1
|
Pan J, Guo T, Kong H, Bu W, Shao M, Geng Z. Prediction of mortality risk in patients with severe community-acquired pneumonia in the intensive care unit using machine learning. Sci Rep 2025; 15:1566. [PMID: 39794470 PMCID: PMC11723911 DOI: 10.1038/s41598-025-85951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
The aim of this study was to develop and validate a machine learning-based mortality risk prediction model for patients with severe community-acquired pneumonia (SCAP) in the intensive care unit (ICU). We collected data from two centers as the development and external validation cohorts. Variables were screened using the Recursive Feature Elimination method. Five machine learning algorithms were used to build predictive models. Models were evaluated through nested cross-validation to select the best one. The model was interpreted using Shapley Additive Explanations. We selected the optimal model to generate the web calculator. A total of 23 predictive features were selected. The Light Gradient Boosting Machine (LightGBM) model had an area under the receiver operating characteristic curve (AUC) of 0.842 (95% CI: 0.757-0.927), with an external 5-fold cross-validation average AUC of 0.842 ± 0.038, which was superior to the other models. External validation results also demonstrated good performance by the LightGBM model with an AUC of 0.856 (95% CI: 0.792-0.921). Based on this, we generated a web calculator by combining five high importance predictive factors. The LightGBM model was confirmed to be efficient and stable in predicting the mortality risk of patients with SCAP admitted to the ICU. The web calculator based on the LightGBM model can provide clinicians with a prognostic evaluation tool.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Pulmonary and Critical Care Medicine, Anhui Chest Hospital, Hefei, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Guo
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China
| | - Haobo Kong
- Department of Pulmonary and Critical Care Medicine, Anhui Chest Hospital, Hefei, China
| | - Wei Bu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.
| |
Collapse
|
2
|
Rixecker TM, Ast V, Rodriguez E, Mazuru V, Wagenpfeil G, Mang S, Muellenbach RM, Nobile L, Ajouri J, Bals R, Seiler F, Taccone FS, Lepper PM. Carbon Dioxide Targets in Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome. ASAIO J 2024; 70:1094-1101. [PMID: 38905594 DOI: 10.1097/mat.0000000000002255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Target values for arterial carbon dioxide tension (PaCO 2 ) in extracorporeal membrane oxygenation (ECMO) for acute respiratory distress syndrome (ARDS) are unknown. We hypothesized that lower PaCO 2 values on ECMO would be associated with lighter sedation. We used data from two independent patient cohorts with ARDS spending 1,177 days (discovery cohort, 69 patients) and 516 days (validation cohort, 70 patients) on ECMO and evaluated the associations between daily PaCO 2 , pH, and bicarbonate (HCO 3 ) with sedation. Median PaCO 2 was 41 (interquartile range [IQR] = 37-46) mm Hg and 41 (IQR = 37-45) mm Hg in the discovery and the validation cohort, respectively. Lower PaCO 2 and higher pH but not bicarbonate (HCO 3 ) served as significant predictors for reaching a Richmond Agitation Sedation Scale (RASS) target range of -2 to +1 (lightly sedated to restless). After multivariable adjustment for mortality, tracheostomy, prone positioning, vasoactive inotropic score, Simplified Acute Physiology Score (SAPS) II or Sequential Organ Failure Assessment (SOFA) Score and day on ECMO, only PaCO 2 remained significantly associated with the RASS target range (adjusted odds ratio 1.1 [95% confidence interval (CI) = 1.01-1.21], p = 0.032 and 1.29 [95% CI = 1.1-1.51], p = 0.001 per mm Hg decrease in PaCO 2 for the discovery and the validation cohort, respectively). A PaCO 2 ≤40 mm Hg, as determined by the concordance probability method, was associated with a significantly increased probability of a sedation level within the RASS target range in both patient cohorts (adjusted odds ratio = 2.92 [95% CI = 1.17-7.24], p = 0.021 and 6.82 [95% CI = 1.50-31.0], p = 0.013 for the discovery and the validation cohort, respectively).
Collapse
Affiliation(s)
- Torben M Rixecker
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Vanessa Ast
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Elianna Rodriguez
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Vitalie Mazuru
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Gudrun Wagenpfeil
- Department of Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Homburg, Germany
| | - Sebastian Mang
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Ralf M Muellenbach
- Department of Anesthesiology and Critical Care Medicine, Campus Kassel of the University of Southampton, Kassel, Germany
| | - Leda Nobile
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jonas Ajouri
- Department of Anesthesiology and Critical Care Medicine, Campus Kassel of the University of Southampton, Kassel, Germany
| | - Robert Bals
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Frederik Seiler
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philipp M Lepper
- From the Department of Internal Medicine V (Pneumology, Allergology and Intensive Care Medicine), University Medical Center and Saarland University, Germany
| |
Collapse
|
3
|
McCormick G, Mohr NM, Ablordeppey E, Stephens RJ, Fuller BM, Roberts BW. Partial pressure of carbon dioxide/pH interaction and its association with mortality among patients mechanically ventilated in the emergency department. Am J Emerg Med 2024; 79:105-110. [PMID: 38417220 DOI: 10.1016/j.ajem.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024] Open
Abstract
OBJECTIVES There is currently conflicting data as to the effects of hypercapnia on clinical outcomes among mechanically ventilated patients in the emergency department (ED). These conflicting results may be explained by the degree of acidosis. We sought to test the hypothesis that hypercapnia is associated with increased in-hospital mortality and decreased ventilator-free days at lower pH, but associated with decreased in-hospital mortality and increased ventilator-free days at higher pH, among patients requiring mechanical ventilation in the emergency department (ED). METHODS Secondary analysis of patient level data from prior clinical trials and cohort studies that enrolled adult patients who required mechanical ventilation in the ED. Patients who had a documented blood gas while on mechanical ventilation in the ED were included in these analyses. The primary outcome was in-hospital mortality, and secondary outcome was ventilator-free days. Mixed-effects logistic, linear, and survival-time regression models were used to test if pH modified the association between partial pressure of carbon dioxide (pCO2) and outcome measures. RESULTS Of the 2348 subjects included, the median [interquartile range (IQR)] pCO2 was 43 (35-54) and pH was 7.31 (7.22-7.39). Overall, in-hospital mortality was 27%. We found pH modified the association between pCO2 and outcomes, with higher pCO2 associated with increased probability of in-hospital mortality when pH is below 7.00, and decreased probability of in-hospital mortality when pH is above 7.10. These results remained consistent across multiple sensitivity and subgroup analyses. A similar relationship was found with ventilator-free days. CONCLUSIONS Higher pCO2 is associated with decreased mortality and greater ventilator-free days when pH is >7.10; however, it is associated with increased mortality and fewer ventilator-free days when the pH is below 7.00. Targeting pCO2 based on pH in the ED may be a potential intervention target for future clinical trials to improve clinical outcomes.
Collapse
Affiliation(s)
- Gregory McCormick
- The Department of Emergency Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, United States of America
| | - Nicholas M Mohr
- Departments of Emergency Medicine and Anesthesia, Division of Critical Care Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Enyo Ablordeppey
- Departments of Emergency Medicine and Anesthesia, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Robert J Stephens
- Department of Medicine, Division of Critical Care, University of Maryland School of Medicine, United States of America
| | - Brian M Fuller
- Departments of Emergency Medicine and Anesthesia, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Brian W Roberts
- The Department of Emergency Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, United States of America.
| |
Collapse
|
4
|
Ferrer M, De Pascale G, Tanzarella ES, Antonelli M. Severe Community-Acquired Pneumonia: Noninvasive Mechanical Ventilation, Intubation, and HFNT. Semin Respir Crit Care Med 2024; 45:169-186. [PMID: 38604188 DOI: 10.1055/s-0043-1778140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Severe acute respiratory failure (ARF) is a major issue in patients with severe community-acquired pneumonia (CAP). Standard oxygen therapy is the first-line therapy for ARF in the less severe cases. However, respiratory supports may be delivered in more severe clinical condition. In cases with life-threatening ARF, invasive mechanical ventilation (IMV) will be required. Noninvasive strategies such as high-flow nasal therapy (HFNT) or noninvasive ventilation (NIV) by either face mask or helmet might cover the gap between standard oxygen and IMV. The objective of all the supporting measures for ARF is to gain time for the antimicrobial treatment to cure the pneumonia. There is uncertainty regarding which patients with severe CAP are most likely to benefit from each noninvasive support strategy. HFNT may be the first-line approach in the majority of patients. While NIV may be relatively contraindicated in patients with excessive secretions, facial hair/structure resulting in air leaks or poor compliance, NIV may be preferable in those with increased work of breathing, respiratory muscle fatigue, and congestive heart failure, in which the positive pressure of NIV may positively impact hemodynamics. A trial of NIV might be considered for select patients with hypoxemic ARF if there are no contraindications, with close monitoring by an experienced clinical team who can intubate patients promptly if they deteriorate. In such cases, individual clinician judgement is key to choose NIV, interface, and settings. Due to the paucity of studies addressing IMV in this population, the protective mechanical ventilation strategies recommended by guidelines for acute respiratory distress syndrome can be reasonably applied in patients with severe CAP.
Collapse
Affiliation(s)
- Miquel Ferrer
- Unitat de Vigilancia Intensiva Respiratoria, Servei de Pneumologia, Hospital Clinic de Barcelona, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Medicina, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica En Red-Enfermedades Respiratorias (CIBERES-CB060628), Barcelona, Spain
| | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eloisa S Tanzarella
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
5
|
Yu J, Zhang N, Zhang Z, Fu Y, Gao J, Chen C, Wen Z. Intraoperative partial pressure of arterial carbon dioxide levels and adverse outcomes in patients undergoing lung transplantation. Asian J Surg 2024; 47:380-388. [PMID: 37726182 DOI: 10.1016/j.asjsur.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/11/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE Patients undergoing lung transplantation (LTx) often experience abnormal hypercapnia or hypocapnia. This study aimed to investigate the association between intraoperative PaCO2 and postoperative adverse outcomes in patients undergoing LTx. METHODS We retrospectively reviewed the medical records of 151 patients undergoing LTx. Patients' demographics, perioperative clinical factors, and pre- and intraoperative PaCO2 data after reperfusion were collected and analyzed. Based on the PaCO2 levels, patients were classified into three groups: hypocapnia (≤35 mmHg), normocapnia (35.1-55 mmHg), and hypercapnia (>55 mmHg). Univariate and multivariable logistic regressions were used to identify independent risk factors for postoperative composite adverse events and in-hospital mortality. RESULTS Intraoperative hypercapnia occurred in 69 (45.7%) patients, and hypocapnia in 17 (11.2%). Patients with intraoperative PaCO2 of 35.1-45 mmHg showed a lower incidence of composite adverse events (53.3%) and mortality (6.2%) (P < 0.001). There was no significant difference in composite adverse events and mortality among preoperative PaCO2 groups (P > 0.05). Compared with intraoperative PaCO2 at 35.1-45 mmHg, the risk of composite adverse events in hypercapnia group increased: the adjusted OR was 3.07 (95% confidence interval [CI]: 1.36-6.94; P = 0.007). The risk of death was significantly higher in hypocapnia group than normocapnia group, the adjusted OR was 7.69 (95% CI: 1.68-35.24; P = 0.009). Over ascending ranges of PaCO2, PaCO2 at 55.1-65 mmHg had the strongest association with composite adverse events, the adjusted OR was 6.40 (95% CI: 1.18-34.65; P = 0.031). CONCLUSION These results demonstrate that intraoperative hypercapnia independently predicts postoperative adverse outcomes in patients undergoing LTx. Intraoperative hypocapnia shows predictive value for postoperative in-hospital mortality in LTx.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Yang D, An J, Qiu W, Gao Y, Zhang J, Pan W, Zhao P, Liu Y. Self-calibrating dual-sensing electrochemical sensors for accurate detection of carbon dioxide in blood. Mikrochim Acta 2023; 191:22. [PMID: 38091089 DOI: 10.1007/s00604-023-06101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
A paper-based electrochemical dual-function biosensor capable of determining pH and TCO2 was synthesized for the first time using an iridium oxide pH electrode and an all-solid-state ion electrode (ASIE). In the study, to obtain highly reliable results, the biosensor was equipped with a real-time pH correction function before TCO2 measurements. Compared to traditional liquid-filling carbon dioxide detection sensors, the utilization of ferrocene endows our novel sensor with abundant positive sites, and thus greatly improves its performance. Conversely, the introduction of MXene with conductivity close to that of metals reduces electrode resistance, which is beneficial for accelerating the electrochemical reaction of the sensor and reducing LOD. After optimization, the detection range of TCO2 is 0.095 nM-0.66 M, with a detection limit of as low as 0.023 nM. In addition, the sensor was used in real serum sample-spiked recovery experiments and comparison experiments with existing clinical blood gas analyzers, which confirmed the effectiveness of its clinical application. This study provides a method for the rational design of paper-based electrochemical biosensors and a new approach for the clinical detection of blood carbon dioxide.
Collapse
Affiliation(s)
- Da Yang
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing, 400044, China
| | - Jia An
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wu Qiu
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 400015, China
| | - Yuhan Gao
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing, 400044, China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiajing Zhang
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing, 400044, China
- Center for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Wencai Pan
- Department of Medical Engineering, Xinqiao Hospital, 183 Xinqiao Main Street, Chongqing, 400037, China
| | - Peng Zhao
- National Innovation Center for Advanced Medical Devices, 40F, Huide Tower, Shenzhen, 518126, China
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education, Chongqing, 400044, China.
- Center for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China.
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
7
|
Henrique LR, Souza MB, El Kadri RM, Boniatti MM, Rech TH. Prognosis of critically ill patients with extreme acidosis: A retrospective study. J Crit Care 2023; 78:154381. [PMID: 37480659 DOI: 10.1016/j.jcrc.2023.154381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE This study aims to assess the impact of different subtypes of extreme acidosis on the mortality of critically ill patients. METHODS This retrospective cohort study included critically ill patients who were admitted to the intensive care unit (ICU) with a pH level <7. Clinical data and blood gas analyses were collected from electronic medical records. The primary outcome was in-hospital mortality. The use of vasopressors, mechanical ventilation (MV), and renal replacement therapy (RRT), the duration of MV and RRT, and the length of ICU and hospital stay were secondary outcomes. The simplified Stewart approach to acid-base disorders was used to analyze the causes of acidosis. RESULTS A total of 231 patients with 371 arterial blood gas analyses with pH < 7 were admitted from January 2012 to December 2021 and 222 were included in the study. Out of the 222 patients analyzed, respiratory acidosis was the primary disorder in 11.3% of patients (n = 25), metabolic acidosis in 33.8% (n = 75), and mixed acidosis in 55% (n = 122). Overall mortality was 42.8% (n = 95). No significant difference was observed in mortality among patients with respiratory, metabolic, or mixed acidosis (28%, 42.7%, and 45.9%, respectively; p = 0.26). The primary disorder affected the use of vasopressors and MV, the duration of MV, and the length of ICU and hospital stay. Patients with extreme acidosis due to unmeasured anions with lactate levels of 4 mmol/L or higher had higher mortality compared with patients with lactate levels <4 mmol/L (55.6% and 27.7%, respectively; p = 0.007). CONCLUSION Among critically ill patients with extreme acidosis, the primary disorder is not associated with mortality, but it is associated with the use of vasopressors and MV, the duration of MV, and the length of ICU and hospital stay. Additionally, hyperlactatemia is a predictor of poor prognosis in patients with extreme acidosis.
Collapse
Affiliation(s)
- Lílian Rodrigues Henrique
- Internal Medicine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Riad Mahmoud El Kadri
- Internal Medicine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Márcio Manozzo Boniatti
- Intensive Care Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tatiana H Rech
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Intensive Care Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
9
|
Tiruvoipati R, Ludski J, Gupta S, Subramaniam A, Ponnapa Reddy M, Paul E, Haji K. Evaluation of the safety and efficacy of extracorporeal carbon dioxide removal in the critically ill using the PrismaLung+ device. Eur J Med Res 2023; 28:291. [PMID: 37596670 PMCID: PMC10436516 DOI: 10.1186/s40001-023-01269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Several extracorporeal carbon dioxide removal (ECCO2R) devices are currently in use with variable efficacy and safety profiles. PrismaLung+ is an ECCO2R device that was recently introduced into clinical practice. It is a minimally invasive, low flow device that provides partial respiratory support with or without renal replacement therapy. Our aim was to describe the clinical characteristics, efficacy, and safety of PrismaLung+ in patients with acute hypercapnic respiratory failure. METHODS All adult patients who required ECCO2R with PrismaLung+ for hypercapnic respiratory failure in our intensive care unit (ICU) during a 6-month period between March and September 2022 were included. RESULTS Ten patients were included. The median age was 55.5 (IQR 41-68) years, with 8 (80%) male patients. Six patients had acute respiratory distress syndrome (ARDS), and two patients each had exacerbations of asthma and chronic obstructive pulmonary disease (COPD). All patients were receiving invasive mechanical ventilation at the time of initiation of ECCO2R. The median duration of ECCO2R was 71 h (IQR 57-219). A significant improvement in pH and PaCO2 was noted within 30 min of initiation of ECCO2R. Nine patients (90%) survived to weaning of ECCO2R, eight (80%) survived to ICU discharge and seven (70%) survived to hospital discharge. The median duration of ICU and hospital stays were 14.5 (IQR 8-30) and 17 (IQR 11-38) days, respectively. There were no patient-related complications with the use of ECCO2R. A total of 18 circuits were used in ten patients (median 2 per patient; IQR 1-2). Circuit thrombosis was noted in five circuits (28%) prior to reaching the expected circuit life with no adverse clinical consequences. CONCLUSION(S) PrismaLung+ rapidly improved PaCO2 and pH with a good clinical safety profile. Circuit thrombosis was the only complication. This data provides insight into the safety and efficacy of PrismaLung+ that could be useful for centres aspiring to introduce ECCO2R into their clinical practice.
Collapse
Affiliation(s)
- Ravindranath Tiruvoipati
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia.
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia.
- ANZIC-RC, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia.
| | - Jarryd Ludski
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
| | - Sachin Gupta
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia
| | - Ashwin Subramaniam
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia
- ANZIC-RC, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
- Department of Intensive Care Medicine, Dandenong Hospital, Dandenong, Australia
| | - Mallikarjuna Ponnapa Reddy
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia
- Department of Intensive Care, Calvary Hospital, Canberra, ACT, Australia
| | - Eldho Paul
- ANZIC-RC, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
- Alfred Hospital, Melbourne, VIC, Australia
| | - Kavi Haji
- Department of Intensive Care Medicine, Frankston Hospital, Peninsula Health, Frankston, VIC, 3199, Australia
- Division of Medicine, Peninsula Clinical School, Monash University, Frankston, VIC, Australia
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Tiruvoipati R, Akkanti B, Dinh K, Barrett N, May A, Kimmel J, Conrad SA. Extracorporeal Carbon Dioxide Removal With the Hemolung in Patients With Acute Respiratory Failure: A Multicenter Retrospective Cohort Study. Crit Care Med 2023; 51:892-902. [PMID: 36942957 PMCID: PMC10262985 DOI: 10.1097/ccm.0000000000005845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVES Extracorporeal carbon dioxide removal (ECCO 2 R) devices are effective in reducing hypercapnia and mechanical ventilation support but have not been shown to reduce mortality. This may be due to case selection, device performance, familiarity, or the management. The objective of this study is to investigate the effectiveness and safety of a single ECCO 2 R device (Hemolung) in patients with acute respiratory failure and identify variables associated with survival that could help case selection in clinical practice as well as future research. DESIGN Multicenter, multinational, retrospective review. SETTING Data from the Hemolung Registry between April 2013 and June 2021, where 57 ICUs contributed deidentified data. PATIENTS Patients with acute respiratory failure treated with the Hemolung. The characteristics of patients who survived to ICU discharge were compared with those who died. Multivariable logistical regression analysis was used to identify variables associated with ICU survival. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Of the 159 patients included, 65 (41%) survived to ICU discharge. The survival was highest in status asthmaticus (86%), followed by acute respiratory distress syndrome (ARDS) (52%) and COVID-19 ARDS (31%). All patients had a significant reduction in Pa co2 and improvement in pH with reduction in mechanical ventilation support. Patients who died were older, had a lower Pa o2 :F io2 (P/F) and higher use of adjunctive therapies. There was no difference in the complications between patients who survived to those who died. Multivariable regression analysis showed non-COVID-19 ARDS, age less than 65 years, and P/F at initiation of ECCO 2 R to be independently associated with survival to ICU discharge (P/F 100-200 vs <100: odds ratio, 6.57; 95% CI, 2.03-21.33). CONCLUSIONS Significant improvement in hypercapnic acidosis along with reduction in ventilation supports was noted within 4 hours of initiating ECCO 2 R. Non-COVID-19 ARDS, age, and P/F at commencement of ECCO 2 R were independently associated with survival.
Collapse
Affiliation(s)
| | - Bindu Akkanti
- Department of Medicine, Division of Critical Care, Pulmonary and Sleep, University of Texas McGovern Medical School, Houston, TX
- Advanced Cardiopulmonary Therapeutics and Transplantation, University of Texas Health-Houston, Houston, TX
| | - Kha Dinh
- Department of Medicine, Division of Critical Care, Pulmonary and Sleep, University of Texas McGovern Medical School, Houston, TX
- Advanced Cardiopulmonary Therapeutics and Transplantation, University of Texas Health-Houston, Houston, TX
| | - Nicholas Barrett
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Centre for Human & Applied Physiological Sciences (CHAPS), School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | | | | | - Steven A Conrad
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA
| |
Collapse
|
11
|
Pippalapalli J, Lumb A. The respiratory system and acid-base disorders. BJA Educ 2023; 23:221-228. [PMID: 37223696 PMCID: PMC10201398 DOI: 10.1016/j.bjae.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/01/2023] [Indexed: 05/25/2023] Open
|
12
|
Zhang R, Chen H, Teng R, Li Z, Yang Y, Qiu H, Liu L. Association between the time-varying arterial carbon dioxide pressure and 28-day mortality in mechanically ventilated patients with acute respiratory distress syndrome. BMC Pulm Med 2023; 23:129. [PMID: 37076846 PMCID: PMC10113995 DOI: 10.1186/s12890-023-02431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Recent studies have shown an association between baseline arterial carbon dioxide pressure (PaCO2) and outcomes in patients with acute respiratory distress syndrome (ARDS). However, PaCO2 probably varies throughout the disease, and few studies have assessed the effect of longitudinal PaCO2 on prognosis. We thus aimed to investigate the association between time-varying PaCO2 and 28-day mortality in mechanically ventilated ARDS patients. METHODS In this retrospective study, we included all adult (≥ 18 years) patients diagnosed with ARDS who received mechanical ventilation for at least 24 h at a tertiary teaching hospital between January 2014 and March 2021. Patients were excluded if they received extracorporeal membrane oxygenation (ECMO). Demographic data, respiratory variables, and daily PaCO2 were extracted. The primary outcome was 28-day mortality. Time-varying Cox models were used to estimate the association between longitudinal PaCO2 measurements and 28-day mortality. RESULTS A total of 709 patients were eligible for inclusion in the final cohort, with an average age of 65 years, of whom 70.7% were male, and the overall 28-day mortality was 35.5%. After adjustment for baseline confounders, including age and severity of disease, a significant increase in the hazard of death was found to be associated with both time-varying PaCO2 (HR 1.07, 95% CI 1.03-1.11, p<0.001) and the time-varying coefficient of variation for PaCO2 (HR 1.24 per 10% increase, 95% CI 1.10-1.40, p<0.001) during the first five days of invasive mechanical ventilation. The cumulative proportion of exposure to normal PaCO2 (HR 0.72 per 10% increase, 95% CI 0.58-0.89, p = 0.002) was associated with 28-day mortality. CONCLUSION PaCO2 should be closely monitored in mechanically ventilated ARDS patients. The association between PaCO2 and 28-day mortality persisted over time. Increased cumulative exposure to normal PaCO2 was associated with a decreased risk of death.
Collapse
Affiliation(s)
- Rui Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Ran Teng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Zuxian Li
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
13
|
Tang WJ, Xie BK, Liang W, Zhou YZ, Kuang WL, Chen F, Wang M, Yu M. Hypocapnia is an independent predictor of in-hospital mortality in acute heart failure. ESC Heart Fail 2023; 10:1385-1400. [PMID: 36747311 PMCID: PMC10053155 DOI: 10.1002/ehf2.14306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
AIMS Acute heart failure (AHF) poses a major threat to hospitalized patients for its high mortality rate and serious complications. The aim of this study is to determine whether hypocapnia [defined as the partial pressure of arterial carbon dioxide (PaCO2 ) below 35 mmHg] on admission could be associated with in-hospital all-cause mortality in AHF. METHODS AND RESULTS A total of 676 patients treated in the coronary care unit for AHF were retrospectively analysed, and the study endpoint was in-hospital all-cause mortality. The 1:1 propensity score matching (PSM) analysis, Kaplan-Meier curve, and Cox regression model were used to explore the association between hypocapnia and in-hospital all-cause mortality in AHF. Receiver operating characteristic (ROC) curve and Delong's test were used to assess the performance of hypocapnia in predicting in-hospital all-cause mortality in AHF. The study cohort included 464 (68.6%) males and 212 (31.4%) females, and the median age was 66 years (interquartile range 56-74 years). Ninety-eight (14.5%) patients died during hospitalization and presented more hypocapnia than survivors (76.5% vs. 45.5%, P < 0.001). A 1:1 PSM was performed between hypocapnic and non-hypocapnic patients, with 264 individuals in each of the two groups after matching. Compared with non-hypocapnic patients, in-hospital mortality was significantly higher in hypocapnic patients both before (22.2% vs. 6.8%, P < 0.001) and after (20.8% vs. 8.7%, P < 0.001) PSM. Kaplan-Meier curve showed a significantly higher probability of in-hospital death in patients with hypocapnia before and after PSM (both P < 0.001 for the log-rank test). Multivariate Cox regression analysis showed that hypocapnia was an independent predictor of AHF mortality both before [hazard ratio (HR) 2.22; 95% confidence interval (CI) 1.23-3.98; P = 0.008] and after (HR 2.19; 95% CI 1.18-4.07; P = 0.013) PSM. Delong's test showed that the area under the ROC curve was improved after adding hypocapnia into the model (0.872, 95% CI 0.839-0.901 vs. 0.855, 95% CI 0.820-0.886, P = 0.028). PaCO2 was correlated with the estimated glomerular filtration rate (r = 0.20, P = 0.001), left ventricular ejection fraction (r = 0.13, P < 0.001), B-type natriuretic peptide (r = -0.28, P < 0.001), and lactate (r = -0.15, P < 0.001). Kaplan-Meier curve of PaCO2 tertiles and multivariate Cox regression analysis showed that the lowest PaCO2 tertile was associated with increased risk of in-hospital mortality in AHF (all P < 0.05). CONCLUSIONS Hypocapnia is an independent predictor of in-hospital mortality for AHF.
Collapse
Affiliation(s)
- Wen-Jing Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Bai-Kang Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wei Liang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yan-Zhao Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wen-Long Kuang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Min Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Miao Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| |
Collapse
|
14
|
Extracorporeal Carbon Dioxide Removal: From Pathophysiology to Clinical Applications; Focus on Combined Continuous Renal Replacement Therapy. Biomedicines 2023; 11:biomedicines11010142. [PMID: 36672649 PMCID: PMC9855411 DOI: 10.3390/biomedicines11010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/08/2023] Open
Abstract
Lung-protective ventilation (LPV) with low tidal volumes can significantly increase the survival of patients with acute respiratory distress syndrome (ARDS) by limiting ventilator-induced lung injuries. However, one of the main concerns regarding the use of LPV is the risk of developing hypercapnia and respiratory acidosis, which may limit the clinical application of this strategy. This is the reason why different extracorporeal CO2 removal (ECCO2R) techniques and devices have been developed. They include low-flow or high-flow systems that may be performed with dedicated platforms or, alternatively, combined with continuous renal replacement therapy (CRRT). ECCO2R has demonstrated effectiveness in controlling PaCO2 levels, thus allowing LPV in patients with ARDS from different causes, including those affected by Coronavirus disease 2019 (COVID-19). Similarly, the suitability and safety of combined ECCO2R and CRRT (ECCO2R-CRRT), which provides CO2 removal and kidney support simultaneously, have been reported in both retrospective and prospective studies. However, due to the complexity of ARDS patients and the limitations of current evidence, the actual impact of ECCO2R on patient outcome still remains to be defined. In this review, we discuss the main principles of ECCO2R and its clinical application in ARDS patients, in particular looking at clinical experiences of combined ECCO2R-CRRT treatments.
Collapse
|
15
|
Landino-Delgado MC, Le AP, Stein ALS, Morales JM, McNeer RR, Maga JM. Co2 Rebreathing Observed While Using a Bag-Mask Resuscitator With Integrated Manometer: A Case Report. A A Pract 2022; 16:e01648. [PMID: 36599014 DOI: 10.1213/xaa.0000000000001648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bag-mask resuscitators with integrated manometry help reduce the risk of pulmonary injury during manual ventilation. All such devices must function as intended while preventing carbon dioxide rebreathing, as unintended hypercapnia can be harmful in critically ill patients. We describe a case of carbon dioxide rebreathing in a patient suspected of having a brain injury after blunt trauma who was manually ventilated with a widely available bag-mask resuscitator with integrated manometry after emergent intubation. This case highlights the importance of vigilant monitoring of end-tidal carbon dioxide and appropriate troubleshooting and investigation of unexplained findings to mitigate and prevent adverse patient outcomes.
Collapse
Affiliation(s)
| | - Anh P Le
- Miller School of Medicine, University of Miami, Miami, Florida
| | - Alecia L Sabartinelli Stein
- From the University of Miami- Jackson Memorial Hospital-Center for Patient Safety, Miami, Florida.,Department of Anesthesiology, University of Miami, Jackson Memorial Hospital, Miami, Florida
| | - Juliana M Morales
- Department of Anesthesiology, University of Miami, Jackson Memorial Hospital, Miami, Florida
| | - Richard R McNeer
- From the University of Miami- Jackson Memorial Hospital-Center for Patient Safety, Miami, Florida.,Department of Anesthesiology, University of Miami, Jackson Memorial Hospital, Miami, Florida
| | - Joni M Maga
- From the University of Miami- Jackson Memorial Hospital-Center for Patient Safety, Miami, Florida.,Department of Anesthesiology, University of Miami, Jackson Memorial Hospital, Miami, Florida
| |
Collapse
|
16
|
Chiumello D, Pozzi T, Mereto E, Fratti I, Chiodaroli E, Gattinoni L, Coppola S. Long term feasibility of ultraprotective lung ventilation with low-flow extracorporeal carbon dioxide removal in ARDS patients. J Crit Care 2022; 71:154092. [PMID: 35714453 DOI: 10.1016/j.jcrc.2022.154092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE To explore the feasibility of long-term application of ultraprotective ventilation with low flow ECCO2R support in moderate-severe ARDS patients and the reduction of mechanical power (MP) compared to lung protective ventilation. MATERIAL AND METHODS ARDS patients with PaO2/FiO2 < 200, PEEP of 10 cmH2O, tidal volume 6 ml/Kg of predicted body weight (PBW), plateau pressure > 24 cmH2O, MP > 17 J/min were prospectively enrolled. After 2 h tidal volume was reduced to 4-5 ml/kg, respiratory rate (RR) and PEEP were changed to maintain similar minute ventilation and mean airway pressure (MAP) to those obtained at baseline. After 2 h, ECCO2R support was started, RR was decreased and PEEP was increased to maintain similar PaCO2 and MAP, respectively. RESULTS The only reduction of tidal volume with the increase in RR did not decrease MP. The application of low flow ECCO2R support allowed a reduction of RR from 25 [24-30] to 11 [9-14] bpm and MP from 18 [13-23] to 8 [7-11] J/min. During the following 5 days no changes in mechanics variables and gas exchange occurred. CONCLUSIONS The application of low flow ECCO2R support with ultraprotective ventilation was feasible minimizing the MP without deterioration in oxygenation in ARDS patients.
Collapse
Affiliation(s)
- Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudini 9, Milan, Italy; Department of Health Sciences, University of Milan, Milano, Italy; Coordinated Research Center on Respiratory Failure, University of Milan, Milan, Italy.
| | - Tommaso Pozzi
- Department of Health Sciences, University of Milan, Milano, Italy
| | - Elisa Mereto
- Department of Health Sciences, University of Milan, Milano, Italy
| | - Isabella Fratti
- Department of Health Sciences, University of Milan, Milano, Italy
| | - Elena Chiodaroli
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudini 9, Milan, Italy
| | - Luciano Gattinoni
- Department of Anesthesiology, University Medical Center of Göttingen, Göttingen, Germany
| | - Silvia Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Via Di Rudini 9, Milan, Italy
| |
Collapse
|
17
|
Algarin-Lara H, Osorio-Rodríguez E, Patiño-Patiño J, Solano-Ropero J, Rodado-Villa R. Hipercapnia refractaria en paciente con síndrome de obesidad-hipoventilación maligno y COVID-19. Reporte de caso y propuesta de manejo. ACTA COLOMBIANA DE CUIDADO INTENSIVO 2022. [PMCID: PMC8692066 DOI: 10.1016/j.acci.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
El síndrome de obesidad-hipoventilación asociado a la COVID-19 conduce rápidamente a la insuficiencia respiratoria aguda severa con la necesidad de ventilación mecánica invasiva, convirtiéndose en un reto terapéutico hacia el personal del cuidado intensivo debido a la ausencia de estrategias ventilatorias. A continuación se expone el caso de un paciente masculino de 51 años con antecedentes de síndrome de Pickwick que presentó neumonía grave por SARS-CoV-2, el cual progresa tempranamente a un síndrome de dificultad respiratoria aguda grave requiriendo soporte mecánico ventilatorio invasivo con presión positiva y la necesidad de soporte vasoactivo, cursando además con un síndrome de obesidad-hipoventilación de fenotipo maligno. En base a lo anterior se realiza una propuesta de manejo clínico institucional basado en la literatura científica actual del síndrome de obesidad-hipoventilación y neumonía grave secundario a SARS-CoV-2. A pesar de la alta mortalidad relacionada con la COVID-19 y la dificultad presentada durante la ventilación mecánica invasiva, el desenlace final del paciente fue favorable.
Collapse
|
18
|
Tsonas AM, Botta M, Horn J, Morales-Quinteros L, Artigas A, Schultz MJ, Paulus F, Neto AS. Clinical characteristics, physiological features, and outcomes associated with hypercapnia in patients with acute hypoxemic respiratory failure due to COVID-19---insights from the PRoVENT-COVID study. J Crit Care 2022; 69:154022. [PMID: 35339900 PMCID: PMC8947815 DOI: 10.1016/j.jcrc.2022.154022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE We determined the incidence of hypercapnia and associations with outcome in invasively ventilated COVID-19 patients. METHODS Posthoc analysis of a national, multicenter, observational study in 22 ICUs. Patients were classified as 'hypercapnic' or 'normocapnic' in the first three days of invasive ventilation. Primary endpoint was prevalence of hypercapnia. Secondary endpoints were ventilator parameters, length of stay (LOS) in ICU and hospital, and mortality in ICU, hospital, at day 28 and 90. RESULTS Of 824 patients, 485 (58.9%) were hypercapnic. Hypercapnic patients had a higher BMI and had COPD, severe ARDS and venous thromboembolic events more often. Hypercapnic patients were ventilated with lower tidal volumes, higher respiratory rates, higher driving pressures, and with more mechanical power of ventilation. Hypercapnic patients had comparable minute volumes but higher ventilatory ratios than normocapnic patients. In hypercapnic patients, ventilation and LOS in ICU and hospital was longer, but mortality was comparable to normocapnic patients. CONCLUSION Hypercapnia occurs often in invasively ventilated COVID-19 patients. Main differences between hypercapnic and normocapnic patients are severity of ARDS, occurrence of venous thromboembolic events, and a higher ventilation ratio. Hypercapnia has an association with duration of ventilation and LOS in ICU and hospital, but not with mortality.
Collapse
Affiliation(s)
- Anissa M. Tsonas
- Department of Intensive Care, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands,Corresponding author at: Department of Intensive Care, G3–228, Amsterdam UMC, location ‘AMC’, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Michela Botta
- Department of Intensive Care, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands
| | - Janneke Horn
- Department of Intensive Care, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands,Amsterdam Neuroscience, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands
| | - Luis Morales-Quinteros
- Intensive Care Unit, University General Hospital of Catalonia, Barcelona, Spain,Servei de Medicina Intensive, Hospital Universitari Sant Pau, Barcelona, Spain,The Autonomous University of Barcelona, Barcelona, Spain,The Parc Taulí Research and Innovation Institute (I3PT), Sabadell, Spain
| | - Antonio Artigas
- The Autonomous University of Barcelona, Barcelona, Spain,The Parc Taulí Research and Innovation Institute (I3PT), Sabadell, Spain,Critical Care Center, University Hospital Parc Tauli, Sabadell, Spain,CIBER Enfermedades Respiratorias (ISCiii), Madrid, Spain
| | - Marcus J. Schultz
- Department of Intensive Care, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands,Mahidol–Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Frederique Paulus
- Department of Intensive Care, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands,ACHIEVE, Centre of Applied Research, Amsterdam University of Applied Sciences, Faculty of Health, Amsterdam, the Netherlands
| | - Ary Serpa Neto
- Department of Intensive Care, Amsterdam UMC, location ‘AMC’, Amsterdam, the Netherlands,Department of Critical Care Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil,Department of Critical Care Medicine, Australian and New Zealand Intensive Care Research Centre (ANZIC–RC), Monash University, Melbourne, Australia,Data Analytics Research and Evaluation (DARE) Centre, Austin Hospital, Melbourne, Australia,Department of Critical Care, Melbourne Medical School, Austin Hospital and University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
19
|
Ismaiel N, Whynot S, Geldenhuys L, Xu Z, Slutsky AS, Chappe V, Henzler D. Lung-Protective Ventilation Attenuates Mechanical Injury While Hypercapnia Attenuates Biological Injury in a Rat Model of Ventilator-Associated Lung Injury. Front Physiol 2022; 13:814968. [PMID: 35530505 PMCID: PMC9068936 DOI: 10.3389/fphys.2022.814968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background and Objective: Lung-protective mechanical ventilation is known to attenuate ventilator-associated lung injury (VALI), but often at the expense of hypoventilation and hypercapnia. It remains unclear whether the main mechanism by which VALI is attenuated is a product of limiting mechanical forces to the lung during ventilation, or a direct biological effect of hypercapnia. Methods: Acute lung injury (ALI) was induced in 60 anesthetized rats by the instillation of 1.25 M HCl into the lungs via tracheostomy. Ten rats each were randomly assigned to one of six experimental groups and ventilated for 4 h with: 1) Conventional HighVENormocapnia (high VT, high minute ventilation, normocapnia), 2) Conventional Normocapnia (high VT, normocapnia), 3) Protective Normocapnia (VT 8 ml/kg, high RR), 4) Conventional iCO2Hypercapnia (high VT, low RR, inhaled CO2), 5) Protective iCO2Hypercapnia (VT 8 ml/kg, high RR, added CO2), 6) Protective endogenous Hypercapnia (VT 8 ml/kg, low RR). Blood gasses, broncho-alveolar lavage fluid (BALF), and tissue specimens were collected and analyzed for histologic and biologic lung injury assessment. Results: Mild ALI was achieved in all groups characterized by a decreased mean PaO2/FiO2 ratio from 428 to 242 mmHg (p < 0.05), and an increased mean elastance from 2.46 to 4.32 cmH2O/L (p < 0.0001). There were no differences in gas exchange among groups. Wet-to-dry ratios and formation of hyaline membranes were significantly lower in low VT groups compared to conventional tidal volumes. Hypercapnia reduced diffuse alveolar damage and IL-6 levels in the BALF, which was also true when CO2 was added to conventional VT. In low VT groups, hypercapnia did not induce any further protective effect except increasing pulmonary IL-10 in the BALF. No differences in lung injury were observed when hypercapnia was induced by adding CO2 or decreasing minute ventilation, although permissive hypercapnia decreased the pH significantly and decreased liver histologic injury. Conclusion: Our findings suggest that low tidal volume ventilation likely attenuates VALI by limiting mechanical damage to the lung, while hypercapnia attenuates VALI by limiting pro-inflammatory and biochemical mechanisms of injury. When combined, both lung-protective ventilation and hypercapnia have the potential to exert an synergistic effect for the prevention of VALI.
Collapse
Affiliation(s)
- Nada Ismaiel
- Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sara Whynot
- Department of Anesthesia, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Laurette Geldenhuys
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Zhaolin Xu
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Dietrich Henzler
- Department of Anesthesia, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
20
|
Gendreau S, Geri G, Pham T, Vieillard-Baron A, Mekontso Dessap A. The role of acute hypercapnia on mortality and short-term physiology in patients mechanically ventilated for ARDS: a systematic review and meta-analysis. Intensive Care Med 2022; 48:517-534. [PMID: 35294565 PMCID: PMC8924945 DOI: 10.1007/s00134-022-06640-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Hypercapnia is frequent during mechanical ventilation for acute respiratory distress syndrome (ARDS), but its effects on morbidity and mortality are still controversial. We conducted a systematic review and meta-analysis to explore clinical consequences of acute hypercapnia in adult patients ventilated for ARDS. METHODS We searched Medline, Embase, and the Cochrane Library via the OVID platform for studies published from 1946 to 2021. "Permissive hypercapnia" defined hypercapnia in studies where the group with hypercapnia was ventilated with a protective ventilation (PV) strategy (lower VT targeting 6 ml/kg predicted body weight) while the group without hypercapnia was managed with a non-protective ventilation (NPV); "imposed hypercapnia" defined hypercapnia in studies where hypercapnic and non-hypercapnic patients were managed with a similar ventilation strategy. RESULTS Twenty-nine studies (10,101 patients) were included. Permissive hypercapnia, imposed hypercapnia under PV, and imposed hypercapnia under NPV were reported in 8, 21 and 1 study, respectively. Studies testing permissive hypercapnia reported lower mortality in hypercapnic patients receiving PV as compared to non-hypercapnic patients receiving NPV: OR = 0.26, 95% CI [0.07-0.89]. By contrast, studies reporting imposed hypercapnia under PV reported increased mortality in hypercapnic patients receiving PV as compared to non-hypercapnic patients also receiving PV: OR = 1.54, 95% CI [1.15-2.07]. There was a significant interaction between the mechanism of hypercapnia and the effect on mortality. CONCLUSIONS Clinical effects of hypercapnia are conflicting depending on its mechanism. Permissive hypercapnia was associated with improved mortality contrary to imposed hypercapnia under PV, suggesting a major role of PV strategy on the outcome.
Collapse
Affiliation(s)
- Ségolène Gendreau
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive-Réanimation, 94010, Créteil, France
- Université Paris Est Créteil, CARMAS, 94010, Créteil, France
- Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France
| | - Guillaume Geri
- AP-HP, Hôpital Universitaire Ambroise-Paré, Service de Médecine Intensive Réanimation, 92100, Boulogne-Billancourt, France
- Université de Paris Saclay, INSERM UMR 1018, Clinical Epidemiology Team, CESP, Villejuif, France
| | - Tai Pham
- AP-HP, Hôpital de Bicêtre, DMU CORREVE, Service de Médecine Intensive-Réanimation, Université Paris-Saclay, Inserm UMR S_999, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Le Kremlin-Bicêtre, France
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm U1018, Equipe d'Epidémiologie respiratoire intégrative, CESP, 94807, Villejuif, France
| | - Antoine Vieillard-Baron
- AP-HP, Hôpital Universitaire Ambroise-Paré, Service de Médecine Intensive Réanimation, 92100, Boulogne-Billancourt, France
- Université de Paris Saclay, INSERM UMR 1018, Clinical Epidemiology Team, CESP, Villejuif, France
| | - Armand Mekontso Dessap
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive-Réanimation, 94010, Créteil, France.
- Université Paris Est Créteil, CARMAS, 94010, Créteil, France.
- Université Paris Est Créteil, INSERM, IMRB, 94010, Créteil, France.
| |
Collapse
|
21
|
|
22
|
Tiruvoipati R, Serpa Neto A, Young M, Marhoon N, Wilson J, Gupta S, Pilcher D, Bailey M, Bellomo R. An Exploratory Analysis of the Association between Hypercapnia and Hospital Mortality in Critically Ill Patients with Sepsis. Ann Am Thorac Soc 2022; 19:245-254. [PMID: 34380007 DOI: 10.1513/annalsats.202102-104oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rationale: Hypercapnia may affect the outcome of sepsis. Very few clinical studies conducted in noncritically ill patients have investigated the effects of hypercapnia and hypercapnic acidemia in the context of sepsis. The effect of hypercapnia in critically ill patients with sepsis remains inadequately studied. Objectives: To investigate the association of hypercapnia with hospital mortality in critically ill patients with sepsis. Methods: This is a retrospective study conducted in three tertiary public hospitals. Critically ill patients with sepsis from three intensive care units between January 2011 and May 2019 were included. Five cohorts (exposure of at least 24, 48, 72, 120, and 168 hours) were created to account for immortal time bias and informative censoring. The association between hypercapnia exposure and hospital mortality was assessed with multivariable models. Subgroup analyses compared ventilated versus nonventilated and pulmonary versus nonpulmonary sepsis patients. Results: We analyzed 84,819 arterial carbon dioxide pressure measurements in 3,153 patients (57.6% male; median age was 62.5 years). After adjustment for key confounders, both in mechanically ventilated and nonventilated patients and in patients with pulmonary or nonpulmonary sepsis, there was no independent association of hypercapnia with hospital mortality. In contrast, in ventilated patients, the presence of prolonged exposure to both hypercapnia and acidemia was associated with increased mortality (highest odds ratio of 16.5 for ⩾120 hours of potential exposure; P = 0.007). Conclusions: After adjustment, isolated hypercapnia was not associated with increased mortality in patients with sepsis, whereas prolonged hypercapnic acidemia was associated with increased risk of mortality. These hypothesis-generating observations suggest that as hypercapnia is not an independent risk factor for mortality, trials of permissive hypercapnia avoiding or minimizing acidemia in sepsis may be safe.
Collapse
Affiliation(s)
- Ravindranath Tiruvoipati
- Department of Intensive Care Medicine, Peninsula Health, Melbourne, Victoria, Australia
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ary Serpa Neto
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Marcus Young
- Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
| | - Nada Marhoon
- Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
| | - John Wilson
- Peninsula Health Informatics, Frankston Hospital, Melbourne, Victoria, Australia
| | - Sachin Gupta
- Department of Intensive Care Medicine, Peninsula Health, Melbourne, Victoria, Australia
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - David Pilcher
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care Medicine, The Alfred Hospital, Melbourne, Victoria, Australia; and
| | - Michael Bailey
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Data Analytics Research and Evaluation, the University of Melbourne and Austin Hospital, Melbourne, Victoria, Australia
| | - Rinaldo Bellomo
- Australian and New Zealand Intensive Care Research Centre, Peninsula Clinical School, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
- Data Analytics Research and Evaluation, the University of Melbourne and Austin Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Almanza-Hurtado A, Polanco Guerra C, Martínez-Ávila MC, Borré-Naranjo D, Rodríguez-Yanez T, Dueñas-Castell C. Hypercapnia from Physiology to Practice. Int J Clin Pract 2022; 2022:2635616. [PMID: 36225533 PMCID: PMC9525762 DOI: 10.1155/2022/2635616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Acute hypercapnic ventilatory failure is becoming more frequent in critically ill patients. Hypercapnia is the elevation in the partial pressure of carbon dioxide (PaCO2) above 45 mmHg in the bloodstream. The pathophysiological mechanisms of hypercapnia include the decrease in minute volume, an increase in dead space, or an increase in carbon dioxide (CO2) production per sec. They generate a compromise at the cardiovascular, cerebral, metabolic, and respiratory levels with a high burden of morbidity and mortality. It is essential to know the triggers to provide therapy directed at the primary cause and avoid possible complications.
Collapse
|
24
|
Leligdowicz A, Matthay MA. Carbonic Anhydrase IX: Scaring Away the Grim Reaper in Acute Lung Injury? Am J Respir Cell Mol Biol 2021; 65:573-575. [PMID: 34375573 PMCID: PMC8641805 DOI: 10.1165/rcmb.2021-0310ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Michael A Matthay
- Cardiovascular Research Institute (CVRI), University of San Francisco, Medicine and Anesthesia, San Francisco, California, United States;
| |
Collapse
|
25
|
Lee JY, Stevens RP, Kash M, Alexeyev MF, Balczon R, Zhou C, Renema P, Koloteva A, Kozhukhar N, Pastukh V, Gwin MS, Voth S, deWeever A, Wagener BM, Pittet JF, Eslaamizaad Y, Siddiqui W, Nawaz T, Clarke C, Fouty BW, Audia JP, Alvarez DF, Stevens T. Carbonic Anhydrase IX and Hypoxia Promote Rat Pulmonary Endothelial Cell Survival During Infection. Am J Respir Cell Mol Biol 2021; 65:630-645. [PMID: 34251286 DOI: 10.1165/rcmb.2020-0537oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Low tidal volume ventilation protects the lung in mechanically ventilated patients. The impact of the accompanying permissive hypoxemia and hypercapnia on endothelial cell recovery from injury is poorly understood. Carbonic anhydrase IX (CA IX) is expressed in pulmonary microvascular endothelial cells (PMVECs), where it contributes to CO2 and pH homeostasis, bioenergetics and angiogenesis. We hypothesized that CA IX is important for PMVEC survival, and CA IX expression and release from PMVECs are increased during infection. While plasma CA IX was unchanged in human and rat pneumonia, there was a trend towards increasing CA IX in bronchoalveolar fluid of mechanically ventilated critically ill pneumonia patients and a significant increase in CA IX in lung tissue lysate of rat pneumonia. To investigate functional implications of the lung CA IX increase, we generated PMVEC cell lines harboring domain-specific CA IX mutations. Using these cells, we found that infection promotes intracellular expression, release and metalloproteinase-mediated extracellular cleavage of CA IX in PMVECs. Intracellular domain deletion uniquely impaired CA IX membrane localization. Loss of the CA IX intracellular domain promoted cell death following infection, suggesting the important role of intracellular domain in PMVEC survival. We also found that hypoxia improves survival, whereas hypercapnia reverses the protective effect of hypoxia, during infection. Thus, we report that: (1) CA IX increases in rat pneumonia lung; and, (2) the CA IX intracellular domain and hypoxia promote PMVEC survival during infection.
Collapse
Affiliation(s)
- Ji Young Lee
- University of South Alabama, 5557, Mobile, Alabama, United States;
| | - Reece P Stevens
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Mary Kash
- University of South Alabama, 5557, Mobile, Alabama, United States
| | | | - Ronald Balczon
- University of South Alabama, 5557, Biochemistry and Molecular Biology, Mobile, Alabama, United States
| | - Chun Zhou
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Phoibe Renema
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Anna Koloteva
- University of South Alabama, 5557, Mobile, Alabama, United States
| | | | | | - Meredith S Gwin
- University of South Alabama, 5557, Physiology and Cell Biology, Mobile, Alabama, United States
| | - Sarah Voth
- University of South Alabama, 5557, Physiology and Cell Biology, Mobile, Alabama, United States
| | - Althea deWeever
- University of South Alabama College of Medicine, 12214, Physiology and Cell Biology, Mobile, Alabama, United States
| | - Brant M Wagener
- The University of Alabama at Birmingham, 9968, Department of Anesthesiology and Perioperative Medicine, Birmingham, Alabama, United States
| | - Jean-François Pittet
- The University of Alabama at Birmingham, 9968, Department of Anesthesiology and Perioperative Medicine, Birmingham, Alabama, United States
| | | | - Waqar Siddiqui
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Talha Nawaz
- University of South Alabama, 5557, Mobile, Alabama, United States
| | | | - Brian W Fouty
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Jonathon P Audia
- University of South Alabama, 5557, Mobile, Alabama, United States
| | - Diego F Alvarez
- Sam Houston State University, 4038, Huntsville, Texas, United States
| | - Troy Stevens
- University of South Alabama, 5557, Physiology and Cell Biology, Mobile, Alabama, United States
| |
Collapse
|
26
|
Kryvenko V, Wessendorf M, Tello K, Herold S, Morty RE, Seeger W, Vadász I. Hypercapnia-induces IRE1α-driven Endoplasmic Reticulum-associated Degradation of the Na,K-ATPase β-subunit. Am J Respir Cell Mol Biol 2021; 65:615-629. [PMID: 34192507 DOI: 10.1165/rcmb.2021-0114oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is often associated with elevated levels of CO2 (hypercapnia) and impaired alveolar fluid clearance. Misfolding of the Na,K-ATPase (NKA), a key molecule involved in both alveolar epithelial barrier tightness and in resolution of alveolar edema, in the endoplasmic reticulum (ER) may decrease plasma membrane (PM) abundance of the transporter. Here, we investigated how hypercapnia affects the NKA β-subunit (NKA-β) in the ER. Exposing murine precision-cut lung slices (PCLS) and human alveolar epithelial A549 cells to elevated CO2 levels led to a rapid decrease of NKA-β abundance in the ER and at the cell surface. Knockdown of ER alpha-mannosidase I (MAN1B1) and ER degradation enhancing alpha-mannosidase like protein 1 by siRNA or treatment with the MAN1B1 inhibitor, kifunensine rescued loss of NKA-β in the ER, suggesting ER-associated degradation (ERAD) of the enzyme. Furthermore, hypercapnia activated the unfolded protein response (UPR) by promoting phosphorylation of inositol-requiring enzyme 1α (IRE1α) and treatment with a siRNA against IRE1α prevented the decrease of NKA-β in the ER. Of note, the hypercapnia-induced phosphorylation of IRE1α was triggered by a Ca2+-dependent mechanism. Additionally, inhibition of the inositol trisphosphate receptor decreased phosphorylation levels of IRE1α in PCLS and A549 cells, suggesting that Ca2+ efflux from the ER might be responsible for IRE1α activation and ERAD of NKA-β. In conclusion, here we provide evidence that hypercapnia attenuates maturation of the regulatory subunit of NKA by activating IRE1α and promoting ERAD, which may contribute to impaired alveolar epithelial integrity in patients with ARDS and hypercapnia.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Miriam Wessendorf
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany
| | - Khodr Tello
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Susanne Herold
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Rory E Morty
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany
| | - Werner Seeger
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Bad Nauheim, Germany.,Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany
| | - István Vadász
- Justus Liebig University, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Department of Internal Medicine, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany;
| |
Collapse
|
27
|
Association Between Arterial Carbon Dioxide Tension and Clinical Outcomes in Venoarterial Extracorporeal Membrane Oxygenation. Crit Care Med 2021; 48:977-984. [PMID: 32574466 DOI: 10.1097/ccm.0000000000004347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The manipulation of arterial carbon dioxide tension is associated with differential mortality and neurologic injury in intensive care and cardiac arrest patients; however, few studies have investigated this relationship in patients on venoarterial extracorporeal membrane oxygenation. We investigated the association between the initial arterial carbon dioxide tension and change over 24 hours on mortality and neurologic injury in patients undergoing venoarterial extracorporeal membrane oxygenation for cardiac arrest and refractory cardiogenic shock. DESIGN Retrospective cohort analysis of adult patients recorded in the international Extracorporeal Life Support Organization Registry. SETTING Data reported to the Extracorporeal Life Support Organization from all international extracorporeal membrane oxygenation centers during 2003-2016. PATIENTS Adult patients (≥ 18 yr old) supported with venoarterial extracorporeal membrane oxygenation. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A total of 7,168 patients had sufficient data for analysis at the initiation of venoarterial extracorporeal membrane oxygenation, 4,918 of these patients had arterial carbon dioxide tension data available at 24 hours on support. The overall in-hospital mortality rate was 59.9%. A U-shaped relationship between arterial carbon dioxide tension tension at extracorporeal membrane oxygenation initiation and in-hospital mortality was observed. Increased mortality was observed with a arterial carbon dioxide tension less than 30 mm Hg (odds ratio, 1.26; 95% CI, 1.08-1.47; p = 0.003) and greater than 60 mm Hg (odds ratio, 1.28; 95% CI, 1.10-1.50; p = 0.002). Large reductions (> 20 mm Hg) in arterial carbon dioxide tension over 24 hours were associated with important neurologic complications: intracranial hemorrhage, ischemic stroke, and/or brain death, as a composite outcome (odds ratio, 1.63; 95% CI, 1.03-2.59; p = 0.04), independent of the initial arterial carbon dioxide tension. CONCLUSIONS Initial arterial carbon dioxide tension tension was independently associated with mortality in this cohort of venoarterial extracorporeal membrane oxygenation patients. Reductions in arterial carbon dioxide tension (> 20 mm Hg) from the initiation of extracorporeal membrane oxygenation were associated with neurologic complications. Further prospective studies testing these associations are warranted.
Collapse
|
28
|
Schultz MJ, Morales-Quinteros L, Artigas-Raventos A. To Accept or Not Accept Dyscapnia: That Is the Question. Chest 2021; 158:1810-1811. [PMID: 33160522 DOI: 10.1016/j.chest.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Marcus J Schultz
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand.
| | - Luis Morales-Quinteros
- Universidad Autonoma, Barcelona, Spain; Hospital Universitari Sagrat Cor, Grupo Quirónsalud, Barcelona, Spain
| | - Antonio Artigas-Raventos
- Critical Care Department, Corporacion Sanitaria Universitaria Parc Tauli, CIBER Enfermedades Respiratorias, Autonomous University of Barcelona, Sabadell, Spain
| |
Collapse
|
29
|
Gacitúa I, Frías A, Sanhueza ME, Bustamante S, Cornejo R, Salas A, Guajardo X, Torres K, Figueroa Canales E, Tobar E, Navarro R, Romero C. Extracorporeal CO 2 removal and renal replacement therapy in acute severe respiratory failure in COVID-19 pneumonia: Case report. Semin Dial 2021; 34:257-262. [PMID: 33969909 PMCID: PMC8206973 DOI: 10.1111/sdi.12980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/02/2021] [Indexed: 11/26/2022]
Abstract
The COVID‐19 pandemic significates an enormous number of patients with pneumonia that get complicated with severe acute respiratory distress syndrome (ARDS), some of them with refractory hypercapnia and hypoxemia that need mechanical ventilation (MV). Those patients who are not candidate to extracorporeal membrane oxygenation (ECMO), the extracorporeal removal of CO2 (ECCO2R) can allow ultra protective MV to limit the transpulmonary pressures and avoid ventilatory induced lung injury (VILI). We report a first case of prolonged ECCO2R support in 38 year male with severe COVID‐19 pneumonia refractory to conventional support. He was admitted tachypneic and oxygen saturation 71% without supplementary oxygen. The patient's clinical condition worsens with severe respiratory failure, increasing the oxygen requirement and initiating MV in the prone position. After 21 days of protective MV, PaCO2 rise to 96.8 mmHg, making it necessary to connect to an ECCO2R system coupled continuous veno‐venous hemodialysis (CVVHD). However, due to the lack of availability of equipment in the context of the pandemic, a pediatric gas exchange membrane adapted to CVVHD allowed to maintain the removal of CO2 until completing 27 days, being finally disconnected from the system without complications and with a satisfactory evolution.
Collapse
Affiliation(s)
- Ignacio Gacitúa
- Department of Nephrology, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Alondra Frías
- Department of Nephrology, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - María E Sanhueza
- Department of Nephrology, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Sergio Bustamante
- Department Cardiovascular, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Rodrigo Cornejo
- Department of Critical Care, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Andrea Salas
- Department Cardiovascular, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Ximena Guajardo
- Department of Nephrology, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Katherine Torres
- Department of Nephrology, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Enzo Figueroa Canales
- Anesthesia and Resuscitation Division, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Eduardo Tobar
- Department of Critical Care, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Rocío Navarro
- Physical Medicine and Rehabilitation Division, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Carlos Romero
- Department of Critical Care, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| |
Collapse
|
30
|
Abstract
RATIONALE Acute hypercapnic respiratory failure has been shown to be associated with worse outcomes for various disease states, but less is known about patients with compensated hypercapnic respiratory failure. Although these patients have a normal pH, it remains unknown whether chronically elevated partial pressures of carbon dioxide (PaCO2), irrespective of etiology, put patients at risk of adverse events. OBJECTIVES To understand the burden of and clinical factors associated with morbidity and mortality in patients with compensated hypercapnic respiratory failure. METHODS We performed a query of the electronic medical record (EMR) to identify patients hospitalized at the University of Michigan from January 1 - December 31, 2018 who had compensated hypercapnia, using a PaCO2 ≥ 50 mmHg and pH 7.35 - 7.45 on arterial blood gas (ABG). We obtained demographic and clinical data from the EMR. Survival probabilities for PaCO2 subgroups (50.0-54.9; 55.0-64.9; ≥65.0 mmHg) were determined using the Kaplan-Meier product limit estimator. Cox proportional hazard models were constructed to test the association between PaCO2 and all-cause mortality. RESULTS We identified 491 patients with compensated hypercapnia. The mean age was 60.5 ± 16.2. Patients were 57.4% male and 86.2% white. The mean pH and PaCO2 were 7.38 ± 0.03 and 58.8 ± 9.7 mmHg respectively. There were a total of 1,030 hospitalizations, with 44.4% of patients having 2 or more admissions. The median numbers of cumulative hospital and ICU days were 21.0 (IQR 11.0-38.0) and 7.0 (IQR 3.0-14.0) respectively. 217 patients (44.2%) died over a median of 592 days. In univariate analysis, every 5-mmHg increase in PaCO2 was associated with a higher risk of all-cause death (HR 1.09; 95% CI 1.03-1.16; p=0.004). This association was maintained after adjusting for age, sex, BMI, and the Charlson comorbidity index (HR 1.09 for every 5-mmHg increase in PaCO2; 95% CI 1.02-1.16; p=0.009). There was a statistically significant interaction between PaCO2 and BMI on mortality (p= 0.01 for the interaction term). CONCLUSIONS Patients with compensated hypercapnic respiratory failure have high mortality and healthcare utilization with higher PaCO2 associated with worse survival. Obese hypercapnic patients have higher risk of death with increases in PaCO2.
Collapse
|
31
|
Effect of acute isooxic hypercapnia on oxidative activity of systemic neutrophils in endotoxemic rabbits. Cent Eur J Immunol 2021; 46:47-53. [PMID: 33897283 PMCID: PMC8056343 DOI: 10.5114/ceji.2021.105245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Whether carbon dioxide (CO2) affects systemic oxidative phenomena under conditions of endotoxemia is not sufficiently clarified. The study aimed to assess the impact of moderate acute hypercapnia on the respiratory burst of circulating neutrophils in mechanically ventilated endotoxemic rabbits. Material and methods Twenty-four endotoxemic rabbits were mechanically ventilated with standard or CO2-enriched gas mixture in order to obtain isooxic hypercapnia. At a baseline point and following 180 min of hypercapnic ventilation, luminol-dependent chemiluminescence (CL) of circulating neutrophils and serum 2-thiobarbituric acid reactive substance (TBARS) concentrations were measured. Throughout the study, leukocyte and neutrophil counts, pH status, circulatory parameters and body temperature were also assessed. Results Following 180 min of hypercapnic ventilation, opsonized zymosan (OZ)-stimulated neutrophils showed lower CL vs. the control group (p = 0.004). Other parameters studied were not affected. Conclusions Short-term isooxic hypercapnia in endotoxemic rabbits preserves circulating neutrophil count pattern and reactive oxygen species (ROS) generation, but it may reduce phagocytosis.
Collapse
|
32
|
Cutuli SL, Grieco DL, Menga LS, De Pascale G, Antonelli M. Noninvasive ventilation and high-flow oxygen therapy for severe community-acquired pneumonia. Curr Opin Infect Dis 2021; 34:142-150. [PMID: 33470666 PMCID: PMC9698117 DOI: 10.1097/qco.0000000000000715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We review the evidence on the use of noninvasive respiratory supports (noninvasive ventilation and high-flow nasal cannula oxygen therapy) in patients with acute respiratory failure because of severe community-acquired pneumonia. RECENT FINDINGS Noninvasive ventilation is strongly advised for the treatment of hypercapnic respiratory failure and recent evidence justifies its use in patients with hypoxemic respiratory failure when delivered by helmet. Indeed, such interface allows alveolar recruitment by providing high level of positive end-expiratory pressure, which improves hypoxemia. On the other hand, high-flow nasal cannula oxygen therapy is effective in patients with hypoxemic respiratory failure and some articles support its use in patients with hypercapnia. However, early identification of noninvasive respiratory supports treatment failure is crucial to prevent delayed orotracheal intubation and protective invasive mechanical ventilation. SUMMARY Noninvasive ventilation is the first-line therapy in patients with acute hypercapnic respiratory failure because of pneumonia. Although an increasing amount of evidence investigated the application of noninvasive respiratory support to hypoxemic respiratory failure, the optimal ventilatory strategy in this setting is uncertain. Noninvasive mechanical ventilation delivered by helmet and high-flow nasal cannula oxygen therapy appear as promising tools but their role needs to be confirmed by future research.
Collapse
Affiliation(s)
- Salvatore Lucio Cutuli
- Dipartimento di Scienza dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8
- Facoltà di Medicina e Chirurgia ‘Agostino Gemelli’, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome, Italy
| | - Domenico Luca Grieco
- Dipartimento di Scienza dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8
- Facoltà di Medicina e Chirurgia ‘Agostino Gemelli’, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome, Italy
| | - Luca Salvatore Menga
- Dipartimento di Scienza dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8
- Facoltà di Medicina e Chirurgia ‘Agostino Gemelli’, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienza dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8
- Facoltà di Medicina e Chirurgia ‘Agostino Gemelli’, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome, Italy
| | - Massimo Antonelli
- Dipartimento di Scienza dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8
- Facoltà di Medicina e Chirurgia ‘Agostino Gemelli’, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Rome, Italy
| |
Collapse
|
33
|
Ávila Reyes D, García P. BD, Salazar Gutierrez G, Gómez González JF, Echeverry Piedrahita DR, Galvis JC, Aguirre-Flórez M. Mechanical ventilation in SARS-CoV-2 patients: state of art. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2021. [DOI: 10.5554/22562087.e971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19-associated infection leads to a pathology of yet unknown clinical behavior, confronting the clinician with various challenges. An extensive search was conducted based on review articles on SARS-CoV-2 infection and studies including mechanical ventilation management strategies in order to complete this narrative review. Evidenced-based treatment for SARS-CoV2 infection is still in the works. We have some tools from our knowledge from past experiences indicating that a step-wise management approach should be used, without neglecting other joint therapeutic measures for improved clinical outcomes of a condition with a high mortality. The current recommendations indicate that patients with severe acute respiratory failure due to SARS-CoV-2 should be managed with protective mechanical ventilation measures. No strong evidence is yet available on the individualization of mechanical ventilation therapy according to phenotypes.
Collapse
|
34
|
Physiologic Improvement in Respiratory Acidosis Using Extracorporeal Co 2 Removal With Hemolung Respiratory Assist System in the Management of Severe Respiratory Failure From Coronavirus Disease 2019. Crit Care Explor 2021; 3:e0372. [PMID: 33786448 PMCID: PMC7994071 DOI: 10.1097/cce.0000000000000372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objectives About 15% of hospitalized coronavirus disease 2019 patients require ICU admission, and most (80%) of these require invasive mechanical ventilation. Lung-protective ventilation in coronavirus disease 2019 acute respiratory failure may result in severe respiratory acidosis without significant hypoxemia. Low-flow extracorporeal Co2 removal can facilitate lung-protective ventilation and avoid the adverse effects of severe respiratory acidosis. The objective was to evaluate the efficacy of extracorporeal Co2 removal using the Hemolung Respiratory Assist System in correcting severe respiratory acidosis in mechanically ventilated coronavirus disease 2019 patients with severe acute respiratory failure. Design Retrospective cohort analysis of patients with coronavirus disease 2019 mechanically ventilated with severe hypercapnia and respiratory acidosis and treated with low-flow extracorporeal Co2 removal. Setting Eight tertiary ICUs in the United States. Patients Adult patients supported with the Hemolung Respiratory Assist System from March 1, to September 30, 2020. Interventions Extracorporeal Co2 removal with Hemolung Respiratory Assist System under a Food and Drug Administration emergency use authorization for coronavirus disease 2019. Measurements and Main Results The primary outcome was improvement in pH and Paco2 from baseline. Secondary outcomes included survival to decannulation, mortality, time on ventilator, and adverse events. Thirty-one patients were treated with Hemolung Respiratory Assist System with significant improvement in pH and Pco2 in this cohort. Two patients experienced complications that prevented treatment. Of the 29 treated patients, 58% survived to 48 hours post treatment and 38% to hospital discharge. No difference in age or comorbidities were noted between survivors and nonsurvivors. There was significant improvement in pH (7.24 ± 0.12 to 7.35 ± 0.07; p < 0.0001) and Paco2 (79 ± 23 to 58 ± 14; p < 0.0001) from baseline to 24 hours. Conclusions In this retrospective case series of 29 patients, we have demonstrated efficacy of extracorporeal Co2 removal using the Hemolung Respiratory Assist System to improve respiratory acidosis in patients with severe hypercapnic respiratory failure due to coronavirus disease 2019.
Collapse
|
35
|
Fuhrmann V, Perez Ruiz de Garibay A, Faltlhauser A, Tyczynski B, Jarczak D, Lutz J, Weinmann-Menke J, Kribben A, Kluge S. Registry on extracorporeal multiple organ support with the advanced organ support (ADVOS) system: 2-year interim analysis. Medicine (Baltimore) 2021; 100:e24653. [PMID: 33607801 PMCID: PMC7899840 DOI: 10.1097/md.0000000000024653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/10/2021] [Indexed: 12/31/2022] Open
Abstract
The objective of this registry is to collect data on real-life treatment conditions for patients for whom multiple organ dialysis with Advanced Organ Support (ADVOS) albumin hemodialysis is indicated.This registry was performed under routine conditions and without any study-specific intervention, diagnostic procedures, or assessments. Data on clinical laboratory tests, health status, liver function, vital signs, and examinations were collected (DRKS-ID: DRKS00017068). Mortality rates 28 and 90 days after the first ADVOS treatment, adverse events and ADVOS treatment parameters, including treatment abortions, were documented.This analysis was performed 2 years after the first patient was included on January 18, 2017. As of February 20, 2019, 4 clinical sites in Germany participated and enrolled 118 patients with a median age of 60 (IQR: 45, 69) of whom 70 were male (59.3%). Patients had a median SOFA Score of 14 (IQR: 11, 16) and a predicted mortality of 80%. The median number of failing organs was 3 (IQR: 2, 4).Four hundred twenty nine ADVOS treatments sessions were performed with a median duration of 17 hours (IQR: 6, 23). A 5.8% of the ADVOS sessions (25 of 429) were aborted due to device related errors, while 14.5% (62 of 429) were stopped for other reasons. Seventy nine adverse events were documented, 13 of them device related (all clotting, and all recovered without sequels).A significant reduction in serum creatinine (1.5 vs 1.2 mg/dl), blood urea nitrogen (24 vs 17 mg/dl) and bilirubin (6.9 vs 6.5 mg/dl) was observed following the first ADVOS treatment session. Blood pH, bicarbonate (HCO3-) and base excess returned to the physiological range, while partial pressure of carbon dioxide (pCO2) remained unchanged. At the time of the analysis, 28- and 90-day mortality were 60% and 65%, respectively, compared to an expected ICU-mortality rate of 80%. SOFA score was an independent predictor for outcome in a multivariable logistic regression analysis.The reported data show a high quality and completion of all participating centers. Data interpretation must be cautious due to the small number of patients, and the nature of the registry, without a control group. However, the data presented here show an improvement of expected mortality rates. Minor clotting events similar to other dialysis therapies occurred during the treatments.
Collapse
Affiliation(s)
- Valentin Fuhrmann
- Universitätsklinikum Hamburg-Eppendorf, Klinik für Intensivmedizin, Hamburg, Deutschland
- Universitätsklinikum Münster, Medizinische Klinik B für Gastroenterologie and Hepatologie, Münster
- Evangelisches Krankenhaus Duisburg-Nord, Klinik für Innere Medizin, Duisburg
| | | | | | | | - Dominik Jarczak
- Universitätsklinikum Hamburg-Eppendorf, Klinik für Intensivmedizin, Hamburg, Deutschland
| | - Jens Lutz
- Gemeinschaftsklinikum Mittelrhein, Innere Medizin Nephrologie-Infektiologie, Koblenz
| | - Julia Weinmann-Menke
- Universitätsmedizin Mainz, I. Medizinische Klinik and Poliklinik, Mainz, Germany
| | | | - Stefan Kluge
- Universitätsklinikum Hamburg-Eppendorf, Klinik für Intensivmedizin, Hamburg, Deutschland
| |
Collapse
|
36
|
Ethgen O, Goldstein J, Harenski K, Mekontso Dessap A, Morimont P, Quintel M, Combes A. A preliminary cost-effectiveness analysis of lung protective ventilation with extra corporeal carbon dioxide removal (ECCO 2R) in the management of acute respiratory distress syndrome (ARDS). J Crit Care 2021; 63:45-53. [PMID: 33618281 PMCID: PMC7972812 DOI: 10.1016/j.jcrc.2021.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/29/2022]
Abstract
Background Mechanical ventilation (MV) is the cornerstone in the management of the acute respiratory distress syndrome (ARDS). Recent research suggests that decreasing the intensity of MV using lung protective ventilation (LPV) with lower tidal volume (Vt) and driving pressure (∆P) could improve survival. Extra-corporal CO2 removal (ECCO2R) precisely enables LPV by allowing lower Vt, ∆P and mechanical power while maintaining PaCO2 within a physiologic range. This study evaluates the potential cost-effectiveness of ECCO2R-enabled LPV in France. Methods We modelled the distribution over time of ventilated ARDS patients across 3 health-states (alive & ventilated, alive & weaned from ventilation, dead). We compared the outcomes of 3 strategies: MV (no ECCO2R), LPV (ECCO2R when PaCO2 > 55 mmHg) and Ultra-LPV (ECCO2R for all). Patients characteristics, ventilation settings, survival and lengths of stay were derived from a large ARDS epidemiology study. Survival benefits associated with lower ∆P were taken from the analysis of more than 3000 patients enrolled in 9 randomized trials. Health outcomes were expressed in quality-adjusted life years (QALYs). Incremental cost-effectiveness ratios (ICERs) were computed with both Day 60 cost and Lifetime cost. Results Both LPV and ULPV as enabled by ECCO2R provided favorable results at Day 60 as compared to MV. Survival rates were increased with the protective strategies, notably with ULPV that provided even more manifest benefits as compared to MV. LPV and ULPV produced +0.162 and + 0.627 incremental QALYs as compared to MV, respectively. LPV and ULPV costs were augmented because of their survival benefits. Nonetheless, ICERs of LPV and ULPV vs. MV were all well below the €50,000 threshold. ULPV also presented with favorable ICERs as compared to LPV (i.e. less than €25,000/QALY). Conclusions ECCO2R-enabled LPV strategies might provide cost-effective survival benefit. Additional data from interventional and observational studies are needed to support this preliminary model-based analysis.
Collapse
Affiliation(s)
- Oliver Ethgen
- SERFAN Innovation, Namur, Belgium; Department of Public Health, Epidemiology & Health Economics, University of Liège, Liège, Belgium.
| | | | - Kai Harenski
- Baxter Healthcare Corporation, Deerfield, IL, USA
| | - Armand Mekontso Dessap
- UPEC, Institut Mondor de Recherche Biomédicale, Groupe de Recherche Clinique CARMAS, Créteil F-94010, France; APHP, Hôpitaux Universitaires Henri Mondor, Service de Médecine Intensive Réanimation, Créteil F-94010, France
| | - Philippe Morimont
- GIGA-Laboratory of Critical Care Basic Sciences, University of Liège, Liège, Belgium
| | - Michael Quintel
- Department of Anaesthesia and Intensive Care Medicine, University of Göttingen Medical Center Von-Siebold-Straße 3, 37075 Göttingen, Germany
| | - Alain Combes
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardio Metabolism and Nutrition, F-75013 Paris, France; Service de Médecine Intensive-Réanimation, Institut de Cardiologie, APHP Hôpital Pitié-Salpêtrière, F-75013 Paris, France
| |
Collapse
|
37
|
Tiruvoipati R, Gupta S, Pilcher D, Bailey M. Management of hypercapnia in critically ill mechanically ventilated patients-A narrative review of literature. J Intensive Care Soc 2020; 21:327-333. [PMID: 34093735 PMCID: PMC8142102 DOI: 10.1177/1751143720915666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The use of lower tidal volume ventilation was shown to improve survival in mechanically ventilated patients with acute lung injury. In some patients this strategy may cause hypercapnic acidosis. A significant body of recent clinical data suggest that hypercapnic acidosis is associated with adverse clinical outcomes including increased hospital mortality. We aimed to review the available treatment options that may be used to manage acute hypercapnic acidosis that may be seen with low tidal volume ventilation. The databases of MEDLINE and EMBASE were searched. Studies including animals or tissues were excluded. We also searched bibliographic references of relevant studies, irrespective of study design with the intention of finding relevant studies to be included in this review. The possible options to treat hypercapnia included optimising the use of low tidal volume mechanical ventilation to enhance carbon dioxide elimination. These include techniques to reduce dead space ventilation, and physiological dead space, use of buffers, airway pressure release ventilation and prone positon ventilation. In patients where hypercapnic acidosis could not be managed with lung protective mechanical ventilation, extracorporeal techniques may be used. Newer, minimally invasive low volume venovenous extracorporeal devices are currently being investigated for managing hypercapnia associated with low and ultra-low volume mechanical ventilation.
Collapse
Affiliation(s)
- Ravindranath Tiruvoipati
- Department of Intensive Care Medicine, Frankston Hospital, Frankston, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
- ANZIC-RC, Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Ravindranath Tiruvoipati, Department of Intensive Care Medicine, Frankston Hospital, Frankston, Victoria 3199, Australia.
| | - Sachin Gupta
- Department of Intensive Care Medicine, Frankston Hospital, Frankston, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - David Pilcher
- ANZIC-RC, Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- The ANZICS Centre for Outcome and Resource Evaluation (ANZICS CORE), Melbourne, Australia
- Department of Intensive Care, The Alfred Hospital, Melbourne, Australia
| | - Michael Bailey
- ANZIC-RC, Department of Epidemiology & Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- The ANZICS Centre for Outcome and Resource Evaluation (ANZICS CORE), Melbourne, Australia
| |
Collapse
|
38
|
Liu Y, Wang M, Luo G, Qian X, Wu C, Zhang Y, Chen B, Leung ELH, Tang Y. Experience of N-acetylcysteine airway management in the successful treatment of one case of critical condition with COVID-19: A case report. Medicine (Baltimore) 2020; 99:e22577. [PMID: 33080692 PMCID: PMC7571913 DOI: 10.1097/md.0000000000022577] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE The new coronavirus pneumonia Corona Virus Disease 2019 (COVID-19) has become a global pandemic. Patients with critically COVID-19 usually require invasive respiratory support, and the airway management is particularly important and the prognosis is poor. PATIENT CONCERNS A 64-year-old man with an anastomotic fistula after radical treatment of esophageal cancer and right-side encapsulated pyopneumothorax was admitted with cough and dyspnea. DIAGNOSIS The patient was diagnosed with novel coronavirus pneumonia and right-side encapsulated pyopneumothorax by pharyngeal swab nucleic acid test in combination with chest computed tomography (CT). INTERVENTIONS The patient was treated with antibiotics, antiviral and antibacterial medications, respiratory support, expectorant nebulization, and nutritional support. But he expressed progressive deterioration. Endotracheal intubation and mechanical ventilation were performed since the onset of the type - respiratory failure on the 13th day of admission. The patient had persistent refractory hypercapnia after mechanical ventilation. Based on the treatment mentioned above, combined with repeated bronchoalveolar lavage by using N-acetylcysteine (NAC) inhalation solution, the patients refractory hypercapnia was gradually improved. OUTCOMES The patient was cured and discharged after being given the mechanical ventilation for 26 days as well as 46 days of hospitalization, currently is surviving well. LESSONS Patients with severe conditions of novel coronavirus pneumonia often encounter bacterial infection in their later illness-stages. They may suffer respiratory failure and refractory hypercapnia that is difficult to improve due to excessive mucus secretion leading to small airway obstruction. This study provided a new insight on the proper treatment severe COVID-19 patients. The use of reasonable antibiotics and symptomatic respiratory support and other treatment, timely artificial airway and repeated bronchoalveolar NAC inhalation solution lavage, expectorant and other airway management are essential for such patients.
Collapse
Affiliation(s)
- Yan Liu
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan
| | - Meifang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan
| | - Guoshi Luo
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan
| | - Xin Qian
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan
| | - Chenglin Wu
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan
| | - Yizhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Biyu Chen
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yijun Tang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan
| |
Collapse
|
39
|
Bharat A, Angulo M, Sun H, Akbarpour M, Alberro A, Cheng Y, Shigemura M, Berdnikovs S, Welch LC, Kanter JA, Budinger GRS, Lecuona E, Sznajder JI. High CO 2 Levels Impair Lung Wound Healing. Am J Respir Cell Mol Biol 2020; 63:244-254. [PMID: 32275835 DOI: 10.1165/rcmb.2019-0354oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Delayed lung repair leads to alveolopleural fistulae, which are a major cause of morbidity after lung resections. We have reported that intrapleural hypercapnia is associated with delayed lung repair after lung resection. Here, we provide new evidence that hypercapnia delays wound closure of both large airway and alveolar epithelial cell monolayers because of inhibition of epithelial cell migration. Cell migration and airway epithelial wound closure were dependent on Rac1-GTPase activation, which was suppressed by hypercapnia directly through the upregulation of AMP kinase and indirectly through inhibition of injury-induced NF-κB-mediated CXCL12 (pleural CXC motif chemokine 12) release, respectively. Both these pathways were independently suppressed, because dominant negative AMP kinase rescued the effects of hypercapnia on Rac1-GTPase in uninjured resting cells, whereas proteasomal inhibition reversed the NF-κB-mediated CXCL12 release during injury. Constitutive overexpression of Rac1-GTPase rescued the effects of hypercapnia on both pathways as well as on wound healing. Similarly, exogenous recombinant CXCL12 reversed the effects of hypercapnia through Rac1-GTPase activation by its receptor, CXCR4. Moreover, CXCL12 transgenic murine recipients of orthotopic tracheal transplantation were protected from hypercapnia-induced inhibition of tracheal epithelial cell migration and wound repair. In patients undergoing lobectomy, we found inverse correlation between intrapleural carbon dioxide and pleural CXCL12 levels as well as between CXCL12 levels and alveolopleural leak. Accordingly, we provide first evidence that high carbon dioxide levels impair lung repair by inhibiting epithelial cell migration through two distinct pathways, which can be restored by recombinant CXCL12.
Collapse
Affiliation(s)
- Ankit Bharat
- Division of Thoracic Surgery.,Division of Pulmonary and Critical Care Medicine, and
| | - Martín Angulo
- Division of Pulmonary and Critical Care Medicine, and.,Pathophysiology Department, School of Medicine, Universidad de la República, Montevideo, Uruguay; and
| | | | | | - Andrés Alberro
- Division of Pulmonary and Critical Care Medicine, and.,Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Yuan Cheng
- Division of Pulmonary and Critical Care Medicine, and
| | | | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Northwestern University, Chicago, Illinois
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, and
| | | | | | | | | |
Collapse
|
40
|
Camargo MM, Furieri LB, Lima EDFA, Lucena ADF, Fioresi M, Romero WG. Cross mapping between clinical indicators for assistance in intensive care and nursing interventions. Rev Bras Enferm 2020; 73:e20190728. [PMID: 32901752 DOI: 10.1590/0034-7167-2019-0728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/13/2020] [Indexed: 08/30/2023] Open
Abstract
OBJECTIVE Identify the main clinical indicators for assistance in the Intensive Care Unit (ICU) and map them in the nursing interventions described by the Nursing Interventions Classification (NIC). METHODS Integrative literature review study, followed by cross-mapping between clinical indicators for assistance in the ICU care and NIC nursing interventions and activities. RESULTS 36 articles were identified, which resulted in 285 clinical indicators for ICU care, with mechanical ventilatory assistance, pain, sedation, psychomotor agitation, delirium, anxiety, altered heart rate, diet by naso tube / oroenteral and diarrhea the clinical indicators for assistance in the ICU the most prevalent. These were mapped in 12 Nursing Interventions Classification interventions and 130 nursing activities. FINAL CONSIDERATIONS It is concluded that the clinical indicators for ICU care associated with Nursing Interventions Classification are concrete data that assist intensive care nurses in their clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Mirian Fioresi
- Universidade Federal do Espírito Santo. Vitória, Espírito Santo, Brazil
| | | |
Collapse
|
41
|
Combes A, Auzinger G, Capellier G, du Cheyron D, Clement I, Consales G, Dabrowski W, De Bels D, de Molina Ortiz FJG, Gottschalk A, Hilty MP, Pestaña D, Sousa E, Tully R, Goldstein J, Harenski K. ECCO 2R therapy in the ICU: consensus of a European round table meeting. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:490. [PMID: 32768001 PMCID: PMC7412288 DOI: 10.1186/s13054-020-03210-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023]
Abstract
Background With recent advances in technology, patients with acute respiratory distress syndrome (ARDS) and severe acute exacerbations of chronic obstructive pulmonary disease (ae-COPD) could benefit from extracorporeal CO2 removal (ECCO2R). However, current evidence in these indications is limited. A European ECCO2R Expert Round Table Meeting was convened to further explore the potential for this treatment approach. Methods A modified Delphi-based method was used to collate European experts’ views to better understand how ECCO2R therapy is applied, identify how patients are selected and how treatment decisions are made, as well as to identify any points of consensus. Results Fourteen participants were selected based on known clinical expertise in critical care and in providing respiratory support with ECCO2R or extracorporeal membrane oxygenation. ARDS was considered the primary indication for ECCO2R therapy (n = 7), while 3 participants considered ae-COPD the primary indication. The group agreed that the primary treatment goal of ECCO2R therapy in patients with ARDS was to apply ultra-protective lung ventilation via managing CO2 levels. Driving pressure (≥ 14 cmH2O) followed by plateau pressure (Pplat; ≥ 25 cmH2O) was considered the most important criteria for ECCO2R initiation. Key treatment targets for patients with ARDS undergoing ECCO2R included pH (> 7.30), respiratory rate (< 25 or < 20 breaths/min), driving pressure (< 14 cmH2O) and Pplat (< 25 cmH2O). In ae-COPD, there was consensus that, in patients at risk of non-invasive ventilation (NIV) failure, no decrease in PaCO2 and no decrease in respiratory rate were key criteria for initiating ECCO2R therapy. Key treatment targets in ae-COPD were patient comfort, pH (> 7.30–7.35), respiratory rate (< 20–25 breaths/min), decrease of PaCO2 (by 10–20%), weaning from NIV, decrease in HCO3− and maintaining haemodynamic stability. Consensus was reached on weaning protocols for both indications. Anticoagulation with intravenous unfractionated heparin was the strategy preferred by the group. Conclusions Insights from this group of experienced physicians suggest that ECCO2R therapy may be an effective supportive treatment for adults with ARDS or ae-COPD. Further evidence from randomised clinical trials and/or high-quality prospective studies is needed to better guide decision making.
Collapse
Affiliation(s)
- Alain Combes
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, 47, Boulevard de l'Hôpital, F-75013, Paris, France. .,Service de Médecine Intensive-Réanimation, Institut de Cardiologie, APHP Hôpital Pitié-Salpêtrière, F-75013, Paris, France.
| | - Georg Auzinger
- Department of Critical Care, King's College Hospital, London, SE5 9RS, UK.,Department of Critical Care, Cleveland Clinic, London, SW1Y 7AW, UK
| | - Gilles Capellier
- Service de Médecine Intensive-Réanimation CHRU Besançon, EA 3920 University of Franche Comte, Besançon, France.,Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Damien du Cheyron
- Service de Médecine Intensive-Réanimation, Caen University Hospital, 14000, Caen, France
| | - Ian Clement
- Critical Care Unit, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Guglielmo Consales
- Department Emergency and Critical Care, Prato Hospital, Azienda Toscana Centro, Prato, Italy
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Jaczewskiego Street 8, 20-954, Lublin, Poland
| | - David De Bels
- Service des Soins Intensifs Médico-chirurgicaux, CHU Brugmann, 4 Place A Van Gehuchten, 1020, Brussels, Belgium
| | - Francisco Javier González de Molina Ortiz
- Department of Critical Care, University Hospital Mútua Terrassa, Universitat de Barcelona, Terrassa, Barcelona, Spain.,Department of Critical Care, University Hospital Quirón Dexeus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antje Gottschalk
- Department of Anaesthesiology, Intensive Care Medicine and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Matthias P Hilty
- Institute of Intensive Care Medicine, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - David Pestaña
- Department of Anesthesiology and Surgical Critical Care, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo km 9, 28034, Madrid, Spain.,Universidad de Alcalá de Henares, Madrid, Spain
| | - Eduardo Sousa
- Serviço de Medicina Intensiva, Centro Hospitalar e Universitário de Coimbra, Praceta Mota Pinto, 3000-075, Coimbra, Portugal
| | - Redmond Tully
- Department of Intensive Care, Royal Oldham Hospital, Northern Care Alliance, Oldham, OL1 2JH, UK
| | - Jacques Goldstein
- Baxter World Trade SPRL, Acute Therapies Global, Braine-l'Alleud, Belgium
| | - Kai Harenski
- Baxter, Baxter Deutschland GmbH, Unterschleissheim, Germany
| |
Collapse
|
42
|
Beyltjens T, de Leede SR, van Eekelen I, van Ginneken FFW, Wyckmans E, Installe S, Van Hoorenbeeck K, Verhulst S. The prevalence of hypercapnia during acute infection in children on chronic noninvasive ventilation: A retrospective study. Pediatr Pulmonol 2020; 55:1745-1749. [PMID: 32394533 DOI: 10.1002/ppul.24811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND/AIM Children on chronic noninvasive ventilation are at risk for nonelective hospitalizations, mainly for acute infections. This study examined the prevalence of hypercapnia in children on chronic ventilatory support during an acute admission. METHODS This retrospective study included children aged 0 to 18 years who regularly used bilevel positive airway pressure or continuous positive airway pressure at home, and who were diagnosed with an acute infection, and were hospitalized at the pediatrics department or pediatric intensive care unit. Capillary blood gas analysis and parameters of the built-in software of the home ventilator were recorded. RESULTS Among the 43 cases included, hypercapnia was prevalent in 23% with a mean partial pressure of carbon dioxide of 51.7 ± 6.4 mm Hg. These children also had lower oxygen saturation levels. The respiratory rate 48 hours before admission was significantly higher in the hypercapnic group and the volume guarantee mode was less frequently used in the hypercapnic group. CONCLUSION Approximately, a quarter of the cases of chronic home ventilation experience hypercapnia during an acute infection. Our data warrant a prospective study on the monitoring of respiratory rate in patients with chronic respiratory insufficiency as an indicator for hospitalizations with hypercapnia; we also recommend the use of volume guarantee mode of ventilation to prevent hypercapnia.
Collapse
Affiliation(s)
- Tessi Beyltjens
- Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Sophie R de Leede
- Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Ine van Eekelen
- Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium
| | | | - Evelyn Wyckmans
- Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Sophie Installe
- Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Kim Van Hoorenbeeck
- Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium.,Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Stijn Verhulst
- Department of Paediatrics, Antwerp University Hospital, Edegem, Belgium.,Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
43
|
Liu X, Liu X, Xu Y, Xu Z, Huang Y, Chen S, Li S, Liu D, Lin Z, Li Y. Ventilatory Ratio in Hypercapnic Mechanically Ventilated Patients with COVID-19-associated Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2020; 201:1297-1299. [PMID: 32203672 PMCID: PMC7233337 DOI: 10.1164/rccm.202002-0373le] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Xiaoqing Liu
- State Key Laboratory of Respiratory DiseasesGuangzhou, China.,Guangzhou Institute of Respiratory HealthGuangzhou, Chinaand.,The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Xuesong Liu
- State Key Laboratory of Respiratory DiseasesGuangzhou, China.,Guangzhou Institute of Respiratory HealthGuangzhou, Chinaand.,The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Yonghao Xu
- State Key Laboratory of Respiratory DiseasesGuangzhou, China.,Guangzhou Institute of Respiratory HealthGuangzhou, Chinaand.,The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Zhiheng Xu
- State Key Laboratory of Respiratory DiseasesGuangzhou, China.,Guangzhou Institute of Respiratory HealthGuangzhou, Chinaand.,The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory DiseasesGuangzhou, China.,Guangzhou Institute of Respiratory HealthGuangzhou, Chinaand.,The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Sibei Chen
- State Key Laboratory of Respiratory DiseasesGuangzhou, China.,Guangzhou Institute of Respiratory HealthGuangzhou, Chinaand.,The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Shiyue Li
- State Key Laboratory of Respiratory DiseasesGuangzhou, China.,Guangzhou Institute of Respiratory HealthGuangzhou, Chinaand.,The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Dongdong Liu
- State Key Laboratory of Respiratory DiseasesGuangzhou, China.,Guangzhou Institute of Respiratory HealthGuangzhou, Chinaand.,The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Zhimin Lin
- State Key Laboratory of Respiratory DiseasesGuangzhou, China.,Guangzhou Institute of Respiratory HealthGuangzhou, Chinaand.,The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| | - Yimin Li
- State Key Laboratory of Respiratory DiseasesGuangzhou, China.,Guangzhou Institute of Respiratory HealthGuangzhou, Chinaand.,The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou, China
| |
Collapse
|
44
|
Zanella A, Caironi P, Castagna L, Rezoagli E, Salerno D, Scotti E, Scaravilli V, Deab SA, Langer T, Mauri T, Ferrari M, Dondossola D, Chiodi M, Zadek F, Magni F, Gatti S, Gattinoni L, Pesenti AM. Extracorporeal Chloride Removal by Electrodialysis. A Novel Approach to Correct Acidemia. Am J Respir Crit Care Med 2020; 201:799-813. [DOI: 10.1164/rccm.201903-0538oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Alberto Zanella
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care, and Emergency
| | - Pietro Caironi
- Department of Anesthesia and Critical Care, Azienda Ospedaliero-Universitaria S. Luigi Gonzaga, Orbassano, Italy; Department of Oncology, University of Turin, Orbassano, Italy
| | | | - Emanuele Rezoagli
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, and Discipline of Anaesthesia, School of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, SAOLTA University Health Group, Galway, Ireland
| | - Domenico Salerno
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Eleonora Scotti
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
| | | | | | - Thomas Langer
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care, and Emergency
| | - Tommaso Mauri
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care, and Emergency
| | - Michele Ferrari
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Daniele Dondossola
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
- General and Liver Transplant Surgery Unit, and
| | - Manuela Chiodi
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Francesco Zadek
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Federico Magni
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy; and
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Luciano Gattinoni
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Antonio M. Pesenti
- Department of Medical Physiopathology and Transplants, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care, and Emergency
| |
Collapse
|
45
|
Pre-Treatment with Ten-Minute Carbon Dioxide Inhalation Prevents Lipopolysaccharide-Induced Lung Injury in Mice via Down-Regulation of Toll-Like Receptor 4 Expression. Int J Mol Sci 2019; 20:ijms20246293. [PMID: 31847115 PMCID: PMC6940754 DOI: 10.3390/ijms20246293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 12/29/2022] Open
Abstract
Various animal studies have shown beneficial effects of hypercapnia in lung injury. However, in patients with acute respiratory distress syndrome (ARDS), there is controversial information regarding the effect of hypercapnia on outcomes. The duration of carbon dioxide inhalation may be the key to the protective effect of hypercapnia. We investigated the effect of pre-treatment with inhaled carbon dioxide on lipopolysaccharide (LPS)-induced lung injury in mice. C57BL/6 mice were randomly divided into a control group or an LPS group. Each LPS group received intratracheal LPS (2 mg/kg); the LPS groups were exposed to hypercapnia (5% carbon dioxide) for 10 min or 60 min before LPS. Bronchoalveolar lavage fluid (BALF) and lung tissues were collected to evaluate the degree of lung injury. LPS significantly increased the ratio of lung weight to body weight; concentrations of BALF protein, tumor necrosis factor-α, and CXCL2; protein carbonyls; neutrophil infiltration; and lung injury score. LPS induced the degradation of the inhibitor of nuclear factor-κB-α (IκB-α) and nuclear translocation of NF-κB. LPS increased the surface protein expression of toll-like receptor 4 (TLR4). Pre-treatment with inhaled carbon dioxide for 10 min, but not for 60 min, inhibited LPS-induced pulmonary edema, inflammation, oxidative stress, lung injury, and TLR4 surface expression, and, accordingly, reduced NF-κB signaling. In summary, our data demonstrated that pre-treatment with 10-min carbon dioxide inhalation can ameliorate LPS-induced lung injury. The protective effect may be associated with down-regulation of the surface expression of TLR4 in the lungs.
Collapse
|
46
|
Mendez Y, Ochoa-Martinez FE, Ambrosii T. Chronic Obstructive Pulmonary Disease and Respiratory Acidosis in the Intensive Care Unit. CURRENT RESPIRATORY MEDICINE REVIEWS 2019. [DOI: 10.2174/1573398x15666181127141410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic obstructive lung disease is a common and preventable disease. One of its
pathophysiological consequences is the presence of carbon dioxide retention due to hypoventilation
and ventilation/perfusion mismatch, which in consequence will cause a decrease in the acid/base
status of the patient. Whenever a patient develops an acute exacerbation, acute respiratory
hypercapnic failure will appear and the necessity of a hospital ward is a must. However, current
guidelines exist to better identify these patients and make an accurate diagnosis by using clinical
skills and laboratory data such as arterial blood gases. Once the patient is identified, rapid treatment
will help to diminish the hospital length and the avoidance of intensive care unit. On the other hand,
if there is the existence of comorbidities such as cardiac failure, gastroesophageal reflux disease,
pulmonary embolism or depression, it is likely that the patient will be admitted to the intensive care
unit with the requirement of intubation and mechanical ventilation.
Collapse
Affiliation(s)
- Yamely Mendez
- Faculty of Medicine “Dr. Alberto Romo Caballero”, Universidad Autonoma de Tamaulipas, Tampico, Mexico
| | - Francisco E. Ochoa-Martinez
- Faculty of Medicine, Universidad Autonoma de Nuevo Leon, University Hospital “Dr. Jose Eleuterio Gonzalez”, Monterrey, Mexico
| | - Tatiana Ambrosii
- Chair of Anesthesiology and Reanimatology “Valeriu Ghereg”, State University of Medicine and Pharmacy “Nicolae Testemitanu”, Chisinau, Moldova, Republic of
| |
Collapse
|
47
|
Perez Ruiz de Garibay A, Kellum JA, Honigschnabel J, Kreymann B. Respiratory and metabolic acidosis correction with the ADVanced Organ Support system. Intensive Care Med Exp 2019; 7:56. [PMID: 31535309 PMCID: PMC6751235 DOI: 10.1186/s40635-019-0269-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
Background The lung, the kidney, and the liver are major regulators of acid-base balance. Acidosis due to the dysfunction of one or more organs can increase mortality, especially in critically ill patients. Supporting compensation by increasing ventilation or infusing bicarbonate is often ineffective. Therefore, direct removal of acid may represent a novel therapeutic approach. This can be achieved with the ADVanced Organ Support (ADVOS) system, an enhanced renal support therapy based on albumin dialysis. Here, we demonstrate proof of concept for this technology. Methods An ex vivo model of either hypercapnic (i.e., continuous CO2 supply) or lactic acidosis (i.e., lactic acid infusion) using porcine blood was subjected to hemodialysis with ADVOS. A variety of operational parameters including blood and dialysate flows, different dialysate pH settings, and acid and base concentrate compositions were tested. Comparisons with standard continuous veno-venous hemofiltration (CVVH) using high bicarbonate substitution fluid and continuous veno-venous hemodialysis (CVVHD) were also performed. Results Sixty-one milliliters per minute (2.7 mmol/min) of CO2 was removed using a blood flow of 400 ml/min and a dialysate pH of 10 without altering blood pCO2 and HCO3− (36 mmHg and 20 mmol/l, respectively). Up to 142 ml/min (6.3 mmol/min) of CO2 was eliminated if elevated pCO2 (117 mmHg) and HCO3− (63 mmol/l) were allowed. During continuous lactic acid infusion, an acid load of up to 3 mmol/min was compensated. When acidosis was triggered, ADVOS multi normalized pH and bicarbonate levels within 1 h, while neither CVVH nor CVVHD could. The major determinants to correct blood pH were blood flow, dialysate composition, and initial acid-base status. Conclusions In conclusion, ADVOS was able to remove more than 50% of the amount of CO2 typically produced by an adult human. Blood pH was maintained stable within the physiological range through compensation of a metabolic acid load by albumin dialysate. These in vitro results will require confirmation in patients.
Collapse
Affiliation(s)
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| | | | | |
Collapse
|
48
|
Barnes T, Parhar K, Zochios V. Hypercapnia vs normocapnia in patients with acute respiratory distress syndrome. Br J Hosp Med (Lond) 2019; 79:118. [PMID: 29431490 DOI: 10.12968/hmed.2018.79.2.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tavish Barnes
- Fellow in Intensive Care Medicine, Department of Critical Care Medicine, University of Calgary, Calgary, Canada
| | - Ken Parhar
- Clinical Assistant Professor, Consultant Intensive Care Medicine, Department of Critical Care Medicine, University of Calgary, Calgary, Canada
| | - Vasileios Zochios
- Specialty Registrar and NIHR Academic Fellow in Intensive Care Medicine, Department of Critical Care Medicine, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2TH
| |
Collapse
|
49
|
Morales-Quinteros L, Camprubí-Rimblas M, Bringué J, Bos LD, Schultz MJ, Artigas A. The role of hypercapnia in acute respiratory failure. Intensive Care Med Exp 2019; 7:39. [PMID: 31346806 PMCID: PMC6658637 DOI: 10.1186/s40635-019-0239-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
The biological effects and physiological consequences of hypercapnia are increasingly understood. The literature on hypercapnia is confusing, and at times contradictory. On the one hand, it may have protective effects through attenuation of pulmonary inflammation and oxidative stress. On the other hand, it may also have deleterious effects through inhibition of alveolar wound repair, reabsorption of alveolar fluid, and alveolar cell proliferation. Besides, hypercapnia has meaningful effects on lung physiology such as airway resistance, lung oxygenation, diaphragm function, and pulmonary vascular tree. In acute respiratory distress syndrome, lung-protective ventilation strategies using low tidal volume and low airway pressure are strongly advocated as these have strong potential to improve outcome. These strategies may come at a price of hypercapnia and hypercapnic acidosis. One approach is to accept it (permissive hypercapnia); another approach is to treat it through extracorporeal means. At present, it remains uncertain what the best approach is.
Collapse
Affiliation(s)
- Luis Morales-Quinteros
- Intensive Care Unit, Hospital Universitario Sagrado Corazón, Carrer de Viladomat, 288, 08029, Barcelona, Spain.
| | - Marta Camprubí-Rimblas
- Department of Medicine, Universitat Autònoma de Barcelona, Bellatera, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - Josep Bringué
- Department of Medicine, Universitat Autònoma de Barcelona, Bellatera, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Lieuwe D Bos
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Antonio Artigas
- Intensive Care Unit, Hospital Universitario Sagrado Corazón, Carrer de Viladomat, 288, 08029, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellatera, Spain.,Critical Care Center, Corporació Sanitària I Universitària Parc Taulí, Sabadell, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
50
|
[Current techniques for extracorporeal decarboxylation]. Med Klin Intensivmed Notfmed 2019; 114:733-740. [PMID: 31020339 DOI: 10.1007/s00063-019-0567-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
The widespread use of extracorporeal lung assist (ECLA) in recent years has led to the introduction of different decarboxylation systems into clinical practice. Due to the large CO2 transport capacity of the blood such systems require considerably lower extracorporeal blood flows and therefore allow for effective decarboxylation with reduced invasiveness and complexity. While systems derived from classical lung assist are mainly used to control severe acute hypercapnic respiratory failure, recently a growing number of therapies based on renal replacement platforms have become available ("respiratory dialysis"). Such low-flow systems still allow for effective partial CO2 elimination and can control respiratory acidosis as well as facilitate or even enable protective and ultraprotective ventilation strategies in acute lung failure (ARDS). While the use of extracorporeal CO2 elimination (ECCO2R) has been shown to decrease ventilator-induced lung injury (VILI), positive effects on hard clinical endpoints such as mortality or duration of mechanical ventilation are still unproven. In light of limited evidence, ECCO2R must be regarded as an experimental procedure. Its use should therefore at present be restricted to centers with appropriate experience.
Collapse
|