1
|
Awashank A, Fulke AB, Dora GU, J K, Tilvi S. Anticancer and anti-inflammatory activity and untargeted metabolite profiling by UPLC-ESI-QTOF of crude extracts of mangrove endophytic fungus Aspergillus stellatus LM-03. Nat Prod Res 2025; 39:1474-1483. [PMID: 38240473 DOI: 10.1080/14786419.2023.2301007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 03/14/2025]
Abstract
Mangrove ecosystem is diverse habitat for number of medicinally important microorganisms including fungi. Scientific research from last three decade emphasises it potential in important secondary metabolites production, which have wide biological activities. The current study elaborates isolation of fungi from pneumatophore of mangrove plant Avicennia marina and investigation of ethyl acetate extract for antimicrobial, anti-inflammatory and anticancer activity. Ethyl acetate extract of the fungus displayed maximum anti-inflammatory activity with 76.39% inhibition for by protein denaturation method and 22.52% inhibition for membrane stabilisation method with respect to standard ibuprofen. Further, the anticancer activity of Aspergillus stellatus LM-03 exhibited against MCF-7 of breast cancer cell with an IC50 value of 33.24 µg/ml. HPLC and UPLC-ESI-QTOF analysis displayed nine compound mainly alternariol monomethyl ether and methyl jasmonate, which are highly anticancer activity and moderate anti-inflammatory activity with other compounds as angelic anhydride, DL-3-(4-Hydroxyphenyl)lactic acid, 8,9-epoxyl-3-isobutyryloxy-10-(2-methylbutanoyl)thymol, 5-(6-methyl-7-oxooctyl) furan-2(5H)-one and phenyl-butyryl-glutamine with an unidentified compounds. The results of the current study indicate that it may be worthwhile to investigate Aspergillus stellatus LM-03 extract for promising bioactive metabolites with potential for medicinal use.
Collapse
Affiliation(s)
- Avinash Awashank
- Microbiology Division, CSIR-National Institute of Oceanography, Regional Centre, Mumbai, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhay B Fulke
- Microbiology Division, CSIR-National Institute of Oceanography, Regional Centre, Mumbai, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - G Udhaba Dora
- Physical Oceanography Division, CSIR-National Institute of Oceanography, Regional Centre, Mumbai, India
| | - Karthi J
- Physical Oceanography Division, CSIR-National Institute of Oceanography, Regional Centre, Mumbai, India
| | - Supriya Tilvi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| |
Collapse
|
2
|
Kumbhar PS, Kamble V, Vishwas S, Kumbhar P, Kolekar K, Gupta G, Veiga F, Paiva-Santos AC, Goh BH, Singh SK, Dua K, Disouza J, Patravale V. Unravelling the success of transferosomes against skin cancer: Journey so far and road ahead. Drug Deliv Transl Res 2024; 14:2325-2344. [PMID: 38758498 DOI: 10.1007/s13346-024-01607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Skin cancer remains one of the most prominent types of cancer. Melanoma and non-melanoma skin cancer are commonly found together, with melanoma being the more deadly type. Skin cancer can be effectively treated with chemotherapy, which mostly uses small molecular medicines, phytoceuticals, and biomacromolecules. Topical delivery of these therapeutics is a non-invasive way that might be useful in effectively managing skin cancer. Different skin barriers, however, presented a major obstacle to topical cargo administration. Transferosomes have demonstrated significant potential in topical delivery by improving cargo penetration through the circumvention of diverse skin barriers. Additionally, the transferosome-based gel can prolong the residence of drug on the skin, lowering the frequency of doses and their associated side effects. However, the choice of appropriate transferosome compositions, such as phospholipids and edge activators, and fabrication technique are crucial for achieving improved entrapment efficiency, penetration, and regulated particle size. The present review discusses skin cancer overview, current treatment strategies for skin cancer and their drawbacks. Topical drug delivery against skin cancer is also covered, along with the difficulties associated with it and the importance of transferosomes in avoiding these difficulties. Additionally, a summary of transferosome compositions and fabrication methods is provided. Furthermore, topical delivery of small molecular drugs, phytoceuticals, and biomacromolecules using transferosomes and transferosomes-based gel in treating skin cancer is discussed. Thus, transferosomes can be a significant option in the topical delivery of drugs to manage skin cancer efficiently.
Collapse
Affiliation(s)
- Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India
| | - Vikas Kamble
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pranav Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India
| | - Kaustubh Kolekar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India
| | - Gaurav Gupta
- Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, Warananagar, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
3
|
Okemo PA, Njaci I, Kim YM, McClure RS, Peterson MJ, Beliaev AS, Hixson KK, Mundree S, Williams B. Tripogon loliiformis tolerates rapid desiccation after metabolic and transcriptional priming during initial drying. Sci Rep 2023; 13:20613. [PMID: 37996547 PMCID: PMC10667271 DOI: 10.1038/s41598-023-47456-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Crop plants and undomesticated resilient species employ different strategies to regulate their energy resources and growth. Most crop species are sensitive to stress and prioritise rapid growth to maximise yield or biomass production. In contrast, resilient plants grow slowly, are small, and allocate their resources for survival in challenging environments. One small group of plants, termed resurrection plants, survive desiccation of their vegetative tissue and regain full metabolic activity upon watering. However, the precise molecular mechanisms underlying this extreme tolerance remain unknown. In this study, we employed a transcriptomics and metabolomics approach, to investigate the mechanisms of desiccation tolerance in Tripogon loliiformis, a modified desiccation-tolerant plant, that survives gradual but not rapid drying. We show that T. loliiformis can survive rapid desiccation if it is gradually dried to 60% relative water content (RWC). Furthermore, the gene expression data showed that T. loliiformis is genetically predisposed for desiccation in the hydrated state, as evidenced by the accumulation of MYB, NAC, bZIP, WRKY transcription factors along with the phytohormones, abscisic acid, salicylic acid, amino acids (e.g., proline) and TCA cycle sugars during initial drying. Through network analysis of co-expressed genes, we observed differential responses to desiccation between T. loliiformis shoots and roots. Dehydrating shoots displayed global transcriptional changes across broad functional categories, although no enrichment was observed during drying. In contrast, dehydrating roots showed distinct network changes with the most significant differences occurring at 40% RWC. The cumulative effects of the early stress responses may indicate the minimum requirements of desiccation tolerance and enable T. loliiformis to survive rapid drying. These findings potentially hold promise for identifying biotechnological solutions aimed at developing drought-tolerant crops without growth and yield penalties.
Collapse
Affiliation(s)
- Pauline A Okemo
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | - Isaac Njaci
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan S McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Alexander S Beliaev
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kim K Hixson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sagadevan Mundree
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Vrzal R, Marcalíková A, Krasulová K, Zemánková L, Dvořák Z. Jasmone Is a Ligand-Selective Allosteric Antagonist of Aryl Hydrocarbon Receptor (AhR). Int J Mol Sci 2023; 24:15655. [PMID: 37958638 PMCID: PMC10648586 DOI: 10.3390/ijms242115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Herbal extracts represent a wide spectrum of biologically active ingredients with potential medical applications. By screening minor constituents of jasmine essential oil towards aryl hydrocarbon receptor (AhR) activity using a gene reporter assay (GRA), we found the antagonist effects of jasmone (3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one). It inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-, benzo[a]pyrene (BaP)-, and 6-formylindolo[3,2-b]carbazole (FICZ)-triggered AhR-dependent luciferase activity in a concentration-dependent manner. However, the inhibition differed markedly between TCDD, BaP, and FICZ, with the latter being significantly less inhibited. The dose-response analysis confirmed an allosteric type of AhR antagonism. Furthermore, jasmone efficiently inhibited AhR activation by AhR agonists and microbial catabolites of tryptophan (MICTs). TCDD- and FICZ-inducible CYP1A1 expression in primary human hepatocytes was inhibited by jasmone, whereas in the human HepG2 and LS180 cells, jasmone antagonized only TCDD-activated AhR. Jasmone only partially displaced radiolabeled TCDD from its binding to mouse Ahr, suggesting it is not a typical orthosteric ligand of AhR. TCDD-elicited AhR nuclear translocation was not affected by jasmone, whereas downstream signaling events, including the formation of the AhR:ARNT complex and enrichment of the CYP1A1 promoter, were inhibited by jasmone. In conclusion, we show that jasmone is a potent allosteric antagonist of AhR. Such discovery may help to find and/or clarify the use of jasmone in pharmaco- and phytotherapy for conditions where AhR plays a key role.
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
5
|
El Samarji M, Younes M, El Khoury M, Haykal T, Elias N, Gasilova N, Menin L, Houri A, Machaka-Houri N, Rizk S. The Antioxidant and Proapoptotic Effects of Sternbergia clusiana Bulb Ethanolic Extract on Triple-Negative and Estrogen-Dependent Breast Cancer Cells In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 12:529. [PMID: 36771614 PMCID: PMC9920827 DOI: 10.3390/plants12030529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Sternbergia clusiana belongs to the Amaryllidaceae family and is recognized for the valuable biological activity of its major bioactive compounds. The aim of the current is to evaluate the anticancer effects of the ethanolic bulb extract of Sternbergia clusiana (ScBEE) on breast cancer cells in vitro and to further reveal the underlying cellular mechanism. METHODS An MTS cell viability assay was performed on MDA-MB-231 and MCF-7 cells, along with cell cycle analysis, cell death ELISA, Western blot analysis and an ROS production assay to decipher the mechanism of death. LC-MS/MS was also performed to identify the chemical composition of this ethanolic extract. RESULTS The results show a selective antiproliferative effect on both cell lines with no effect on normal mesenchymal stem cells. Further analysis suggested the activation of the apoptotic pathway as reflected by the increase in cellular and DNA fragmentation and alterations in apoptotic proteins such as Bax, Bcl-2 and c-PARP. ScBEE was also found to exhibit antioxidant effect, as shown by a decrease in ROS production. The underlying mechanism of action was explained by the presence of several bioactive compounds identified by LC-MS/MS, including alkaloids, terpenoids and phenols, which are elaborated in the manuscript. CONCLUSION This study highlights the antioxidant and anticancerous properties of S.clusiana for breast cancer treatment.
Collapse
Affiliation(s)
- Mona El Samarji
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Maria Younes
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Marianne El Khoury
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Tony Haykal
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Nazira Elias
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Natalia Gasilova
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ahmad Houri
- Department of Natural Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Nisrine Machaka-Houri
- Department of Life and Earth Science, Faculty of Sciences, Saint Joseph University, Ras Maska 1104-2020, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon
| |
Collapse
|
6
|
Ding Q, Hao Q, Zhang Q, Yang Y, Olsen RE, Ringø E, Ran C, Zhang Z, Zhou Z. Excess DHA Induces Liver Injury via Lipid Peroxidation and Gut Microbiota-Derived Lipopolysaccharide in Zebrafish. Front Nutr 2022; 9:870343. [PMID: 35571918 PMCID: PMC9096794 DOI: 10.3389/fnut.2022.870343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Being highly unsaturated, n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) are prone to lipid peroxidation. In this study, zebrafish were fed with low-fat diet (LFD), high-fat diet (HFD), or 2% DHA-supplemented HFD (HFDHA2.0). To study the possible negative effects of the high level of dietary DHA, growth rates, blood chemistry, liver histology, hepatic oxidative stress, apoptosis, and inflammatory processes were assessed. The cell studies were used to quantify the effects of DHA and antioxidant on cellular lipid peroxidation and viability. The possible interaction between gut microbiota and zebrafish host was evaluated in vitro. HFDHA2.0 had no effect on hepatic lipid level but induced liver injury, oxidative stress, and hepatocellular apoptosis, including intrinsic and death receptor-induced apoptosis. Besides, the inclusion of 2% DHA in HFD increased the abundance of Proteobacteria in gut microbiota and serum endotoxin level. In the zebrafish liver cell model, DHA activated intrinsic apoptosis while the antioxidant 4-hydroxy-Tempo (tempo) inhibited the pro-apoptotic negative effects of DHA. The apoptosis induced by lipopolysaccharide (LPS) was unaffected by the addition of tempo. In conclusion, the excess DHA supplementation generates hepatocellular apoptosis-related injury to the liver. The processes might propagate along at least two routes, involving lipid peroxidation and gut microbiota-generated LPS.
Collapse
Affiliation(s)
- Qianwen Ding
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringø
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Faculty of Bioscience, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Ezzeldeen Y, Swidan S, ElMeshad A, Sebak A. Green Synthesized Honokiol Transfersomes Relieve the Immunosuppressive and Stem-Like Cell Characteristics of the Aggressive B16F10 Melanoma. Int J Nanomedicine 2021; 16:5693-5712. [PMID: 34465990 PMCID: PMC8402984 DOI: 10.2147/ijn.s314472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Honokiol (HK) is a natural bioactive compound with proven antineoplastic properties against melanoma. However, it shows very low bioavailability when administered orally. Alternatively, topical administration may offer a promising route. The objective of the current study was to fabricate HK transfersomes (HKTs) for topical treatment of melanoma. As an ultradeformable carrier system, transfersomes can overcome the physiological barriers to topical treatment of melanoma: the stratum corneum and the anomalous tumor microenvironment. Moreover, the immunomodulatory and stemness-regulation roles of HKTs were the main interest of this study. METHODS TFs were prepared using the modified scalable heating method. A three-factor, three-level Box-Behnken design was utilized for the optimization of the process and formulation variables. Intracellular uptake and cytotoxicity of HKTs were evaluated in nonactivated and stromal cell-activated B16F10 melanoma cells to investigate the influence of the complex tumor microenvironment on the efficacy of HK. Finally, ELISA and Western blot were performed to evaluate the expression levels of TGF-β and clusters of differentiation (CD47 and CD133, respectively). RESULTS The optimized formula exhibited a mean size of 190 nm, highly negative surface charge, high entrapment efficiency, and sustained release profile. HKTs showed potential to alleviate the immunosuppressive characteristics of B16F10 melanoma in vitro via downregulation of TGF-β signaling. In addition, HKTs reduced expression of the "do not eat me" signal - CD47. Moreover, HKTs possessed additional interesting potential to reduce the expression of the stem-like cell marker CD133. These outcomes were boosted upon combination with metformin, an antihyperglycemic drug recently reported to possess different functions in cancer, while combination with collagenase, an extracellular matrix-depleting enzyme, produced detrimental effects. CONCLUSION HKTs represent a promising scalable formulation for treatment of the aggressive B16F10 melanoma, which is jam-packed with immunosuppressive and stem-like cell markers.
Collapse
Affiliation(s)
- Yasmeen Ezzeldeen
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
- The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Aliaa ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Bio Nano, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed, Giza, 12588, Egypt
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt
| |
Collapse
|
8
|
Jarocka-Karpowicz I, Markowska A. Therapeutic Potential of Jasmonic Acid and Its Derivatives. Int J Mol Sci 2021; 22:ijms22168437. [PMID: 34445138 PMCID: PMC8395089 DOI: 10.3390/ijms22168437] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
A modern method of therapeutic use of natural compounds that would protect the body are jasmonates. The main representatives of jasmonate compounds include jasmonic acid and its derivatives, mainly methyl jasmonate. Extracts from plants rich in jasmonic compounds show a broad spectrum of activity, i.e., anti-cancer, anti-inflammatory and cosmetic. Studies of the biological activity of jasmonic acid and its derivatives in mammals are based on their structural similarity to prostaglandins and the compounds can be used as natural therapeutics for inflammation. Jasmonates also constitute a potential group of anti-cancer drugs that can be used alone or in combination with other known chemotherapeutic agents. Moreover, due to their ability to stimulate exfoliation of the epidermis, remove discoloration, regulate the function of the sebaceous glands and reduce the visible signs of aging, they are considered for possible use in cosmetics and dermatology. The paper presents a review of literature data on the biological activity of jasmonates that may be helpful in treatment and prevention.
Collapse
|
9
|
Alsherbiny MA, Bhuyan DJ, Radwan I, Chang D, Li CG. Metabolomic Identification of Anticancer Metabolites of Australian Propolis and Proteomic Elucidation of Its Synergistic Mechanisms with Doxorubicin in the MCF7 Cells. Int J Mol Sci 2021; 22:ijms22157840. [PMID: 34360606 PMCID: PMC8346082 DOI: 10.3390/ijms22157840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
The combination of natural products with standard chemotherapeutic agents offers a promising strategy to enhance the efficacy or reduce the side effects of standard chemotherapy. Doxorubicin (DOX), a standard drug for breast cancer, has several disadvantages, including severe side effects and the development of drug resistance. Recently, we reported the potential bioactive markers of Australian propolis extract (AP-1) and their broad spectrum of pharmacological activities. In the present study, we explored the synergistic interactions between AP-1 and DOX in the MCF7 breast adenocarcinoma cells using different synergy quantitation models. Biochemometric and metabolomics-driven analysis was performed to identify the potential anticancer metabolites in AP-1. The molecular mechanisms of synergy were studied by analysing the apoptotic profile via flow cytometry, apoptotic proteome array and measuring the oxidative status of the MCF7 cells treated with the most synergistic combination. Furthermore, label-free quantification proteomics analysis was performed to decipher the underlying synergistic mechanisms. Five prenylated stilbenes were identified as the key metabolites in the most active AP-1 fraction. Strong synergy was observed when AP-1 was combined with DOX in the ratio of 100:0.29 (w/w) as validated by different synergy quantitation models implemented. AP-1 significantly enhanced the inhibitory effect of DOX against MCF7 cell proliferation in a dose-dependent manner with significant inhibition of the reactive oxygen species (p < 0.0001) compared to DOX alone. AP-1 enabled the reversal of DOX-mediated necrosis to programmed cell death, which may be advantageous to decline DOX-related side effects. AP-1 also significantly enhanced the apoptotic effect of DOX after 24 h of treatment with significant upregulation of catalase, HTRA2/Omi, FADD together with DR5 and DR4 TRAIL-mediated apoptosis (p < 0.05), contributing to the antiproliferative activity of AP-1. Significant upregulation of pro-apoptotic p27, PON2 and catalase with downregulated anti-apoptotic XIAP, HSP60 and HIF-1α, and increased antioxidant proteins (catalase and PON2) may be associated with the improved apoptosis and oxidative status of the synergistic combination-treated MCF7 cells compared to the mono treatments. Shotgun proteomics identified 21 significantly dysregulated proteins in the synergistic combination-treated cells versus the mono treatments. These proteins were involved in the TP53/ATM-regulated non-homologous end-joining pathway and double-strand breaks repairs, recruiting the overexpressed BRCA1 and suppressed RIF1 encoded proteins. The overexpression of UPF2 was noticed in the synergistic combination treatment, which could assist in overcoming doxorubicin resistance-associated long non-coding RNA and metastasis of the MCF7 cells. In conclusion, we identified the significant synergy and highlighted the key molecular pathways in the interaction between AP-1 and DOX in the MCF7 cells together with the AP-1 anticancer metabolites. Further in vivo and clinical studies are warranted on this synergistic combination.
Collapse
Affiliation(s)
- Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Ibrahim Radwan
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia;
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| |
Collapse
|
10
|
Lin J. Comments on "Dihydroartemisinin induces pyroptosis by promoting the AIM2/caspase-3/DFNA5 axis in breast cancer cells.". Chem Biol Interact 2021; 345:109551. [PMID: 34119495 DOI: 10.1016/j.cbi.2021.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
We read the article "Dihydroartemisinin induces pyroptosis by promoting the AIM2/caspase-3/DFNA5 axis in breast cancer cells" published in Chemico-Biological Interactions. Authors revealed that dihydroartemisinin induced pyroptosis through activating the AIM2/caspase-3/DFNA5 pathway in breast cancer cells. However, some issues in this paper need to be commented. Authors suggested that dihydroartemisinin activated AIM2/caspase-3/DFNA5 axis in MCF-7 cell line. However, previous studies have confirmed that MCF-7 cell line does not express the caspase-3 protein. This makes us confused.
Collapse
Affiliation(s)
- Jiong Lin
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
11
|
Ghosh S, Das T, Suman SK, Sarma HD, Dash A. Preparation and Preliminary Evaluation of 68Ga-Acridine: An Attempt to Study the Potential of Radiolabeled DNA Intercalator as a PET Radiotracer for Tumor Imaging. Anticancer Agents Med Chem 2021; 20:1538-1547. [PMID: 32357824 DOI: 10.2174/1871520620666200502002609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/13/2019] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acridine is a well-known DNA intercalator and thereby gets easily inserted within DNA. As uncontrolled rapid cell division is one of the primary characteristics of the tumors, it is expected that acridine or its suitable derivatives will have preferential accumulation in the tumorous lesions. Therefore, an attempt was made to radiolabel an acridine derivative with 68Ga and study the potential of the 68Ga-acridine complex as a PET agent for tumor imaging. METHODS 9-aminoacridine was coupled with p-NCS-benzyl-DOTA to render it suitable for labeling with 68Ga. The purified acridine-DOTA conjugate was radiolabeled with 68Ga, eluted from a 68Ge/68Ga radionuclide generator. Various radiolabeling parameters were optimized and the stability of the radiolabeled preparation was studied. The biological behavior of the 68Ga-acridine complex was studied both in vitro and in vivo using Raji cell line and fibrosarcoma tumor bearing Swiss mice, respectively. RESULTS 68Ga-acridine complex was obtained with ~100% radiochemical purity under the optimized reaction conditions involving incubation of 2mg/mL of ligand at 100°C for 30 minutes. The complex maintained a radiochemical purity of >95% in normal saline and >65% in human blood serum at 3h post-incubation. In vitro cellular study showed (3.2±0.1)% uptake of the radiotracer in the Raji cells. Biodistribution study revealed significant tumor accumulation [(11.41±0.41)% injected activity in per gram] of the radiotracer within 1h postadministration along with uptake in other non-target organs such as, blood, liver, GIT kidney etc. Conclusion: The present study indicates the potential of 68Ga-acridine as a PET agent for imaging of tumorous lesions. However, further detailed evaluation of the agent is warranted to explore its actual potential.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Shishu K Suman
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Haladhar D Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| |
Collapse
|
12
|
Chen Z, Fu H, Wu H, Huang J, Yao L, Zhang X, Li Y. Syntheses and Preliminary Evaluation of Dual Target PET Probe [18F]-NOTA-Gly3- E (2PEG4-RGD-WH701) for PET Imaging of Breast Cancer. Anticancer Agents Med Chem 2021; 20:1548-1557. [PMID: 32329699 DOI: 10.2174/1871520620666200424101936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Tumor Necrosis Factor Receptor 1 (TNFR1) and integrin αvβ3 receptor are overexpressed in breast cancer. We hypothesized that a peptide ligand recognizing both receptors in a single receptor-binding probe would be advantageous. Here, we developed a novel 18F-labeled fusion peptide probe [18F]-NOTA-Gly3- E(2PEG4-RGD-WH701) targeting dual receptors (TNFR1 and αvβ3) and evaluated the diagnostic efficacy of this radioactive probe in both MDA-MB-231 and MCF-7 xenograft models in mice. METHODS The NOTA-conjugated RGD-WH701 analog was radiolabeled with 18F using NOTA-AlF chelation method. We used two PEG4 molecules and Glutamic acid (Glu) to covalently link c(RGDyK) with WH701. Gly3 was also added to further improve the water solubility and pharmacokinetic properties of the probe. The expression of TNFR1 and Integrin αvβ3 in MCF-7 and MDA-MB-231 cells was detected by western blot analysis and immunofluorescence staining. The tumor-targeting characteristics of [18F]-NOTA-Gly3-E(2PEG4-RGDWH701) were assessed in nude mice bearing MDA-MB-231 and MCF-7 xenografts. RESULTS HPLC analysis of the product NOTA-G3-E (2P4-RGD-WH701) revealed a purity >95%. The yield after attenuation correction was approximately 33.5%±2.8% (n=5), and the radiochemical purity was above 95%. The MDA-MB-231 tumor uptake of [18F]-NOTA-Gly3-E(2PEG4-RGD-WH701) was 1.14±0.14%ID/g, as measured by PET at 40min postinjection (p.i.). In comparison, the tumor uptake of [18F]-NOTA-RGD and [18F]- NOTA-WH701 in MDA-MB-231 xenografts was 0.96±0.13%ID/g and 0.93±0.28%ID/g, respectively. The MCF-7 tumor uptake of [18F]-NOTA-Gly3-E(2PEG4-RGD-WH701) was 1.22±0.11%ID/g, as measured by PET at 40min postinjection (p.i.). In comparison, the tumor uptake of [18F]-NOTA-RGD and [18F]-NOTA-WH701 in MCF-7 xenografts was 0.99±0.18%ID/g and 0.57±0.08%ID/g, respectively. CONCLUSION [18F]AlF-NOTA-Gly3-E(2PEG4-RGD-WH701) was successfully synthesized and labeled with 18F. The results from the microPET/CT and biodistribution studies of [18F]AlF-NOTA-Gly3-E(2PEG4-RGDWH701) showed that the tracer could specifically target TNFR1 and integrin αvβ3 receptors.
Collapse
Affiliation(s)
- Zijun Chen
- Medical College of Xiamen University, Xiamen University, Xiamen, China
| | - Hao Fu
- Medical College of Xiamen University, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Jinxiong Huang
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Lanlin Yao
- Medical College of Xiamen University, Xiamen University, Xiamen, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| |
Collapse
|
13
|
Hemati T, Abbasnejad M, Mollashahi M, Esmaeili-Mahani S, Shahraki A. Activation of L-type calcium channels and attenuation of oxidative stress are involved in the improving effect of methyl jasmonate on learning and memory and its anxiolytic property in rats. Behav Pharmacol 2021; 32:286-294. [PMID: 33595951 DOI: 10.1097/fbp.0000000000000611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study was designed to evaluate the effect of plant bioactive compound methyl jasmonate on learning and memory, anxiety-like behaviors, and brain oxidative stress in rats. It has been indicated that methyl jasmonate stimulates calcium-binding protein expression and increases intracellular calcium (Ca2+). Therefore, we investigated the potential role of L-type calcium channel on methyl jasmonate effects. The animals were intracerebroventriculary (i.c.v.) injected with different doses of methyl jasmonate (0.5, 2.5, and 5 µg/rat). L-type calcium channel blocker (nifedipine 5 µg/rat, i.c.v.) was injected 30 min before methyl jasmonate (5 µg/rat). Shuttle box apparatus was used to evaluate passive avoidance memory. Anxiety-like behaviors were assessed by open field and elevated plus maze tests. Lastly, oxidative stress-related indices were assessed in hippocampus and prefrontal cortex. The data showed that methyl jasmonate dose-dependently could improve passive avoidance learning and memory and reduce anxiogenic behaviors. The methyl jasmonate effects were significantly prevented by nifedipine. Furthermore, central microinjection of methyl jasmonate significantly decreased hydrogen peroxide concentration, and increased reactive oxygen species scavenger activity (catalase and peroxide enzymes) in rats' hippocampus as well as prefrontal cortex. Indeed, the results indicated that the beneficial effects of methyl jasmonate on learning and memory and anxiety might be partly associated with L-type calcium channel and partly on the inhibition of oxidant indices.
Collapse
Affiliation(s)
- Tahereh Hemati
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman
| | - Mahtab Mollashahi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences, Kerman
| | - Ali Shahraki
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
14
|
Jarocka-Karpowicz I, Markowska A. Jasmonate Compounds and Their Derivatives in the Regulation of the Neoplastic Processes. Molecules 2021; 26:2901. [PMID: 34068337 PMCID: PMC8153294 DOI: 10.3390/molecules26102901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023] Open
Abstract
Cancer is a serious problem in modern medicine, mainly due to the insufficient effectiveness of currently available therapies. There is a particular interest in compounds of natural origin, which can be used in the prophylaxis, as well as in the treatment and support of cancer treatment. One such compound is jasmonic acid (3-oxo-2-(pent-2'-enyl)cyclopentane acetic acid; isolated active form: trans-(-)-(3R,7R)- and cis-(+)-(3R,7S)-jasmonic acid) and its derivatives, which, due to their wide range of biological activities, are also proposed as potential therapeutic agents. Therefore, a review of literature data on the biological activity of jasmonates was prepared, with particular emphasis on the mechanisms of jasmonate action in neoplastic diseases. The anti-tumor activity of jasmonate compounds is based on altered cellular ATP levels; induction of re-differentiation through the action of Mitogen Activated Protein Kinases (MAPKs); the induction of the apoptosis by reactive oxygen species. Jasmonates can be used in anti-cancer therapy in combination with other known drugs, such as cisplatin, paclitaxel or doxorubicin, showing a synergistic effect. The structure-activity relationship of novel jasmonate derivatives with anti-tumor, anti-inflammatory and anti-aging effects is also shown.
Collapse
Affiliation(s)
- Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | | |
Collapse
|
15
|
Synergistic effects of autocrine motility factor and methyl jasmonate on human breast cancer cells. Biochem Biophys Res Commun 2021; 558:22-28. [PMID: 33894674 DOI: 10.1016/j.bbrc.2021.04.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
Autocrine motility factor (AMF) stimulates the motility of cancer cells via an autocrine route and has been implicated in tumor progression and metastasis. Overexpression of AMF is correlated with the aggressive nature of breast cancer and is negatively associated with clinical outcomes. In contrast, AMF also has the ability to suppress cancer cells. In this study, AMFs from different cancer cells were demonstrated to have suppressive activity against MCF-7 and MDA-MB-231 breast cancer cells. In a growth and colony formation assay, AMF from AsPC-1 pancreatic cancer cells (ASPC-1:AMF) was determined to be more suppressive compared to other AMFs. It was also demonstrated that AsPC-1:AMF could arrest breast cancer cells at the G0/G1 cell cycle phase. Quantified by Western blot analysis, AsPC-1:AMF lowered levels of the AMF receptor (AMFR) and G-protein-coupled estrogen receptor (GPER), concomitantly regulating the activation of the AKT and ERK signaling pathways. JAK/STAT activation was also decreased. These results were found in estrogen receptor (ER)-positive MCF-7 cells but not in triple-negative MDA-MB-231 cells, suggesting that AsPC-1:AMF could work through multiple pathways led to apoptosis. More importantly, AsPC-1:AMF and methyl jasmonate (MJ) cooperatively and synergistically acted against breast cancer cells. Thus, AMF alone or along with MJ may be a promising breast cancer treatment option.
Collapse
|
16
|
Goel Y, Yadav S, Pandey SK, Temre MK, Maurya BN, Verma A, Kumar A, Singh SM. Tumor Decelerating and Chemo-Potentiating Action of Methyl Jasmonate on a T Cell Lymphoma In Vivo: Role of Altered Regulation of Metabolism, Cell Survival, Drug Resistance, and Intratumoral Blood Flow. Front Oncol 2021; 11:619351. [PMID: 33718176 PMCID: PMC7947686 DOI: 10.3389/fonc.2021.619351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Methyl jasmonate (MJ), a natural oxylipin, possesses a broad spectrum of antineoplastic potential in vitro. However, its tumor growth impeding and chemo-potentiating action has not been adequately investigated in vivo. Using a murine thymus-derived tumor named Dalton’s Lymphoma (DL), in the present study, we examined if intra-tumoral administration of MJ can cause tumor growth impedance. We also explored the associated molecular mechanisms governing cell survival, carbohydrate & lipid metabolism, chemo-potentiation, and angiogenesis. MJ administration to tumor-transplanted mice caused deceleration of tumor growth accompanying prolonged survival of the tumor-bearing mice. MJ-dependent tumor growth retardation was associated with the declined blood supply in tumor milieu, cell cycle arrest, augmented induction of apoptosis and necrosis, deregulated glucose and lipid metabolism, enhanced membrane fragility of tumor cells, and altered cytokine repertoire in the tumor microenvironment. MJ administration modulated molecular network implicating Hsp70, Bcl-2, TERT, p53, Cyt c, BAX, GLUT-1, HK 2, LDH A, PDK-1, HIF-1α, ROS, MCT-1, FASN, ACSS2, SREBP1c, VEGF, cytokine repertoire, and MDR1, involved in the regulation of cell survival, carbohydrate and fatty acid metabolism, pH homeostasis, and drug resistance. Thus, the present study unveils novel molecular mechanisms of the tumor growth decelerating action of MJ. Besides, this preclinical study also establishes the adjunct therapeutic potential of MJ. Hence, the present investigation will help to design novel anti-cancer therapeutic regimens for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Yugal Goel
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saveg Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shrish Kumar Pandey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Babu Nandan Maurya
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Verma
- Department of Radiodiagnosis and Imaging, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
17
|
Bömer M, Pérez‐Salamó I, Florance HV, Salmon D, Dudenhoffer J, Finch P, Cinar A, Smirnoff N, Harvey A, Devoto A. Jasmonates induce Arabidopsis bioactivities selectively inhibiting the growth of breast cancer cells through CDC6 and mTOR. THE NEW PHYTOLOGIST 2021; 229:2120-2134. [PMID: 33124043 PMCID: PMC8022592 DOI: 10.1111/nph.17031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Phytochemicals are used often in vitro and in vivo in cancer research. The plant hormones jasmonates (JAs) control the synthesis of specialized metabolites through complex regulatory networks. JAs possess selective cytotoxicity in mixed populations of cancer and normal cells. Here, direct incubation of leaf explants from the non-medicinal plant Arabidopsis thaliana with human breast cancer cells, selectively suppresses cancer cell growth. High-throughput LC-MS identified Arabidopsis metabolites. Protein and transcript levels of cell cycle regulators were examined in breast cancer cells. A synergistic effect by methyljasmonate (MeJA) and by compounds upregulated in the metabolome of MeJA-treated Arabidopsis leaves, on the breast cancer cell cycle, is associated with Cell Division Cycle 6 (CDC6), Cyclin-dependent kinase 2 (CDK2), Cyclins D1 and D3, indicating that key cell cycle components mediate cell viability reduction. Bioactives such as indoles, quinolines and cis-(+)-12-oxophytodienoic acid, in synergy, could act as anticancer compounds. Our work suggests a universal role for MeJA-treatment of Arabidopsis in altering the DNA replication regulator CDC6, supporting conservation, across kingdoms, of cell cycle regulation, through the crosstalk between the mechanistic target of rapamycin, mTOR and JAs. This study has important implications for the identification of metabolites with anti-cancer bioactivities in plants with no known medicinal pedigree and it will have applications in developing disease treatments.
Collapse
Affiliation(s)
- Moritz Bömer
- Department of Biological SciencesPlant Molecular Science and Centre of Systems and Synthetic BiologyRoyal Holloway University of LondonEghamTW20 0EXUK
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeME4 4TBUK
| | - Imma Pérez‐Salamó
- Department of Biological SciencesPlant Molecular Science and Centre of Systems and Synthetic BiologyRoyal Holloway University of LondonEghamTW20 0EXUK
| | - Hannah V. Florance
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | - Deborah Salmon
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | | | - Paul Finch
- Department of Biological SciencesPlant Molecular Science and Centre of Systems and Synthetic BiologyRoyal Holloway University of LondonEghamTW20 0EXUK
| | - Aycan Cinar
- Institute of Environment, Health and SocietiesBrunel University LondonKingston LaneUxbridgeUB8 3PHUK
| | - Nicholas Smirnoff
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterGeoffrey Pope Building, Stocker RoadExeterEX4 4QDUK
| | - Amanda Harvey
- Institute of Environment, Health and SocietiesBrunel University LondonKingston LaneUxbridgeUB8 3PHUK
| | - Alessandra Devoto
- Department of Biological SciencesPlant Molecular Science and Centre of Systems and Synthetic BiologyRoyal Holloway University of LondonEghamTW20 0EXUK
| |
Collapse
|
18
|
Ngin P, Cho K, Han O. Immobilization of Soybean Lipoxygenase on Nanoporous Rice Husk Silica by Adsorption: Retention of Enzyme Function and Catalytic Potential. Molecules 2021; 26:E291. [PMID: 33430075 PMCID: PMC7827180 DOI: 10.3390/molecules26020291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023] Open
Abstract
Soybean lipoxygenase was immobilized on nanoporous rice husk silica particles by adsorption, and enzymatic parameters of the immobilized protein, including the efficiency of substrate binding and catalysis, kinetic and operational stability, and the kinetics of thermal inactivation, were investigated. The maximal adsorption efficiency of soybean lipoxygenase to the silica particles was 50%. The desorption kinetics of soybean lipoxygenase from the silica particles indicate that the silica-immobilized enzyme is more stable in an anionic buffer (sodium phosphate, pH 7.2) than in a cationic buffer (Tris-HCl, pH 7.2). The specific activity of immobilized lipoxygenase was 73% of the specific activity of soluble soybean lipoxygenase at a high concentration of substrate. The catalytic efficiency (kcat/Km) and the Michaelis-Menten constant (Km) of immobilized lipoxygenase were 21% and 49% of kcat/Km and Km of soluble soybean lipoxygenase, respectively, at a low concentration of substrate. The immobilized soybean lipoxygenase was relatively stable, as the enzyme specific activity was >90% of the initial activity after four assay cycles. The thermal stability of the immobilized lipoxygenase was higher than the thermal stability of soluble lipoxygenase, demonstrating 70% and 45% of its optimal specific activity, respectively, after incubation for 30 min at 45 °C. These results demonstrate that adsorption on nanoporous rice husk silica is a simple and rapid method for protein immobilization, and that adsorption may be a useful and facile method for the immobilization of many biologically important proteins of interest.
Collapse
Affiliation(s)
| | | | - Oksoo Han
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; (P.N.); (K.C.)
| |
Collapse
|
19
|
Shyam A, Chandran S. S, George B, E. S. Plant mediated synthesis of AgNPs and its applications: an overview. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1852254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Aswathi Shyam
- Department of Chemistry, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, Kerala, India
| | - Smitha Chandran S.
- Department of Chemistry, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, Kerala, India
| | - Bini George
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kerala, India
| | - Sreelekha E.
- Department of Chemistry, School of Physical Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kerala, India
| |
Collapse
|
20
|
Kim HY, Jin H, Bae J, Choi HK. Metabolic and lipidomic investigation of the antiproliferative effects of coronatine against human melanoma cells. Sci Rep 2019; 9:3140. [PMID: 30816283 PMCID: PMC6395766 DOI: 10.1038/s41598-019-39990-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer, with metastatic melanoma being refractory to currently available conventional therapies. In this study, we evaluated the inhibitory effect of coronatine (COR) on the proliferation of metastatic melanoma cells. COR inhibited the proliferation of melanoma cells but negligibly affected the proliferation of normal melanocytes. Comparative metabolic and lipidomic profiling using gas chromatography-mass spectrometry and direct infusion-mass spectrometry was performed to investigate COR-induced metabolic changes. These analyses identified 33 metabolites and 82 lipids. Of these, the levels of lactic acid and glutamic acid, which are involved in energy metabolism, significantly decreased in COR-treated melanoma cells. Lipidomic profiling indicated that ceramide levels increased in COR-treated melanoma cells, suggesting that ceramides could function as a suppressor of cancer cell proliferation. In contrast, the levels of phosphatidylinositol (PI) species, including PI 16:0/18:0, 16:0/18:1, 18:0/18:0, and 18:0/18:1, which were found to be potential biomarkers of melanoma metastasis in our previous study, were lower in the COR-treated cells than in control cells. The findings of metabolomic and lipidomic profiling performed in the present study provide new insights on the anticancer mechanisms of COR and can be used to apply COR in cancer treatment.
Collapse
Affiliation(s)
- Hye-Youn Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hanyong Jin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeehyeon Bae
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
21
|
Díaz-García D, Cenariu D, Pérez Y, Cruz P, Del Hierro I, Prashar S, Fischer-Fodor E, Gómez-Ruiz S. Modulation of the mechanism of apoptosis in cancer cell lines by treatment with silica-based nanostructured materials functionalized with different metallodrugs. Dalton Trans 2018; 47:12284-12299. [PMID: 30112529 DOI: 10.1039/c8dt01677a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mesoporous silica-based material SBA-15 (Santa Barbara Amorphous-15) has been modified with the aminodiol ligand 3-[bis(2-hydroxyethyl)amino]propyltriethoxysilane (PADOH) to give the corresponding material SBA-PADOH. Subsequent functionalization with a diorganotin(iv) compound, SnPh2Cl2 (1), and with two titanocene derivatives, TiCp2Cl2 ([Ti(η5-C5H5)2Cl2] (2)) and TiCpCpPhNfCl2 ([Ti(η5-C5H5)(η5-C5H4CHPhNf)Cl2] (3) (Ph = C6H5; Nf = C10H7)), gave the materials SBA-PADO-SnPh2 (M1), SBA-PADO-TiCp2 (M2) and SBA-PADO-TiCpCp* (M3), respectively. SBA-PADOH and M1-M3 have been characterized by various techniques such as FT-IR, XRD, XRF, solid-state NMR, nitrogen adsorption-desorption isotherms, electrochemical methods, SEM and TEM, observing that the functionalization has mainly taken place inside the pores of the corresponding porous system. In addition, mechanistic aspects of the apoptosis triggered by the synthesized materials have been studied in vitro in tumour cell lines derived from three distinct types of cancer in order to elucidate their growth inhibition and interference with the expression of tumour necrosis factor alfa (TNF-α) and the first apoptosis signal receptor (Fas or tumour necrosis factor receptor 6). It was observed that the antiproliferative and proapoptotic capacity of the materials depends on their functionalization with the different cytotoxic prodrugs (organotin or titanocene derivatives). The study shows that M1-M3 influence the metabolic activity of the tumour cells and modulate the apoptotic pathways by different mechanisms, according to the active compound inside the material.
Collapse
Affiliation(s)
- Diana Díaz-García
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933, Móstoles (Madrid), Spain.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Anticancer Applications of Nanostructured Silica-Based Materials Functionalized with Titanocene Derivatives: Induction of Cell Death Mechanism through TNFR1 Modulation. MATERIALS 2018; 11:ma11020224. [PMID: 29385103 PMCID: PMC5848921 DOI: 10.3390/ma11020224] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 01/16/2023]
Abstract
A series of cytotoxic titanocene derivatives have been immobilized onto nanostructured silica-based materials using two different synthetic routes, namely, (i) a simple grafting protocol via protonolysis of the Ti–Cl bond; and (ii) a tethering method by elimination of ethanol using triethoxysilyl moieties of thiolato ligands attached to titanium. The resulting nanostructured systems have been characterized by different techniques such as XRD, XRF, DR-UV, BET, SEM, and TEM, observing the incorporation of the titanocene derivatives onto the nanostructured silica and slight changes in the textural features of the materials after functionalization with the metallodrugs. A complete biological study has been carried out using the synthesized materials exhibiting moderate cytotoxicity in vitro against three human hepatic carcinoma (HepG2, SK-Hep-1, Hep3B) and three human colon carcinomas (DLD-1, HT-29, COLO320) and very low cytotoxicity against normal cell lines. In addition, the cells’ metabolic activity was modified by a 24-h exposure in a dose-dependent manner. Despite not having a significant effect on TNFα or the proinflammatory interleukin 1α secretion, the materials strongly modulated tumor necrosis factor (TNF) signaling, even at sub-cytotoxic concentrations. This is achieved mainly by upregulation of the TNFR1 receptor production, something which has not previously been observed for these systems.
Collapse
|
23
|
Besson JCF, de Carvalho Picoli C, Matioli G, Natali MRM. Methyl jasmonate: a phytohormone with potential for the treatment of inflammatory bowel diseases. ACTA ACUST UNITED AC 2017; 70:178-190. [PMID: 29072315 DOI: 10.1111/jphp.12839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The phytohormone methyl jasmonate (MeJA) has been identified as a vital cell regulator in plants. This substance is analogous to eicosanoids and similar to that of anti-inflammatory prostaglandins. In animals and in animal cells, it displayed an efficient neuroprotective, anti-inflammatory and antioxidant action; while in tumoral strains, it demonstrates a potentially highly attractive mechanism of apoptosis induction through various cellular and molecular mechanisms. The aim of the present review was to explore two new hypotheses that explain the action of MeJA, a lipid phytohormone and its potentially anti-apoptotic mechanism for use as a therapeutic target for future treatment of Inflammatory bowel diseases (IBDs). KEY FINDINGS Methyl jasmonate is a new candidate for the treatment of IBDs, modulating the expression of the major classes of caspase-type protease families that selectively act on the extrinsic and intrinsic pathways of the apoptotic process. Its action is based on the reduction of the expression in tumour necrosis factor tissue levels and the modulating action of reactive oxygen species production, acting only on the destruction of cells that express the diseased phenotype, and preserving cells that are not transformed. CONCLUSIONS Methyl jasmonate may represent an alternative for the transduction processes of important signals in the cellular renewal of the intestinal mucosa.
Collapse
Affiliation(s)
| | | | - Graciette Matioli
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, Brazil
| | | |
Collapse
|
24
|
Li J, Chen K, Wang F, Dai W, Li S, Feng J, Wu L, Liu T, Xu S, Xia Y, Lu J, Zhou Y, Xu L, Guo C. Methyl jasmonate leads to necrosis and apoptosis in hepatocellular carcinoma cells via inhibition of glycolysis and represses tumor growth in mice. Oncotarget 2017; 8:45965-45980. [PMID: 28498814 PMCID: PMC5542241 DOI: 10.18632/oncotarget.17469] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/11/2017] [Indexed: 12/24/2022] Open
Abstract
Methyl jasmonate has recently been found to have anti-cancer activity. Methyl jasmonate detached hexokinase 2 from a voltage dependent anion channel causing a reduction in mitochondrial transmembrane potential that led to the release of cytochrome C and apoptosis inducing factor resulting in intrinsic apoptosis. Blocked adenosine triphosphate synthesis caused by mitochondrial injury hampered oxidative phosphorylation and led to cell necrosis. The results were applied to the in vivo treatment of nude mice with a satisfactory effect. Collectively, our results suggest that methyl jasmonate may be an adjuvant therapy for liver tumors due to its mechanism in cancer cells compared to that in normal cells: The major function is to inhibit glycolysis instead of changing aerobic metabolism.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shizan Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
25
|
Li J, Chen K, Wang F, Dai W, Li S, Feng J, Wu L, Liu T, Xu S, Xia Y, Lu J, Zhou Y, Xu L, Guo C. Methyl jasmonate leads to necrosis and apoptosis in hepatocellular carcinoma cells via inhibition of glycolysis and represses tumor growth in mice. Oncotarget 2017. [PMID: 28498814 DOI: 10.18632/oncotarget.17469.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Methyl jasmonate has recently been found to have anti-cancer activity. Methyl jasmonate detached hexokinase 2 from a voltage dependent anion channel causing a reduction in mitochondrial transmembrane potential that led to the release of cytochrome C and apoptosis inducing factor resulting in intrinsic apoptosis. Blocked adenosine triphosphate synthesis caused by mitochondrial injury hampered oxidative phosphorylation and led to cell necrosis. The results were applied to the in vivo treatment of nude mice with a satisfactory effect. Collectively, our results suggest that methyl jasmonate may be an adjuvant therapy for liver tumors due to its mechanism in cancer cells compared to that in normal cells: The major function is to inhibit glycolysis instead of changing aerobic metabolism.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shizan Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Department of Gastroenterology, Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
26
|
Kokila K, Elavarasan N, Sujatha V. Green Biosynthesis of AgNPs using Albizia saman Leaf Aqueous Extract and their Biological Applications. SMART SCIENCE 2017. [DOI: 10.1080/23080477.2017.1340028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Yehia R, Hathout RM, Attia DA, Elmazar MM, Mortada ND. Anti-tumor efficacy of an integrated methyl dihydrojasmonate transdermal microemulsion system targeting breast cancer cells: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2017; 155:512-521. [PMID: 28486181 DOI: 10.1016/j.colsurfb.2017.04.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/10/2023]
Abstract
Targeting solid tumors transdermally is an emerging approach that is currently under intense investigation. In this context, microemulsions are reported as one of the most favored carriers for successful transdermal drug delivery. Thereby, these nano-carriers were utilized in this study for the delivery of a phytochemical, namely methyl dihydrojasmonate (MDHJ), which has previously demonstrated an anticancer effect. Accordingly, pseudoternary phase diagrams were constructed using several combinations of oils, surfactants and co-surfactants and following the water titration method. Two systems were selected and an experimental design (Simplex Lattice Mixture Design) was utilized to select formulations for further investigation through an ex vivo permeation study through mouse skin. Transdermal fluxes were determined reaching a value of 0.07μlcm-2h-1. Cytotoxicity studies were carried out where the selected superlative formulation was further investigated on MCF-7 cell lines and scored an IC50 of 42.2μl/ml (equivalent to 8.3μl/ml drug). Further, in vivo investigations were performed using Ehlirch solid carcinoma and histopathological examination of the tumor cells evaluating the tumor volume differences, tumor inhibition percentages and the necrotic effect of the formulation compared to control, placebo and pure drug. The obtained results showed significant anticancer effects of the selected formulation when applied on the tumor bearing mice skin.
Collapse
Affiliation(s)
- Rania Yehia
- Department of Pharmaceutics and Industrial Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Dalia A Attia
- Department of Pharmaceutics and Industrial Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Mohamed M Elmazar
- Department of Pharmacology and Toxicology, The British University in Egypt (BUE), Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
28
|
Zhao Y, Yang F, Li W, Xu C, Li L, Chen L, Liu Y, Sun P. miR-29a suppresses MCF-7 cell growth by downregulating tumor necrosis factor receptor 1. Tumour Biol 2017; 39:1010428317692264. [PMID: 28222663 DOI: 10.1177/1010428317692264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor receptor 1 is the main receptor mediating many tumor necrosis factor-alpha-induced cellular events. Some studies have shown that tumor necrosis factor receptor 1 promotes tumorigenesis by activating nuclear factor-kappa B signaling pathway, while other studies have confirmed that tumor necrosis factor receptor 1 plays an inhibitory role in tumors growth by inducing apoptosis in breast cancer. Therefore, the function of tumor necrosis factor receptor 1 in breast cancer requires clarification. In this study, we first found that tumor necrosis factor receptor 1 was significantly increased in human breast cancer tissues and cell lines, and knockdown of tumor necrosis factor receptor 1 by small interfering RNA inhibited cell proliferation by arresting the cell cycle and inducing apoptosis. In addition, miR-29a was predicted as a regulator of tumor necrosis factor receptor 1 by TargetScan and was shown to be inversely correlated with tumor necrosis factor receptor 1 expression in human breast cancer tissues and cell lines. Luciferase reporter assay further confirmed that miR-29a negatively regulated tumor necrosis factor receptor 1 expression by binding to the 3' untranslated region. In our functional study, miR-29a overexpression remarkably suppressed cell proliferation and colony formation, arrested the cell cycle, and induced apoptosis in MCF-7 cell. Furthermore, in combination with tumor necrosis factor receptor 1 transfection, miR-29a significantly reversed the oncogenic role caused by tumor necrosis factor receptor 1 in MCF-7 cell. In addition, we demonstrated that miR-29a suppressed MCF-7 cell growth by inactivating the nuclear factor-kappa B signaling pathway and by decreasing cyclinD1 and Bcl-2/Bax protein levels. Taken together, our results suggest that miR-29a is an important regulator of tumor necrosis factor receptor 1 expression in breast cancer and functions as a tumor suppressor by targeting tumor necrosis factor receptor 1 to influence the growth of MCF-7 cell.
Collapse
Affiliation(s)
- Yiling Zhao
- 1 Department of Ultrasound, The Affiliated Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Fenghua Yang
- 2 Department of Prevention and Health Statistics, Mudanjiang Medical University, Mudanjiang, China
| | - Wenyuan Li
- 3 Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang, China
| | - Chunyan Xu
- 4 Department of Pathology, Tumor Hospital of Mudanjiang, Mudanjiang, China
| | - Li Li
- 3 Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang, China
| | - Lifei Chen
- 5 Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yancui Liu
- 3 Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang, China
| | - Ping Sun
- 3 Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
29
|
Akanni OO, Abiola OJ, Adaramoye OA. Methyl Jasmonate Ameliorates Testosterone Propionate-induced Prostatic Hyperplasia in Castrated Wistar Rats. Phytother Res 2017; 31:647-656. [DOI: 10.1002/ptr.5778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Olubukola Oyebimpe Akanni
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine; University of Ibadan; Ibadan Nigeria
| | - Olusoji John Abiola
- Department of Veterinary Medicine, Faculty of Veterinary Medicine; University of Ibadan; Ibadan Nigeria
| | - Oluwatosin Adekunle Adaramoye
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine; University of Ibadan; Ibadan Nigeria
| |
Collapse
|
30
|
Ramkumar R, Balasubramani G, Raja RK, Raja M, Govindan R, Girija EK, Perumal P. Lantana camara Linn root extract-mediated gold nanoparticles and their in vitro antioxidant and cytotoxic potentials. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:748-757. [PMID: 28064507 DOI: 10.1080/21691401.2016.1276923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Lantana camara Linn root extract derived gold nanoparticles (Au NPs) were characterized by Ultraviolet-Visible spectroscopy, X-ray diffraction, fourier transform-infrared, high resolution transmission electron microscopy, selected area electron diffraction pattern and energy dispersive X-ray analyses. In DPPH assay, the inhibitory concentration (IC50) of Au NPs and gallic acid was 24.17 and 5.39 μg/ml, whereas, for cytotoxicity assay, the IC50 of Au NPs was 17.72 and 32.98 μg/ml on MBA-MB-231 and Vero cells, respectively. Thus, the Au NPs possess significant in vitro antioxidant and cytotoxic properties which could be considered as potential alternate for the development of anticancer drug in future.
Collapse
Affiliation(s)
- Rajendiran Ramkumar
- a Department of Biotechnology , Padmavani Arts and Science College for Women , Salem , India
| | | | | | - Manickam Raja
- b Department of Biotechnology , School of Biosciences, Periyar University , Salem , India
| | - Raji Govindan
- c Department of Physics , School of Physical Sciences, Periyar University , Salem , India
| | | | - Pachiappan Perumal
- b Department of Biotechnology , School of Biosciences, Periyar University , Salem , India
| |
Collapse
|
31
|
Manivasagan P, Bharathiraja S, Bui NQ, Jang B, Oh YO, Lim IG, Oh J. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging. Int J Biol Macromol 2016; 91:578-88. [DOI: 10.1016/j.ijbiomac.2016.06.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/11/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022]
|
32
|
Balakumaran M, Ramachandran R, Kalaichelvan P. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res 2015; 178:9-17. [DOI: 10.1016/j.micres.2015.05.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/08/2015] [Accepted: 05/28/2015] [Indexed: 01/14/2023]
|
33
|
Lee M, Yoon JH. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 2015; 6:148-61. [PMID: 26322173 PMCID: PMC4549759 DOI: 10.4331/wjbc.v6.i3.148] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/26/2015] [Accepted: 07/21/2015] [Indexed: 02/05/2023] Open
Abstract
Aerobic glycolysis, i.e., the Warburg effect, may contribute to the aggressive phenotype of hepatocellular carcinoma. However, increasing evidence highlights the limitations of the Warburg effect, such as high mitochondrial respiration and low glycolysis rates in cancer cells. To explain such contradictory phenomena with regard to the Warburg effect, a metabolic interplay between glycolytic and oxidative cells was proposed, i.e., the "reverse Warburg effect". Aerobic glycolysis may also occur in the stromal compartment that surrounds the tumor; thus, the stromal cells feed the cancer cells with lactate and this interaction prevents the creation of an acidic condition in the tumor microenvironment. This concept provides great heterogeneity in tumors, which makes the disease difficult to cure using a single agent. Understanding metabolic flexibility by lactate shuttles offers new perspectives to develop treatments that target the hypoxic tumor microenvironment and overcome the limitations of glycolytic inhibitors.
Collapse
|
34
|
Hatty CR, Banati RB. Protein-ligand and membrane-ligand interactions in pharmacology: the case of the translocator protein (TSPO). Pharmacol Res 2015; 100:58-63. [PMID: 26238176 DOI: 10.1016/j.phrs.2015.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 11/30/2022]
Abstract
The targets of many small molecule drugs are membrane proteins, and traditionally the focus of pharmacology is on the interaction between such receptors and their small molecule drug ligands. However, the lipid membranes of cells and organelles are increasingly appreciated as diverse and dynamic structures that also specifically interact with small molecule drugs and peptides, causing profound changes in the properties of these membranes, and modulating the function of the membrane and the proteins within it. Drug-membrane interactions are likely to have a role in both the therapeutic and toxic activity of a variety of compounds, and their role in the overall pharmacological effect of a drug needs to be understood more clearly. This is the case for the 18 kDa translocator protein (TSPO) and its ligands, where functions that were established based on pharmacological studies are being called into question. Re-examining the putative functions of the TSPO and the effects of its ligands reveals a need to consider in more detail the interplay between protein-ligand and membrane-ligand interactions, and the modulatory relationship between TSPO and the lipid membrane.
Collapse
Affiliation(s)
- Claire R Hatty
- Medical Imaging & Radiation Sciences Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Brain & Mind Research Institute, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Richard B Banati
- Medical Imaging & Radiation Sciences Faculty Research Group, Faculty of Health Sciences, The University of Sydney, Brain & Mind Research Institute, 94 Mallett Street, Camperdown, NSW 2050, Australia; Life Sciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| |
Collapse
|
35
|
da Silva GBRF, Scarpa MV, Carlos IZ, Quilles MB, Lia RCC, do Egito EST, de Oliveira AG. Oil-in-water biocompatible microemulsion as a carrier for the antitumor drug compound methyl dihydrojasmonate. Int J Nanomedicine 2015; 10:585-94. [PMID: 25609963 PMCID: PMC4298349 DOI: 10.2147/ijn.s67652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Methyl dihydrojasmonate (MJ) has been studied because of its application as an antitumor drug compound. However, as MJ is a poorly water-soluble compound, a suitable oil-in-water microemulsion (ME) has been studied in order to provide its solubilization in an aqueous media and to allow its administration by the parenteral route. The ME used in this work was characterized on the pseudo-ternary phase diagram by dynamic light scattering and rheological measurements. Regardless of the drug presence, the droplet size was directly dependent on the oil/surfactant (O/S) ratio. Furthermore, the drug incorporation into the ME significantly increased the ME diameter, mainly at low O/S ratios. The rheological evaluation of the systems showed that in the absence of drug a Newtonian behavior was observed. On the other hand, in the presence of MJ the ME systems revealed pseudoplastic behavior, independently of the O/S ratio. The in vivo studies demonstrated that not only was the effect on the tumor inhibition inversely dependent on the MJ-loaded ME administered dose, but also it was slightly higher than the doxorubicin alone, which was used as the positive control. Additionally, a small antiangiogenic effect for MJ-loaded ME was found at doses in which it possesses antitumor activity. MJ revealed to be nontoxic at doses higher than 350 mg/kg, which was higher than the dose that provides tumor-inhibition effect in this study. Because the MJ-loaded ME was shown to have anticancer activity comparable to doxorubicin, the ME described here may be considered a suitable vehicle for parenteral administration of MJ.
Collapse
Affiliation(s)
- Gisela Bevilacqua Rolfsen Ferreira da Silva
- Departamento de Fármacos e Medicamentos, UNESP-Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil
| | - Maria Virginia Scarpa
- Departamento de Fármacos e Medicamentos, UNESP-Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil
| | - Iracilda Zepone Carlos
- Departamento de Análises Clínicas, UNESP-Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil
| | - Marcela Bassi Quilles
- Departamento de Análises Clínicas, UNESP-Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil
| | | | | | - Anselmo Gomes de Oliveira
- Departamento de Fármacos e Medicamentos, UNESP-Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas, PPG em Nanotecnologia Farmacêutica, Rodovia Araraquara-Jaú Km 01, Araraquara, SP, Brazil
| |
Collapse
|
36
|
Tarrés M, Canetta E, Paul E, Forbes J, Azzouni K, Viñas C, Teixidor F, Harwood AJ. Biological interaction of living cells with COSAN-based synthetic vesicles. Sci Rep 2015; 5:7804. [PMID: 25588708 PMCID: PMC4295085 DOI: 10.1038/srep07804] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/03/2014] [Indexed: 12/04/2022] Open
Abstract
Cobaltabisdicarbollide (COSAN) [3,3'-Co(1,2-C2B9H11)2](-), is a complex boron-based anion that has the unusual property of self-assembly into membranes and vesicles. These membranes have similar dimensions to biological membranes found in cells, and previously COSAN has been shown to pass through synthetic lipid membranes and those of living cells without causing breakdown of membrane barrier properties. Here, we investigate the interaction of this inorganic membrane system with living cells. We show that COSAN has no immediate effect on cell viability, and cells fully recover when COSAN is removed following exposure for hours to days. COSAN elicits a range of cell biological effects, including altered cell morphology, inhibition of cell growth and, in some cases, apoptosis. These observations reveal a new biology at the interface between inorganic, synthetic COSAN membranes and naturally occurring biological membranes.
Collapse
Affiliation(s)
- Màrius Tarrés
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193, Bellaterra, Spain
| | - Elisabetta Canetta
- School of Biosciences, Cardiff University, Museum Ave, Cardiff CF10 3AX, United Kingdom
| | - Eleanor Paul
- School of Biosciences, Cardiff University, Museum Ave, Cardiff CF10 3AX, United Kingdom
| | - Jordan Forbes
- School of Biosciences, Cardiff University, Museum Ave, Cardiff CF10 3AX, United Kingdom
| | - Karima Azzouni
- School of Biosciences, Cardiff University, Museum Ave, Cardiff CF10 3AX, United Kingdom
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193, Bellaterra, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193, Bellaterra, Spain
| | - Adrian J. Harwood
- School of Biosciences, Cardiff University, Museum Ave, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|
37
|
Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran MD, Kalaichelvan PT. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. ACTA ACUST UNITED AC 2014. [PMID: 28626661 PMCID: PMC5466127 DOI: 10.1016/j.btre.2014.08.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study reports the in vitro cytotoxic effect of biologically synthesized silver and gold nanoparticles against MDA-MB-231, human breast cancer cells. Formation of silver and gold nanoparticles was observed within 30 min and the various characterization techniques such as UV–vis spectrophotometer, FE-SEM, TEM and XRD studies were confirmed the synthesis of nanoparticles. Further, MTT, acridine orange and ethidium bromide (AO/EB) dual staining, caspase-3 and DNA fragmentation assays were carried out using various concentrations of silver and gold nanoparticles ranging from 1 to 100 μg/ml. At 100 μg/ml concentration, the plant extract derived nanoparticles exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays. Thus, the results of the present study indicate that biologically synthesized silver and gold nanoparticles might be used to treat breast cancer; however, it necessitates clinical studies to ascertain their potential as anticancer agents.
Collapse
Affiliation(s)
- C Krishnaraj
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - P Muthukumaran
- Centre for Biotechnology, Anna University, Guindy, Chennai 600 025, Tamil Nadu, India
| | - R Ramachandran
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - M D Balakumaran
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | - P T Kalaichelvan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
38
|
Yin X, Zhang J, Li X, Liu D, Feng C, Liang R, Zhuang K, Cai C, Xue X, Jing F, Wang X, Wang J, Liu X, Ma H. DADS suppresses human esophageal xenograft tumors through RAF/MEK/ERK and mitochondria-dependent pathways. Int J Mol Sci 2014; 15:12422-41. [PMID: 25026173 PMCID: PMC4139851 DOI: 10.3390/ijms150712422] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/22/2014] [Accepted: 07/07/2014] [Indexed: 11/16/2022] Open
Abstract
Diallyl disulfide (DADS) is a natural organosulfur compound isolated from garlic. DADS has various biological properties, including anticancer, antiangiogenic, and antioxidant effects. However, the anticancer mechanisms of DADS in human esophageal carcinoma have not been elucidated, especially in vivo. In this study, MTT assay showed that DADS significantly reduced cell viability in human esophageal carcinoma ECA109 cells, but was relatively less toxic in normal liver cells. The pro-apoptotic effect of DADS on ECA109 cells was detected by Annexin V-FITC/propidium iodide (PI) staining. Flow cytometry analysis showed that DADS promoted apoptosis in a dose-dependent manner and the apoptosis rate could be decreased by caspase-3 inhibitor Ac-DEVD-CHO. Xenograft study in nude mice showed that DADS treatment inhibited the growth of ECA109 tumor in both 20 and 40 mg/kg DADS groups without obvious side effects. DADS inhibited ECA109 tumor proliferation by down-regulating proliferation cell nuclear antigen (PCNA). DADS induced apoptosis by activating a mitochondria-dependent pathway with the executor of caspase-3, increasing p53 level and Bax/Bcl-2 ratio, and downregulating the RAF/MEK/ERK pathway in ECA109 xenograft tumosr. Based on studies in cell culture and animal models, the findings here indicate that DADS is an effective and safe anti-cancer agent for esophageal carcinoma.
Collapse
Affiliation(s)
- Xiaoran Yin
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Jun Zhang
- Department of Digestion, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Xiaoning Li
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Dong Liu
- Department of Digestion, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Cheng Feng
- Department of Digestion, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Rongrui Liang
- Department of Oncology, the First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou 215006, China.
| | - Kun Zhuang
- Department of Digestion, Xi'an Central Hospital, Xi'an 710003, China.
| | - Chenlei Cai
- Department of Digestion, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Xinghuan Xue
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Fuchun Jing
- Department of Digestive Diseases, Baoji People's Hospital, Baoji 721000, China.
| | - Xijing Wang
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Jun Wang
- Department of Gastroenterology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710001, China.
| | - Xinlian Liu
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Hongbing Ma
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
39
|
Bruchim I, Sarfstein R, Reiss A, Flescher E, Werner H. IGF1R tyrosine kinase inhibitor enhances the cytotoxic effect of methyl jasmonate in endometrial cancer. Cancer Lett 2014; 352:214-9. [PMID: 24997432 DOI: 10.1016/j.canlet.2014.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/31/2014] [Accepted: 06/24/2014] [Indexed: 02/08/2023]
Abstract
The present study evaluated the cytotoxic activity of methyl jasmonate (MJ) in endometrial cancer cells and examined the hypothesis that the apoptotic and anti-proliferative actions of MJ in these cell lines can be enhanced by co-targeting the insulin-like growth factor-1 receptor (IGF1R) signaling pathway. MJ had a potent pro-apoptotic effect and exhibited significant toxicity in all cell lines tested. MJ in combination with NVP-AEW541, a selective IGF1R tyrosine kinase inhibitor, had significantly increased cytotoxicity. MJ decreased IGF1R phosphorylation, however, it enhanced AKT phosphorylation and abolished the anti-apoptotic effect of IGF1. These findings suggest that combined IGF1R inhibitor and MJ administration may constitute an attractive modality for treating endometrial cancer.
Collapse
Affiliation(s)
- Ilan Bruchim
- Gynecologic Oncology Unit, Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba 44281, Israel.
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ari Reiss
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eliezer Flescher
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
40
|
da Silva GBRF, Scarpa MV, Rossanezi G, do Egito EST, de Oliveira AG. Development and characterization of biocompatible isotropic and anisotropic oil-in-water colloidal dispersions as a new delivery system for methyl dihydrojasmonate antitumor drug. Int J Nanomedicine 2014; 9:867-76. [PMID: 24596463 PMCID: PMC3930478 DOI: 10.2147/ijn.s46055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Microemulsions (MEs) are colloidal systems that can be used for drug-delivery and drug-targeting purposes. These systems are able to incorporate drugs modifying bioavailability and stability and reducing toxic effects. The jasmonate compounds belong to a group of plant stress hormones, and the jasmonic acid and its methyl ester derivative have been described as having anticancer activity. However, these compounds are very poorly water-soluble, not allowing administration by an intravenous route without an efficient nanostructured carrier system. In this work, biocompatible MEs of appropriate diameter size for intravenous route administration, loaded and unloaded with methyl dihydrojasmonate (MJ), were developed and described in a pseudo-ternary phase diagram. The compositions of the MEs were carefully selected from their own regions in the pseudo-ternary phase diagram. The formulations were analyzed by light scattering, polarized light microscopy, and X-ray diffraction. Also, a study on rheological profile was performed. The results showed that the droplet size decreased with both MJ incorporation and oil phase/surfactant ratio. All compositions of the studied MEs showed rheological behavior of pseudoplastic fluid and amorphous structures. In the absence of MJ, most of the studied MEs had thixotropic characteristics, which became antithixotropic in the presence of the drug. Almost all MJ-unloaded MEs presented anisotropic characteristics, but some formulations became isotropic, especially in the presence of MJ. The results of this study support the conclusion that the studied system represents a promising vehicle for in vivo administration of the MJ antitumor drug.
Collapse
Affiliation(s)
| | - Maria Virginia Scarpa
- Departamento de Fármacos e Medicamentos, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | - Gustavo Rossanezi
- Departamento de Fármacos e Medicamentos, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| | | | - Anselmo Gomes de Oliveira
- Departamento de Fármacos e Medicamentos, Universidade Estadual Paulista (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
41
|
Cesari IM, Carvalho E, Figueiredo Rodrigues M, Mendonça BDS, Amôedo ND, Rumjanek FD. Methyl jasmonate: putative mechanisms of action on cancer cells cycle, metabolism, and apoptosis. Int J Cell Biol 2014; 2014:572097. [PMID: 24648844 PMCID: PMC3933403 DOI: 10.1155/2014/572097] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/29/2022] Open
Abstract
Methyl jasmonate (MJ), an oxylipid that induces defense-related mechanisms in plants, has been shown to be active against cancer cells both in vitro and in vivo, without affecting normal cells. Here we review most of the described MJ activities in an attempt to get an integrated view and better understanding of its multifaceted modes of action. MJ (1) arrests cell cycle, inhibiting cell growth and proliferation, (2) causes cell death through the intrinsic/extrinsic proapoptotic, p53-independent apoptotic, and nonapoptotic (necrosis) pathways, (3) detaches hexokinase from the voltage-dependent anion channel, dissociating glycolytic and mitochondrial functions, decreasing the mitochondrial membrane potential, favoring cytochrome c release and ATP depletion, activating pro-apoptotic, and inactivating antiapoptotic proteins, (4) induces reactive oxygen species mediated responses, (5) stimulates MAPK-stress signaling and redifferentiation in leukemia cells, (6) inhibits overexpressed proinflammatory enzymes in cancer cells such as aldo-keto reductase 1 and 5-lipoxygenase, and (7) inhibits cell migration and shows antiangiogenic and antimetastatic activities. Finally, MJ may act as a chemosensitizer to some chemotherapics helping to overcome drug resistant. The complete lack of toxicity to normal cells and the rapidity by which MJ causes damage to cancer cells turn MJ into a promising anticancer agent that can be used alone or in combination with other agents.
Collapse
Affiliation(s)
- Italo Mario Cesari
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Erika Carvalho
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Mariana Figueiredo Rodrigues
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Bruna dos Santos Mendonça
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Nivea Dias Amôedo
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Franklin David Rumjanek
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
42
|
Hatty CR, Le Brun AP, Lake V, Clifton LA, Liu GJ, James M, Banati RB. Investigating the interactions of the 18kDa translocator protein and its ligand PK11195 in planar lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1019-30. [PMID: 24374318 DOI: 10.1016/j.bbamem.2013.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022]
Abstract
The functional effects of a drug ligand may be due not only to an interaction with its membrane protein target, but also with the surrounding lipid membrane. We have investigated the interaction of a drug ligand, PK11195, with its primary protein target, the integral membrane 18kDa translocator protein (TSPO), and model membranes using Langmuir monolayers, quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR). We found that PK11195 is incorporated into lipid monolayers and lipid bilayers, causing a decrease in lipid area/molecule and an increase in lipid bilayer rigidity. NR revealed that PK11195 is incorporated into the lipid chain region at a volume fraction of ~10%. We reconstituted isolated mouse TSPO into a lipid bilayer and studied its interaction with PK11195 using QCM-D, which revealed a larger than expected frequency response and indicated a possible conformational change of the protein. NR measurements revealed a TSPO surface coverage of 23% when immobilised to a modified surface via its polyhistidine tag, and a thickness of 51Å for the TSPO layer. These techniques allowed us to probe both the interaction of TSPO with PK11195, and PK11195 with model membranes. It is possible that previously reported TSPO-independent effects of PK11195 are due to incorporation into the lipid bilayer and alteration of its physical properties. There are also implications for the variable binding profiles observed for TSPO ligands, as drug-membrane interactions may contribute to the apparent affinity of TSPO ligands.
Collapse
Affiliation(s)
- Claire R Hatty
- Medical Imaging & Radiation Sciences Faculty Research Group, Faculty of Health Sciences, The University of Sydney, c/o Brain & Mind Research Institute, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Anton P Le Brun
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Vanessa Lake
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, UK
| | - Guo Jun Liu
- Medical Imaging & Radiation Sciences Faculty Research Group, Faculty of Health Sciences, The University of Sydney, c/o Brain & Mind Research Institute, 94 Mallett Street, Camperdown, NSW 2050, Australia; Life Sciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Michael James
- Bragg Institute, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; School of Chemistry, University of New South Wales, Kensington NSW 2052, Australia
| | - Richard B Banati
- Medical Imaging & Radiation Sciences Faculty Research Group, Faculty of Health Sciences, The University of Sydney, c/o Brain & Mind Research Institute, 94 Mallett Street, Camperdown, NSW 2050, Australia; Life Sciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| |
Collapse
|
43
|
Che J, Zhang FZ, Zhao CQ, Hu XD, Fan SJ. Cyclopamine is a novel Hedgehog signaling inhibitor with significant anti-proliferative, anti-invasive and anti-estrogenic potency in human breast cancer cells. Oncol Lett 2013; 5:1417-1421. [PMID: 23599805 PMCID: PMC3629107 DOI: 10.3892/ol.2013.1195] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/04/2013] [Indexed: 01/22/2023] Open
Abstract
Stimulation of Hedgehog (Hh) signaling induces carcinogenesis or promotes cell survival in cancers of multiple organs. In epithelial cancer with aberrant Hedgehog activation, abrogation of Hedgehog signaling by cyclopamine, a naturally occurring Hedgehog-specific small-molecule inhibitor, causes profound inhibition of tumor growth. In the present study, cyclopamine displayed a significant potency in suppressing the proliferation of both estrogen-responsive (MCF-7) and estrogen-independent (MDA-MB-231) human breast cancer cells. Cyclopamine induced a robust G1 cell cycle arrest and elicited notable effects on the expression of cyclin D1 through modulation of the MAPK/ERK signaling pathway. Cyclopamine also inhibited the invasive ability of both breast cancer cell lines by suppressing the expression levels of NF-κB, MMP2 and MMP9 protein. Furthermore, in estrogen-responsive MCF-7 cells, cyclopamine significantly downregulated the production of estrogen receptor-α protein. Our results implicate cyclopamine as a novel, potent inhibitor of human breast cancer proliferation and estrogen responsiveness that could potentially be developed into a promising therapeutic agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jun Che
- Key Laboratory of Radiation Biology, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123; ; Department of Radiation Oncology, The Fourth Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214062, P.R. China
| | | | | | | | | |
Collapse
|
44
|
Zheng L, Li D, Xiang X, Tong L, Qi M, Pu J, Huang K, Tong Q. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14. BMC Cancer 2013; 13:74. [PMID: 23394613 PMCID: PMC3576238 DOI: 10.1186/1471-2407-13-74] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/30/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. METHODS Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. RESULTS Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. CONCLUSIONS Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells.
Collapse
Affiliation(s)
- Liduan Zheng
- Department of Pathology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, People’s Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Russo A, Espinoza CL, Caggia S, Garbarino JA, Peña-Cortés H, Carvajal TM, Cardile V. A new jasmonic acid stereoisomeric derivative induces apoptosis via reactive oxygen species in human prostate cancer cells. Cancer Lett 2012; 326:199-205. [PMID: 22935678 DOI: 10.1016/j.canlet.2012.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on prostate cancer cells, in the present study, we evaluated the effect of a (-)-jasmonic acid derivative, the 3-hydroxy-2(S)-(2Z-butenyl)-cyclopentane-1(S)-acetic acid, obtained by biotransformation, on cell growth in androgen-sensitive (LNCaP) and androgen-insensitive (DU-145) human prostate cancer cells. The results obtained show that the new compound was able to inhibit the growth of both prostate cancer cells. In addition, our data seem to indicate that the apoptosis evocated by this new molecule, at least in part, appears to be associated with an increase of reactive oxygen species (ROS) production.
Collapse
Affiliation(s)
- Alessandra Russo
- Department of Drug Sciences, Biochemistry Section, University of Catania, Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
46
|
Ma ZY, Qiao X, Xie CZ, Shao J, Xu JY, Qiang ZY, Lou JS. Activities of a novel Schiff Base copper(II) complex on growth inhibition and apoptosis induction toward MCF-7 human breast cancer cells via mitochondrial pathway. J Inorg Biochem 2012; 117:1-9. [DOI: 10.1016/j.jinorgbio.2012.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 01/03/2023]
|
47
|
Abstract
Jasmonates, plant stress hormones protecting the plant from microbial pathogens and environmental stresses, were also discovered to have toxic activities toward mammalian cancer cells. Methyl jasmonate (MJ) was found to be the most active anti-cancer derivate among natural jasmonates, exhibiting a specific cell death-induction effect toward several cancer cells. Since that discovery of jasmonates-inducing cancer cell death, the molecular mechanism of action of jasmonates leading to cell death was deciphered. Moreover, in addition to the direct effects of MJ on cancer cell death, it was found to deregulate several genes and affect various intracellular factors and cellular processes, such as sensitization of apoptotic cell death induced by TRAIL, cancer cell migration attenuation, cell cycle arrest, and differentiation. This mini-review summarizes over a decade of research of jasmonates as anti-cancer agents.
Collapse
Affiliation(s)
- Ziv Raviv
- Department of Clinical Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | |
Collapse
|
48
|
Lin L, Tan RX. Cross-kingdom actions of phytohormones: a functional scaffold exploration. Chem Rev 2011; 111:2734-60. [PMID: 21250668 DOI: 10.1021/cr100061j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lan Lin
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | | |
Collapse
|
49
|
Hope-Roberts M, Horobin RW, Wainwright M. Identifying apoptotic cells with the 3-hydroxyflavone derivative F2N12S, a ratiometric fluorescent small molecule probe selective for plasma membranes: a possible general mechanism for selective uptake into apoptotic cells. Biotech Histochem 2010; 86:255-61. [PMID: 20370358 DOI: 10.3109/10520291003723426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mechanism of selective targeting of the plasma membrane of apoptotic cells by F2N12S, a recently reported ratiometric, fluorescent small molecule probe, was analyzed using decision-rule QSAR models. Selectivity was determined by a combination of the probe's weak amphiphilicity and slow flip-flop with the increased plasma membrane fluidity of apoptotic cells. The probable chemical features required for such probes may be defined in terms of numerical structural parameters as: 3.5 < AI < ∼ 5.5; log P < 5.0; HGS > 400 (where AI, log P and HGS parameters model amphiphilicity, lipophilicity and headgroup size, respectively). When HGS is <400, compounds are initially membrane selective, but subsequently are internalized.
Collapse
Affiliation(s)
- M Hope-Roberts
- Institute of Interdisciplinary Research, Institute of Technical Translation, and Arcana Scientific and Medical Translations, Sheffield, UK.
| | | | | |
Collapse
|
50
|
Abstract
Breast cancer is the second leading cause of cancer deaths among women in the United States. Several treatment options exist, with different side effects. To alleviate the side effects, several research groups have studied chemotherapeutic effects of plant compounds on cancer cells. These could be used as an alternative treatment option either alone or in combination with other chemotherapeutic drugs. The aim of this study was to evaluate the activity of a combination of perillyl alcohol (POH), methyl jasmonate (MJ) with cisplatin to define the most effective schedule and to investigate the mechanism of action in breast cancer cells. POH and MJ treatment (20% decrease in cell viability concentration) enhanced the cytotoxicity for subsequent exposure to cisplatin in MDA-MB-435 and MDA-MB-231 cells. Combination treatment of POH and MJ blocked cells at the G0/G1 phase of the cell cycle and the addition of cisplatin forced the cells to progress through the cell cycle and induced apoptosis. Apoptotic mechanistic studies indicated that POH and MJ treatment activated tumor necrosis factor receptor 1 and this was further increased by the addition of cisplatin. It was also found that mitochondrial membrane potential decreased with POH and MJ treatment; this effect was further enhanced by cisplatin treatment. These findings contributed to a better understanding of molecular mechanism of apoptosis in combination treatment of POH, MJ, and cisplatin. Results also showed that the combination treatment of three drugs is more effective than single drug alone or two drugs together.
Collapse
|