0.0251; Grooved Pegboard test dominant hand pre v post anaesthesia scores p = 0.8438 for alfaxalone and p = 0.0156 for propofol and propofol/sevoflurane combined). The higher cognition scores were accompanied by higher serum m-BDNF levels in the alfaxalone anaesthetised patients (p < 0.0001). CONCLUSIONS These results suggest that sedation and anaesthesia induced by the synthetic neuroactive steroid alfaxalone may be accompanied by effects normally caused by physiological actions of allopregnanolone at PXR, namely, increased secretion of m-BDNF and consequent neuroprotection and preservation of cognition. TRIAL REGISTRATION The clinical trial was registered on 17/01/2018 with the Australian New Zealand Clinical Trials Registry: registration number ACTRN12618000064202 [Universal Trial Number U1111-1198-0412].
Collapse
Affiliation(s)
- Juliet M. Serrao
- Drawbridge Pharmaceuticals P/L, 23 Milton Parade, Malvern, Victoria 3144 Australia
| | - Colin S. Goodchild
- Drawbridge Pharmaceuticals P/L, 23 Milton Parade, Malvern, Victoria 3144 Australia
| |
Collapse
|
13
|
Ji D, Karlik J. Neurotoxic Impact of Individual Anesthetic Agents on the Developing Brain. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1779. [PMID: 36421228 PMCID: PMC9689007 DOI: 10.3390/children9111779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 08/04/2023]
Abstract
Concerns about the safety of anesthetic agents in children arose after animal studies revealed disruptions in neurodevelopment after exposure to commonly used anesthetic drugs. These animal studies revealed that volatile inhalational agents, propofol, ketamine, and thiopental may have detrimental effects on neurodevelopment and cognitive function, but dexmedetomidine and xenon have been shown to have neuroprotective properties. The neurocognitive effects of benzodiazepines have not been extensively studied, so their effects on neurodevelopment are undetermined. However, experimental animal models may not truly represent the pathophysiological processes in children. Multiple landmark studies, including the MASK, PANDA, and GAS studies have provided reassurance that brief exposure to anesthesia is not associated with adverse neurocognitive outcomes in infants and children, regardless of the type of anesthetic agent used.
Collapse
|
14
|
Integrated Excitatory/Inhibitory Imbalance and Transcriptomic Analysis Reveals the Association between Dysregulated Synaptic Genes and Anesthetic-Induced Cognitive Dysfunction. Cells 2022; 11:cells11162497. [PMID: 36010580 PMCID: PMC9406780 DOI: 10.3390/cells11162497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Emerging evidence from human epidemiologic and animal studies has demonstrated that developmental anesthesia neurotoxicity could cause long-term cognitive deficits and behavioral problems. However, the underlying mechanisms remain largely unknown. We conducted an electrophysiological analysis of synapse activity and a transcriptomic assay of 24,881 mRNA expression on hippocampal tissues from postnatal day 60 (P60) mice receiving propofol exposure at postnatal day 7 (P7). We found that developmentally propofol-exposed P60 mouse hippocampal neurons displayed an E/I imbalance, compared with control mice as evidenced by the decreased excitation and increased inhibition. We found that propofol exposure at P7 led to the abnormal expression of 317 mRNAs in the hippocampus of P60 mice, including 23 synapse-related genes. Various bioinformatic analyses revealed that these abnormally expressed synaptic genes were associated with the function and development of synapse activity and plasticity, E/I balance, behavior, and cognitive impairment. Our findings suggest that the altered E/I balance may constitute a mechanism for propofol-induced long-term impaired learning and memory in mice. The transcriptomic and bioinformatic analysis of these dysregulated genes related to synaptic function paves the way for development of therapeutic strategies against anesthetic neurodegeneration through the restoration of E/I balance and the modification of synaptic gene expression.
Collapse
|
15
|
Williams RA, Johnson KW, Lee FS, Hemmings HC, Platholi J. A Common Human Brain-Derived Neurotrophic Factor Polymorphism Leads to Prolonged Depression of Excitatory Synaptic Transmission by Isoflurane in Hippocampal Cultures. Front Mol Neurosci 2022; 15:927149. [PMID: 35813074 PMCID: PMC9260310 DOI: 10.3389/fnmol.2022.927149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple presynaptic and postsynaptic targets have been identified for the reversible neurophysiological effects of general anesthetics on synaptic transmission and neuronal excitability. However, the synaptic mechanisms involved in persistent depression of synaptic transmission resulting in more prolonged neurological dysfunction following anesthesia are less clear. Here, we show that brain-derived neurotrophic factor (BDNF), a growth factor implicated in synaptic plasticity and dysfunction, enhances glutamate synaptic vesicle exocytosis, and that attenuation of vesicular BDNF release by isoflurane contributes to transient depression of excitatory synaptic transmission in mice. This reduction in synaptic vesicle exocytosis by isoflurane was acutely irreversible in neurons that release less endogenous BDNF due to a polymorphism (BDNF Val66Met; rs6265) compared to neurons from wild-type mice. These effects were prevented by exogenous application of BDNF. Our findings identify a role for a common human BDNF single nucleotide polymorphism in persistent changes of synaptic function following isoflurane exposure. These short-term persistent alterations in excitatory synaptic transmission indicate a role for human genetic variation in anesthetic effects on synaptic plasticity and neurocognitive function.
Collapse
Affiliation(s)
- Riley A. Williams
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Kenneth W. Johnson
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Francis S. Lee
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States,Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY, United States,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Hugh C. Hemmings
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States,Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Jimcy Platholi
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Jimcy Platholi,
| |
Collapse
|
16
|
Sebastiani A, Bender S, Schäfer MKE, Thal SC. Posttraumatic midazolam administration does not influence brain damage after experimental traumatic brain injury. BMC Anesthesiol 2022; 22:60. [PMID: 35246037 PMCID: PMC8896377 DOI: 10.1186/s12871-022-01592-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The benzodiazepine midazolam is a γ-aminobutyric acid (GABA)-A receptor agonist frequently used for sedation or stress control in patients suffering from traumatic brain injury (TBI). However, experimental studies on benzodiazepines have reported divergent results, raising concerns about its widespread use in patients. Some studies indicate that benzodiazepine-mediated potentiation of GABAergic neurotransmission is detrimental in brain-injured animals. However, other experimental investigations demonstrate neuroprotective effects, especially in pretreatment paradigms. This study investigated whether single-bolus midazolam administration influences secondary brain damage post-TBI. METHODS Two different midazolam dosages (0.5 and 5 mg/kg BW), a combination of midazolam and its competitive antagonist flumazenil, or vehicle solution (NaCl 0.9%) was injected intravenously to mice 24 h after experimental TBI induced by controlled cortical impact. Mice were evaluated for neurological and motor deficits using a 15-point neuroscore and the rotarod test. Histopathological brain damage and mRNA expression of inflammatory marker genes were analyzed using quantitative polymerase chain reaction three days after insult. RESULTS Histological brain damage was not affected by posttraumatic midazolam administration. Midazolam impaired functional recovery, and this effect could not be counteracted by administering the midazolam antagonist flumazenil. An increase in IL-1β mRNA levels due to postinjury application of midazolam was reversible by flumazenil administration. However, other inflammatory parameters were not affected. CONCLUSIONS This study merely reports minor effects of a postinjury midazolam application. Further studies focusing on a time-dependent analysis of posttraumatic benzodiazepine administration are required.
Collapse
Affiliation(s)
- Anne Sebastiani
- Department of Anesthesiology, HELIOS University Hospital Wuppertal, University of Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.,Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Simone Bender
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, HELIOS University Hospital Wuppertal, University of Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany. .,Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
17
|
Ma X, Vuyyuru H, Munsch T, Endres T, Lessmann V, Meis S. ProBDNF Dependence of LTD and Fear Extinction Learning in the Amygdala of Adult Mice. Cereb Cortex 2021; 32:1350-1364. [PMID: 34470044 DOI: 10.1093/cercor/bhab265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Neurotrophins are secreted proteins that control survival, differentiation, and synaptic plasticity. While mature neurotrophins regulate these functions via tyrosine kinase signaling (Trk), uncleaved pro-neurotrophins bind preferentially to the p75 neurotrophin receptor (p75NTR) and often exert opposite effects to those of mature neurotrophins. In the amygdala, brain-derived neurotrophic factor (BDNF) enables long-term potentiation as well as fear and fear extinction learning. In the present study, we focused on the impact of mature BDNF and proBDNF signaling on long-term depression (LTD) in the lateral amygdala (LA). Hence, we conducted extracellular field potential recordings in an in vitro slice preparation and recorded LTD in cortical and thalamic afferents to the LA. LTD was unchanged by acute block of BDNF/TrkB signaling. In contrast, LTD was inhibited by blocking p75NTR signaling, by disinhibition of the proteolytic cleavage of proBDNF into mature BDNF, and by preincubation with a function-blocking anti-proBDNF antibody. Since LTD-like processes in the amygdala are supposed to be related to fear extinction learning, we locally inhibited p75NTR signaling in the amygdala during or after fear extinction training, resulting in impaired fear extinction memory. Overall, these results suggest that in the amygdala proBDNF/p75NTR signaling plays a pivotal role in LTD and fear extinction learning.
Collapse
Affiliation(s)
- Xiaoyun Ma
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Harish Vuyyuru
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Thomas Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Thomas Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Susanne Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany
| |
Collapse
|
18
|
Platholi J, Hemmings HC. Effects of general anesthetics on synaptic transmission and plasticity. Curr Neuropharmacol 2021; 20:27-54. [PMID: 34344292 PMCID: PMC9199550 DOI: 10.2174/1570159x19666210803105232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms, including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on the specific anesthetic agent and the vulnerability of the population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| | - Hugh C Hemmings
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| |
Collapse
|
19
|
Dominguini D, Steckert AV, Michels M, Spies MB, Ritter C, Barichello T, Thompson J, Dal-Pizzol F. The effects of anaesthetics and sedatives on brain inflammation. Neurosci Biobehav Rev 2021; 127:504-513. [PMID: 33992694 DOI: 10.1016/j.neubiorev.2021.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/27/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
Microglia are involved in many dynamic processes in the central nervous system (CNS) including the development of inflammatory processes and neuromodulation. Several sedative, analgesic or anaesthetic drugs, such as opioids, ∝2-adrenergic agonists, ketamine, benzodiazepines and propofol can cause both neuroprotective and harmful effects on the brain. The purpose of this review is to present the main findings on the use of these drugs and the mechanisms involved in microglial activation. Alpha 2-adrenergic agonists, propofol and benzodiazepines have several pro- or anti-inflammatory effects on microglia. Long-term use of benzodiazepines and propofol causes neuroapoptotic effects and α2-adrenergic agonists may attenuate these effects. Conversely, morphine and fentanyl may have proinflammatory effects, causing behavioural changes in patients and changes in cell viability in vitro. Conversely, chronic administration of morphine induces CCL5 chemokine expression in microglial cells that promotes their survival.
Collapse
Affiliation(s)
- Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Amanda V Steckert
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mariana B Spies
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiane Ritter
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Jonathan Thompson
- Department of Cardiovascular Sciences, Anaesthesia Critical Care and Pain Management Group, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
20
|
Pant T, DiStefano JK, Logan S, Bosnjak ZJ. Emerging Role of Long Noncoding RNAs in Perioperative Neurocognitive Disorders and Anesthetic-Induced Developmental Neurotoxicity. Anesth Analg 2021; 132:1614-1625. [PMID: 33332892 DOI: 10.1213/ane.0000000000005317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preclinical investigations in animal models have consistently demonstrated neurobiological changes and life-long cognitive deficits following exposure to widely used anesthetics early in life. However, the mechanisms by which these exposures affect brain function remain poorly understood, therefore, limiting the efficacy of current diagnostic and therapeutic options in human studies. The human brain exhibits an abundant expression of long noncoding RNAs (lncRNAs). These biologically active transcripts play critical roles in a diverse array of functions, including epigenetic regulation. Changes in lncRNA expression have been linked with brain development, normal CNS processes, brain injuries, and the development of neurodegenerative diseases, and many lncRNAs are known to have brain-specific expression. Aberrant lncRNA expression has also been implicated in areas of growing importance in anesthesia-related research, including anesthetic-induced developmental neurotoxicity (AIDN), a condition defined by neurological changes occurring in patients repeatedly exposed to anesthesia, and the related condition of perioperative neurocognitive disorder (PND). In this review, we detail recent advances in PND and AIDN research and summarize the evidence supporting roles for lncRNAs in the brain under both normal and pathologic conditions. We also discuss lncRNAs that have been linked with PND and AIDN, and conclude with a discussion of the clinical potential for lncRNAs to serve as diagnostic and therapeutic targets for the prevention of these neurocognitive disorders and the challenges facing the identification and characterization of associated lncRNAs.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Diabetes and Fibrotic Disease Unit, Translational Genomic Research Institute, Phoenix, Arizona
| | | | - Sara Logan
- Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zeljko J Bosnjak
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
21
|
Intravenous versus Volatile Anesthetic Effects on Postoperative Cognition in Elderly Patients Undergoing Laparoscopic Abdominal Surgery. Anesthesiology 2021; 134:381-394. [PMID: 33439974 DOI: 10.1097/aln.0000000000003680] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Delayed neurocognitive recovery after surgery is associated with poor outcome. Most surgeries require general anesthesia, of which sevoflurane and propofol are the most commonly used inhalational and intravenous anesthetics. The authors tested the primary hypothesis that patients with laparoscopic abdominal surgery under propofol-based anesthesia have a lower incidence of delayed neurocognitive recovery than patients under sevoflurane-based anesthesia. A second hypothesis is that there were blood biomarkers for predicting delayed neurocognitive recovery to occur. METHODS A randomized, double-blind, parallel, controlled study was performed at four hospitals in China. Elderly patients (60 yr and older) undergoing laparoscopic abdominal surgery that was likely longer than 2 h were randomized to a propofol- or sevoflurane-based regimen to maintain general anesthesia. A minimum of 221 patients was planned for each group to detect a one-third decrease in delayed neurocognitive recovery incidence in propofol group compared with sevoflurane group. The primary outcome was delayed neurocognitive recovery incidence 5 to 7 days after surgery. RESULTS A total of 544 patients were enrolled, with 272 patients in each group. Of these patients, 226 in the propofol group and 221 in the sevoflurane group completed the needed neuropsychological tests for diagnosing delayed neurocognitive recovery, and 46 (20.8%) in the sevoflurane group and 38 (16.8%) in the propofol group met the criteria for delayed neurocognitive recovery (odds ratio, 0.77; 95% CI, 0.48 to 1.24; P = 0.279). A high blood interleukin-6 concentration at 1 h after skin incision was associated with an increased likelihood of delayed neurocognitive recovery (odds ratio, 1.04; 95% CI, 1.01 to 1.07; P = 0.007). Adverse event incidences were similar in both groups. CONCLUSIONS Anesthetic choice between propofol and sevoflurane did not appear to affect the incidence of delayed neurocognitive recovery 5 to 7 days after laparoscopic abdominal surgery. A high blood interleukin-6 concentration after surgical incision may be an independent risk factor for delayed neurocognitive recovery. EDITOR’S PERSPECTIVE
Collapse
|
22
|
A synthetic peptide rescues rat cortical neurons from anesthetic-induced cell death, perturbation of growth and synaptic assembly. Sci Rep 2021; 11:4567. [PMID: 33633281 PMCID: PMC7907385 DOI: 10.1038/s41598-021-84168-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Anesthetics are deemed necessary for all major surgical procedures. However, they have also been found to exert neurotoxic effects when tested on various experimental models, but the underlying mechanisms remain unknown. Earlier studies have implicated mitochondrial fragmentation as a potential target of anesthetic-induced toxicity, although clinical strategies to protect their structure and function remain sparse. Here, we sought to determine if preserving mitochondrial networks with a non-toxic, short-life synthetic peptide—P110, would protect cortical neurons against both inhalational and intravenous anesthetic-induced neurotoxicity. This study provides the first direct and comparative account of three key anesthetics (desflurane, propofol, and ketamine) when used under identical conditions, and demonstrates their impact on neonatal, rat cortical neuronal viability, neurite outgrowth and synaptic assembly. Furthermore, we discovered that inhibiting Fis1-mediated mitochondrial fission reverses anesthetic-induced aberrations in an agent-specific manner. This study underscores the importance of designing mitigation strategies invoking mitochondria-mediated protection from anesthetic-induced toxicity in both animals and humans.
Collapse
|
23
|
Androgenic Modulation of the Chloride Transporter NKCC1 Contributes to Age-dependent Isoflurane Neurotoxicity in Male Rats. Anesthesiology 2020; 133:852-866. [PMID: 32930727 DOI: 10.1097/aln.0000000000003437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cognitive deficits after perinatal anesthetic exposure are well established outcomes in animal models. This vulnerability is sex-dependent and associated with expression levels of the chloride transporters NKCC1 and KCC2. The hypothesis was that androgen signaling, NKCC1 function, and the age of isoflurane exposure are critical for the manifestation of anesthetic neurotoxicity in male rats. METHODS Flutamide, an androgen receptor antagonist, was administered to male rats on postnatal days 2, 4, and 6 before 6 h of isoflurane on postnatal day 7 (ntotal = 26). Spatial and recognition memory were subsequently tested in adulthood. NKCC1 and KCC2 protein levels were measured from cortical lysates by Western blot on postnatal day 7 (ntotal = 20). Bumetanide, an NKCC1 antagonist, was injected immediately before isoflurane exposure (postnatal day 7) to study the effect of NKCC1 inhibition (ntotal = 48). To determine whether male rats remain vulnerable to anesthetic neurotoxicity as juveniles, postnatal day 14 animals were exposed to isoflurane and assessed as adults (ntotal = 30). RESULTS Flutamide-treated male rats exposed to isoflurane successfully navigated the spatial (Barnes maze probe trial F[1, 151] = 78; P < 0.001; mean goal exploration ± SD, 6.4 ± 3.9 s) and recognition memory tasks (mean discrimination index ± SD, 0.09 ± 0.14; P = 0.003), unlike isoflurane-exposed controls. Flutamide changed expression patterns of NKCC1 (mean density ± SD: control, 1.49 ± 0.69; flutamide, 0.47 ± 0.11; P < 0.001) and KCC2 (median density [25th percentile, 75th percentile]: control, 0.23 [0.13, 0.49]; flutamide, 1.47 [1.18,1.62]; P < 0.001). Inhibiting NKCC1 with bumetanide was protective for spatial memory (probe trial F[1, 162] = 6.6; P = 0.011; mean goal time, 4.6 [7.4] s). Delaying isoflurane exposure until postnatal day 14 in males preserved spatial memory (probe trial F[1, 140] = 28; P < 0.001; mean goal time, 6.1 [7.0] s). CONCLUSIONS Vulnerability to isoflurane neurotoxicity is abolished by blocking the androgen receptor, disrupting the function of NKCC1, or delaying the time of exposure to at least 2 weeks of age in male rats. These results support a dynamic role for androgens and chloride transporter proteins in perinatal anesthetic neurotoxicity. EDITOR’S PERSPECTIVE
Collapse
|
24
|
Feng L, Sun ZG, Liu QW, Ma T, Xu ZP, Feng ZG, Yuan WX, Zhang H, Xu LH. Propofol inhibits the expression of Abelson nonreceptor tyrosine kinase without affecting learning or memory function in neonatal rats. Brain Behav 2020; 10:e01810. [PMID: 32869521 PMCID: PMC7667295 DOI: 10.1002/brb3.1810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Propofol is one of the most commonly used intravenous drugs to induce and maintain general anesthesia. In vivo and in vitro studies have shown that propofol can affect neuronal growth, leading to apoptosis and impairing cognitive function. The Abelson nonreceptor tyrosine kinase (c-Abl) is associated with both neuritic plaques and neurofibrillary tangles in the brains of patients with Alzheimer's disease and other neurodegenerative diseases. This study aimed to explore the effect of propofol on apoptosis and neurocognition through its regulation of c-Abl expression in vivo and in vitro. MATERIALS AND METHODS In this study, primary hippocampal neurons were cultured and exposed to propofol at different concentrations. Protein expression was measured by Western blotting and coimmunoprecipitation. The c-Abl transcription level was verified by fluorescence quantitative PCR. Reactive oxygen species (ROS) levels were detected by flow cytometry. In addition, an animal experiment was conducted to assess neuronal apoptosis by immunofluorescence staining for caspase-3 and to evaluate behavioral changes by the Morris water maze (MWM) test. RESULTS The in vitro experiment showed that propofol significantly decreased c-Abl expression and ROS levels. In addition, propofol has no cytotoxic effect and does not affect cell activity. Moreover, in the animal experiment, intraperitoneal injection of 50 mg/kg propofol for 5 days obviously decreased the expression of c-Abl in the neonatal rat brain (p < .05) but did not significantly increase the number of caspase-3-positive cells. Propofol treatment did not significantly reduce the number of platform crossings (p > .05) or prolong the escape latency of neonatal rats (p > .05) in the MWM test. CONCLUSIONS The present data suggest that reduced expression of this nonreceptor tyrosine kinase through consecutive daily administration of propofol did not impair learning or memory function in neonatal rats.
Collapse
Affiliation(s)
- Long Feng
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China.,PLA general hospital of Hainan Hospital, Hainan, China
| | - Zhi-Gao Sun
- PLA general hospital of Hainan Hospital, Hainan, China
| | - Qiang-Wei Liu
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China
| | - Tao Ma
- Department of Anesthesiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhi-Peng Xu
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China
| | - Ze-Guo Feng
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China
| | - Wei-Xiu Yuan
- PLA general hospital of Hainan Hospital, Hainan, China
| | - Hong Zhang
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China
| | - Long-He Xu
- Anesthesia and Operation Center, Chinese PLA Medical School, Beijing, China.,PLA general hospital of Hainan Hospital, Hainan, China
| |
Collapse
|
25
|
Liu PF, Gao T, Li TZ, Yang YT, Xu YX, Xu ZP, Mi WD. Repeated propofol exposure-induced neuronal damage and cognitive impairment in aged rats by activation of NF-κB pathway and NLRP3 inflammasome. Neurosci Lett 2020; 740:135461. [PMID: 33115643 DOI: 10.1016/j.neulet.2020.135461] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Elderly patients receive propofol at regular intervals for sedation during gastrointestinal endoscopy. However, the link between cognition and intermittent propofol exposure remains unclear. Thus, we used aged rats to investigate the effect of propofol on cognition. METHODS The study included two parts. In the first part, aged (18-20 months old) male Sprague-Dawley rats underwent intermittent intraperitoneal injection of propofol (200 mg/kg) or intralipid, every 9 days or once a day. In the second part, some aged rats received intraperitoneal injection of Bay 11-7082 (1 mg/kg), a specific inhibitor of NF-κB, 30 min before propofol injection. Memory tests were performed to evaluate cognition 24 h after the entire treatment. The hippocampal neuronal damage was assessed by TUNEL staining. The hippocampal levels of p-NF-κB p65, NLRP3, caspase-1 p20, and cleaved caspase-3 were detected by western blotting. The hippocampal and serum levels of IL-1β, IL-6, and TNF-α were evaluated using ELISA. RESULTS There were no differences in the behavioral tests, hippocampal neuronal damage, and neuroinflammation between groups given intralipid and propofol treatment every 9 days. However, repeated propofol treatment once a day promoted activation of NF-κB and the NLRP3 inflammasome, inducing cognitive impairment and neuroinflammation. Interestingly, pretreatment with Bay-11-7082 not only inhibited NF-κB/NLRP3 inflammasome activation, but also attenuated neuronal damage and cognitive dysfunction in aged rats exposed to daily propofol treatment. CONCLUSIONS Intermittent propofol treatment every 9 days may be safe for aged rats. However, propofol treatment once a day could impair the cognition of aged rats, partly through the activation of the NF-κB pathway and NLRP3 inflammasome, which may be a potential targets for the treatment of cognitive impairment in elderly patients.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China; Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Teng Gao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Tian-Zuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Yi-Tian Yang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China
| | - Yong-Xing Xu
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center, 9th AnXiangBeiLi Road, Beijing, 100101, China
| | - Zhi-Peng Xu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China.
| | - Wei-Dong Mi
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing 100853, China.
| |
Collapse
|
26
|
Yang F, Zhao H, Zhang K, Wu X, Liu H. Research progress and treatment strategies for anesthetic neurotoxicity. Brain Res Bull 2020; 164:37-44. [PMID: 32798600 DOI: 10.1016/j.brainresbull.2020.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Every year, a large number of infants and young children worldwide are administered general anesthesia. Whether general anesthesia adversely affects the intellectual development and cognitive function of children at a later date remains controversial. Many animal experiments have shown that general anesthetics can cause nerve damage during development, affect synaptic plasticity, and induce apoptosis, and finally affect learning and memory function in adulthood. The neurotoxicity of pediatric anesthetics (PAN) has received extensive attention in the field of anesthesia, which has been listed as a potential problem affecting public health by NFDA of the United States. Previous studies on rodents and non-human primates indicate that inhalation of anesthetics early after birth can induce long-term and sustained impairment of learning and memory function, as well as changes in brain function. Many anti-oxidant drugs, dexmedetomidine, as well as a rich living environment and exercise have been proven to reduce the neurotoxicity of anesthetics. In this paper, we summarize the research progress, molecular mechanisms and current intervention measures of anesthetic neurotoxicity.
Collapse
Affiliation(s)
- Fan Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Hai Zhao
- Clinical Skills Center, Shenyang Medical College, Huanghe Street 146, Shenyang, 110034, China.
| | - Kaiyuan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| | - Hongtao Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| |
Collapse
|
27
|
Serum BDNF Levels Are Reduced in Patients with Disorders of Consciousness and Are Not Modified by Verticalization with Robot-Assisted Lower-Limb Training. Neural Plast 2020; 2020:5608145. [PMID: 32565776 PMCID: PMC7261323 DOI: 10.1155/2020/5608145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Little is known about plastic changes occurring in the brains of patients with severe disorders of consciousness (DOCs) caused by acute brain injuries at rest and during rehabilitative treatment. Brain-derived neurotrophic factor (BDNF) is a neurotrophin involved in neurogenesis and synaptic plasticity whose production is powerfully modulated by physical exercise. In this study, we compared serum BDNF levels in 18 patients with unresponsive wakefulness syndrome (UWS) and in a minimally conscious state (MCS) with those in 16 sex- and age-matched healthy controls. In 12 patients, serum BDNF levels before and after verticalization with ErigoPro robot-assisted lower-limb training were compared. Serum BDNF levels were significantly lower in patients (median, 1141 pg/ml; 25th and 75th percentiles, 1016 and 1704 pg/ml) than in controls (median, 2450 pg/ml; 25th and 75th percentiles, 2100 and 2875 pg/ml; p < 0.001). BDNF levels measured before and after verticalization with robot-assisted lower-limb training did not change (p = 0.5). Moreover, BDNF levels did not differ between patients with UWS and MCS (p = 0.2), or between patients with traumatic and nontraumatic brain injuries (p = 0.6). BDNF level correlated positively with the time since brain injury (p = 0.025). In conclusion, serum BDNF levels are reduced in patients with UWS and MCS and cannot be improved by verticalization associated with passive lower-limb training. Additional studies are needed to better understand the mechanisms underlying BDNF reduction in patients with DOCs and to determine the best rehabilitative strategies to promote restorative plastic changes in these patients.
Collapse
|
28
|
|
29
|
Tesic V, Joksimovic SM, Quillinan N, Krishnan K, Covey DF, Todorovic SM, Jevtovic-Todorovic V. Neuroactive steroids alphaxalone and CDNC24 are effective hypnotics and potentiators of GABA A currents, but are not neurotoxic to the developing rat brain. Br J Anaesth 2020; 124:603-613. [PMID: 32151384 DOI: 10.1016/j.bja.2020.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/01/2020] [Accepted: 01/20/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The most currently used general anaesthetics are potent potentiators of γ-aminobutyric acid A (GABAA) receptors and are invariably neurotoxic during the early stages of brain development in preclinical animal models. As causality between GABAA potentiation and anaesthetic-induced developmental neurotoxicity has not been established, the question remains whether GABAergic activity is crucial for promoting/enhancing neurotoxicity. Using the neurosteroid analogue, (3α,5α)-3-hydroxy-13,24-cyclo-18,21-dinorchol-22-en-24-ol (CDNC24), which potentiates recombinant GABAA receptors, we examined whether this potentiation is the driving force in inducing neurotoxicity during development. METHODS The neurotoxic potential of CDNC24 was examined vis-à-vis propofol (2,6-diisopropylphenol) and alphaxalone (5α-pregnan-3α-ol-11,20-dione) at the peak of rat synaptogenesis. In addition to the morphological neurotoxicity studies of the subiculum and medial prefrontal cortex (mPFC), we assessed the extra-, pre-, and postsynaptic effects of these agents on GABAergic neurotransmission in acute subicular slices from rat pups. RESULTS CDNC24, like alphaxalone and propofol, caused dose-dependent hypnosis in vivo, with a higher therapeutic index. CDNC24 and alphaxalone, unlike propofol, did not cause developmental neuroapoptosis in the subiculum and mPFC. Propofol potentiated post- and extrasynaptic GABAA currents as evidenced by increased spontaneous inhibitory postsynaptic current (sIPSC) decay time and prominent tonic currents, respectively. CDNC24 and alphaxalone had a similar postsynaptic effect, but also displayed a strong presynaptic effect as evidenced by decreased frequency of sIPSCs and induced moderate tonic currents. CONCLUSIONS The lack of neurotoxicity of CDNC24 and alphaxalone may be at least partly related to suppression of presynaptic GABA release in the developing brain.
Collapse
Affiliation(s)
- Vesna Tesic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Srdjan M Joksimovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO, USA
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | |
Collapse
|
30
|
Tang X, Zhao Y, Zhou Z, Yan J, Zhou B, Chi X, Luo A, Li S. Resveratrol Mitigates Sevoflurane-Induced Neurotoxicity by the SIRT1-Dependent Regulation of BDNF Expression in Developing Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9018624. [PMID: 32148659 PMCID: PMC7049870 DOI: 10.1155/2020/9018624] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/14/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
Abstract
Various lines of evidence suggest that neonatal exposure to general anesthetics, especially repeatedly, results in neuropathological brain changes and long-term cognitive impairment. Although progress has been made in experimental models, the exact mechanism of GA-induced neurotoxicity in the developing brain remains to be clarified. Sirtuin 1 (SIRT1) plays an important role in synaptic plasticity and cognitive performance, and its abnormal reduction is associated with cognitive dysfunction in neurodegenerative diseases. However, the role of SIRT1 in GA-induced neurotoxicity is unclear to date. In this study, we found that the protein level of SIRT1 was inhibited in the hippocampi of developing mice exposed to sevoflurane. Furthermore, the SIRT1 inhibition in hippocampi was associated with brain-derived neurotrophic factor (BDNF) downregulation modulated by methyl-cytosine-phosphate-guanine-binding protein 2 (MeCP2) and cAMP response element-binding protein (CREB). Pretreatment of neonatal mice with resveratrol nearly reversed the reduction in hippocampal SIRT1 expression, which increased the expression of BDNF in developing mice exposed to sevoflurane. Moreover, changes in the levels of CREB and MeCP2, which were considered to interact with BDNF promoter IV, were also rescued by resveratrol. Furthermore, resveratrol improved the cognitive performance in the Morris water maze test of the adult mice with exposure to sevoflurane in the neonatal stage, without changing motor function in the open field test. Taken together, our findings suggested that SIRT1 deficiency regulated BDNF signaling via regulation of the epigenetic activity of MeCP2 and CREB, and resveratrol might be a promising agent for mitigating sevoflurane-induced neurotoxicity in developing mice.
Collapse
Affiliation(s)
- Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Biyun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Xiaohui Chi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| |
Collapse
|
31
|
Hausburg MA, Banton KL, Roman PE, Salgado F, Baek P, Waxman MJ, Tanner A, Yoder J, Bar-Or D. Effects of propofol on ischemia-reperfusion and traumatic brain injury. J Crit Care 2019; 56:281-287. [PMID: 32001426 DOI: 10.1016/j.jcrc.2019.12.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/07/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Oxidative stress exacerbates brain damage following ischemia-reperfusion and traumatic brain injury (TBI). Management of TBI and critically ill patients commonly involves use of propofol, a sedation medication that acts as a general anesthetic with inherent antioxidant properties. Here we review available evidence from animal model systems and clinical studies that propofol protects against ischemia-reperfusion injury. However, evidence of propofol toxicity in humans exists and manifests as a rare complication, "propofol infusion syndrome" (PRIS). Evidence in animal models suggests that brain injury induces expression of the p75 neurotrophin receptor (p75NTR), which is associated with proapoptotic signaling. p75NTR-mediated apoptosis of neurons is further exacerbated by propofol's superinduction of p75NTR and concomitant inhibition of neurotrophin processing. Propofol is toxic to neurons but not astrocytes, a type of glial cell. Evidence suggests that propofol protects astrocytes from oxidative stress and stimulates astroglial-mediated protection of neurons. One may speculate that in brain injury patients under sedation/anesthesia, propofol provides brain tissue protection or aids in recovery by enhancing astrocyte function. Nevertheless, our understanding of neurologic recovery versus long-term neurological sequelae leading to neurodegeneration is poor, and it is also conceivable that propofol plays a partial as yet unrecognized role in long-term impairment of the injured brain.
Collapse
Affiliation(s)
- Melissa A Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E Hampden, Englewood, CO 80113, USA; Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA; Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075, USA; Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA; Trauma Research Department, Research Medical Center, 2316 E Meyer Blvd, Kansas City, MO 64132, USA; Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214, USA
| | - Kaysie L Banton
- Trauma Research Department, Swedish Medical Center, 501 E Hampden, Englewood, CO 80113, USA
| | - Phillip E Roman
- Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA; Department of Anesthesiology, St. Anthony Hospital, Lakewood, CO 80228, USA
| | - Fernando Salgado
- Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214, USA; Department of Anesthesiology, Wesley Medical Center, Wichita, KS 67214, USA
| | - Peter Baek
- Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075, USA; Department of Anesthesiology, Medical City Plano, Plano, TX 75075, USA
| | - Michael J Waxman
- Department of Critical Care, Research Medical Center, Kansas City, MO 64132, USA
| | - Allen Tanner
- Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA
| | - Jeffrey Yoder
- Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA; Department of Anesthesiology, St. Anthony Hospital, Lakewood, CO 80228, USA
| | - David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E Hampden, Englewood, CO 80113, USA; Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA; Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075, USA; Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA; Trauma Research Department, Research Medical Center, 2316 E Meyer Blvd, Kansas City, MO 64132, USA; Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214, USA; Department of Molecular Biology, Rocky Vista University, 8401 S Chambers Rd, Parker, CO 80134, USA.
| |
Collapse
|
32
|
Abstract
Neuraxial (spinal and epidural) anesthesia has become commonplace in the care of neonates undergoing surgical procedures. These techniques afford many benefits, and, when properly performed, are extremely safe. This article reviews the benefits, risks, and applications of neuraxial anesthesia in neonates.
Collapse
|
33
|
Ma J, Williams J, Eastwood D, Lin S, Qian X, Fang Q, Cope D, Yuan Z, Cao L, An J. High-dose Propofol Anesthesia Reduces the Occurrence of Postoperative Cognitive Dysfunction via Maintaining Cytoskeleton. Neuroscience 2019; 421:136-143. [PMID: 31682819 DOI: 10.1016/j.neuroscience.2019.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a common postoperative complication observed in patients following. Here we tested the molecular mechanisms of memory loss in hippocampus of rat POCD model. We found that high-dose propofol anesthesia significantly alleviated spatial memory loss. The proteomes and transcriptomes in hippocampus showed that hippocampal cytoskeleton related pathways were abnormal in low group while not in high group. The protein assays confirmed that hippocampal actin cytoskeleton was depolymerized in low group while maintained in high group. This study confirms that high-dose propofol anesthesia could mitigate the development of POCD and provides evidences for actin cytoskeleton associated with this syndrome.
Collapse
Affiliation(s)
- Jun Ma
- Department of Anesthesiology, Pain Medicine & CCM, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China; Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang, China
| | - John Williams
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Derek Eastwood
- Murrayfield Hospital Wirral, Royal College of Anaesthetists, London, UK
| | - Siyu Lin
- Department of Anesthesiology, Pain Medicine & CCM, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Qian
- Department of Anesthesiology, Pain Medicine & CCM, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Qiwu Fang
- Department of Anesthesiology, Pain Medicine & CCM, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Doris Cope
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zengqiang Yuan
- Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Liu Cao
- Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, Shenyang, China
| | - Jianxiong An
- Department of Anesthesiology, Pain Medicine & CCM, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
General anesthetic neurotoxicity in the young: Mechanism and prevention. Neurosci Biobehav Rev 2019; 107:883-896. [PMID: 31606415 DOI: 10.1016/j.neubiorev.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022]
Abstract
General anesthesia (GA) is usually considered to safely induce a reversible unconscious state allowing surgery to be performed without pain. A growing number of studies, in particular pre-clinical studies, however, demonstrate that general anesthetics can cause neuronal death and even long-term neurological deficits. Herein, we report our literature review and meta-analysis data of the neurological outcomes after anesthesia in the young. We also review available mechanistic and epigenetic data of GA exposure related to cognitive impairment per se and the potential preventive strategies including natural herbal compounds to attenuate those side effects. In summary, anesthetic-induced neurotoxicity may be treatable and natural herbal compounds and other medications may have great potential for such use but warrants further study before clinical applications can be initiated.
Collapse
|
35
|
Xian F, Li Q, Chen Z. Overexpression of phosphoprotein enriched in astrocytes 15 reverses the damage induced by propofol in hippocampal neurons. Mol Med Rep 2019; 20:1583-1592. [PMID: 31257496 PMCID: PMC6625386 DOI: 10.3892/mmr.2019.10412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 05/20/2019] [Indexed: 01/09/2023] Open
Abstract
Propofol is a general anesthetic used in surgical operations. Phosphoprotein enriched in astrocytes 15(PEA15) was initially identified in astrocytes. The present study examined the role of PEA15 in the damage induced by propofol in hippocampal neurons. A model of hippocampal neuron damage was established using 50 µmol/l propofol. Cell viability, proliferation and apoptosis of hippocampal neurons were tested by Cell Counting Kit‑8 and flow cytometry. Western blotting and reverse transcription‑quantitative polymerase chain reaction analysis were performed to measure the expression levels of PEA15, and additional factors involved in apoptosis or in the signaling pathway downstream of PEA15. The present results suggested that propofol significantly decreased PEA15 expression levels in hippocampal neurons. Furthermore, overexpression of PEA15 significantly increased the cell viability and cell proliferation of cells treated with propofol. Additionally, PEA15 overexpression decreased apoptosis, which was promoted by propofol. Treatment with propofol significantly decreased the protein expression levels of pro‑caspase‑3, B‑cell lymphoma-2, phosphorylated extracellular signal‑regulated kinases (ERK)1/2, ribosomal S6 kinase 2 (RSK2) and phosphorylated cAMP responsive element binding protein 1 (CREB1). However, propofol upregulated active caspase‑3 and Bax expression levels. Notably, PEA15 overexpression was able to reverse the effects of propofol. Collectively, overexpression of PEA15 was able to attenuate the neurotoxicity of propofol in rat hippocampal neurons by increasing proliferation and repressing apoptosis via upregulation of the ERK‑CREB‑RSK2 signaling pathway.
Collapse
Affiliation(s)
- Feng Xian
- Department of Anesthesiology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Qifang Li
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Zuping Chen
- Department of Anesthesiology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
36
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
37
|
Abstract
Mounting evidence suggests that prolonged exposure to general anesthesia (GA) during brain synaptogenesis damages the immature neurons and results in long-term neurocognitive impairments. Importantly, synaptogenesis relies on timely axon pruning to select axons that participate in active neural circuit formation. This process is in part dependent on proper homeostasis of neurotrophic factors, in particular brain-derived neurotrophic factor (BDNF). We set out to examine how GA may modulate axon maintenance and pruning and focused on the role of BDNF. We exposed post-natal day (PND)7 mice to ketamine using a well-established dosing regimen known to induce significant developmental neurotoxicity. We performed morphometric analyses of the infrapyramidal bundle (IPB) since IPB is known to undergo intense developmental modeling and as such is commonly used as a well-established model of in vivo pruning in rodents. When IPB remodeling was followed from PND10 until PND65, we noted a delay in axonal pruning in ketamine-treated animals when compared to controls; this impairment coincided with ketamine-induced downregulation in BDNF protein expression and maturation suggesting two conclusions: a surge in BDNF protein expression "signals" intense IPB pruning in control animals and ketamine-induced downregulation of BDNF synthesis and maturation could contribute to impaired IPB pruning. We conclude that the combined effects on BDNF homeostasis and impaired axon pruning may in part explain ketamine-induced impairment of neuronal circuitry formation.
Collapse
|
38
|
Liang C, Du F, Wang J, Cang J, Xue Z. Propofol Regulates Neural Stem Cell Proliferation and Differentiation via Calmodulin-Dependent Protein Kinase II/AMPK/ATF5 Signaling Axis. Anesth Analg 2018; 129:608-617. [PMID: 30303867 DOI: 10.1213/ane.0000000000003844] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Propofol can cause degeneration of developing brain cells and subsequent long-term learning or memory impairment. However, at the early stage of embryonic development, the molecular mechanism of propofol-induced inhibition in neural stem cells (NSCs) neurogenesis is still unclear. The aim of this study was to determine the role of propofol in NSCs neurogenesis and, more importantly, to explore the underlying mechanism. METHODS First, a single intraperitoneal injection of propofol was performed in pregnant mice, and 6 hours after administration of propofol, the hippocampus RNA and the protein of the embryos' brains was extracted to analyze the expression of neuron-specific markers. Second, the primary NSCs were isolated from the hippocampus of mouse embryonic brain and then treated with propofol for cell viability, immunostaining, and transwell assays; more importantly, we performed RNA sequencing (RNA-seq) and q-reverse transcription polymerase chain reaction assays to identify genes regulated by propofol; the Western blot, small interfering RNA (SiRNA), and luciferase reporter assays were used to study the effects of propofol on calmodulin-dependent protein kinase (CaMk) II/5' adenosine monophosphate-activated protein kinase (AMPK)/activating transcription factor 5 (ATF5) signaling pathway. RESULTS Our results indicated that propofol treatment could inhibit the proliferation, migration, and differentiation of NSCs. The results of RNA-seq assays showed that propofol treatment resulted in downregulation of a group of Ca-dependent genes. The following mechanism studies showed that propofol regulates the proliferation, differentiation, and migration of NSCs through the CaMkII/phosphorylation of serine at amino acid position 485 (pS485)/AMPK/ATF5 signaling pathway. CONCLUSIONS The results from study demonstrated that propofol inhibits the proliferation, differentiation, and migration of NSCs, and these effects are partially mediated by CaMkII/pS485/AMPK/ATF5 signaling pathway.
Collapse
Affiliation(s)
- Chao Liang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
39
|
Logan S, Jiang C, Yan Y, Inagaki Y, Arzua T, Bai X. Propofol Alters Long Non-Coding RNA Profiles in the Neonatal Mouse Hippocampus: Implication of Novel Mechanisms in Anesthetic-Induced Developmental Neurotoxicity. Cell Physiol Biochem 2018; 49:2496-2510. [PMID: 30261491 DOI: 10.1159/000493875] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Propofol induces acute neurotoxicity (e.g., neuroapoptosis) followed by impairment of long-term memory and learning in animals. However, underlying mechanisms remain largely unknown. Long non-coding RNAs (lncRNAs) are found to participate in various pathological processes. We hypothesized that lncRNA profile and the associated signaling pathways were altered, and these changes might be related to the neurotoxicity observed in the neonatal mouse hippocampus following propofol exposure. METHODS In this laboratory experiment, 7-day-old mice were exposed to a subanesthetic dose of propofol for 3 hours, with 4 animals per group. Hippocampal tissues were harvested 3 hours after propofol administration. Neuroapoptosis was analyzed based on caspase 3 activity using a colorimetric assay. A microarray was performed to investigate the profiles of 35,923 lncRNAs and 24,881 messenger RNAs (mRNAs). Representative differentially expressed lncRNAs and mRNAs were validated using reverse transcription quantitative polymerase chain reaction. All mRNAs dysregulated by propofol and the 50 top-ranked, significantly dysregulated lncRNAs were subject to bioinformatics analysis for exploring the potential mechanisms and signaling network of propofol-induced neurotoxicity. RESULTS Propofol induced neuroapoptosis in the hippocampus, with differential expression of 159 lncRNAs and 100 mRNAs (fold change ± 2.0, P< 0.05). Bioinformatics analysis demonstrated that these lncRNAs and their associated mRNAs might participate in neurodegenerative pathways (e.g., calcium handling, apoptosis, autophagy, and synaptogenesis). CONCLUSION This novel report emphasizes that propofol alters profiles of lncRNAs, mRNAs, and their cooperative signaling network, which provides novel insights into molecular mechanisms of anesthetic-induced developmental neurodegeneration and preventive targets against the neurotoxicity.
Collapse
Affiliation(s)
- Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xian, China
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yasuyoshi Inagaki
- Department of Emergency Medicine, Nayoro City General Hospital, Nayoro, Japan
| | - Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
40
|
Shao CZ, Xia KP. Sevoflurane anesthesia represses neurogenesis of hippocampus neural stem cells via regulating microRNA-183-mediated NR4A2 in newborn rats. J Cell Physiol 2018; 234:3864-3873. [PMID: 30191980 DOI: 10.1002/jcp.27158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022]
Abstract
Sevoflurane has been commonly utilized in nonobstetric surgeries in pregnant women, and its impacts on fetal brain are still not completely known. Ectopic NR4A2 expression has been reported to be related with familial Parkinson disease, and through dual luciferase we found that NR4A2 is a target gene of microRNA-183 (miR-183). We proposed a hypothesis that miR-183 may participate in the process by targeting NR4A2 in neurons after sevoflurane anesthesia. To verify the effect of sevoflurane on hippocampal neural stem cells (NSCs) proliferation and differentiation, we conducted EdU assay and immunofluorescence staining. Next, for better understanding of the impact of miR-183, we altered the miR-183 expression using mimic and inhibitor. Meanwhile, the targeting relationship between miR-183 and NR4A2 was validated by a bioinformatics website and dual-luciferase reporter gene assay. Finally, expressions of miR-184, NR4A2, SRY (sex-determining region Y)-box 2 (Sox2), and brain-derived neurotrophic factor (BDNF) were determined and evaluated by reverse transcription quantitative polymerase chain reaction and western blot analysis. First, sevoflurane was determined a crucial factor in biological behaviors of hippocampal NSCs. Moreover, upregulated miR-183 expression by mimic inhibited the proliferation and differentiation of NSCs. Sevoflurane negatively regulated NR4A2 and Sox2 expressions but positively regulated miR-183 and BDNF expressions. Our findings revealed the underlying novel mechanism by which sevoflurane inhibits hippocampal NSC proliferation and differentiation through interaction with miR-183 and NR4A2. The study provides reliable reference for safe application of sevoflurane anesthesia in neonates.
Collapse
Affiliation(s)
- Chang-Zhong Shao
- Department of Anesthesiology, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Kun-Peng Xia
- Department of Anesthesiology, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| |
Collapse
|
41
|
Intraoperative Sedation With Dexmedetomidine is Superior to Propofol for Elderly Patients Undergoing Hip Arthroplasty. Clin J Pain 2018. [DOI: 10.1097/ajp.0000000000000605] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Lv J, Liang Y, Tu Y, Chen J, Xie Y. Hypoxic preconditioning reduces propofol-induced neuroapoptosis via regulation of Bcl-2 and Bax and downregulation of activated caspase-3 in the hippocampus of neonatal rats. Neurol Res 2018; 40:767-773. [PMID: 29790425 DOI: 10.1080/01616412.2018.1477545] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Evidence has shown that propofol may cause widespread apoptotic neurodegeneration. Hypoxic preconditioning (HPC) was previously demonstrated to provide neuroprotection and brain recovery from either acute or chronic neurodegeneration in several cellular and animal models. Therefore, the present study was designed to investigate the protective effects of hypoxic preconditioning on apoptosis caused by propofol in neonatal rats. METHODS Propofol (100 mg/kg) was given to 7-day-old (P7) Sprague Dawley pups. Before the propofol injection, hypoxic preconditioning was administered by subjecting rats to five cycles of 10 min of hypoxia (8% O2) and 10 min of normoxia (21% O2), then 2 h of room air. We detected neuronal structure changes and apoptosis by hematoxylin and eosin (HE) staining and TUNEL assay, respectively. Bcl-2, Bax and cleaved-caspase-3 levels were quantified using Western blotting and immunohistochemistry. RESULT After treatment with propofol, Bcl-2 levels decreased and Bax and cleaved-caspase-3 levels increased. However, our results suggest that hypoxic preconditioning could reverse this change. Conclusion: Our results indicate that pretreatment with hypoxic preconditioning prevents propofol-induced neuroapoptosis by increasing the levels of Bcl-2 and decreasing the levels of Bax and cleaved-caspase-3.
Collapse
Affiliation(s)
- Jing Lv
- a Department of Anesthesiology , The First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Yubing Liang
- b Department of Anesthesiology , The Affiliated tumor hospital of Guangxi Medical University , Nanning , China
| | - Youbing Tu
- a Department of Anesthesiology , The First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Jing Chen
- a Department of Anesthesiology , The First Affiliated Hospital of Guangxi Medical University , Nanning , China
| | - Yubo Xie
- a Department of Anesthesiology , The First Affiliated Hospital of Guangxi Medical University , Nanning , China
| |
Collapse
|
43
|
Li Y, Jia C, Zhang D, Ni G, Miao X, Tu R. Propofol-induced neurotoxicity in hESCs involved in activation of miR-206/PUMA signal pathway. Cancer Biomark 2018; 20:175-181. [PMID: 28869449 DOI: 10.3233/cbm-170167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Studies in developing animals have demonstrated that when anesthetic agents, such as propofol, are early administered in life, it can lead to neuronal cell death and learning disabilities. However, the mechanisms causing these effects remains unknown. A recent report found that propofol could significantly upregulat miR-206 expression in the human ASCs. miR-206 could also induce apoptosis in human malignant cancers. Therefore, in this study, we hypothesized that propofol induces neurotoxicity in human embryonic stem cells (hESCs). METHODS hESCs were exposed to propofol (50 μM) for 6 hr and cell death was assessed using TUNEL staining, and cleaved caspase-3 expression. miR-206 was knocked down using antagomir. PUMA was knocked down using a small interfering RNA. microRNA-206 (miR-206) expression was assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). PUMA protein expression was detected using western blot assay. RESULTS hESCs exposed to propofol showed a significant increase in TUNEL positive cells and cleaved caspase-3 expression, followed by the upregulation of miR-206 and PUMA expression. Targeting PUMA inhibits propofol-induced cell apoptosis; miR-206 knockdown decreased propofol-induced cell apoptosis, cleaved caspase-3 and PUMA expression. CONCLUSIONS Propofol induce s cell death in hESC-derived neurons via activation of miR-206/PUMA signal pathway.
Collapse
Affiliation(s)
- Yu Li
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Changxin Jia
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dianlong Zhang
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guangzhen Ni
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xia Miao
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ruirong Tu
- Department of Clinical Laboratory, People's Hospital of Weifang, Weifang, Shandong, China
| |
Collapse
|
44
|
Pearn ML, Schilling JM, Jian M, Egawa J, Wu C, Mandyam CD, Fannon-Pavlich MJ, Nguyen U, Bertoglio J, Kodama M, Mahata SK, DerMardirossian C, Lemkuil BP, Han R, Mobley WC, Patel HH, Patel PM, Head BP. Inhibition of RhoA reduces propofol-mediated growth cone collapse, axonal transport impairment, loss of synaptic connectivity, and behavioural deficits. Br J Anaesth 2018; 120:745-760. [PMID: 29576115 PMCID: PMC6200100 DOI: 10.1016/j.bja.2017.12.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/28/2017] [Accepted: 12/26/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Exposure of the developing brain to propofol results in cognitive deficits. Recent data suggest that inhibition of neuronal apoptosis does not prevent cognitive defects, suggesting mechanisms other than neuronal apoptosis play a role in anaesthetic neurotoxicity. Proper neuronal growth during development is dependent upon growth cone morphology and axonal transport. Propofol modulates actin dynamics in developing neurones, causes RhoA-dependent depolymerisation of actin, and reduces dendritic spines and synapses. We hypothesised that RhoA inhibition prevents synaptic loss and subsequent cognitive deficits. The present study tested whether RhoA inhibition with the botulinum toxin C3 (TAT-C3) prevents propofol-induced synapse and neurite loss, and preserves cognitive function. METHODS RhoA activation, growth cone morphology, and axonal transport were measured in neonatal rat neurones (5-7 days in vitro) exposed to propofol. Synapse counts (electron microscopy), dendritic arborisation (Golgi-Cox), and network connectivity were measured in mice (age 28 days) previously exposed to propofol at postnatal day 5-7. Memory was assessed in adult mice (age 3 months) previously exposed to propofol at postnatal day 5-7. RESULTS Propofol increased RhoA activation, collapsed growth cones, and impaired retrograde axonal transport of quantum dot-labelled brain-derived neurotrophic factor, all of which were prevented with TAT-C3. Adult mice previously treated with propofol had decreased numbers of total hippocampal synapses and presynaptic vesicles, reduced hippocampal dendritic arborisation, and infrapyramidal mossy fibres. These mice also exhibited decreased hippocampal-dependent contextual fear memory recall. All anatomical and behavioural changes were prevented with TAT-C3 pre-treatment. CONCLUSION Inhibition of RhoA prevents propofol-mediated hippocampal neurotoxicity and associated cognitive deficits.
Collapse
Affiliation(s)
- M L Pearn
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - J M Schilling
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - M Jian
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA; Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - J Egawa
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - C Wu
- Department of Neurosciences, UCSD, San Diego, CA, USA
| | - C D Mandyam
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - M J Fannon-Pavlich
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - U Nguyen
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - J Bertoglio
- INSERM U749, Institut Gustave Roussy, Universite Paris-sud, Paris, France
| | - M Kodama
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA; Metabolic Physiology and Ultrastructural Biology Laboratory, UCSD, San Diego CA, USA; Department of Anesthesiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - S K Mahata
- Metabolic Physiology and Ultrastructural Biology Laboratory, UCSD, San Diego CA, USA
| | - C DerMardirossian
- Department of Immunology and Microbial Sciences, TSRI, La Jolla, CA, USA; Department of Cell and Molecular Biology, TSRI, La Jolla, CA, USA
| | - B P Lemkuil
- Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - R Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - W C Mobley
- Department of Neurosciences, UCSD, San Diego, CA, USA
| | - H H Patel
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - P M Patel
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA
| | - B P Head
- Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA.
| |
Collapse
|
45
|
Ovezov AM, Panteleeva MV, Lugovoy AV. [Intraoperative cerebroprotection in total intravenous anesthesia in children of school age]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:28-33. [PMID: 29171485 DOI: 10.17116/jnevro201711710128-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To improve the quality of anesthesia in school-age children by using intraoperative metabolic-mediated cerebroprotection to reduce the incidence of cognitive impairment after total intravenous anesthesia based on propofol. MATERIAL AND METHODS A randomized, prospective, longitudinal clinical study was conducted, involving 60 school-age children operated under total intravenous anesthesia on the basis of propofol. Children were randomized into two equal groups. Patients of the 1st group did not receive intraoperative metabolic-mediated cerebroprotection, patients of the 2nd group were treated with cytoflavin. For Z-assessment of changes in cognitive potential, neuropsychological testing of 30 children of the same age who were not subjected to surgical intervention was performed. RESULTS AND CONCLUSION On the 1st day of the postoperative period, 13.79% of patients of the 1st group had postoperative cognitive dysfunction (POCD), on the 7th day, POCD was observed in 26.67% of children. In the 2nd group, POCD was detected in 6.67% and 3.33% of patients on the 1st and 7th day, respectively (p=0,009). The results confirm the efficacy of cytoflavin in intraoperative prevention of POCD in school-age children.
Collapse
Affiliation(s)
- A M Ovezov
- Vladimirsky Moscow Regional Clinical Research Institute, Moscow, Russia
| | - M V Panteleeva
- Vladimirsky Moscow Regional Clinical Research Institute, Moscow, Russia
| | - A V Lugovoy
- Vladimirsky Moscow Regional Clinical Research Institute, Moscow, Russia
| |
Collapse
|
46
|
Propofol, but not ketamine or midazolam, exerts neuroprotection after ischaemic injury by inhibition of Toll-like receptor 4 and nuclear factor kappa-light-chain-enhancer of activated B-cell signalling: A combined in vitro and animal study. Eur J Anaesthesiol 2018; 33:670-80. [PMID: 26981881 DOI: 10.1097/eja.0000000000000449] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Propofol, midazolam and ketamine are widely used in today's anaesthesia practice. Both neuroprotective and neurotoxic effects have been attributed to all three agents. OBJECTIVE To establish whether propofol, midazolam and ketamine in the same neuronal injury model exert neuroprotective effects on injured neurones in vitro and in vivo by modulation of the Toll-like receptor 4-nuclear factor kappa-light-chain-enhancer of activated B cells (TLR-4-NF-κB) pathway. DESIGN AND SETTING Cell-based laboratory (n = 6 repetitions per experiment) and animal (n = 6 per group) studies using a neuronal cell line (SH-SY5Y cells) and adult Sprague-Dawley rats. INTERVENTIONS Cells were exposed to oxygen-glucose deprivation before or after treatment using escalating, clinically relevant doses of propofol, midazolam and ketamine. In animals, retinal ischaemia (60 min) was induced followed by reperfusion and randomised treatment with saline or propofol. MAIN OUTCOME MEASURES Neuronal cell death was determined using flow-cytometry (mitochondrial membrane potential) and lactate dehydrogenase (LDH) release. Nuclear factor NF-κB and hypoxia-inducible factor 1 α-activity were analysed by DNA-binding ELISA, expression of NF-κB-dependent genes and TLR-4 by luciferase-assay and flow-cytometry, respectively. In animals, retinal ganglion cell density, caspase-3 activation and gene expression (TLR-4, NF-κB) were used to determine in vivo effects of propofol. Results were compared using ANOVA (Analysis of Variance) and t test. A P value less than 0.05 was considered statistically significant. RESULTS Post-treatment with clinically relevant concentrations of propofol (1 to 10 μg ml) preserved the mitochondrial membrane potential in oxygen-glucose deprivation-injured cells by 54% and reduced LDH release by 21%. Propofol diminished TLR-4 surface expression and preserved the DNA-binding activity of the protective hypoxia-inducible factor 1 α transcription factor. DNA-binding and transcriptional NF-κB-activity were inhibited by propofol. Neuronal protection and inhibition of TLR-4-NF-κB signalling were not consistently seen with midazolam or ketamine. In vivo, propofol treatment preserved rat retinal ganglion cell densities (cells mm, saline 1504 ± 251 vs propofol 2088 ± 144, P = 0.0001), which was accompanied by reduced neuronal caspase-3, TLR-4 and NF-κB expression. CONCLUSION Propofol, but neither midazolam nor ketamine, provides neuroprotection to injured neuronal cells via inhibition of TLR-4-NF-κB-dependent signalling.
Collapse
|
47
|
Terada Y, Inoue S, Konda M, Egawa J, Ueda J, Kirita T, Kawaguchi M. Effects of deep sedation under mechanical ventilation on cognitive outcome in patients undergoing surgery for oral and maxillofacial cancer and microvascular reconstruction. Med Intensiva 2017; 43:3-9. [PMID: 29258778 DOI: 10.1016/j.medin.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/10/2017] [Accepted: 11/13/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Cognitive impairment after intensive care unit (ICU) admission is becoming increasingly recognized. High-dose deep sedation has been suggested to play an important role in the development of cognitive impairment. However, the impact of heavy sedation as a single cause in the development of cognitive impairment in ICU patients remains unclear. In this study we investigated whether a three-day deep sedation protocol could reduce cognitive function in mechanically ventilated non-critical patients. DESIGN A prospective observational study was carried out. PATIENTS A total of 17 surgical patients were studied. INTERVENTION None. VARIABLES OF INTEREST Cognitive function before and after ICU admission. RESULTS Thirty-one patients requiring three days of sedation after microvascular reconstruction were initially enrolled in the study. Sedation in the ICU was maintained with propofol and dexmedetomidine combined with fentanyl. Cognitive function was assessed using a battery of 6 neuropsychological tests two days before surgery and three weeks after surgery. Finally, a total of 17 patients were included in the analysis. Cognitive impairment (defined as a decline of >20% from the pre-admission cognitive evaluation scores in at least two of 6 tests) was observed in 5 of the 17 patients (29%). However, there were no significant differences between the pre- and post-admission cognitive evaluations in 6 tests. CONCLUSIONS Middle-term cognitive function can be impaired in some patients subjected to deep sedation during several days following maxillary-mandibular oral surgery with microvascular reconstruction.
Collapse
Affiliation(s)
- Y Terada
- Department of Anesthesiology and Division of Intensive Care, Nara Medical University, Japan
| | - S Inoue
- Department of Anesthesiology and Division of Intensive Care, Nara Medical University, Japan.
| | - M Konda
- Department of Anesthesiology and Division of Intensive Care, Nara Medical University, Japan
| | - J Egawa
- Department of Anesthesiology and Division of Intensive Care, Nara Medical University, Japan
| | - J Ueda
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8522, Japan
| | - T Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8522, Japan
| | - M Kawaguchi
- Department of Anesthesiology and Division of Intensive Care, Nara Medical University, Japan
| |
Collapse
|
48
|
Pink1 attenuates propofol-induced apoptosis and oxidative stress in developing neurons. J Anesth 2017; 32:62-69. [PMID: 29127491 DOI: 10.1007/s00540-017-2431-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/04/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND The underlying mechanisms of propofol-induced neurotoxicity in developing neurons are still not completely understood. We examined the role of PTEN-induced kinase 1 (Pink1), an antioxidant protein, in propofol-induced apoptosis in developing neurons. MATERIALS AND METHODS Primary hippocampal neurons isolated from neonatal Sprague-Dawley rats were exposed to propofol 20 μM for 2, 4, 6 and 12 h. Subsequently, neurons underwent overexpression and knockdown of Pink1, followed by propofol exposure (20 μM, 6 h). Neuron apoptosis was detected by terminal transferase deoxyuridine triphosphate-biotin nick-end labeling (TUNEL). Reactive oxygen species (ROS) production in neurons was detected by using a 2,7-dichlorodihydro-fluorescein diacetate probe and target protein or mRNA levels were analyzed by Western blotting or real-time polymerase chain reaction. RESULTS Propofol treatment time-dependently increased the number of TUNEL-positive neurons and the expression levels of cleaved caspase-3 and B-cell lymphoma 2 (BcL-2) associated X protein, but decreased expression levels of BcL-2. Furthermore, propofol treatment time-dependently reduced the expression levels of Pink1 mRNA and protein. ROS production and the markers of oxidative stress, 2,4-dinitrophenol and 4-hydroxynonenal, were increased by propofol treatment. However, these propofol-induced changes were significantly restored by Pink1 overexpression. CONCLUSIONS Pink1 plays an important role in neuronal apoptosis induced by propofol. Our results may provide some new insights in propofol-induced neurotoxicity in developing neurons.
Collapse
|
49
|
Effects of Propofol Treatment in Neural Progenitors Derived from Human-Induced Pluripotent Stem Cells. Neural Plast 2017; 2017:9182748. [PMID: 29119024 PMCID: PMC5651106 DOI: 10.1155/2017/9182748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/21/2017] [Accepted: 08/03/2017] [Indexed: 01/25/2023] Open
Abstract
Propofol is an intravenous anesthetic that has been widely used in clinics. Besides its anesthetic effects, propofol has also been reported to influence the regulation of the autonomic system. Controversies exist with regard to whether propofol exposure is safe for pregnant women and young children. In this work, human-induced pluripotent stem cell- (hiPSC-) derived neural progenitor cells (NPCs) were treated with propofol at 20, 50, 100, or 300 μM for 6 h or 24 h, and acute and subacute cell injury, cell proliferation, and apoptosis were evaluated. Comparison of genome-wide gene expression profiles was performed for treated and control iPSC-NPCs. Propofol treatment for 6 h at the clinically relevant concentration (20 or 50 μM) did not affect cell viability, apoptosis, or proliferation, while propofol at higher concentration (100 or 300 μM) decreased NPC viability and induced apoptosis. In addition, 20 μM propofol treatment for 6 h did not alter global gene expression. In summary, propofol treatment at commonly practiced clinical doses for 6 h did not have adverse effects on hiPSC-derived NPCs. In contrast, longer exposure and/or higher concentration could decrease NPC viability and induce apoptosis.
Collapse
|
50
|
Abstract
BACKGROUND Early postnatal exposure to general anesthetic agents causes a lasting impairment in learning and memory in animal models. One hypothesis to explain this finding is that exposure to anesthetic agents during critical points in neural development disrupts the formation of brain circuitry. Here, we explore the effects of sevoflurane on the neuronal growth cone, a specialization at the growing end of axons and dendrites that is responsible for the targeted growth that underlies connectivity between neurons. METHODS Dissociated neuronal cultures were prepared from embryonic mouse neocortex. Time-lapse images of live growth cones exposed to anesthetics were taken using differential interference contrast microscopy, and the rate of change of the area of the lamellipodia and the speed of the filopodial tip were quantified as measures of motility. The involvement of the p75 neurotropin receptor (p75NTR) was tested using inhibitors applied to the media and by a coimmunoprecipitation assay. RESULTS The rate of lamellipodial area change and filopodial tip velocity in both axonal and dendritic growth cones was significantly reduced with sevoflurane exposure between 2% and 6%. Motility could be substantially restored by treatment with Y27632 and TAT-peptide 5, which are inhibitors of Rho Kinase and p75NTR, respectively. Sevoflurane results in reduced coimmunoprecipitation of Rho-Guanosine-5'-diphosphate dissociation inhibitor after pulldown with p75NTR. CONCLUSIONS Sevoflurane interferes with growth cone motility, which is a critical process in brain circuitry formation. Our data suggest that this may occur through an action on the p75NTR, which promotes growth inhibitory signaling by the Rho pathway.
Collapse
|