1
|
Yu-Cong Z, Sheng-Ling F, Hao L. DAAO Mutant Sites among Different Mice Strains and Their Effects on Enzyme Activity. Protein J 2025; 44:102-112. [PMID: 39487887 DOI: 10.1007/s10930-024-10235-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Previous studies reported that D-amino acid oxidase (DAAO) activity was closely associated with neuropathic pain, cognitive characteristics of schizophrenia and so on. To determine DAAO mutant sites in different strains of mice and their effects on enzyme activity, we successfully constructed a prokaryotic expression system for heterologous expression of DAAO in vitro. There were total five nucleotide mutations distributed in exons 2, 8, 9, 10 of C57 mice. Three mutations located on exons 8 and 9 were synonymous mutations and had no variation on the encoded amino acid. The remaining two mutations in exons 2 (V64A) and 10 (R295H) were non-synonymous mutations, which might affect enzymatic activity and protein structure of mDAAO. Based on the determination of the kinetic constants and IC50 of mDAAO mutants in vitro, the differences in amino acid levels at these two sites (V64A, R295H) increased the affinity of C57 DAAO with substrate and enhanced its catalytic efficiency. Besides, the IC50 value of C57 DAAO was less than that of Balb/c and other DAAO mutants (SUN: reducted by about 11.9%; CBIO: reducted by about 26.5%), which meant that the affinity of C57 DAAO with CBIO was higher.
Collapse
Affiliation(s)
- Zhou Yu-Cong
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, 315000, P. R. China
| | - Fu Sheng-Ling
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, P. R. China
| | - Liu Hao
- School of Basic Medical Science, School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, P. R. China.
| |
Collapse
|
2
|
Bajaj A, Tsukamoto T. Evolution of D-amino acid oxidase inhibitors: From concept to clinic. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 102:301-345. [PMID: 39929584 DOI: 10.1016/bs.apha.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
D-amino acid oxidase (DAAO) is a flavin-dependent peroxisomal monooxygenase with a substrate preference for glycine and certain small hydrophobic D-amino acids. Although the biochemical properties of the enzyme have been extensively studied since 1930s, the therapeutic interest in targeting the enzyme emerged more recently after the physiological significance of endogenous D-serine, a substrate for DAAO, was recognized in 1990s. This triggered a new wave of efforts by many researchers to develop more potent and drug-like DAAO inhibitors with greater translational potential. This chapter recounts the evolution of DAAO inhibitors since then driven by new molecular design strategies guided by structural biology. Some of these inhibitors were investigated in a range of preclinical in vivo studies to assess pharmacokinetics, pharmacodynamics, and behavioral pharmacology. Most importantly, these efforts culminated with the discovery of TAK-831 (luvadaxistat), an orally available brain-penetrant DAAO inhibitor currently under clinical development, representing a true bench-to-bedside success in this field.
Collapse
Affiliation(s)
- Ayush Bajaj
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
3
|
Kim H, Hwang J, Park C, Park R. Redox system and ROS-related disorders in peroxisomes. Free Radic Res 2024; 58:662-675. [PMID: 39550761 DOI: 10.1080/10715762.2024.2427088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Peroxisomes are essential organelles that help mitigate the oxidative damage caused by reactive oxygen species (ROS) through their antioxidant systems. They perform functions such as α-oxidation, β-oxidation, and the synthesis of cholesterol and ether phospholipids. During the breakdown of specific metabolites, peroxisomes generate ROS as byproducts, which can either be neutralized or contribute to oxidative stress. The relationship between peroxisomal metabolism and ROS-related disorders, including neurodegenerative diseases and cancers, has been studied for decades; however, the exact mechanisms remain unclear. Our review will provide recent insights into the peroxisomal redox system and its association with oxidative stress-related diseases.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jaetaek Hwang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Channy Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Involvement of DAAO Overexpression in Delayed Hippocampal Neuronal Death. Cells 2022; 11:cells11223689. [PMID: 36429117 PMCID: PMC9688509 DOI: 10.3390/cells11223689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND D-amino acid oxidase (DAAO) is a flavoenzyme that specifically catalyzes the deamination of many neutral and basic D-amino acids. This study aims to explore the pathological increment of hippocampal DAAO and its potential relationship with delayed hippocampal neuronal death. METHODS Ischemia-reperfusion was induced in mice through middle cerebral artery occlusion (MCAO). Neurological deficit scores and hippocampal neuronal death were assessed in MCAO mice. Immunofluorescent staining was applied to identify activated astrocytes and evaluate DAAO expression. TUNEL and Nissl staining were utilized to identify cell apoptosis of hippocampal neurons. RESULTS Hippocampal astrocytic DAAO was strikingly increased following ischemic stroke, with the greatest increase on day 5 after surgery, followed by the manifestation of neurobehavioral deficits. Astrocytic DAAO was found to be mainly expressed in the hippocampal CA2 region and linked with subsequent specific neural apoptosis. Thus, it is supposed that the activation of astrocytic DAAO in ischemic stroke might contribute to neuronal death. An intravenous, twice-daily administration of 4H-furo[3,2-b]pyrrole-5-carboxylic acid (SUN, 10 mg/kg) markedly relieved behavioral status and delayed hippocampal neuronal death by 38.0% and 41.5%, respectively, compared to the model group treated with saline. In transfected primary astrocytes, DAAO overexpression inhibits cell activity, induces cytotoxicity, and promotes hippocampal neuronal death at least partly by enhancing H2O2 levels with subsequent activation of TRP calcium channels in neurons. CONCLUSIONS Our findings suggest that increased hippocampal DAAO is causally associated with the development of delayed neuronal death after MCAO onset via astrocyte-neuron interactions. Hence, targeting DAAO is a promising therapeutic strategy for the management of neurological disorders.
Collapse
|
5
|
Xu J, Wu S, Wang J, Wang J, Yan Y, Zhu M, Zhang D, Jiang C, Liu T. Oxidative stress induced by NOX2 contributes to neuropathic pain via plasma membrane translocation of PKCε in rat dorsal root ganglion neurons. J Neuroinflammation 2021; 18:106. [PMID: 33952299 PMCID: PMC8101139 DOI: 10.1186/s12974-021-02155-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Background Nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2)-induced oxidative stress, including the production of reactive oxygen species (ROS) and hydrogen peroxide, plays a pivotal role in neuropathic pain. Although the activation and plasma membrane translocation of protein kinase C (PKC) isoforms in dorsal root ganglion (DRG) neurons have been implicated in multiple pain models, the interactions between NOX2-induced oxidative stress and PKC remain unknown. Methods A spared nerve injury (SNI) model was established in adult male rats. Pharmacologic intervention and AAV-shRNA were applied locally to DRGs. Pain behavior was evaluated by Von Frey tests. Western blotting and immunohistochemistry were performed to examine the underlying mechanisms. The excitability of DRG neurons was recorded by whole-cell patch clamping. Results SNI induced persistent NOX2 upregulation in DRGs for up to 2 weeks and increased the excitability of DRG neurons, and these effects were suppressed by local application of gp91-tat (a NOX2-blocking peptide) or NOX2-shRNA to DRGs. Of note, the SNI-induced upregulated expression of PKCε but not PKC was decreased by gp91-tat in DRGs. Mechanical allodynia and DRG excitability were increased by ψεRACK (a PKCε activator) and reduced by εV1-2 (a PKCε-specific inhibitor). Importantly, εV1-2 failed to inhibit SNI-induced NOX2 upregulation. Moreover, the SNI-induced increase in PKCε protein expression in both the plasma membrane and cytosol in DRGs was attenuated by gp91-tat pretreatment, and the enhanced translocation of PKCε was recapitulated by H2O2 administration. SNI-induced upregulation of PKCε was blunted by phenyl-N-tert-butylnitrone (PBN, an ROS scavenger) and the hydrogen peroxide catalyst catalase. Furthermore, εV1-2 attenuated the mechanical allodynia induced by H2O2 Conclusions NOX2-induced oxidative stress promotes the sensitization of DRGs and persistent pain by increasing the plasma membrane translocation of PKCε. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02155-6.
Collapse
Affiliation(s)
- Jing Xu
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shinan Wu
- Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Junfei Wang
- Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianmei Wang
- Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi Yan
- Department of Pain Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Mengye Zhu
- Department of Pain Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Daying Zhang
- Department of Pain Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Changyu Jiang
- Jisheng Han Academician Workstation for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, Guangdong, China
| | - Tao Liu
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China. .,Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China. .,Jisheng Han Academician Workstation for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
6
|
Shoaib RM, Ahmad KA, Wang YX. Protopanaxadiol alleviates neuropathic pain by spinal microglial dynorphin A expression following glucocorticoid receptor activation. Br J Pharmacol 2021; 178:2976-2997. [PMID: 33786848 DOI: 10.1111/bph.15471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE New remedies are required for the treatment of neuropathic pain due to insufficient efficacy of available therapies. This study provides a novel approach to develop painkillers for chronic pain treatment. EXPERIMENTAL APPROACH The rat formalin pain test and spinal nerve ligation model of neuropathic pain were used to evaluate antinociception of protopanaxadiol. Primary cell cultures, immunofluorescence staining, and gene and protein expression were also performed for mechanism studies. KEY RESULTS Gavage protopanaxadiol remarkably produces pain antihypersensitive effects in neuropathic pain, bone cancer pain and inflammatory pain, with efficacy comparable with gabapentin. Long-term PPD administration does not induce antihypersensitive tolerance, but prevents and reverses the development and expression of morphine analgesic tolerance. Oral protopanaxadiol specifically stimulates spinal expression of dynorphin A in microglia but not in astrocytes or neurons. Protopanaxadiol gavage-related pain antihypersensitivity is abolished by the intrathecal pretreatment with the microglial metabolic inhibitor minocycline, dynorphin antiserum or specific κ-opioid receptor antagonist GNTI. Intrathecal pretreatment with glucocorticoid receptor)antagonists RU486 and dexamethasone-21-mesylate, but not GPR-30 antagonist G15 or mineralocorticoid receptor antagonist eplerenone, completely attenuates protopanaxadiol-induced spinal dynorphin A expression and pain antihypersensitivity in neuropathic pain. Treatment with protopanaxadiol, the glucocorticoid receptor agonist dexamethasone and membrane-impermeable glucocorticoid receptor agonist dexamethasone-BSA in cultured microglia induces remarkable dynorphin A expression, which is totally blocked by pretreatment with dexamthasone-21-mesylate. CONCLUSION AND IMPLICATIONS All the results, for the first time, indicate that protopanaxadiol produces pain antihypersensitivity in neuropathic pain probably through spinal microglial dynorphin A expression after glucocorticoid receptor activation and hypothesize that microglial membrane glucocorticoid receptor/dynorphin A pathway is a potential target to discover and develop novel painkillers in chronic pain.
Collapse
Affiliation(s)
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
7
|
Liu H, Zhou YC, Wang ZY, Gong N, Lu JM, Apryani EV, Han QQ, Wang YX, Ou MX. Mouse strain specificity of DAAO inhibitors-mediated antinociception. Pharmacol Res Perspect 2021; 9:e00727. [PMID: 33710781 PMCID: PMC7953361 DOI: 10.1002/prp2.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/02/2022] Open
Abstract
D‐Amino acid oxidase (DAAO) specifically catalyzes the oxidative deamination of neutral and polar D‐amino acids and finally yields byproducts of hydrogen peroxide. Our previous work demonstrated that the spinal astroglial DAAO/hydrogen peroxide (H2O2) pathway was involved in the process of pain and morphine antinociceptive tolerance. This study aimed to report mouse strain specificity of DAAO inhibitors on antinociception and explore its possible mechanism. DAAO inhibitors benzoic acid, CBIO, and SUN significantly inhibited formalin‐induced tonic pain in Balb/c and Swiss mice, but had no antinociceptive effect in C57 mice. In contrast, morphine and gabapentin inhibited formalin‐induced tonic pain by the same degrees among Swiss, Balb/c and C57 mice. Therefore, mouse strain difference in antinociceptive effects was DAAO inhibitors specific. In addition, intrathecal injection of D‐serine greatly increased spinal H2O2 levels by 80.0% and 56.9% in Swiss and Balb/c mice respectively, but reduced spinal H2O2 levels by 29.0% in C57 mice. However, there was no remarkable difference in spinal DAAO activities among Swiss, Balb/c and C57 mice. The spinal expression of glutathione (GSH) and glutathione peroxidase (GPx) activity in C57 mice were significantly higher than Swiss and Balb/c mice. Furthermore, the specific GPx inhibitor D‐penicillamine distinctly restored SUN antinociception in C57 mice. Our results reported that DAAO inhibitors produced antinociception in a strain‐dependent manner in mice and the strain specificity might be associated with the difference in spinal GSH and GPx activity.
Collapse
Affiliation(s)
- Hao Liu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China.,King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yu-Cong Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Ying Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Nian Gong
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Jin-Miao Lu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - eVhy Apryani
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Qiao-Qiao Han
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Mei-Xian Ou
- Shanghai Engineering Research Center of Phase I, Clinical Research & Quality Consistency Evaluation for Drugs & Central Laboratory, Shanghai Xuhui Central Hospital, Shanghai, China
| |
Collapse
|
8
|
Wei H, Chen Z, Koivisto A, Pertovaara A. Spinal mechanisms contributing to the development of pain hypersensitivity induced by sphingolipids in the rat. Pharmacol Rep 2021; 73:672-679. [PMID: 33389723 PMCID: PMC7994220 DOI: 10.1007/s43440-020-00207-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
Background Earlier studies show that endogenous sphingolipids can induce pain hypersensitivity, activation of spinal astrocytes, release of proinflammatory cytokines and activation of TRPM3 channel. Here we studied whether the development of pain hypersensitivity induced by sphingolipids in the spinal cord can be prevented by pharmacological inhibition of potential downstream mechanisms that we hypothesized to include TRPM3, σ1 and NMDA receptors, gap junctions and D-amino acid oxidase. Methods Experiments were performed in adult male rats with a chronic intrathecal catheter for spinal drug administrations. Mechanical nociception was assessed with monofilaments and heat nociception with radiant heat. N,N-dimethylsphingosine (DMS) was administered to induce pain hypersensitivity. Ononetin, isosakuranetin, naringenin (TRPM3 antagonists), BD-1047 (σ1 receptor antagonist), carbenoxolone (a gap junction decoupler), MK-801 (NMDA receptor antagonist) and AS-057278 (inhibitor of D-amino acid oxidase, DAAO) were used to prevent the DMS-induced hypersensitivity, and pregnenolone sulphate (TRPM3 agonist) to recapitulate hypersensitivity. Results DMS alone produced within 15 min a dose-related mechanical hypersensitivity that lasted at least 24 h, without effect on heat nociception. Preemptive treatments with ononetin, isosakuranetin, naringenin, BD-1047, carbenoxolone, MK-801 or AS-057278 attenuated the development of the DMS-induced hypersensitivity, but had no effects when administered alone. Pregnenolone sulphate (TRPM3 agonist) alone induced a dose-related mechanical hypersensitivity that was prevented by ononetin, isosakuranetin and naringenin. Conclusions Among spinal pronociceptive mechanisms activated by DMS are TRPM3, gap junction coupling, the σ1 and NMDA receptors, and DAAO.
Collapse
Affiliation(s)
- Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, POB 63, 00140, Helsinki, Finland
| | - Zuyue Chen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, POB 63, 00140, Helsinki, Finland
| | - Ari Koivisto
- Research and Development, Orion Corporation, Orion Pharma, Tengströminkatu 8, POB 425, 20101, Turku, Finland
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, POB 63, 00140, Helsinki, Finland.
| |
Collapse
|
9
|
Uniyal A, Gadepalli A, Akhilesh, Tiwari V. Underpinning the Neurobiological Intricacies Associated with Opioid Tolerance. ACS Chem Neurosci 2020; 11:830-839. [PMID: 32083459 DOI: 10.1021/acschemneuro.0c00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The opioid crisis is a major threat of the 21st century, with a remarkable juxtaposition of use and abuse. Opioids are the most potent and efficacious class of analgesics, but despite their proven therapeutic efficacy, they have recently been degraded to third-line therapy for the management of chronic pain in clinics. The reason behind this is the development of potential side effects and tolerance after repeated dosing. Opioid tolerance is the major limiting factor leading to the withdrawal of treatment, severe side effects due to dose escalation, and sometimes even death of the patients. Every day more than 90 people die due to opioids overdose in America, and a similar trend has been seen across the globe. Over the past two decades, researchers have been trying to dissect the neurobiological mechanism of opioid tolerance. Research on opioid tolerance shifted toward central nervous system-based adaptations because tolerance is much more than just a cellular phenomenon. Thus, neurobiological adaptations associated with opioid tolerance are important to understand in order to find newer pain therapeutics. These adaptations are associated with alterations in ascending and descending pain pathways, reward circuitry modulations, receptor desensitization and down-regulation, receptor internalization, heterodimerization, and altered epigenetic regulation. The present Review is focused on novel circuitries associated with opioid tolerance in different areas of the brain, such as periaqueductal gray, rostral ventromedial medulla, dorsal raphe nucleus, ventral tegmental area, and nucleus accumbens. Understanding the neurobiological modulations associated with chronic opioid exposure and tolerance will pave the way for the development of novel pharmacological tools for safer and better management of chronic pain in patients.
Collapse
Affiliation(s)
- Ankit Uniyal
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience & Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
10
|
Liu H, Zhao M, Wang Z, Han Q, Wu H, Mao X, Wang Y. Involvement of d-amino acid oxidase in cerebral ischaemia induced by transient occlusion of the middle cerebral artery in mice. Br J Pharmacol 2019; 176:3336-3349. [PMID: 31309542 PMCID: PMC6692583 DOI: 10.1111/bph.14764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/03/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE d-Amino acid oxidase (DAAO) is a flavine adenine dinucleotide-containing flavoenzyme and specifically catalyses oxidative deamination of d-amino acids. This study aimed to explore the association between increased cerebral DAAO expression or enzymic activity and the development of cerebral ischaemia. EXPERIMENTAL APPROACH A mouse model of transient (90 min) middle cerebral artery occlusion (MCAO) was established, and western blotting, enzymic activity assay, and fluorescent immunostaining techniques were used. KEY RESULTS The expression and enzymic activity of DAAO increased over time in the cortical peri-infarct area of the mice subjected to transient MCAO. The DAAO was specifically expressed in astrocytes, and its double immunostaining with the astrocytic intracellular marker, glial fibrillary acidic protein, in the cortical peri-infarct area was up-regulated following ischaemic insult, with peak increase on Day 5 after MCAO. Single intravenous injection of the specific and potent DAAO inhibitor Compound SUN reduced the cerebral DAAO enzymic activity and attenuated neuronal infarction and neurobehavioural deficits with optimal improvement apparent immediately after the MCAO procedure. The neuroprotective effect was dose dependent, with ED50 values of 3.9-4.5 mg·kg-1 . Intracerebroventricular injection of the DAAO gene silencer siRNA/DAAO significantly reduced cerebral DAAO expression and attenuated MCAO-induced neuronal infarction and behavioural deficits. CONCLUSIONS AND IMPLICATIONS Our results, for the first time, demonstrated that increased cerebral astrocytic DAAO expression and enzymic activity were causally associated with the development of neuronal destruction following ischaemic insults, suggesting that targeting cerebral DAAO could be a potential approach for treatment of neurological conditions following cerebral ischaemia.
Collapse
Affiliation(s)
- Hao Liu
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Meng‐Jing Zhao
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Zi‐Ying Wang
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Qiao‐Qiao Han
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Hai‐Yun Wu
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Xiao‐fang Mao
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Yong‐Xiang Wang
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| |
Collapse
|
11
|
Dual role of D-amino acid oxidase in experimental pain models. Eur J Pharmacol 2019; 855:98-102. [DOI: 10.1016/j.ejphar.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 02/08/2023]
|
12
|
Vicario N, Pasquinucci L, Spitale FM, Chiechio S, Turnaturi R, Caraci F, Tibullo D, Avola R, Gulino R, Parenti R, Parenti C. Simultaneous Activation of Mu and Delta Opioid Receptors Reduces Allodynia and Astrocytic Connexin 43 in an Animal Model of Neuropathic Pain. Mol Neurobiol 2019; 56:7338-7354. [PMID: 31030416 DOI: 10.1007/s12035-019-1607-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/12/2019] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is a chronic condition triggered by lesions to the somatosensory nervous system in which pain stimuli occur spontaneously or as pathologically amplified responses. In this scenario, the exchange of signaling molecules throughout cell-to-cell and cell-to-extracellular environment communications plays a key role in the transition from acute to chronic pain. As such, connexin 43 (Cx43), the core glial gap junction and hemichannel-forming protein, is considered a triggering factor for disease chronicization in the central nervous system (CNS). Drugs targeting μ opioid receptors (MOR) are currently used for moderate to severe pain conditions, but their use in chronic pain is limited by the tolerability profile. δ opioid receptors (DOR) have become attractive targets for the treatment of persistent pain and have been associated with the inhibition of pain-sustaining factors. Moreover, it has been shown that simultaneous targeting of MOR and DOR leads to an improved pharmacological fingerprint. Herein, we aimed to study the effects of the benzomorphan ligand LP2, a multitarget MOR/DOR agonist, in an experimental model of neuropathic pain induced by the unilateral sciatic nerve chronic constriction injury (CCI) on male Sprague-Dawley rats. Results showed that LP2 significantly ameliorated mechanical allodynia from the early phase of treatment up to 21 days post-ligatures. We additionally showed that LP2 prevented CCI-induced Cx43 alterations and pro-apoptotic signaling in the CNS. These findings increase the knowledge of neuropathic pain development and the role of spinal astrocytic Cx43, suggesting new approaches for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Section of Medicinal Chemistry, University of Catania, 95125, Catania, Italy
| | - Federica M Spitale
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125, Catania, Italy.,Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, Section of Medicinal Chemistry, University of Catania, 95125, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125, Catania, Italy.,Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Roberto Avola
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy.
| | - Carmela Parenti
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125, Catania, Italy
| |
Collapse
|
13
|
Pollegioni L, Sacchi S, Murtas G. Human D-Amino Acid Oxidase: Structure, Function, and Regulation. Front Mol Biosci 2018; 5:107. [PMID: 30547037 PMCID: PMC6279847 DOI: 10.3389/fmolb.2018.00107] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
D-Amino acid oxidase (DAAO) is an FAD-containing flavoenzyme that catalyzes with absolute stereoselectivity the oxidative deamination of all natural D-amino acids, the only exception being the acidic ones. This flavoenzyme plays different roles during evolution and in different tissues in humans. Its three-dimensional structure is well conserved during evolution: minute changes are responsible for the functional differences between enzymes from microorganism sources and those from humans. In recent years several investigations focused on human DAAO, mainly because of its role in degrading the neuromodulator D-serine in the central nervous system. D-Serine is the main coagonist of N-methyl D-aspartate receptors, i.e., excitatory amino acid receptors critically involved in main brain functions and pathologic conditions. Human DAAO possesses a weak interaction with the FAD cofactor; thus, in vivo it should be largely present in the inactive, apoprotein form. Binding of active-site ligands and the substrate stabilizes flavin binding, thus pushing the acquisition of catalytic competence. Interestingly, the kinetic efficiency of the enzyme on D-serine is very low. Human DAAO interacts with various proteins, in this way modulating its activity, targeting, and cell stability. The known properties of human DAAO suggest that its activity must be finely tuned to fulfill a main physiological function such as the control of D-serine levels in the brain. At present, studies are focusing on the epigenetic modulation of human DAAO expression and the role of post-translational modifications on its main biochemical properties at the cellular level.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Giulia Murtas
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
14
|
Wu HY, Mao XF, Tang XQ, Ali U, Apryani E, Liu H, Li XY, Wang YX. Spinal interleukin-10 produces antinociception in neuropathy through microglial β-endorphin expression, separated from antineuroinflammation. Brain Behav Immun 2018; 73:504-519. [PMID: 29928964 DOI: 10.1016/j.bbi.2018.06.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin 10 (IL-10) is antinociceptive in various animal models of pain without induction of tolerance, and its mechanism of action was generally believed to be mediated by inhibition of neuroinflammation. Here we reported that intrathecal IL-10 injection dose dependently attenuated mechanical allodynia and thermal hyperalgesiain male and female neuropathic rats, with ED50 values of 40.8 ng and 24 ng, and Emax values of 61.5% MPE and 100% MPE in male rats. Treatment with IL-10 specifically increased expression of the β-endorphin (but not prodynorphin) gene and protein in primary cultures of spinal microglia but not in astrocytes or neurons. Intrathecal injection of IL-10 stimulated β-endorphin expression from microglia but not neurons or astrocytes in both contralateral and ipsilateral spinal cords of neuropathic rats. However, intrathecal injection of the β-endorphin neutralizing antibody, opioid receptor antagonist naloxone, or μ-opioid receptor antagonist CTAP completely blocked spinal IL-10-induced mechanical antiallodynia, while the microglial inhibitor minocycline and specific microglia depletor reversed spinal IL-10-induced β-endorphin overexpression and mechanical antiallodynia. IL-10 treatment increased spinal microglial STAT3 phosphorylation, and the STAT3 inhibitor NSC74859 completely reversed IL-10-increased spinal expression of β-endorphin and neuroinflammatory cytokines and mechanical antiallodynia. Silence of the Bcl3 and Socs3 genes nearly fully reversed IL-10-induced suppression of neuroinflammatory cytokines (but not expression of β-endorphin), although it had no effect on mechanical allodynia. In contrast, disruption of the POMC gene completely blocked IL-10-stimulated β-endorphin expression and mechanical antiallodynia, but had no effect on IL-10 inhibited expression of neuroinflammatory cytokines. Thus this study revealed that IL-10 produced antinociception through spinal microglial β-endorphin expression, but not inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xue-Qi Tang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Usman Ali
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Evhy Apryani
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China.
| |
Collapse
|
15
|
Sacchi S, Cappelletti P, Murtas G. Biochemical Properties of Human D-amino Acid Oxidase Variants and Their Potential Significance in Pathologies. Front Mol Biosci 2018; 5:55. [PMID: 29946548 PMCID: PMC6005901 DOI: 10.3389/fmolb.2018.00055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
The stereoselective flavoenzyme D-amino acid oxidase (DAAO) catalyzes the oxidative deamination of neutral and polar D-amino acids producing the corresponding α-keto acids, ammonia, and hydrogen peroxide. Despite its peculiar and atypical substrates, DAAO is widespread expressed in most eukaryotic organisms. In mammals (and humans in particular), DAAO is involved in relevant physiological processes ranging from D-amino acid detoxification in kidney to neurotransmission in the central nervous system, where DAAO is responsible of the catabolism of D-serine, a key endogenous co-agonist of N-methyl-D-aspartate receptors. Recently, structural and functional studies have brought to the fore the distinctive biochemical properties of human DAAO (hDAAO). It appears to have evolved to allow a strict regulation of its activity, so that the enzyme can finely control the concentration of substrates (such as D-serine in the brain) without yielding to an excessive production of hydrogen peroxide, a potentially toxic reactive oxygen species (ROS). Indeed, dysregulation in D-serine metabolism, likely resulting from altered levels of hDAAO expression and activity, has been implicated in several pathologies, ranging from renal disease to neurological, neurodegenerative, and psychiatric disorders. Only one mutation in DAO gene was unequivocally associated to a human disease. However, several single nucleotide polymorphisms (SNPs) are reported in the database and the biochemical characterization of the corresponding recombinant hDAAO variants is of great interest for investigating the effect of mutations. Here we reviewed recently published data focusing on the modifications of the structural and functional properties induced by amino acid substitutions encoded by confirmed SNPs and on their effect on D-serine cellular levels. The potential significance of the different hDAAO variants in human pathologies will be also discussed.
Collapse
Affiliation(s)
- Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli Studi dell'Insubria, Milan, Italy
| | - Pamela Cappelletti
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli Studi dell'Insubria, Milan, Italy
| | - Giulia Murtas
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
16
|
Huang Q, Mao XF, Wu HY, Liu H, Sun ML, Wang X, Wang YX. Cynandione A attenuates neuropathic pain through p38β MAPK-mediated spinal microglial expression of β-endorphin. Brain Behav Immun 2017; 62:64-77. [PMID: 28189715 DOI: 10.1016/j.bbi.2017.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/23/2017] [Accepted: 02/07/2017] [Indexed: 12/27/2022] Open
Abstract
Cynanchi Wilfordii Radix (baishouwu), a medicinal herb, has been widely used in Asia to treat a variety of diseases or illnesses. Cynandione A isolated from C. Wilfordii is the principle acetophenone and exhibits neuroprotective and anti-inflammatory activities. This study aims to evaluate the antihypersensitivity activities of cynandione A in neuropathy and explored its mechanisms of action. Intrathecal injection of cynandione A dose-dependently attenuated spinal nerve ligation-induced mechanical allodynia and thermal hyperalgesia, with maximal possible effects of 57% and 59%, ED50s of 14.9μg and 6.5μg, respectively. Intrathecal injection of cynandione A significantly increased β-endorphin levels in spinal cords of neuropathic rats and its treatment concentration-dependently induced β-endorphin expression in cultured primary microglia (but not in neurons or astrocytes), with EC50s of 38.8 and 20.0μM, respectively. Cynandione A also non-selectively upregulated phosphorylation of mitogen-activated protein kinases (MAPKs), including p38, extracellular signal regulated kinase (ERK1/2), and extracellular signal regulated kinase (JNK) in primary microglial culture; however, cynandione A-stimulated β-endorphin expression was completely inhibited by the specific p38 activation inhibitor SB203580, but not by the ERK1/2 or JNK activation inhibitors. Knockdown of spinal p38β but not p38α using siRNA also completely blocked cynandione A-induced β-endorphin expression in cultured microglial cells. Furthermore, cynandione A-induced antiallodynia in neuropathy was totally inhibited by the microglial inhibitor minocycline, SB203580, anti-β-endorphin antibody, and μ-opioid receptor antagonist CTAP (but not the κ- or δ-opioid receptor antagonist). These results suggest that cynandione A attenuates neuropathic pain through upregulation of spinal microglial expression β-endorphin via p38β MAPK activation.
Collapse
Affiliation(s)
- Qian Huang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| | - Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| | - Ming-Li Sun
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| | - Xiao Wang
- Shandong Analysis and Test Center, Shandong Academy of Sciences, 19 Keyuan Street, Jinan 250014, Shandong, China.
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
17
|
Jiang JF, Qiao J, Mu XY, Moon MH, Qi L. Fabrication of enzyme reactor utilizing magnetic porous polymer membrane for screening D-Amino acid oxidase inhibitors. Talanta 2017; 165:251-257. [DOI: 10.1016/j.talanta.2016.12.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
|
18
|
Xu M, Wu HY, Liu H, Gong N, Wang YR, Wang YX. Morroniside, a secoiridoid glycoside from Cornus officinalis, attenuates neuropathic pain by activation of spinal glucagon-like peptide-1 receptors. Br J Pharmacol 2017; 174:580-590. [PMID: 28098360 DOI: 10.1111/bph.13720] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Iridoid glycosides containing the double bond scaffold of cyclopentapyran are reversible and orthosteric agonists of glucagon-like peptide-1 (GLP-1) receptors and exert anti-nociceptive and neuroprotective actions. Morroniside, derived from the medicinal herb Cornus officinalis, is an atypical secoiridoid containing a six-membered cyclic inner ether fragment. Here we investigated whether morroniside was an orthosteric GLP-1 receptor agonist and had anti-hypersensitivity activities in a model of neuropathic pain. EXPERIMENTAL APPROACH We used a model of neuropathic pain, induced by tight ligation of L5/L6 spinal nerves in rats. Hydrogen peroxide-induced oxidative damage was also assayed in N9 microglial cells and human HEK293 cells stably expressing GLP-1 receptors. KEY RESULTS Morroniside protected against hydrogen peroxide-induced oxidative damage in N9 microglial and HEK293 cells that expressed mouse or human GLP-1 receptors, but not in HEK293T cells without GLP-1 receptors. The GLP-1 receptor orthosteric antagonist exendin(9-39) also concentration-dependently shifted the concentration-protective response curves of morroniside and exenatide to the right without affecting maximal protection, with similar pA2 values. Furthermore, morroniside given by oral gavage or intrathecally in neuropathic rats dose-dependently attenuated mechanical allodynia, with comparable Emax values and ED50 s of 335 mg·kg-1 and 7.1 μg and completely blocked thermal hyperalgesia. Daily intrathecal injections of morroniside over 7 days did not induce anti-allodynic tolerance. Pretreatment with intrathecal exendin(9-39) completely blocked systemic and intrathecal morroniside-induced mechanical anti-allodynia. CONCLUSION AND IMPLICATIONS Our data demonstrated that morroniside was an orthosteric agonist of GLP-1 receptors and produced antihypersensitivity in a neuropathic pain model by activation of spinal GLP-1 receptors.
Collapse
Affiliation(s)
- Meng Xu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Hai-Yun Wu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Hao Liu
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Nian Gong
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yi-Rui Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
19
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
20
|
Huang Q, Sun ML, Chen Y, Li XY, Wang YX. Concurrent bullatine A enhances morphine antinociception and inhibits morphine antinociceptive tolerance by indirect activation of spinal κ-opioid receptors. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:151-159. [PMID: 27989510 DOI: 10.1016/j.jep.2016.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/01/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bullatine A, a C20-diterpenoid alkaloid and one of the major effective ingredients in Aconiti brachypodi Radix (Xue-shang-yi-zhi-hao), can block pain hypersensitivity in a variety of rodent models through expression of spinal microglial dynorphin A. AIM OF THE STUDY To assess the interaction between bullatine A and morphine on antinociception in acute nociception and pain hypersensitivity states, with the exogenous synthetic dynorphin A as a comparison MATERIALS AND METHODS: Spinal nerve ligation-induced neuropathic rats and naïve mice were used for assessing the acute and chronic interactions of bullatine A/dynorphin A with morphine. RESULTS Single subcutaneous injection of bullatine A or dynorphin A(1-17) did not either alter formalin- and thermally (hot-plate and water immersion tests)-induced acute nociception or potentiate morphine antinociception in naïve mice. In contrast, bullatine A dose-dependently inhibited formalin-induced tonic pain with the efficacy of 54% inhibition and the half-effective dose of 0.9mg/kg. Concurrent bullatine A additively enhanced morphine antinociception. In neuropathic rats, the antinociceptive effects of multiple bidaily intrathecal injections of bullatine A and dynorphin A remained consistent over 13 days, whereas morphine produced progressive and complete tolerance to antinociception, which was completely inhibited by concurrent bullatine A and dynorphin A. A single intrathecal injection of bullatine A and dynorphin A immediately reversed established morphine tolerance in neuropathic rats, although the blockade was a less degree in the thermally induced mouse acute nociceptive tests. The inhibitory effects of bullatine A and dynorphin A on morphine tolerance were immediately and completely attenuated by intrathecal dynorphin A antibody and/or selective κ-opioid receptor antagonist GNTI. CONCLUSION These results suggest that bullatine A produces antinociception without induction of tolerance and inhibits morphine antinociceptive tolerance, and provide pharmacological basis for concurrent bullatine A and morphine treatment for chronic pain and morphine analgesic tolerance.
Collapse
Affiliation(s)
- Qian Huang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Ming-Li Sun
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuan Chen
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
21
|
Gawel K, Gibula-Bruzda E, Dziedzic M, Jenda-Wojtanowska M, Marszalek-Grabska M, Silberring J, Kotlinska JH. Cholinergic activation affects the acute and chronic antinociceptive effects of morphine. Physiol Behav 2016; 169:22-32. [PMID: 27865771 DOI: 10.1016/j.physbeh.2016.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 12/24/2022]
Abstract
Current studies indicate that the cholinergic and opioid systems interact to modulate pain. In the present work, we investigated the influence of the cholinesterase inhibitors, donepezil (0.5; 1 or 3mg/kg, i.p.) and rivastigmine (0.03; 0.5 or 1mg/kg, i.p.), on the acute antinociceptive effects of morphine (5mg/kg, i.p.) in the hot plate test in mice. Herein, both inhibitors were found to enhance and prolong the analgesic effects of morphine without affecting latencies themselves. In an extension of this work, we determined which cholinergic receptors subtype mediates the enhancement of analgesic effects of morphine, following inhibition of cholinesterases. In this part of the study, scopolamine (0.5mg/kg, i.p.), a muscarinic cholinergic receptors antagonist, but not mecamylamine (3mg/kg, i.p.), a nicotinic cholinergic receptors antagonist, reversed the enhancing effects of donepezil (3mg/kg, i.p.) and rivastigmine (1mg/kg, i.p.) on the morphine antinociception. Moreover, both cholinesterase inhibitors attenuated the development of tolerance to the antinociceptive effects of morphine. In contrast, acute administration of donepezil (3mg/kg, i.p.) or rivastigmine (1mg/kg, i.p.) on the day of expression of tolerance, had no effect on the already developed morphine tolerance. What is more, in both set of experiments, rivastigmine was slightly more potent than donepezil due to the broader inhibitory spectrum of this drug on acetylcholine degradation. Thus, our results suggest that the cholinesterase inhibitors, donepezil and rivastigmine, may be administered with morphine in order to enhance the latter's analgesic effects for the treatment of acute and chronic pain.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4a, 20-093 Lublin, Poland; Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Ewa Gibula-Bruzda
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4a, 20-093 Lublin, Poland
| | - Marcin Dziedzic
- Department of Laboratory Diagnostic, Medical University, Chodzki 1, 20-093 Lublin, Poland
| | | | - Marta Marszalek-Grabska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4a, 20-093 Lublin, Poland
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
22
|
Tan KL, Pezzella F. Inhibition of NEDD8 and FAT10 ligase activities through the degrading enzyme NEDD8 ultimate buster 1: A potential anticancer approach. Oncol Lett 2016; 12:4287-4296. [PMID: 28101194 PMCID: PMC5228310 DOI: 10.3892/ol.2016.5232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/09/2016] [Indexed: 01/31/2023] Open
Abstract
The capabilities of tumour cells to survive through deregulated cell cycles and evade apoptosis are hallmarks of cancer. The ubiquitin-like proteins (UBL) proteasome system is important in regulating cell cycles via signaling proteins. Deregulation of the proteasomal system can lead to uncontrolled cell proliferation. The Skp, Cullin, F-box containing complex (SCF complex) is the predominant E3 ubiquitin ligase, and has diverse substrates. The ubiquitin ligase activity of the SCF complexes requires the conjugation of neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to cullin proteins. A tumour suppressor and degrading enzyme named NEDD8 ultimate buster 1 (NUB1) is able to recruit HLA-F-adjacent transcript 10 (FAT10)- and NEDD8-conjugated proteins for proteasomal degradation. Ubiquitination is associated with neddylation and FAT10ylation. Although validating the targets of UBLs, including ubiquitin, NEDD8 and FAT10, is challenging, understanding the biological significance of such substrates is an exciting research prospect. This present review discusses the interplay of these UBLs, as well as highlighting their inhibition through NUB1. Knowledge of the mechanisms by which NUB1 is able to downregulate the ubiquitin cascade via NEDD8 conjugation and the FAT10 pathway is essential. This will provide insights into potential cancer therapy that could be used to selectively suppress cancer growth.
Collapse
Affiliation(s)
- Ka-Liong Tan
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom; Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia
| | - Francesco Pezzella
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
23
|
Discovery and analgesic evaluation of 8-chloro-1,4-dihydropyrido[2,3- b ]pyrazine-2,3-dione as a novel potent d -amino acid oxidase inhibitor. Eur J Med Chem 2016; 117:19-32. [DOI: 10.1016/j.ejmech.2016.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 01/10/2023]
|
24
|
Potential role of spinal TRPA1 channels in antinociceptive tolerance to spinally administered morphine. Pharmacol Rep 2015; 68:472-5. [PMID: 26922555 DOI: 10.1016/j.pharep.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Prolonged morphine treatment leads to antinociceptive tolerance. Suppression of spinal astrocytes or d-amino acid oxidase (DAAO), an astroglial enzyme catalyzing oxidation of d-amino acids, has reversed morphine antinociceptive tolerance. Since the astrocyte-DAAO pathway generates hydrogen peroxide, an agonist of the TRPA1 channel expressed spinally on nociceptive nerve terminals and astrocytes, we tested a hypothesis that the spinal TRPA1 contributes to antinociceptive tolerance to prolonged spinal morphine treatment. METHODS Nociception was assessed using hot-plate test in rats with an intrathecal (it) catheter. Drugs were administered it twice daily from day one to seven in five treatment groups: (i) Saline, (ii) Chembridge-5861528 (a TRPA1 antagonist; 10μg), (iii) morphine (10μg), (iv) Chembridge-5861528 (10μg)+morphine (10μg), (v) DMSO. Antinociceptive action of morphine was assessed at day one and eight. Additionally, mRNA for DAAO and TRPA1 in the spinal cord was determined on day 8. RESULTS Morphine treatment produced antinociceptive tolerance, which was attenuated by co-administration of Chembridge-5861528 that alone had no effect on hot-plate latencies. In animals treated with morphine only, spinal mRNA for DAAO but not TRPA1 was increased. DAAO increase was prevented by co-administration of Chembridge-5861528. CONCLUSIONS Antinociceptive morphine tolerance and up-regulation of spinal DAAO were attenuated in morphine-treated animals by blocking the spinal TRPA1. This finding suggests that spinal TRPA1 may contribute, at least partly, to facilitation of morphine antinociceptive tolerance through mechanisms that possibly involve TRPA1-mediated up-regulation of the astroglial DAAO, a generator of hydrogen peroxide, a pronociceptive compound acting also on TRPA1.
Collapse
|
25
|
Ma S, Li XY, Gong N, Wang YX. Contributions of spinal d-amino acid oxidase to chronic morphine-induced hyperalgesia. J Pharm Biomed Anal 2015; 116:131-8. [DOI: 10.1016/j.jpba.2015.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 02/25/2015] [Accepted: 03/21/2015] [Indexed: 01/01/2023]
|
26
|
Herrero-Turrión MJ, Rodríguez-Martín I, López-Bellido R, Rodríguez RE. Whole-genome expression profile in zebrafish embryos after chronic exposure to morphine: identification of new genes associated with neuronal function and mu opioid receptor expression. BMC Genomics 2014; 15:874. [PMID: 25294025 PMCID: PMC4201762 DOI: 10.1186/1471-2164-15-874] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A great number of studies have investigated changes induced by morphine exposure in gene expression using several experimental models. In this study, we examined gene expression changes during chronic exposure to morphine during maturation and differentiation of zebrafish CNS. RESULTS Microarray analysis showed 254 genes whose expression was identified as different by at least 1.3 fold change following chronic morphine exposure as compared to controls. Of these, several novel genes (grb2, copb2, otpb, magi1b, grik-l, bnip4 and sox19b) have been detected for the first time in an experimental animal model treated with morphine. We have also identified a subset of genes (dao.1, wls, bnip4 and camk1γb) differentially expressed by chronic morphine exposure whose expression is related to mu opioid receptor gene expression. Altered expression of copb2, bnip4, sox19b, otpb, dao.1, grik-l and wls is indicative of modified neuronal development, CNS patterning processes, differentiation and dopaminergic neurotransmission, serotonergic signaling pathway, and glutamatergic neurotransmission. The deregulation of camk1γb signaling genes suggests an activation of axonogenesis and dendritogenesis. CONCLUSIONS Our study identified different functional classes of genes and individual candidates involved in the mechanisms underlying susceptibility to morphine actions related to CNS development. These results open new lines to study the treatment of pain and the molecular mechanisms involved in addiction. We also found a set of zebrafish-specific morphine-induced genes, which may be putative targets in human models for addiction and pain processes.
Collapse
Affiliation(s)
| | | | | | - Raquel E Rodríguez
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain.
| |
Collapse
|
27
|
Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity. J Neurosci 2014; 34:5322-34. [PMID: 24719110 DOI: 10.1523/jneurosci.4703-13.2014] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study aims to identify the inhibitory role of the spinal glucagon like peptide-1 receptor (GLP-1R) signaling in pain hypersensitivity and its mechanism of action in rats and mice. First, GLP-1Rs were identified to be specifically expressed on microglial cells in the spinal dorsal horn, and profoundly upregulated after peripheral nerve injury. In addition, intrathecal GLP-1R agonists GLP-1(7-36) and exenatide potently alleviated formalin-, peripheral nerve injury-, bone cancer-, and diabetes-induced hypersensitivity states by 60-90%, without affecting acute nociceptive responses. The antihypersensitive effects of exenatide and GLP-1 were completely prevented by GLP-1R antagonism and GLP-1R gene knockdown. Furthermore, exenatide evoked β-endorphin release from both the spinal cord and cultured microglia. Exenatide antiallodynia was completely prevented by the microglial inhibitor minocycline, β-endorphin antiserum, and opioid receptor antagonist naloxone. Our results illustrate a novel spinal dorsal horn microglial GLP-1R/β-endorphin inhibitory pathway in a variety of pain hypersensitivity states.
Collapse
|
28
|
Gong N, Fan H, Ma AN, Xiao Q, Wang YX. Geniposide and its iridoid analogs exhibit antinociception by acting at the spinal GLP-1 receptors. Neuropharmacology 2014; 84:31-45. [PMID: 24747181 DOI: 10.1016/j.neuropharm.2014.04.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/25/2022]
Abstract
We recently discovered that the activation of the spinal glucagon-like peptide-1 receptors (GLP-1Rs) by the peptidic agonist exenatide produced antinociception in chronic pain. We suggested that the spinal GLP-1Rs are a potential target molecule for the management of chronic pain. This study evaluated the antinociceptive activities of geniposide, a presumed small molecule GLP-1R agonist. Geniposide produced concentration-dependent, complete protection against hydrogen peroxide-induced oxidative damage in PC12 and HEK293 cells expressing rat and human GLP-1Rs, but not in HEK293T cells that do not express GLP-1Rs. The orthosteric GLP-1R antagonist exendin(9-39) right-shifted the concentration-response curve of geniposide without changing the maximal protection, with identical pA2 values in both cell lines. Subcutaneous and oral geniposide dose-dependently blocked the formalin-induced tonic response but not the acute flinching response. Subcutaneous and oral geniposide had maximum inhibition of 72% and 68%, and ED50s of 13.1 and 52.7 mg/kg, respectively. Seven days of multidaily subcutaneous geniposide and exenatide injections did not induce antinociceptive tolerance. Intrathecal geniposide induced dose-dependent antinociception, which was completely prevented by spinal exendin(9-39), siRNA/GLP-1R and cyclic AMP/PKA pathway inhibitors. The geniposide iridoid analogs geniposidic acid, genipin methyl ether, 1,10-anhydrogenipin, loganin and catalpol effectively inhibited hydrogen peroxide-induced oxidative damage and formalin pain in an exendin(9-39)-reversible manner. Our results suggest that geniposide and its iridoid analogs produce antinociception during persistent pain by activating the spinal GLP-1Rs and that the iridoids represented by geniposide are orthosteric agonists of GLP-1Rs that function similarly in humans and rats and presumably act at the same binding site as exendin(9-39).
Collapse
Affiliation(s)
- Nian Gong
- King's Lab, Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Hui Fan
- King's Lab, Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Ai-Niu Ma
- King's Lab, Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Qi Xiao
- King's Lab, Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
29
|
Gong N, Huang Q, Chen Y, Xu M, Ma S, Wang YX. Pain Assessment Using the Rat and Mouse Formalin Tests. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|