1
|
Dong Z, Shen Q, Zhu H, Yang Z, Lv J, Feng R, Bai X, Huang G, Hu Y, Pan L, Zhao G, Jia W, Wang X. Efficacy and safety of YOXINTINE for depression: A double-blinded, randomized, placebo-controlled, phase 2 clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156204. [PMID: 39580994 DOI: 10.1016/j.phymed.2024.156204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND YOXINTINE contains >98 % of 20(S)-protopanaxadial (PPD), a metabolic product of ginsenosides with pre-clinical neuroprotective activity. Animal experiments and previous studies have shown that PPD has good antidepressant effect and safety. PURPOSE To evaluate YOXINTINE in treating depression compared with a placebo in Chinese patients. STUDY DESIGN This was a multicenter, double-blinded, randomized, placebo-controlled, phase 2 clinical trial. METHODS The study included 178 randomized (1:1:1) Chinese patients with depression. Patients were randomly assigned to receive oral YOXINTINE at doses of 200 or 400 mg or a placebo administered twice daily for 8 weeks. The primary outcome was assessed by measuring changes in the Montgomery-Asberg Depression Rating Scale (MADRS) total score. All adverse reactions were recorded. All demographic and baseline characteristics were comparable. RESULTS The changes in MADRS total scores from baseline were -10.43 for the placebo group, -16.24 for the 200 mg YOXINTINE group, and -13.60 for the 400 mg YOXINTINE group. The differences in MADRS total score changes compared with the placebo were -5.81 (95 % CI: -7.69, -3.92; P < 0.0001) and -3.17 (95 % CI: -5.08, -1.25; P = 0.0013) for the 200 mg and 400 mg groups, respectively. The results indicated a significantly greater MADRS score reduction in the 200 mg group (P = 0.0058, 95 % CI: 0.78, 4.51). Adverse event incidence was comparable among all groups. CONCLUSION Oral YOXINTINE is safe and significantly improves depressive symptoms. PPD may exhibit antidepressant properties through mechanisms distinct from monoamine reuptake inhibition. REGISTRATION NUMBER ChiCTR2300070568.
Collapse
Affiliation(s)
- Zaiquan Dong
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qi Shen
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China; Clinical Trial Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hanwen Zhu
- West China School of Medicine, Sichuan University, Chengdu 610041, PR China
| | - Zirong Yang
- Shanghai Innovative Research Center of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Jianqin Lv
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ruizhi Feng
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xue Bai
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646699, PR China
| | - Guoping Huang
- The Third Hospital of Mianyang, Mianyang 621000, PR China
| | - Yueqiang Hu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, PR China
| | - Liya Pan
- Liuzhou Workers' Hospital, Liuzhou 545007, PR China
| | - Guijun Zhao
- Guangyuan Mental Health Centre, Guangyuan 628033, PR China
| | - William Jia
- VIROGIN BIOTECH LTD, Shanghai 201802, PR China.
| | - Xue Wang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Zhu Z, Cheng Y, Han X, Wang T, Zhang H, Yao Q, Chen F, Gu L, Yang D, Chen L, Zhao Y. 20( S)-Protopanaxadiol Exerts Antidepressive Effects in Chronic Corticosterone-Induced Rodent Animal Models as an Activator of Brain-Type Creatine Kinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10376-10390. [PMID: 38661058 DOI: 10.1021/acs.jafc.4c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
20(S)-Protopanaxadiol (PPD) is one of the bioactive ingredients in ginseng and possesses neuroprotective properties. Brain-type creatine kinase (CK-BB) is an enzyme involved in brain energy homeostasis via the phosphocreatine-creatine kinase system. We previously identified PPD as directly bound to CK-BB and activated its activity in vitro. In this study, we explored the antidepressive effects of PPD that target CK-BB. First, we conducted time course studies on brain CK-BB, behaviors, and hippocampal structural plasticity responses to corticosterone (CORT) administration. Five weeks of CORT injection reduced CK-BB activity and protein levels and induced depression-like behaviors and hippocampal structural plasticity impairment. Next, a CK inhibitor and an adeno-associated virus-targeting CKB were used to diminish CK-BB activity or its expression in the brain. The loss of CK-BB in the brain led to depressive behaviors and morphological damage to spines in the hippocampus. Then, a polyclonal antibody against PPD was used to determine the distribution of PPD in the brain tissues. PPD was detected in the hippocampus and cortex and observed in astrocytes, neurons, and vascular endotheliocytes. Finally, different PPD doses were used in the chronic CORT-induced depression model. Treatment with a high dose of PPD significantly increased the activity and expression of CK-BB after long-term CORT injection. In addition, PPD alleviated the damage to depressive-like behaviors and structural plasticity induced by repeated CORT injection. Overall, our study revealed the critical role of CK-BB in mediating structural plasticity in CORT-induced depression and identified CK-BB as a therapeutic target for PPD, allowing us to treat stress-related mood disorders.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao Cheng
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu Han
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiantian Wang
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Yao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine, Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Gu
- Research and Innovation Center, College of Traditional Chinese Medicine, Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dongqing Yang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Ben-Eltriki M, Shankar G, Tomlinson Guns ES, Deb S. Pharmacokinetics and pharmacodynamics of Rh2 and aPPD ginsenosides in prostate cancer: a drug interaction perspective. Cancer Chemother Pharmacol 2023; 92:419-437. [PMID: 37709921 DOI: 10.1007/s00280-023-04583-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Ginsenoside Rh2 and its aglycon (aPPD) are one of the major metabolites from Panax ginseng. Preclinical studies suggest that Rh2 and aPPD have antitumor effects in prostate cancer (PCa). Our aims in this review are (1) to describe the pharmacokinetic (PK) properties of Rh2 and aPPD ginsenosides; 2) to provide an overview of the preclinical findings on the use of Rh2 and aPPD in the treatment of PCa; and (3) to highlight the mechanisms of its PK and pharmacodynamic (PD) drug interactions. Increasing evidence points to the potential efficacy of Rh2 or aPPD for PCa treatment. Based on the laboratory studies, Rh2 or aPPD combinations revealed an additive or synergistic interaction or enhanced sensitivity of anticancer drugs toward PCa. This review reveals that enhanced anticancer activities were demonstrated in preclinical studies through interactions of Rh2 and/or aPPD with the proteins related to PK (e.g., cytochrome P450 enzymes, transporters) or PD of the other anticancer drugs or PCa signaling pathways. In conclusion, combining Rh2 or aPPD with anti-prostate cancer drugs leads to PK or PD interactions which could facilitate either therapeutically beneficial or toxic effects.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC, Canada.
- Community Pharmacist, Vancouver Area, BC, Canada.
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Gehana Shankar
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Emma S Tomlinson Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
4
|
Chen F, Zhang W, Xu S, Zhang H, Chen L, Chen C, Zhu Z, Zhao Y. Discovery and validation of PURA as a transcription target of 20(S)-protopanaxadiol: Implications for the treatment of cognitive dysfunction. J Ginseng Res 2023; 47:662-671. [PMID: 37720572 PMCID: PMC10499581 DOI: 10.1016/j.jgr.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/23/2023] [Accepted: 04/24/2023] [Indexed: 09/19/2023] Open
Abstract
Background 20(S)-protopanaxadiol (PPD), a ginsenoside metabolite, has prominent benefits for the central nervous system, especially in improving learning and memory. However, its transcriptional targets in brain tissue remain unknown. Methods In this study, we first used mass spectrometry-based drug affinity responsive target stability (DARTS) to identify the potential proteins of ginsenosides and intersected them with the transcription factor library. Second, the transcription factor PURA was confirmed as a target of PPD by biolayer interferometry (BLI) and molecular docking. Next, the effect of PPD on the transcriptional levels of target genes of PURA in brain tissues was determined by qRT-PCR. Finally, bioinformatics analysis was used to analyze the potential biological features of these target proteins. Results The results showed three overlapping transcription factors between the proteomics of DARTS and transcription factor library. BLI analysis further showed that PPD had a higher direct interaction with PURA than parent ginsenosides. Subsequently, BLI kinetic analysis, molecular docking, and mutations in key amino acids of PURA indicated that PPD specifically bound to PURA. The results of qRT-PCR showed that PPD could increase the transcription levels of PURA target genes in brain. Finally, bioinformatics analysis showed that these target proteins were involved in learning and memory function. Conclusion The above-mentioned findings indicate that PURA is a transcription target of PPD in brain, and PPD upregulate the transcription levels of target genes related to cognitive dysfunction by binding PURA, which could provide a chemical and biological basis for the study of treating cognitive impairment by targeting PURA.
Collapse
Affiliation(s)
- Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Xu
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cuihua Chen
- Research and Innovation Center, College of Traditional Chinese Medicine·Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Zhang H, Chen F, Xu S, Zhang W, Li R, Yao Q, Zhao Y, Zhu Z, Chen L. Protective Effect of 20(S)-Protopanaxadiol on D-Gal-Induced Cognitively Impaired Mice Based on Its Target Protein Brain-type Creatine Kinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3484-3496. [PMID: 36752334 DOI: 10.1021/acs.jafc.2c07889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ginseng is an important medicinal herb consumed as dietary supplements. Ginsenosides and their metabolites have been reported to enhance cognitive performance, but their underlying mechanisms remain unclear. Brain-type creatine kinase (CK-BB) was previously screened out as one of the potential targets in brain tissues. In vitro, the strongest direct interaction between 20(S)-protopanaxadiol (PPD), a ginsenoside metabolite, and CK-BB was detected using biolayer interferometry (BLI). Drug affinity responsive target stability, cellular thermal shift assay, BLI, and isothermal titration calorimetry were subsequently used, and the binding of PPD to CK-BB was verified. The binding sites of the CK-BB/PPD complex were clarified by molecular docking and site-directed mutagenesis. Enzyme activity assay showed that the binding of PPD to CK-BB in vitro enhanced its activity. In vivo, PPD increased CK-BB activity in D-gal-induced mice. PPD also improved the D-gal-induced cognitive deficits and ameliorated alterations in oxidative stress and hippocampal synaptic plasticity. Therefore, the integration of PPD with its target protein CK-BB may promote CK-BB activity, thereby ameliorating hippocampal synaptic plasticity and cognitive deficits in D-gal-treated mice.
Collapse
Affiliation(s)
- Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuyi Xu
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjing Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rimei Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Kunshan Huaqiao Senior High School, Suzhou 215332, China
| | - Qi Yao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Chen F, Li C, Cao H, Zhang H, Lu C, Li R, Zhu Z, Chen L, Zhao Y. Identification of Adenylate Kinase 5 as a Protein Target of Ginsenosides in Brain Tissues Using Mass Spectrometry-Based Drug Affinity Responsive Target Stability (DARTS) and Cellular Thermal Shift Assay (CETSA) Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2741-2751. [PMID: 35184563 DOI: 10.1021/acs.jafc.1c07819] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ginseng is a very famous Chinese herbal medicine with various pharmacological effects. Ginsenosides, the main effective compounds of ginseng, show favorable biological activities in the central nervous system (CNS), but the protein targets of ginsenosides in brain tissues have not been clarified clearly. First, we screened proteins that interact with ginsenosides by mass spectrometry-based drug affinity responsive target stability (DARTS) and cellular thermal shift assay (CETSA). Then, we identified and confirmed adenylate kinase 5 (AK5) as a target protein of ginsenosides by biolayer interferometry (BLI), isothermal titration calorimetry (ITC), and molecular docking. Finally, an enzyme activity kit was used to determine the effect of 20(S)-protopanaxadiol (PPD), a ginseng saponin metabolite, on AK5 activities in vivo and in vitro. We screened out seven overlapping target proteins by proteomics of DARTS and CETSA. The BLI direct action assays showed that the direct interaction of PPD with AK5 was higher compared to the parental ginsenosides. Subsequently, BLI kinetic analysis and ITC assay showed that PPD specifically bound to AK5. Furthermore, key amino acid mutations predicted by molecular docking decreased the affinity between PPD and AK5. Enzyme activity assays showed that PPD increased AK5 activities in vivo and in vitro. The above-mentioned findings indicated that AK5 is a protein target of ginsenoside in the brain and PPD is considered to be a small-molecular activator of AK5, which can improve comprehension of the molecular mechanisms of ginseng pharmacological effects in the CNS and further develop AK5 activators based on the dammarane-type triterpenoid structure.
Collapse
Affiliation(s)
- Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine, Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chu Li
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiying Cao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cai Lu
- Department of Medicinal Chemistry and Analysis, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruimei Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
7
|
Chen L, Li R, Chen F, Zhang H, Zhu Z, Xu S, Cheng Y, Zhao Y. A possible mechanism to the antidepressant-like effects of 20 (S)-protopanaxadiol based on its target protein 14-3-3 ζ. J Ginseng Res 2021; 46:666-674. [PMID: 36090685 PMCID: PMC9459030 DOI: 10.1016/j.jgr.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Background Ginsenosides and their metabolites have antidepressant-like effects, but the underlying mechanisms remain unclear. We previously identified 14-3-3 ζ as one of the target proteins of 20 (S)-protopanaxadiol (PPD), a fully deglycosylated ginsenoside metabolite. Methods Corticosterone (CORT) was administered repeatedly to induce the depression model, and PPD was given concurrently. The tail suspension test (TST) and the forced swimming test (FST) were used for behavioral evaluation. All mice were sacrificed. Golgi-cox staining, GSK 3β activity assay, and Western blot analysis were performed. In vitro, the kinetic binding analysis with the Biolayer Interferometry (BLI) was used to determine the molecular interactions. Results TST and FST both revealed that PPD reversed CORT-induced behavioral deficits. PPD also ameliorated the CORT-induced expression alterations of hippocampal Ser9 phosphorylated glycogen synthase kinase 3β (p-Ser9 GSK 3β), Ser133 phosphorylated cAMP response element-binding protein (p-Ser133 CREB), and brain-derived neurotrophic factor (BDNF). Moreover, PPD attenuated the CORT-induced increase in GSK 3β activity and decrease in dendritic spine density in the hippocampus. In vitro, 14-3-3 ζ protein specifically bound to p-Ser9 GSK 3β polypeptide. PPD promoted the binding and subsequently decreased GSK 3β activity. Conclusion These findings demonstrated the antidepressant-like effects of PPD on the CORT-induced mouse depression model and indicated a possible target-based mechanism. The combination of PPD with the 14-3-3 ζ protein may promote the binding of 14-3-3 ζ to p-GSK 3β (Ser9) and enhance the inhibition of Ser9 phosphorylation on GSK 3β kinase activity, thereby activating the plasticity-related CREB–BDNF signaling pathway.
Collapse
Affiliation(s)
- Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruimei Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Xu
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Cheng
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
8
|
Anti-Tumor Effects of Ginsenoside 20(S)-Protopanaxadiol and 1,25-Dihydroxyvitamin D3 Combination in Castration Resistant Prostate Cancer. MEDICINES 2021; 8:medicines8060028. [PMID: 34199743 PMCID: PMC8227560 DOI: 10.3390/medicines8060028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022]
Abstract
In spite of possessing desirable anticancer properties, currently, limited clinical success has been achieved with 20(S)-protopanaxadiol (aPPD) and 1,25-dihydroxyvitamin D3 (calcitriol). This study is designed to evaluate if the combination of aPPD with calcitriol can inhibit human prostate cancer xenograft growth by using nuclear receptor signaling. Athymic male nude mice were utilized to establish an androgen-independent human prostate cancer C4-2 cell castration-resistant prostate cancer (CRPC) xenograft model. Mice were treated orally for six weeks with 70 mg/kg aPPD administered once daily or three times per week with 4 µg/kg calcitriol or in combination or only with vehicle control. Contrary to our expectations, calcitriol treatment alone increased C4-2 tumor growth. However, the addition of calcitriol substantially increased aPPD-mediated tumor growth suppression (76% vs. 53%, combination vs. aPPD alone). The combination treatment significantly increased levels of cleaved caspase-3 apoptotic marker compared to vehicle-treated or aPPD-treated C4-2 tumors. The mechanistic elucidations indicate that tumor inhibition by the aPPD and calcitriol combination was accompanied by elevated vitamin D receptor (VDR) protein expression. In silico data suggest that aPPD weakly binds to the native LBD pocket of VDR. Interestingly, the combination of aPPD and calcitriol activated VDR at a significantly higher level than calcitriol alone and this indicates that aPPD may be an allosteric activator of VDR. Overall, aPPD and calcitriol combination significantly inhibited tumor growth in vivo with no acute or chronic toxic effects in the C4-2 xenograft CRPC nude mice. The involvement of VDR and downstream apoptotic pathways are potential mechanistic routes of antitumor effects of this combination.
Collapse
|
9
|
Shoaib RM, Ahmad KA, Wang YX. Protopanaxadiol alleviates neuropathic pain by spinal microglial dynorphin A expression following glucocorticoid receptor activation. Br J Pharmacol 2021; 178:2976-2997. [PMID: 33786848 DOI: 10.1111/bph.15471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE New remedies are required for the treatment of neuropathic pain due to insufficient efficacy of available therapies. This study provides a novel approach to develop painkillers for chronic pain treatment. EXPERIMENTAL APPROACH The rat formalin pain test and spinal nerve ligation model of neuropathic pain were used to evaluate antinociception of protopanaxadiol. Primary cell cultures, immunofluorescence staining, and gene and protein expression were also performed for mechanism studies. KEY RESULTS Gavage protopanaxadiol remarkably produces pain antihypersensitive effects in neuropathic pain, bone cancer pain and inflammatory pain, with efficacy comparable with gabapentin. Long-term PPD administration does not induce antihypersensitive tolerance, but prevents and reverses the development and expression of morphine analgesic tolerance. Oral protopanaxadiol specifically stimulates spinal expression of dynorphin A in microglia but not in astrocytes or neurons. Protopanaxadiol gavage-related pain antihypersensitivity is abolished by the intrathecal pretreatment with the microglial metabolic inhibitor minocycline, dynorphin antiserum or specific κ-opioid receptor antagonist GNTI. Intrathecal pretreatment with glucocorticoid receptor)antagonists RU486 and dexamethasone-21-mesylate, but not GPR-30 antagonist G15 or mineralocorticoid receptor antagonist eplerenone, completely attenuates protopanaxadiol-induced spinal dynorphin A expression and pain antihypersensitivity in neuropathic pain. Treatment with protopanaxadiol, the glucocorticoid receptor agonist dexamethasone and membrane-impermeable glucocorticoid receptor agonist dexamethasone-BSA in cultured microglia induces remarkable dynorphin A expression, which is totally blocked by pretreatment with dexamthasone-21-mesylate. CONCLUSION AND IMPLICATIONS All the results, for the first time, indicate that protopanaxadiol produces pain antihypersensitivity in neuropathic pain probably through spinal microglial dynorphin A expression after glucocorticoid receptor activation and hypothesize that microglial membrane glucocorticoid receptor/dynorphin A pathway is a potential target to discover and develop novel painkillers in chronic pain.
Collapse
Affiliation(s)
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
10
|
Ben-Eltriki M, Deb S, Guns EST. 1α,25-Dihydroxyvitamin D 3 synergistically enhances anticancer effects of ginsenoside Rh2 in human prostate cancer cells. J Steroid Biochem Mol Biol 2021; 209:105828. [PMID: 33493594 DOI: 10.1016/j.jsbmb.2021.105828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 12/01/2022]
Abstract
1α,25-dihydroxyvitamin D3 (1,25(OH)2D3, commonly known as calcitriol), the most active metabolite of vitamin D3, and ginsenoside Rh2 can regulate cellular differentiation and proliferation proteins. The purpose of the present study was to assess the effect of 1,25(OH)2D3 on the anticancer activities of Rh2 in human prostate cancer cells such as androgen-dependent LNCaP and androgen-independent C4-2 in vitro. The effects of treatment with 1,25(OH)2D3 or Rh2, either alone or in combination, on prostate cancer cells were evaluated through tetrazolium-based cell viability assay, BrdU cell proliferation rate estimation assay, and Western blot protein expression analyses of nuclear receptors (androgen receptor and vitamin D receptors) and apoptotic proteins (Bcl-2, Bax, and Caspase 3). The Combination Indices (CI) and Dose Reduction Indices (DRI) of 1,25(OH)2D3 and Rh2 were calculated to determine synergistic anticancer activity using Calcusyn software (Biosoft, Cambridge, UK). The cell viability assay data indicate that Rh2 treatment alone inhibited cell viability in a concentration-dependent manner and the addition of 10 nM 1,25(OH)2D3 to Rh2 significantly enhanced its ability to reduce cell viability up to 80 % in both the cell lines. Similarly, addition of 10 nM 1,25(OH)2D3 to Rh2 significantly lowered its IC50 values for cell proliferation from the range of 32-65 μM to 14-8 μM in LNCaP and C4-2 cells. In addition, protein expression analyses indicated that the combined treatment with Rh2 and 1,25(OH)2D3 led to greater downregulation of androgen receptor expression compared to single agent exposure. Similarly, the presence of 1,25(OH)2D3 synergistically increased the pro-apoptotic actions of Rh2 in both the cell lines. Overall, 1,25(OH)2D3 augments the Rh2-mediated anticancer effects through stimulating apoptosis and reduced cell proliferation which suggests that synergism of this combination may lead to potential lower need of the active vitamin D3 and limited toxicity from it.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada; Therapeutics Initiative, Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL, 33169, USA.
| | - Emma S Tomlinson Guns
- Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|
11
|
Lin K, Sze SCW, Liu B, Zhang Z, Zhang Z, Zhu P, Wang Y, Deng Q, Yung KKL, Zhang S. 20( S)-protopanaxadiol and oleanolic acid ameliorate cognitive deficits in APP/PS1 transgenic mice by enhancing hippocampal neurogenesis. J Ginseng Res 2020; 45:325-333. [PMID: 33841013 PMCID: PMC8020272 DOI: 10.1016/j.jgr.2020.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. Enhancing hippocampal neurogenesis by promoting proliferation and differentiation of neural stem cells (NSCs) is a promising therapeutic strategy for AD. 20(S)-protopanaxadiol (PPD) and oleanolic acid (OA) are small, bioactive compounds found in ginseng that can promote NSC proliferation and neural differentiation in vitro. However, it is currently unknown whether PPD or OA can attenuate cognitive deficits by enhancing hippocampal neurogenesis in vivo in a transgenic APP/PS1 AD mouse model. Here, we administered PPD or OA to APP/PS1 mice and monitored the effects on cognition and hippocampal neurogenesis. Methods We used the Morris water maze, Y maze, and open field tests to compare the cognitive capacities of treated and untreated APP/PS1 mice. We investigated hippocampal neurogenesis using Nissl staining and BrdU/NeuN double labeling. NSC proliferation was quantified by Sox2 labeling of the hippocampal dentate gyrus. We used western blotting to determine the effects of PPD and OA on Wnt/GSK3β/β-catenin pathway activation in the hippocampus. Results Both PPD and OA significantly ameliorated the cognitive impairments observed in untreated APP/PS1 mice. Furthermore, PPD and OA significantly promoted hippocampal neurogenesis and NSC proliferation. At the mechanistic level, PPD and OA treatments resulted in Wnt/GSK-3β/β-catenin pathway activation in the hippocampus. Conclusion PPD and OA ameliorate cognitive deficits in APP/PS1 mice by enhancing hippocampal neurogenesis, achieved by stimulating the Wnt/GSK-3β/β-catenin pathway. As such, PPD and OA are promising novel therapeutic agents for the treatment of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China.,Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Stephen Cho-Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhang Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Zhu Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Peili Zhu
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Ying Wang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Qiudi Deng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ken Kin-Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Shiqing Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| |
Collapse
|
12
|
Lin K, Liu B, Lim SL, Fu X, Sze SCW, Yung KKL, Zhang S. 20(S)-protopanaxadiol promotes the migration, proliferation, and differentiation of neural stem cells by targeting GSK-3β in the Wnt/GSK-3β/β-catenin pathway. J Ginseng Res 2020; 44:475-482. [PMID: 32372869 PMCID: PMC7195587 DOI: 10.1016/j.jgr.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Active natural ingredients, especially small molecules, have recently received wide attention as modifiers used to treat neurodegenerative disease by promoting neurogenic regeneration of neural stem cell (NSC) in situ. 20(S)-protopanaxadiol (PPD), one of the bioactive ingredients in ginseng, possesses neuroprotective properties. However, the effect of PPD on NSC proliferation and differentiation and its mechanism of action are incompletely understood. METHODS In this study, we investigated the impact of PPD on NSC proliferation and neuronal lineage differentiation through activation of the Wnt/glycogen synthase kinase (GSK)-3β/β-catenin pathway. NSC migration and proliferation were investigated by neurosphere assay, Cell Counting Kit-8 assay, and EdU assay. NSC differentiation was analyzed by Western blot and immunofluorescence staining. Involvement of the Wnt/GSK3β/β-catenin pathway was examined by molecular simulation and Western blot and verified using gene transfection. RESULTS PPD significantly promoted neural migration and induced a significant increase in NSC proliferation in a time- and dose-dependent manner. Furthermore, a remarkable increase in antimicrotubule-associated protein 2 expression and decrease in nestin protein expression were induced by PPD. During the differentiation process, PPD targeted and stimulated the phosphorylation of GSK-3β at Ser9 and the active forms of β-catenin, resulting in activation of the Wnt/GSK-3β/β-catenin pathway. Transfection of NSCs with a constitutively active GSK-3β mutant at S9A significantly hampered the proliferation and neural differentiation mediated by PPD. CONCLUSION PPD promotes NSC proliferation and neural differentiation in vitro via activation of the Wnt/GSK-3β/β-catenin pathway by targeting GSK-3β, potentially having great significance for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kaili Lin
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China
- HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sze-Lam Lim
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China
- HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiuqiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, HKBU, Kowloon Tong, HKSAR, China
| | - Stephen C.-W. Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China
- HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ken K.-L. Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China
- HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Shiqing Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China
- HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| |
Collapse
|
13
|
Wang M, Li H, Liu W, Cao H, Hu X, Gao X, Xu F, Li Z, Hua H, Li D. Dammarane-type leads panaxadiol and protopanaxadiol for drug discovery: Biological activity and structural modification. Eur J Med Chem 2020; 189:112087. [PMID: 32007667 DOI: 10.1016/j.ejmech.2020.112087] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Based on the definite therapeutic benefits, such as neuroprotective, cardioprotective, anticancer, anti-diabetic and so on, the Panax genus which contains many valuable plants, including ginseng (Panax ginseng C.A. Meyer), notoginseng (Panax notoginseng) and American ginseng (Panax quinquefolius L.), attracts research focus. Actually, the biological and pharmacological effects of the Panax genus are mainly attributed to the abundant ginsenosides. However, the low membrane permeability and the gastrointestinal tract influence seriously limit the absorption and bioavailability of ginsenosides. The acid or base hydrolysates of ginsenosides, 20 (R,S)-panaxadiol and 20 (R,S)-protopanaxadiol showed improved bioavailability and diverse pharmacological activities. Moreover, relative stable skeletons and active hydroxyl group at C-3 position and other reactive sites are suitable for structural modification to improve biological activities. In this review, the pharmacological activities of panaxadiol, protopanaxadiol and their structurally modified derivatives are comprehensively summarized.
Collapse
Affiliation(s)
- Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
14
|
Kim JE, Jang IS, Son SH, Ko YJ, Cho BK, Kim SC, Lee JY. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metab Eng 2019; 56:50-59. [DOI: 10.1016/j.ymben.2019.08.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
|
15
|
Peng B, He R, Xu Q, Yang Y, Hu Q, Hou H, Liu X, Li J. Ginsenoside 20(S)-protopanaxadiol inhibits triple-negative breast cancer metastasis in vivo by targeting EGFR-mediated MAPK pathway. Pharmacol Res 2019; 142:1-13. [DOI: 10.1016/j.phrs.2019.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/30/2023]
|
16
|
Pharmacokinetic interaction of calcitriol with 20(S)-protopanaxadiol in mice: Determined by LC/MS analysis. Eur J Pharm Sci 2019; 130:173-180. [PMID: 30654110 DOI: 10.1016/j.ejps.2019.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/23/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
The physiological and anti-cancer functions of vitamin D3 are accomplished primarily via 1α,25-dihydroxyvitamin D3 (calcitriol), whereas 20(S)-protopanaxadiol (aPPD) is a ginsenoside, which is isolated from Panax ginseng, with potential anti-cancer benefits. In the present study, we report a pharmacokinetic (PK) herb-nutrient interaction between calcitriol and aPPD in mice. A liquid chromatography mass spectrometry (LC/MS) method was developed using 4-phenyl-1,2,4-triazoline-3,5-dione derivatizing agent and we subsequently used the method to quantitate calcitriol in mouse serum. The limit of quantitation was 0.01 ng/ml which is approximately 100 fold lower than the previously reported assay from our laboratory. Calcitriol PK parameters were determined in non-tumor-bearing or C4-2 human prostate tumor-bearing nude mice following oral co-administration of calcitriol either alone or in combination with aPPD. Mice were pretreated with oral aPPD (70 mg/kg) or vehicle control twice daily for seven consecutive days, followed by a single oral dose of 4 μg/kg calcitriol alone or in combination with aPPD. Our PK results demonstrated that co-administration of calcitriol with aPPD (following pre-treatment with vehicle for seven days) resulted in a 35% increase in the area under the curve (AUC0-24 h) and a 41% increase in the maximum serum concentration (Cmax) compared to the calcitriol only group. aPPD therefore significantly increased calcitriol serum exposure. We also saw a reduction in the time required to reach Cmax. In contrast, calcitriol PK in mice co-administered with calcitriol and aPPD as well as those pretreated seven consecutive days with aPPD was no different than that determined for the mice that received vehicle for seven days as pre-treatment. Co-administration of calcitriol with aPPD therefore could increase health benefits of vitamin D3, however any increased risk of hypercalcemia, resulting from this combination approach, requires further investigation. Lastly, we surmise that a cytochrome P450 inhibition-based mechanism may contribute to the observed PK interaction.
Collapse
|
17
|
20(S)-protopanaxadiol regio-selectively targets androgen receptor: anticancer effects in castration-resistant prostate tumors. Oncotarget 2018; 9:20965-20978. [PMID: 29765513 PMCID: PMC5940378 DOI: 10.18632/oncotarget.24695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/24/2018] [Indexed: 01/21/2023] Open
Abstract
We have explored the effects of 20(S)-protopanaxadiol (aPPD), a naturally derived ginsenoside, against androgen receptor (AR) positive castration resistant prostate cancer (CRPC) xenograft tumors and have examined its interactions with AR. In silico docking studies for aPPD binding to AR, alongside transactivation bioassays and in vivo efficacy studies were carried out in the castration-resistant C4-2 xenograft model. Immunohistochemical (IHC) and Western blot analyses followed by evaluation of AR, apoptotic, cell cycle and proliferative markers in excised tumors was performed. The growth of established CRPC tumors was inhibited by 53% with aPPD and a corresponding decrease in serum PSA was seen compared to controls. The IHC data revealed that Ki-67 was significantly lower for aPPD treated tumors and was associated with elevated p21 and cleaved caspase-3 expression, compared to vehicle treatment. Furthermore, aPPD decreased AR protein expression in xenograft tumors, while significantly upregulating p27 and Bax protein levels. In vitro data supporting this suggests that aPPD binds to and significantly inhibits the N-terminal or the DNA binding domains of AR. The AR androgen binding site docking score for androgen (dihydrotestosterone) was −11.1, while that of aPPD was −7.1. The novel findings described herein indicate aPPD potently inhibits PCa in vivo partly via inhibition of a site on the AR N-terminal domain. This manifested as cell cycle arrest and concurrent induction of apoptosis via an increase in Bax, cleaved-caspase-3, p27 and p21 expression.
Collapse
|
18
|
Gwak YS, Han JY, Adhikari PB, Ahn CH, Choi YE. Heterologous production of a ginsenoside saponin (compound K) and its precursors in transgenic tobacco impairs the vegetative and reproductive growth. PLANTA 2017; 245:1105-1119. [PMID: 28243734 DOI: 10.1007/s00425-017-2668-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/21/2017] [Indexed: 05/22/2023]
Abstract
MAIN CONCLUSION Production of compound K (a ginsenoside saponin) and its precursors in transgenic tobacco resulted in stunted growth and seed set failure, which may be caused by strong autotoxicity of heterologously produced phytochemicals against the tobacco itself. Panax ginseng roots contain various saponins (ginsenosides), which are major bioactive compounds. A monoglucosylated saponin, compound K (20-O-(β-D-glucopyranosyl)-20(S)-protopanaxadiol), has high medicinal and cosmetic values but is present in undetectable amounts in naturally grown ginseng roots. The production of compound K (CK) requires complicated deglycosylation of ginsenosides using physicochemical and/or enzymatic degradation. In this work, we report the production of CK in transgenic tobacco by co-overexpressing three genes (PgDDS, CYP716A47 and UGT71A28) isolated from P. ginseng. Introduction and expression of the transgenes in tobacco lines were confirmed by genomic PCR and RT-PCR. All the lines of transgenic tobacco produced CK including its precursors, protopanaxadiol and dammarenediol-II (DD). The concentrations of CK in the leaves ranged from 1.55 to 2.64 µg/g dry weight, depending on the transgenic line. Interestingly, production of CK in tobacco brought stunted plant growth and gave rise to seed set failure. This seed set failure was caused by both long-styled flowers and abnormal pollen development in transgenic tobacco. Both CK and DD treatments highly suppressed in vitro germination and tube growth in wild-type pollens. Based on these results, metabolic engineering for CK production in transgenic tobacco was successfully achieved, but the production of CK and its precursors in tobacco severely affects vegetative and reproductive growth due to the cytotoxicity of phytochemicals that are heterologously produced in transgenic tobacco.
Collapse
Affiliation(s)
- Yu Shin Gwak
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Jung Yeon Han
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Prakash Babu Adhikari
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Chang Ho Ahn
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
19
|
Characterization, Molecular Docking, and In Vitro Dissolution Studies of Solid Dispersions of 20(S)-Protopanaxadiol. Molecules 2017; 22:molecules22020274. [PMID: 28208662 PMCID: PMC6155859 DOI: 10.3390/molecules22020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022] Open
Abstract
In this study, we prepared solid dispersions (SDs) of 20(S)-protopanaxadiol (PPD) using a melting-solvent method with different polymers, in order to improve the solubility and dissolution performance of drugs with poor water solubility. The SDs were characterized via differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and molecular docking and dynamics study. DSC and PXRD results indicated that PPD crystallinity in SDs was significantly reduced, and that the majority of PPD is amorphous. No interaction was observed between PPD and polymers on FTIR and NMR spectra. Molecular docking and dynamic calculations indicated that the PPD molecule localized to the interpolated charged surface, rather than within the amorphous polymer chain network, which might help prevent PPD crystallization, consequently enhancing the PPD dispersion in polymers. An in vitro dissolution study revealed that the SDs considerably improved the PPD dissolution performance in distilled water containing 0.35% Tween-80 (T-80). Furthermore, among three PPD-SDs formulations, Poloxamer188 (F68) was the most effective in improving the PPD solubility and was even superior to the mixed polymers. Therefore, the SD prepared with F68 as a hydrophilic polymer carrier might be a promising strategy for improving solubility and in vitro dissolution performance. F68-based SD, containing PPD with a melting-solvent preparation method, can be used as a promising, nontoxic, quick-release, and effective intermediate for other pharmaceutical formulations, in order to achieve a more effective drug delivery.
Collapse
|
20
|
Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5738694. [PMID: 27446225 PMCID: PMC4944051 DOI: 10.1155/2016/5738694] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 01/30/2023]
Abstract
Recently, most anticancer drugs are derived from natural resources such as marine, microbial, and botanical sources, but the low success rates of chemotherapies and the development of multidrug resistance emphasize the importance of discovering new compounds that are both safe and effective against cancer. Ginseng types, including Asian ginseng, American ginseng, and notoginseng, have been used traditionally to treat various diseases, due to their immunomodulatory, neuroprotective, antioxidative, and antitumor activities. Accumulating reports have shown that ginsenosides, the major active component of ginseng, were helpful for tumor treatment. 20(S)-Protopanaxadiol (PDS) and 20(S)-protopanaxatriol saponins (PTS) are two characteristic types of triterpenoid saponins in ginsenosides. PTS holds capacity to interfere with crucial metabolism, while PDS could affect cell cycle distribution and prodeath signaling. This review aims at providing an overview of PTS and PDS, as well as their metabolites, regarding their different anticancer effects with the proposal that these compounds might be potent additions to the current chemotherapeutic strategy against cancer.
Collapse
|
21
|
Ku S. Finding and Producing Probiotic Glycosylases for the Biocatalysis of Ginsenosides: A Mini Review. Molecules 2016; 21:molecules21050645. [PMID: 27196878 PMCID: PMC6273753 DOI: 10.3390/molecules21050645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/16/2022] Open
Abstract
Various microorganisms have been widely applied in nutraceutical industries for the processing of phytochemical conversion. Specifically, in the Asian food industry and academia, notable attention is paid to the biocatalytic process of ginsenosides (ginseng saponins) using probiotic bacteria that produce high levels of glycosyl-hydrolases. Multiple groups have conducted experiments in order to determine the best conditions to produce more active and stable enzymes, which can be applicable to produce diverse types of ginsenosides for commercial applications. In this sense, there are various reviews that cover the biofunctional effects of multiple types of ginsenosides and the pathways of ginsenoside deglycosylation. However, little work has been published on the production methods of probiotic enzymes, which is a critical component of ginsenoside processing. This review aims to investigate current preparation methods, results on the discovery of new glycosylases, the application potential of probiotic enzymes and their use for biocatalysis of ginsenosides in the nutraceutical industry.
Collapse
Affiliation(s)
- Seockmo Ku
- Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2022, USA.
| |
Collapse
|
22
|
Ben-Eltriki M, Deb S, Adomat H, Tomlinson Guns ES. Calcitriol and 20(S)-protopanaxadiol synergistically inhibit growth and induce apoptosis in human prostate cancer cells. J Steroid Biochem Mol Biol 2016; 158:207-219. [PMID: 26709138 DOI: 10.1016/j.jsbmb.2015.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022]
Abstract
The potential cancer preventive roles of calcitriol, the dihydroxylated metabolite of Vitamin D3, as well as 20(S)-protopanaxadiol (aPPD), the aglycone of the protopanaxadiol family of ginsenosides, have gained much attention in recent years for the prevention/treatment of prostate cancer (PCa). In the present study, we evaluated the anticancer and chemosensitization effects of calcitriol at clinically relevant concentrations and aPPD, either alone or in combination, in two well-characterized human PCa cell lines: androgen-sensitive non-metastatic LNCaP cells and androgen-independent metastatic C4-2 cells. The effects of the treatments on PCa cell viability and proliferation rates were evaluated by MTS and Brdu assays, respectively. Combination Indices (CI) and Dose Reduction Indices (DRI) were estimated to assess synergistic anticancer activity using Calcusyn software (Biosoft, Cambridge, UK). Then, we determined the potential Pharmacodynamic interaction mechanisms as follows: The protein expression levels of the genes those are known to control cell cycle (cyclin D1 and cdk2); apoptosis (Bcl-2, Bax, and Capspases 3), androgen receptor and Vitamin D receptors were examined upon combinational treatment. The cell viability assay data show that addition of 10nM calcitriol to aPPD significantly lowered its IC50 values from the range of 41-53μM to 13-23μM, in LNCaP and C4-2 prostate cancer cells. The cell proliferation rate was significantly lower for combination treatments compared to the cells treated with aPPD alone. Similarly, Western blot results indicate that aPPD significantly upregulated Vitamin D receptor (VDR) expression, while calcitriol further enhanced the ability of aPPD to induce pro-apoptotic BAX, increased cleaved caspase-3 and downregulate cdk2 protein levels. Thus, the pharmacodynamic interaction between aPPD and calcitriol in impacting growth inhibition and apoptosis appears to be synergistic in nature. In conclusion, calcitriol sensitizes PCa cells to aPPD-mediated anticancer effects by enhancing its ability to induce apoptosis and reduce cell proliferation, and this synergism may limit calcitriol toxicity by facilitating the use of lower calcitriol doses. The associated increase in VDR expression and calcitriol half-life may be mechanistically associated with this sensitization effect.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Experimental Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Subrata Deb
- Department of Biopharmaceutical Sciences, College of Pharmacy at Roosevelt University, Schaumburg, IL, USA
| | - Hans Adomat
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | - Emma S Tomlinson Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
23
|
Chun JH, Adhikari PB, Park SB, Han JY, Choi YE. Production of the dammarene sapogenin (protopanaxadiol) in transgenic tobacco plants and cultured cells by heterologous expression of PgDDS and CYP716A47. PLANT CELL REPORTS 2015; 34:1551-60. [PMID: 25981048 DOI: 10.1007/s00299-015-1806-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/21/2015] [Accepted: 05/06/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE Protopanaxadiol (PPD) is an aglycone of dammarene-type ginsenoside and has high medicinal values. In this work, we reported the PPD production in transgenic tobacco co-overexpressing PgDDS and CYP716A47. PPD is an aglycone of ginsenosides produced by Panax species and has a wide range of pharmacological activities. PPD is synthesized via the hydroxylation of dammarenediol-II (DD) by CYP716A47 enzyme. Here, we established a PPD production system via cell suspension culture of transgenic tobacco co-overexpressing the genes for PgDDS and CYP716A47. The concentration of PPD in transgenic tobacco leaves was 2.3-5.7 µg/g dry weight (DW), depending on the transgenic line. Leaf segments were cultured on medium with various types of hormones to induce callus. Auxin treatment, particularly 2,4-D, strongly enhanced the production of DD (783.8 µg g(-1) DW) and PPD (125.9 µg g(-1) DW). Treatment with 2,4-D enhanced the transcription of the HMG-Co reductase (HMGR) and squalene epoxidase genes. PPD production reached 166.9 and 980.9 µg g(-1) DW in a 250-ml shake flask culture and in 5-l airlift bioreactor culture, respectively.
Collapse
Affiliation(s)
- Ju-Hyeon Chun
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Zhang Z, Li Z, Wu X, Zhang CF, Calway T, He TC, Du W, Chen J, Wang CZ, Yuan CS. TRAIL pathway is associated with inhibition of colon cancer by protopanaxadiol. J Pharmacol Sci 2015; 127:83-91. [PMID: 25704023 PMCID: PMC5053100 DOI: 10.1016/j.jphs.2014.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/20/2014] [Accepted: 11/04/2014] [Indexed: 12/26/2022] Open
Abstract
Among important components of American ginseng, protopanaxadiol (PPD) showed more active anticancer potential than other triterpenoid saponins. In this study, we determined the in vivo effects of PPD in a mouse cancer model first. Then, using human colorectal cancer cell lines, we observed significant cancer cell growth inhibition by promoting G1 cell cycle redistribution and apoptosis. Subsequently, we characterized the downstream genes targeted by PPD in HCT-116 cancer cells. Using Affymetrix high density GeneChips, we obtained the gene expression profile of the cells. Microarray data indicated that the expression levels of 76 genes were changed over two-fold after PPD, of which 52 were upregulated while the remaining 24 were downregulated. Ingenuity pathway analysis of top functions affected was carried out. Data suggested that by regulating the interactions between p53 and DR4/DR5, the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway played a key role in the action of PPD, a promising colon cancer inhibitory compound.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Zejuan Li
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xiaohui Wu
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Feng Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Tyler Calway
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Wei Du
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jianjun Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA; Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
González-Burgos E, Fernandez-Moriano C, Gómez-Serranillos MP. Potential Neuroprotective Activity of Ginseng in Parkinson’s Disease: A Review. J Neuroimmune Pharmacol 2014; 10:14-29. [DOI: 10.1007/s11481-014-9569-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/14/2014] [Indexed: 01/19/2023]
|
26
|
Dai Z, Liu Y, Guo J, Huang L, Zhang X. Yeast synthetic biology for high-value metabolites. FEMS Yeast Res 2014; 15:1-11. [DOI: 10.1111/1567-1364.12187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/30/2014] [Accepted: 07/15/2014] [Indexed: 01/08/2023] Open
Affiliation(s)
- Zhubo Dai
- Key Laboratory of Systems Microbial Biotechnology; Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin China
| | - Yi Liu
- Key Laboratory of Systems Microbial Biotechnology; Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin China
| | - Juan Guo
- National Resource Center for Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica; China Academy of Chinese Medical Sciences; Beijing China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology; Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin China
| |
Collapse
|
27
|
Deb S, Chin MY, Adomat H, Guns EST. Ginsenoside-mediated blockade of 1α,25-dihydroxyvitamin D3 inactivation in human liver and intestine in vitro. J Steroid Biochem Mol Biol 2014; 141:94-103. [PMID: 24486455 DOI: 10.1016/j.jsbmb.2014.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/21/2013] [Accepted: 01/22/2014] [Indexed: 12/19/2022]
Abstract
The beneficial effects of vitamin D3 are exerted through 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], the dihydroxy metabolite of vitamin D3. Hepatic and intestinal biotransformation of 1α,25(OH)2D3 and modifiers of metabolic capacity could be important determinants of bioavailability in serum and tissues. Ginsenosides and their aglycones, mainly 20(S)-protopanaxadiol (aPPD) and 20(S)-protopanaxatriol (aPPT), are routinely ingested as health supplements. The purpose of the present study was to investigate the potential of ginsenosides and their aglycones to block hepatic and intestinal inactivation of 1α,25(OH)2D3, which is the most potent ligand of vitamin D receptor. In vitro biotransformation reactions were initiated with NADPH regenerating solutions following initial preincubation of pooled human hepatic or intestinal microsomal protein or human recombinant CYP3A4 supersomes with 1α,25(OH)2D3 or midazolam. Formation of hydroxylated metabolites of 1α,25(OH)2D3 or midazolam was analyzed using liquid chromatography-mass spectrometry. Co-incubation of 1α,25(OH)2D3 with various ginsenosides (Rg1, Rh2, aPPD, aPPT and total ginsenosides) led to differential inhibition (30-100%) of its hydroxylation. Results suggest that aPPD, aPPT and Rh2 strongly attenuated the hydroxylation of 1α,25(OH)2D3. Follow up inhibition studies with aPPD and aPPT at varying concentrations (0.5-100μM) led to up to 91-100% inhibition of formation of hydroxylated metabolites of 1α,25(OH)2D3 thus preventing inactivation of active vitamin D3. The IC50 values of aPPD or aPPT for the most abundant hydroxylated metabolites of 1α,25(OH)2D3 ranged from 3.3 to 9.0μM in human microsomes. The inhibitory mechanism of aPPD or aPPT for CYP3A4-mediated biotransformation of 1α,25(OH)2D3 was competitive in nature (apparent Ki: 1.7-2.9μM). Similar inhibitory effects were also observed upon addition of aPPD or aPPT into midazolam hydroxylation assay. In summary, our results suggest that ginsenosides, specifically aPPD and aPPT, inhibit the CYP3A4-mediated catabolism of active vitamin D3 in human liver and intestine, potentially providing additional vitamin D-related benefits to patients with cancer, neurodegenerative and metabolic diseases.
Collapse
Affiliation(s)
- Subrata Deb
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, Canada V6H 3Z6
| | - Mei Yieng Chin
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, Canada V6H 3Z6
| | - Hans Adomat
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, Canada V6H 3Z6
| | - Emma S Tomlinson Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, Canada V6H 3Z6.
| |
Collapse
|
28
|
Kim MS, Yu JM, Kim HJ, Kim HB, Kim ST, Jang SK, Choi YW, Lee DI, Joo SS. Ginsenoside Re and Rd enhance the expression of cholinergic markers and neuronal differentiation in Neuro-2a cells. Biol Pharm Bull 2014; 37:826-33. [PMID: 24599032 DOI: 10.1248/bpb.b14-00011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Alzheimer's disease (AD), extensive neuronal loss and a deficiency of the neurotransmitter acetylcholine (ACh) are the major characteristics during pathogenesis in the brain. In the present study, we aimed to investigate whether representative ginsenosides from ginseng can regulate choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT), which are required for cholinergic neurotransmission. Our results revealed that Re and Rd induced effectively the expression of ChAT/VAChT genes in Neuro-2a cells as well as ACh elevation. Microtubule-associated protein-2 (MAP-2), nerve growth factor receptor (p75), p21, and TrkA genes and proteins were also significantly expressed. Moreover, both activated extracelullar signal-regulated protein kinase (ERK) and Akt were inhibited by K252a, a selective Trk receptor inhibitor. These findings strongly indicate that Re and Rd play an important role in neuronal differentiation and the nerve growth factor (NGF)-TrkA signaling pathway. High performance liquid chromatography analysis showed that Re and Rd administered orally were transported successfully into brain tissue and increased the level of ChAT and VAChT mRNA. The present study demonstrates that Re and Rd are selective candidates for upregulation of the expression of cholinergic markers, which may counter the symptoms and progress of AD.
Collapse
|
29
|
Chiu NTC, Guns EST, Adomat H, Jia W, Deb S. Identification of human cytochrome P450 enzymes involved in the hepatic and intestinal biotransformation of 20(S)-protopanaxadiol. Biopharm Drug Dispos 2013; 35:104-18. [DOI: 10.1002/bdd.1873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/10/2013] [Accepted: 10/09/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Nga Ting Colette Chiu
- Department of Pathology and Laboratory Science; University of British Columbia; Vancouver BC Canada
| | - Emma S. Tomlinson Guns
- The Vancouver Prostate Centre at Vancouver General Hospital; 2660 Oak Street Vancouver BC Canada V6H 3Z6
| | - Hans Adomat
- The Vancouver Prostate Centre at Vancouver General Hospital; 2660 Oak Street Vancouver BC Canada V6H 3Z6
| | - William Jia
- Department of Surgery; University of British Columbia; Vancouver BC Canada
| | - Subrata Deb
- The Vancouver Prostate Centre at Vancouver General Hospital; 2660 Oak Street Vancouver BC Canada V6H 3Z6
| |
Collapse
|
30
|
Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 2013; 20:146-56. [DOI: 10.1016/j.ymben.2013.10.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 08/22/2013] [Accepted: 10/03/2013] [Indexed: 11/15/2022]
|
31
|
Yoo YC, Lee J, Park SR, Nam KY, Cho YH, Choi JE. Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice. J Ginseng Res 2013; 37:80-6. [PMID: 23717160 PMCID: PMC3659615 DOI: 10.5142/jgr.2013.37.80] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/13/2012] [Accepted: 09/18/2012] [Indexed: 11/18/2022] Open
Abstract
Korean red ginseng has been shown to possess a variety of biological activities. However, little is known about antiviral activity of ginsenosides of Korean red ginseng. Here, we investigated the protective effect by oral administration of various ginsenosides on the lethal infection of haemagglutinating virus of Japan (HVJ) in mice. In a lethal infection model in which almost all mice infected with HVJ died within 15 days, the mice were administered orally (per os) with 1 mg/mouse of dammarane-type (ginsenoside-Rb1, -Rb2, -Rd, -Re, and -Rg2) or oleanolic acid-type (ginsenoside-Ro) ginsenosides 3, 2, and 1 d before virus infection. Ginsenoside-Rb2 showed the highest protective activity, although other dammarane-type and oleanolic acid-type ginsenosides also induced a significant protection against HVJ. However, neither the consecutive administration with a lower dosage (300 μg/mouse) nor the single administration of ginsenoside-Rb2 (1 mg/mouse) was active. In comparison of the protective activity between ginsenoside-Rb2 and its two hydrolytic products [20(S)- and 20(R)-ginsenoside-Rg3], 20(S)-ginsenoside-Rg3, but not 20(R)-ginsenoside-Rg3, elicited a partial protection against HVJ. The protective effect of ginsenoside-Rb2 and 20(S)-ginsenoside-Rg3 on HVJ infection was confirmed by the reduction of virus titers in the lungs of HVJ-infected mice. These results suggest that ginsenoside-Rb2 is the most effective among ginsenosides from red ginseng to prevent the lethal infection of HVJ, so that this ginsenoside is a promising candidate as a mucosal immunoadjuvant to enhance antiviral activity.
Collapse
Affiliation(s)
- Yung Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | | | | | | | | | | |
Collapse
|
32
|
Bao Y, Wang Q, Tang P. Lithium adduct as precursor ion for sensitive and rapid quantification of 20 (S)-protopanaxadiol in rat plasma by liquid chromatography/quadrupole linear ion trap mass spectrometry and application to rat pharmacokinetic study. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:399-405. [PMID: 23494798 DOI: 10.1002/jms.3174] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 06/01/2023]
Abstract
A novel, rapid and sensitive liquid chromatography/quadrupole linear ion trap mass spectrometry [LC-ESI-(QqLIT)MS/MS] method was developed and validated for the quantification of protopanaxadiol (PPD) in rat plasma. Oleanolic acid (OA) was used as internal standard (IS). A simple protein precipitation based on acetonitrile (ACN) was employed. Chromatographic separation was performed on a Sepax GP-C18 column (50 × 2.1 mm, 5 μM) with a mobile phase consisting of ACN-water and 1.5 μM formic acid and 25 mM lithium acetate (90 : 10, v/v) at a flow rate of 0.4 ml/min for 3.0 min. Multiple-reaction-monitoring mode was performed using lithium adduct ion as precursor ion of m/z 467.5/449.4 and 455.6/407.4 for the drug and IS, respectively. Calibration curve was recovered over a concentration range of 0.5-100 ng/ml with a correlation coefficient >0.99. The limit of detection was 0.2 ng/ml in rat plasma for PPD. The results of the intraday and interday precision and accuracy studies were well within the acceptable limits. The validated method was successfully applied to investigate the pharmacokinetic study of PPD after intravenous and gavage administration to rat.
Collapse
Affiliation(s)
- Yuanwu Bao
- Sundia MediTech Company Ltd., 388 Jialilue Road Building 9, Zhangjiang High-Tech Park, Shanghai 201203, China
| | | | | |
Collapse
|