1
|
Gomez-Pinilla F, Myers SK. Traumatic brain injury from a peripheral axis perspective: Uncovering the roles of liver and adipose tissue in temperature regulation. Prog Neurobiol 2025; 247:102733. [PMID: 40032155 DOI: 10.1016/j.pneurobio.2025.102733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/21/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Most current treatments for TBI and other neurological disorders focus on the brain, often overlooking the significant contributions of peripheral organs to disease progression. Emerging evidence suggests that organs such as the liver and adipose tissue play crucial roles in TBI pathogenesis. The liver synthesizes lipids and proteins vital for brain function, while adipose tissue provides hormones and metabolites that influence brain activity. New research indicates that the liver and adipose tissue work in concert with the hypothalamus to regulate essential processes, such as body temperature, which become disrupted in TBI. Additionally, the brain-peripheral axis-a complex network of visceral nerve pathways, hormones, and metabolites-plays a bidirectional role in regulating brain plasticity and function. Understanding how TBI leads to dysregulation of the liver, adipose tissue, and other organs could unlock new therapeutic opportunities for treating TBI and related neurological disorders. The intricate autonomic network involving hypothalamic and enteric neurons, along with visceral nerve pathways and hormones, presents both pathological targets and therapeutic potential. We examine scientific evidence suggesting that correcting disturbances in systemic physiology could enhance the brain's capacity for healing. However, the interdependence of this autonomic network implies that treating dysfunction in one area may affect others. Therefore, we also explore the mechanisms by which diet and exercise can comprehensively impact the brain-peripheral axis, supporting the healing process. CHEMICAL COMPOUNDS: D-Fructose (PubChem CID 2723872); docosahexaenoic acid (PubChem CID 45934466); eicosapentaenoic acid (PubChem 5282847).
Collapse
Affiliation(s)
- F Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Sydney K Myers
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Briscoe J, Van Berkel Patel M, Hicks RC, Froehling N, Hunt D, Parker J, Carter B. Risk Factors Associated With Acute Kidney Injury in Traumatic Brain Injury Patients Treated With Hypertonic Saline: A Retrospective Study. J Pharm Pract 2025; 38:249-255. [PMID: 39213136 DOI: 10.1177/08971900241279631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background: Hypertonic saline (HTS) is essential pharmacologic treatment for traumatic brain injury (TBI). Previous studies associate HTS with acute kidney injury (AKI), however evidence in TBIs is limited. Objective: This study examines factors associated with AKI in patients requiring HTS for TBI. Methods: This retrospective study was performed at a Level-1 Trauma, Academic Medical Center. Inclusion criteria were TBI, age ≥12 years, ICU length of stay ≥72 hours, and administration of ≥24 hours of continuous HTS or 500 mL of HTS boluses. The primary outcome was identifying factors associated with AKI. Secondary outcomes included correlation between chloride load and level with development of AKI. Chloride load was calculated from HTS and non-HTS sources. Results: Of 129 patients included, 18 (14%) developed AKI. Maximum sodium level was higher in the AKI group (P < 0.0001). Hyperchloremia (Cl ≥ 115 mEq/L) was more common in the AKI group (100% vs 81%, P = 0.0428). Maximum and change in serum chloride were higher in the AKI group (median 128 vs 123 mEq/L, P = 0.0026 and +24 mEq/L vs +17 mEq/L, P = 0.0084, respectively). Logistic regression analysis indicated an OR 1.095 times higher [95% CI (1.022, 1.172)] for developing AKI for every one mEq/L increase in maximum chloride level and an OR 1.032 [95% CI (1.006, 1.058)] for developing AKI for every 1-year increase in age. There was no difference in total chloride load between groups (P = 0.2143). Non-HTS sources provided more than 40% of total chloride load in both groups. Conclusion: Chloride level, and age may be associated with AKI in TBI patients treated with HTS.
Collapse
Affiliation(s)
- Jessica Briscoe
- Department of Clinical Pharmacy, Erlanger Health System, Chattanooga, TN, USA
| | | | - R Chace Hicks
- Department of Surgery, University of Tennessee College of Medicine, Chattanooga, TN, USA
| | - Nadia Froehling
- Department of Surgery, University of Tennessee College of Medicine, Chattanooga, TN, USA
| | - Darren Hunt
- Department of Surgery, University of Tennessee College of Medicine, Chattanooga, TN, USA
- University Surgical Associates, Chattanooga, TN, USA
| | - Jessica Parker
- Office of Research and Education, Corewell Health West, Grand Rapids, MI, USA
| | - Breanna Carter
- Department of Clinical Pharmacy, Erlanger Health System, Chattanooga, TN, USA
- Department of Surgery, University of Tennessee College of Medicine, Chattanooga, TN, USA
| |
Collapse
|
3
|
Anteneh ZA, Kebede SK, Azene AG. Incidence and predictors of acute kidney injury among traumatic brain injury patients in Northwest Ethiopia: a cohort study using survival analysis. BMC Nephrol 2025; 26:96. [PMID: 40001011 PMCID: PMC11852514 DOI: 10.1186/s12882-025-04024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a sudden and reversible decrease in kidney function, causing the retention of waste products in the blood and potentially resulting in severe complications or death if not timely managed. Studies on AKI among traumatic brain injury patients in low-income nations like Ethiopia is very critical due to the limited healthcare resources, high burden of trauma-related injuries, and lack of robust data on the incidence and risk factors of AKI in such settings, which hinders effective prevention and treatment strategies tailored to these vulnerable populations Therefore, this study aimed to assess the incidence and predictors of AKI among traumatic brain injury patients. METHODS A retrospective cohort study was conducted among 450 adult patients with traumatic brain injuries admitted to Tibebe-Ghion Specialized Hospital in Ethiopia. Kaplan- Meir curve and Log rank test were used to estimate and compare survival probability of different categories. A multivariable Cox proportional hazards model was used to identify determinants of acute kidney injury (AKI). RESULTS The incidence of AKI was 10.9%, with a median follow-up period of 42 days. Significant predictors of AKI among traumatic brain injury patients included age (AHR: 1.05, 95% CI: 1.02-1.07), severe head injury (AHR: 1.46, 95% CI: 1.02-2.09), unreactive pupillary response (AHR: 4.82, 95% CI: 1.82-12.72), and hypotension (AHR: 3.45, 95% CI: 1.71-6.96). CONCLUSIONS The study found that AKI occurs in more than one in ten patients with traumatic brain injuries, with significant predictors including older age, severe head injury, unreactive pupillary response, and hypotension. These findings highlight the need for careful monitoring and early intervention for high-risk patients to prevent AKI and improve overall outcomes. Implementing targeted prevention and treatment strategies in settings with limited resources can help mitigate the burden of AKI and enhance patient care in vulnerable populations.
Collapse
Affiliation(s)
- Zelalem Alamrew Anteneh
- Department of Epidemiology and Biostatistics, School of Public Health, College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Semew Kassa Kebede
- Department of Epidemiology and Biostatistics, School of Public Health, College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abebaw Gedef Azene
- Department of Epidemiology and Biostatistics, School of Public Health, College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences University of Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
4
|
Wongsripuemtet P, Ohnuma T, Minic Z, Vavilala MS, Miller JB, Laskowitz DT, Meurer WJ, Hu X, Korley FK, Sheng H, Krishnamoorthy V. Early Autonomic Dysfunction in Traumatic Brain Injury: An Article Review on the Impact on Multiple Organ Dysfunction. J Clin Med 2025; 14:557. [PMID: 39860563 PMCID: PMC11765831 DOI: 10.3390/jcm14020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Traumatic brain injury (TBI) is a complex condition and a leading cause of injury-related disability and death, with significant impacts on patient outcomes. Extracranial organ involvement plays a critical role in the outcome of patients following TBI. Method: This review aims to provide a comprehensive overview of the pathophysiology, clinical presentation, and challenges in diagnosing patients with autonomic dysfunction after TBI. The databases used in this review include PubMed/MEDLINE, Cochrane Central Register, and Scopus. Results: Of 172 articles identified for screening, 98 were ultimately included in the review. Conclusion: This review summarized the current evidence on the pathophysiology, clinical presentation, and diagnosis of early autonomic dysfunction. It also emphasizes the effects of autonomic dysfunction on end-organ damage. These insights aim to guide clinicians and researchers toward improving the care for and understanding of autonomic dysfunction in TBI patients, while underscoring the need for further research in this area.
Collapse
Affiliation(s)
- Pattrapun Wongsripuemtet
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC 27708, USA; (T.O.); (V.K.)
- Department of Anesthesiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC 27708, USA; (T.O.); (V.K.)
- Departments of Anesthesiology, Duke University, Durham, NC 27708, USA;
| | - Zeljka Minic
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48202, USA;
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Monica S. Vavilala
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA;
| | - Joseph B. Miller
- Department of Emergency Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | | | - William J. Meurer
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (W.J.M.); (F.K.K.)
- Department of Emergency Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiao Hu
- School of Nursing, Emory University, Atlanta, GA 30322, USA;
| | - Frederick K. Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (W.J.M.); (F.K.K.)
- The Max Harry Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI 48109, USA
| | - Huaxin Sheng
- Departments of Anesthesiology, Duke University, Durham, NC 27708, USA;
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC 27708, USA; (T.O.); (V.K.)
- Departments of Anesthesiology, Duke University, Durham, NC 27708, USA;
| |
Collapse
|
5
|
Greil ME, Pan J, Barber JK, Temkin NR, Bonow RH, Videtta W, Vega MJ, Lujan S, Petroni G, Chesnut RM. Extracranial Complications in Monitored and Nonmonitored Patients with Traumatic Brain Injury in the BEST TRIP Trial and a Companion Observational Cohort. World Neurosurg 2024; 190:e424-e434. [PMID: 39069132 DOI: 10.1016/j.wneu.2024.07.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Extracranial complications occur commonly in patients with traumatic brain injury (TBI) and can have implications for patient outcome. Patient-specific risk factors for developing these complications are not well studied, particularly in low and middle-income countries (LMIC). The study objective was to determine patient-specific risk factors for development of extracranial complications in TBI. METHODS We assessed the relationship between patient demographic and injury factors and incidence of extracranial complications using data collected September 2008-October 2011 from the BEST TRIP trial, a randomized controlled trial assessing TBI management protocolized on intracranial pressure (ICP) monitoring versus imaging and clinical exam, and a companion observational patient cohort. RESULTS Extracranial infections (55%), respiratory complications (19%), hyponatremia (27%), hypernatremia (27%), hospital acquired pressure ulcers (6%), coagulopathy (9%), cardiac arrest (10%), and shock (5%) occurred at a rate of ≥5% in our study population; overall combined rate of these complications was 82.3%. Tracheostomy in the intensive care unit (P < 0.001), tracheostomy timing (P = 0.025), mannitol and hypertonic saline doses (P < 0.001), brain-specific therapy days and brain-specific therapy intensity (P < 0.001), extracranial surgery (P < 0.001), and neuroworsening with pupil asymmetry (P = 0.038) were all significantly related to the development of one of these complications by univariable analysis. Multivariable analysis revealed ICP monitor use and brain-specific therapy intensity to be the most common factors associated with individual complications. CONCLUSIONS Extracranial complications are common following TBI. ICP monitoring and treatment are related to extra-cranial complications. This supports the need for reassessing the risk-benefit balance of our current management approaches in the interest of improving outcome.
Collapse
Affiliation(s)
- Madeline E Greil
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - James Pan
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Jason K Barber
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Nancy R Temkin
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA; Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Robert H Bonow
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA; Harborview Injury Prevention Research Center, University of Washington, Seattle, Washington, USA
| | - Walter Videtta
- Hospital Nacional Professor Alejandro Posadas, Buenos Aires, Argentina
| | - Manuel Jibaja Vega
- Hospital Eugenio Espejo, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
| | - Silvia Lujan
- Hospital Emergencias Dr. Clemente Alvarez, Rosario, Argentina
| | - Gustavo Petroni
- Hospital Emergencias Dr. Clemente Alvarez, Rosario, Argentina
| | - Randall M Chesnut
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
6
|
Wiedermann CJ. Albumin in Normovolemic Fluid Management for Severe Traumatic Brain Injury: Controversies and Research Gaps. J Clin Med 2024; 13:5452. [PMID: 39336939 PMCID: PMC11432589 DOI: 10.3390/jcm13185452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant public health issue characterized by high mortality rates and long-term complications. This commentary examines the controversial role of the use of albumin in the fluid management of patients with severe TBI. Despite its physiological benefits, the clinical use of albumin remains controversial due to the fact that various studies have yielded mixed results. Serum albumin is important for maintaining normovolemia, primarily through its contribution to colloid osmotic pressure, which helps to retain fluid in the circulatory system. This review highlights the existing evidence, examines inconsistencies in guideline recommendations, and suggests future research directions to clarify the efficacy and safety of the use of albumin in maintaining normovolemia in patients with TBI. The review also discusses the potential benefits of small-volume resuscitation strategies for the management of acute kidney injury in TBI patients, drawing parallels with the management of septic acute kidney injury. The need for further well-designed randomized controlled trials and ethical considerations in studies regarding the use of hyperoncotic albumin in TBI management is emphasized.
Collapse
Affiliation(s)
- Christian J. Wiedermann
- Institute of General Practice and Public Health, Claudiana—College of Health Professions, 39100 Bolzano, Italy;
- Department of Public Health, Medical Decision Making and Health Technology Assessment, UMIT TIROL—Private University for Health Sciences and Health Technology, 6060 Hall, Austria
| |
Collapse
|
7
|
Muehlschlegel S, Rajajee V, Wartenberg KE, Alexander SA, Busl KM, Creutzfeldt CJ, Fontaine GV, Hocker SE, Hwang DY, Kim KS, Madzar D, Mahanes D, Mainali S, Meixensberger J, Sakowitz OW, Varelas PN, Weimar C, Westermaier T. Guidelines for Neuroprognostication in Critically Ill Adults with Moderate-Severe Traumatic Brain Injury. Neurocrit Care 2024; 40:448-476. [PMID: 38366277 PMCID: PMC10959796 DOI: 10.1007/s12028-023-01902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND Moderate-severe traumatic brain injury (msTBI) carries high morbidity and mortality worldwide. Accurate neuroprognostication is essential in guiding clinical decisions, including patient triage and transition to comfort measures. Here we provide recommendations regarding the reliability of major clinical predictors and prediction models commonly used in msTBI neuroprognostication, guiding clinicians in counseling surrogate decision-makers. METHODS Using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology, we conducted a systematic narrative review of the most clinically relevant predictors and prediction models cited in the literature. The review involved framing specific population/intervention/comparator/outcome/timing/setting (PICOTS) questions and employing stringent full-text screening criteria to examine the literature, focusing on four GRADE criteria: quality of evidence, desirability of outcomes, values and preferences, and resource use. Moreover, good practice recommendations addressing the key principles of neuroprognostication were drafted. RESULTS After screening 8125 articles, 41 met our eligibility criteria. Ten clinical variables and nine grading scales were selected. Many articles varied in defining "poor" functional outcomes. For consistency, we treated "poor" as "unfavorable". Although many clinical variables are associated with poor outcome in msTBI, only the presence of bilateral pupillary nonreactivity on admission, conditional on accurate assessment without confounding from medications or injuries, was deemed moderately reliable for counseling surrogates regarding 6-month functional outcomes or in-hospital mortality. In terms of prediction models, the Corticosteroid Randomization After Significant Head Injury (CRASH)-basic, CRASH-CT (CRASH-basic extended by computed tomography features), International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT)-core, IMPACT-extended, and IMPACT-lab models were recommended as moderately reliable in predicting 14-day to 6-month mortality and functional outcomes at 6 months and beyond. When using "moderately reliable" predictors or prediction models, the clinician must acknowledge "substantial" uncertainty in the prognosis. CONCLUSIONS These guidelines provide recommendations to clinicians on the formal reliability of individual predictors and prediction models of poor outcome when counseling surrogates of patients with msTBI and suggest broad principles of neuroprognostication.
Collapse
Affiliation(s)
- Susanne Muehlschlegel
- Departments of Neurology and Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Katharina M Busl
- Departments of Neurology and Neurosurgery, University of Florida College of Medicine, Gainesville, FL, USA
| | | | - Gabriel V Fontaine
- Departments of Pharmacy and Neurosciences, Intermountain Health, Salt Lake City, UT, USA
| | - Sara E Hocker
- Department of Neurology, Saint Luke's Health System, Kansas City, MO, USA
| | - David Y Hwang
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keri S Kim
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL, USA
| | - Dominik Madzar
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dea Mahanes
- Departments of Neurology and Neurosurgery, University of Virginia Health, Charlottesville, VA, USA
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Oliver W Sakowitz
- Department of Neurosurgery, Neurosurgery Center Ludwigsburg-Heilbronn, Ludwigsburg, Germany
| | | | - Christian Weimar
- Institute of Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, Essen, Germany
- BDH-Klinik Elzach, Elzach, Germany
| | - Thomas Westermaier
- Department of Neurosurgery, Helios Amper Klinikum Dachau, Dachau, Germany.
- Faculty of Medicine, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
8
|
Dismuke-Greer C, Esmaeili A, Ozieh MN, Gujral K, Garcia C, Del Negro A, Davis B, Egede L. Racial/Ethnic and Geographic Disparities in Comorbid Traumatic Brain Injury-Renal Failure in US Veterans and Associated Veterans Affairs Resource Costs, 2000-2020. J Racial Ethn Health Disparities 2024; 11:652-668. [PMID: 36864369 PMCID: PMC10474245 DOI: 10.1007/s40615-023-01550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Studies have identified disparities by race/ethnicity and geographic status among veterans with traumatic brain injury (TBI) and renal failure (RF). We examined the association of race/ethnicity and geographic status with RF onset in veterans with and without TBI, and the impact of disparities on Veterans Health Administration resource costs. METHODS Demographics by TBI and RF status were assessed. We estimated Cox proportional hazards models for progression to RF and generalized estimating equations for inpatient, outpatient, and pharmacy cost annually and time since TBI + RF diagnosis, stratified by age. RESULTS Among 596,189 veterans, veterans with TBI progressed faster to RF than those without TBI (HR 1.96). Non-Hispanic Black veterans (HR 1.41) and those in US territories (HR 1.71) progressed faster to RF relative to non-Hispanic Whites and those in urban mainland areas. Non-Hispanic Blacks (-$5,180), Hispanic/Latinos ($-4,984), and veterans in US territories (-$3,740) received fewer annual total VA resources. This was true for all Hispanic/Latinos, while only significant for non-Hispanic Black and US territory veterans < 65 years. For veterans with TBI + RF, higher total resource costs only occurred ≥ 10 years after TBI + RF diagnosis ($32,361), independent of age. Hispanic/Latino veterans ≥ 65 years received $8,248 less than non-Hispanic Whites and veterans living in US territories < 65 years received $37,514 less relative to urban veterans. CONCLUSION Concerted efforts to address RF progression in veterans with TBI, especially in non-Hispanic Blacks and those in US territories, are needed. Importantly, culturally appropriate interventions to improve access to care for these groups should be a priority of the Department of Veterans Affairs priority for these groups.
Collapse
Affiliation(s)
- Clara Dismuke-Greer
- Health Economics Resource Center (HERC), Ci2i, VA Palo Alto Healthcare System, 795 Willow Road, 152 MPD, Menlo Park, CA, 94025, USA.
| | - Aryan Esmaeili
- Health Economics Resource Center (HERC), Ci2i, VA Palo Alto Healthcare System, 795 Willow Road, 152 MPD, Menlo Park, CA, 94025, USA
| | - Mukoso N Ozieh
- Center for Advancing Population Science (CAPS), Division of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Nephrology, Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Kritee Gujral
- Health Economics Resource Center (HERC), Ci2i, VA Palo Alto Healthcare System, 795 Willow Road, 152 MPD, Menlo Park, CA, 94025, USA
| | - Carla Garcia
- Health Economics Resource Center (HERC), Ci2i, VA Palo Alto Healthcare System, 795 Willow Road, 152 MPD, Menlo Park, CA, 94025, USA
| | | | - Boyd Davis
- Department of English Emerita, College of Liberal Arts & Sciences, The University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Leonard Egede
- Center for Advancing Population Science (CAPS), Division of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Medicine, Division of General Internal Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Ho JW, Dawood ZS, Taylor ME, Liggett MR, Jin G, Jaishankar D, Nadig SN, Bharat A, Alam HB. THE NEUROENDOTHELIAL AXIS IN TRAUMATIC BRAIN INJURY: MECHANISMS OF MULTIORGAN DYSFUNCTION, NOVEL THERAPIES, AND FUTURE DIRECTIONS. Shock 2024; 61:346-359. [PMID: 38517237 DOI: 10.1097/shk.0000000000002307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Severe traumatic brain injury (TBI) often initiates a systemic inflammatory response syndrome, which can potentially culminate into multiorgan dysfunction. A central player in this cascade is endotheliopathy, caused by perturbations in homeostatic mechanisms governed by endothelial cells due to injury-induced coagulopathy, heightened sympathoadrenal response, complement activation, and proinflammatory cytokine release. Unique to TBI is the potential disruption of the blood-brain barrier, which may expose neuronal antigens to the peripheral immune system and permit neuroinflammatory mediators to enter systemic circulation, propagating endotheliopathy systemically. This review aims to provide comprehensive insights into the "neuroendothelial axis" underlying endothelial dysfunction after TBI, identify potential diagnostic and prognostic biomarkers, and explore therapeutic strategies targeting these interactions, with the ultimate goal of improving patient outcomes after severe TBI.
Collapse
Affiliation(s)
- Jessie W Ho
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Zaiba Shafik Dawood
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Meredith E Taylor
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Marjorie R Liggett
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guang Jin
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dinesh Jaishankar
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Satish N Nadig
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Ankit Bharat
- Department of Surgery, Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hasan B Alam
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
10
|
Hwang IJ, Jeong TS, Kim WS, Kim JO, Jang MJ. Epidemiology and Outcomes of Severe Traumatic Brain Injury: Regional Trauma Center in Incheon, Korea, 2018-2022. Korean J Neurotrauma 2024; 20:17-26. [PMID: 38576499 PMCID: PMC10990697 DOI: 10.13004/kjnt.2024.20.e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Objective This study aims to explore the epidemiology and outcomes of severe traumatic brain injury (TBI) in Incheon, focusing on regional characteristics using data from a local trauma center. Methods From January 2018 to December 2022, 559 patients with severe TBI were studied. We analyzed factors related to demography, prehospitalization, surgery, complications, and clinical outcomes, including intensive care unit stay, ventilator use, hospital stay, mortality, and Glasgow outcome scale (GOS) scores at discharge and after 6 months. Results In this study, most severe TBI patients were in the 60-79 age range, constituting 37.4% of cases. Most patients (74.1%) used public emergency medical services for transportation, and 75.3% arrived directly at the hospital, a significantly higher proportion compared to transferred patients. Timewise, 40.0% reached the hospital within an hour of injury. Complication rates stood at 16.1%, with pneumonia being the most common. The mortality rate was 44.0%, and at discharge, 81.2% of patients had unfavorable outcomes (GOS 1-3), reducing to 70.1% at 6 months. Conclusion As a pioneering study at Incheon's trauma center, this research provides insights into severe TBI outcomes, enhancing understanding by contrasting local and national data.
Collapse
Affiliation(s)
- Ik Jun Hwang
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Tae Seok Jeong
- Department of Traumatology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Woo Seok Kim
- Department of Traumatology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Jung Ook Kim
- Department of Traumatology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Myung Jin Jang
- Regional Trauma Center, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
11
|
Wang R, Zhang J, He M, Xu J. Classification and Regression Tree Predictive Model for Acute Kidney Injury in Traumatic Brain Injury Patients. Ther Clin Risk Manag 2024; 20:139-149. [PMID: 38410117 PMCID: PMC10896101 DOI: 10.2147/tcrm.s435281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Background Acute kidney injury (AKI) is prevalent in hospitalized patients with traumatic brain injury (TBI), and increases the risk of poor outcomes. We designed this study to develop a visual and convenient decision-tree-based model for predicting AKI in TBI patients. Methods A total of 376 patients admitted to the emergency department of the West China Hospital for TBI between January 2015 and June 2019 were included. Demographic information, vital signs on admission, laboratory test results, radiological signs, surgical options, and medications were recorded as variables. AKI was confirmed since the second day after admission, based on the Kidney Disease Improving Global Outcomes criteria. We constructed two predictive models for AKI using least absolute shrinkage and selection operator (LASSO) regression and classification and regression tree (CART), respectively. Receiver operating characteristic (ROC) curves of these two predictive models were drawn, and the area under the ROC curve (AUC) was calculated to compare their predictive accuracy. Results The incidence of AKI on the second day after admission was 10.4% among patients with TBI. Lasso regression identified five potent predictive factors for AKI: glucose, serum creatinine, cystatin C, serum uric acid, and fresh frozen plasma transfusions. The CART analysis showed that glucose, serum uric acid, and cystatin C ranked among the top three in terms of the feature importance of the decision tree model. The AUC value of the decision-tree predictive model was 0.892, which was higher than the 0.854 of the LASSO regression model, although the difference was not statistically significant. Conclusion The decision tree model is valuable for predicting AKI among patients with TBI. This tree-based flowchart is convenient for physicians to identify patients with TBI who are at high risk of AKI and prompts them to develop suitable therapeutic strategies.
Collapse
Affiliation(s)
- Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
12
|
De Rosa S, Battaglini D, Robba C. Kidney dysfunction after acute brain injury. Nephrol Dial Transplant 2024; 39:170-173. [PMID: 37660284 DOI: 10.1093/ndt/gfad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 09/04/2023] Open
Affiliation(s)
- Silvia De Rosa
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento, Italy
| | | | - Chiara Robba
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
13
|
de Cássia Almeida Vieira R, de Barros GL, Paiva WS, de Oliveira DV, de Souza CPE, Santana-Santos E, de Sousa RMC. Severe traumatic brain injury and acute kidney injury patients: factors associated with in-hospital mortality and unfavorable outcomes. Brain Inj 2024; 38:108-118. [PMID: 38247393 DOI: 10.1080/02699052.2024.2304885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVE The purpose of this study was to identify the occurrence of AKI, and factors associated with in-hospital mortality and unfavorable outcomes in patients with severe traumatic brain injury (TBI) and acute kidney injury (AKI) severity. METHOD A retrospective cohort study which analyzed data with severe TBI between 2013 and 2017. We examined demographic and clinical information, and outcome by in-hospital mortality, and the Glasgow Outcome Scale six months after TBI. We associated factors to in-hospital mortality and unfavorable outcome in severe TBI and AKI with an association test. RESULTS A total of 219 patients were selected, 39.3% had an AKI, and several factors associated with AKI occurrence after severe TBI. Stage 2 or 3 of AKI (OR 12.489; 95% CI = 4.45-37.94) were independent risk for both outcomes in multivariable models, severity injury by the New Trauma Injury Severity Score (OR 0.97; 95% CI = 0.96-0.99) for mortality, and the New Injury Severity Score (OR1.07; 95% CI = 1.04-1.10) and Trauma and Injury Severity Score (OR = 0.98; 95% CI = 0.965-0.997) for unfavorable outcome. CONCLUSION The findings of our study confirmed that AKI severity and severity of injury was also related to increased mortality and unfavorable outcome after severe TBI.
Collapse
|
14
|
Wang R, Chen H, He M, Xu J. Serum cystatin C is correlated with mortality of traumatic brain injury patients partially mediated by acute kidney injury. Acta Neurol Belg 2023; 123:2235-2241. [PMID: 37171701 PMCID: PMC10175904 DOI: 10.1007/s13760-023-02282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Evaluating risk of poor outcome for Traumatic Brain Injury (TBI) in early stage is necessary to make treatment strategies and decide the need for intensive care. This study is designed to verify the prognostic value of serum cystatin C in TBI patients. METHODS 415 TBI patients admitted to West China hospital were included. Logistic regression was performed to explore risk factors of mortality and testify the correlation between cystatin C and mortality. Mediation analysis was conducted to test whether Acute Kidney Injury (AKI) and brain injury severity mediate the relationship between cystatin C level and mortality. Area under the receiver operating characteristic curve (AUC) was used to evaluate the prognostic value of cystatin C and the constructed model incorporating cystatin C. RESULTS The mortality rate of 415 TBI patients was 48.9%. Non-survivors had lower GCS (5 vs 8, p < 0.001) and higher cystatin C (0.92 vs 0.71, p < 0.001) than survivors. After adjusting confounding effects, multivariate logistic regression indicated GCS (p < 0.001), glucose (p < 0.001), albumin (p = 0.009), cystatin C (p < 0.001) and subdural hematoma (p = 0.042) were independent risk factors of mortality. Mediation analysis showed both AKI and brain injury severity exerted mediating effects on relationship between cystatin C and mortality of included TBI patients. The AUC of combining GCS with cystatin C was 0.862, which was higher than that of GCS alone (Z = 1.7354, p < 0.05). CONCLUSION Both AKI and brain injury severity are mediating variables influencing the relationship between cystatin C and mortality of TBI patients. Serum cystatin C is an effective prognostic marker for TBI patients.
Collapse
Affiliation(s)
- Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Hongxu Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
15
|
Husain-Syed F, Takeuchi T, Neyra JA, Ramírez-Guerrero G, Rosner MH, Ronco C, Tolwani AJ. Acute kidney injury in neurocritical care. Crit Care 2023; 27:341. [PMID: 37661277 PMCID: PMC10475203 DOI: 10.1186/s13054-023-04632-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Approximately 20% of patients with acute brain injury (ABI) also experience acute kidney injury (AKI), which worsens their outcomes. The metabolic and inflammatory changes associated with AKI likely contribute to prolonged brain injury and edema. As a result, recognizing its presence is important for effectively managing ABI and its sequelae. This review discusses the occurrence and effects of AKI in critically ill adults with neurological conditions, outlines potential mechanisms connecting AKI and ABI progression, and highlights AKI management principles. Tailored approaches include optimizing blood pressure, managing intracranial pressure, adjusting medication dosages, and assessing the type of administered fluids. Preventive measures include avoiding nephrotoxic drugs, improving hemodynamic and fluid balance, and addressing coexisting AKI syndromes. ABI patients undergoing renal replacement therapy (RRT) are more susceptible to neurological complications. RRT can negatively impact cerebral blood flow, intracranial pressure, and brain tissue oxygenation, with effects tied to specific RRT methods. Continuous RRT is favored for better hemodynamic stability and lower risk of dialysis disequilibrium syndrome. Potential RRT modifications for ABI patients include adjusted dialysate and blood flow rates, osmotherapy, and alternate anticoagulation methods. Future research should explore whether these strategies enhance outcomes and if using novel AKI biomarkers can mitigate AKI-related complications in ABI patients.
Collapse
Affiliation(s)
- Faeq Husain-Syed
- Division of Nephrology, University of Virginia School of Medicine, 1300 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
- Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392, Giessen, Germany
| | - Tomonori Takeuchi
- Division of Nephrology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
- Department of Health Policy and Informatics, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo Ku, Tokyo, 113-8510, Japan
| | - Javier A Neyra
- Division of Nephrology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA
| | - Gonzalo Ramírez-Guerrero
- Critical Care Unit, Carlos Van Buren Hospital, San Ignacio 725, Valparaíso, Chile
- Dialysis and Renal Transplant Unit, Carlos Van Buren Hospital, San Ignacio 725, Valparaíso, Chile
- Department of Medicine, Universidad de Valparaíso, Hontaneda 2653, Valparaíso, Chile
| | - Mitchell H Rosner
- Division of Nephrology, University of Virginia School of Medicine, 1300 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Claudio Ronco
- Department of Medicine (DIMED), Università di Padova, Via Giustiniani, 2, 35128, Padua, Italy
- International Renal Research Institute of Vicenza, Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Via Rodolfi, 37, 36100, Vicenza, Italy
| | - Ashita J Tolwani
- Division of Nephrology, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
16
|
De Vlieger G, Meyfroidt G. Kidney Dysfunction After Traumatic Brain Injury: Pathophysiology and General Management. Neurocrit Care 2023; 38:504-516. [PMID: 36324003 PMCID: PMC9629888 DOI: 10.1007/s12028-022-01630-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) remains a major cause of mortality and morbidity, and almost half of these patients are admitted to the intensive care unit. Of those, 10% develop acute kidney injury (AKI) and 2% even need kidney replacement therapy (KRT). Although clinical trials in patients with TBI who have AKI are lacking, some general principles in this population may apply. The present review is an overview on the epidemiology and pathophysiology of AKI in patients with TBI admitted to the intensive care unit who are at risk for or who have developed AKI. A cornerstone in severe TBI management is preventing secondary brain damage, in which reducing the intracranial pressure (ICP) and optimizing the cerebral perfusion pressure (CPP) remain important therapeutic targets. To treat episodes of elevated ICP, osmolar agents such as mannitol and hypertonic saline are frequently administered. Although we are currently awaiting the results of a prospective randomized controlled trial that compares both agents, it is important to realize that both agents have been associated with an increased risk of developing AKI which is probably higher for mannitol compared with hypertonic saline. For the brain, as well as for the kidney, targeting an adequate perfusion pressure is important. Hemodynamic management based on the combined use of intravascular fluids and vasopressors is ideally guided by hemodynamic monitoring. Hypotonic albumin or crystalloid resuscitation solutions may increase the risk of brain edema, and saline-based solutions are frequently used but have a risk of hyperchloremia, which might jeopardize kidney function. In patients at risk, frequent assessment of serum chloride might be advised. Maintenance of an adequate CPP involves the optimization of circulating blood volume, often combined with vasopressor agents. Whether individualized CPP targets based on cerebrovascular autoregulation monitoring are beneficial need to be further investigated. Interestingly, such individualized perfusion targets are also under investigation in patients as a strategy to mitigate the risk for AKI in patients with chronic hypertension. In the small proportion of patients with TBI who need KRT, continuous techniques are advised based on pathophysiology and expert opinion. The need for KRT is associated with a higher risk of intracranial hypertension, especially if osmolar clearance occurs fast, which can even occur in continuous techniques. Precise ICP and CPP monitoring is mandatory, especially at the initiation of KRT.
Collapse
Affiliation(s)
- Greet De Vlieger
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- Clinical Division of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium.
| | - Geert Meyfroidt
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Clinical Division of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Ramírez-Guerrero G, Lucero C, Villagrán-Cortés F, Hauway E, Torres-Cifuentes V, Baghetti-Hernández R, Vera-Calzaretta A, Ronco C, Garay O. Acute kidney injury in neurocritical patients: a retrospective cohort study. Int Urol Nephrol 2023:10.1007/s11255-023-03502-7. [PMID: 36800139 DOI: 10.1007/s11255-023-03502-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND /OBJECTIVE Acute kidney injury (AKI) is a significant complication in critical care units (CCU). Non-neurological complications such as AKI are an independent predictor of poor clinical outcomes, with an increase in morbidity and mortality, financial costs, and worse functional recovery. This work aims to estimate the incidence of AKI and evaluate the risk factors and complications of AKI in neurocritical patients hospitalized in the CCU. METHODS A retrospective cohort study was conducted. Patients admitted to the neurocritical care unit between 2016 and 2018 with a stay longer than 48 h were retrospectively analyzed in regard to the incidence, risk factors, and outcomes of AKI. RESULTS The study population comprised 213 neurocritical patients. The incidence of AKI was 23.5%, with 58% KDIGO 1 and 2% requiring renal replacement therapy. AKI was an independent predictor of prolonged use of mechanical ventilation, cerebral edema, and mortality. Cerebral edema [OR 4.40 (95% CI 1.98-9.75) p < 0.001] and a change in chloride levels greater than 4 mmol/L at 48 h (OR 2.44 (95% CI 1.10-5.37) p = 0.027) were risk factors for developing AKI in the first 14 days of hospitalization. CONCLUSION There is a high incidence of AKI in neurocritical patients; it is associated with worse clinical outcomes regardless of the CCU admission etiology or AKI severity.
Collapse
Affiliation(s)
- Gonzalo Ramírez-Guerrero
- Critical Patients Unit, Carlos Van Buren Hospital, San Ignacio #725, Valparaiso, Chile. .,Dialysis and Renal Transplantation Unit, Carlos Van Buren Hospital, Valparaiso, Chile. .,Departamento de Medicina Interna, Facultad de Medicina, Universidad de Valparaíso, Valparaiso, Chile.
| | - Cristian Lucero
- Critical Patients Unit, Carlos Van Buren Hospital, San Ignacio #725, Valparaiso, Chile.,Departamento de Medicina Interna, Facultad de Medicina, Universidad de Valparaíso, Valparaiso, Chile
| | - Francisco Villagrán-Cortés
- Critical Patients Unit, Carlos Van Buren Hospital, San Ignacio #725, Valparaiso, Chile.,Dialysis and Renal Transplantation Unit, Carlos Van Buren Hospital, Valparaiso, Chile.,Departamento de Medicina Interna, Facultad de Medicina, Universidad de Valparaíso, Valparaiso, Chile
| | - Ernesto Hauway
- Critical Patients Unit, Carlos Van Buren Hospital, San Ignacio #725, Valparaiso, Chile.,Departamento de Medicina Interna, Facultad de Medicina, Universidad de Valparaíso, Valparaiso, Chile
| | - Vicente Torres-Cifuentes
- Critical Patients Unit, Carlos Van Buren Hospital, San Ignacio #725, Valparaiso, Chile.,Dialysis and Renal Transplantation Unit, Carlos Van Buren Hospital, Valparaiso, Chile.,Departamento de Medicina Interna, Facultad de Medicina, Universidad de Valparaíso, Valparaiso, Chile.,Nephrology, Dialysis and Transplantation Unit, Las Higueras Hospital, Talcahuano, Chile
| | - Romyna Baghetti-Hernández
- Critical Patients Unit, Carlos Van Buren Hospital, San Ignacio #725, Valparaiso, Chile.,Dialysis and Renal Transplantation Unit, Carlos Van Buren Hospital, Valparaiso, Chile.,Departamento de Medicina Interna, Facultad de Medicina, Universidad de Valparaíso, Valparaiso, Chile.,Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aldo Vera-Calzaretta
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Kidney Transplantation, San Bortolo Hospital, Vicenza, Italy.,International Renal Research Institute of Vicenza, Vicenza, Italy
| | - Osvaldo Garay
- Critical Patients Unit, Carlos Van Buren Hospital, San Ignacio #725, Valparaiso, Chile.,Dialysis and Renal Transplantation Unit, Carlos Van Buren Hospital, Valparaiso, Chile.,Departamento de Medicina Interna, Facultad de Medicina, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
18
|
Almuqamam M, Novi B, Rossini CJ, Mammen A, DeSanti RL. Association of hyperchloremia and acute kidney injury in pediatric patients with moderate and severe traumatic brain injury. Childs Nerv Syst 2023; 39:1267-1275. [PMID: 36595084 DOI: 10.1007/s00381-022-05810-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE Acute kidney injury (AKI) is an established complication of adult traumatic brain injury (TBI) and known risk factor for mortality. Evidence demonstrates an association between hyperchloremia and AKI in critically ill adults but studies in children are scarce. Given frequent use of hypertonic saline in the management of pediatric TBI, we believe the incidence of hyperchloremia will be high and hypothesize that it will be associated with development of AKI. METHODS Single-center retrospective cohort study was completed at an urban, level 1 pediatric trauma center. Children > 40 weeks corrected gestational age and < 21 years of age with moderate or severe TBI (presenting GCS < 13) admitted between January 2016 and December 2021 were included. Primary study outcome was presence of AKI (defined by pediatric Kidney Disease: Improving Global Outcomes criteria) within 7 days of hospitalization and compared between patients with and without hyperchloremia (serum chloride ≥ 110 mEq/L). RESULTS Fifty-two children were included. Mean age was 5.75 (S.D. 5.4) years; 60% were male (31/52); and mean presenting GCS was 6 (S.D. 2.9). Thirty-seven patients (71%) developed hyperchloremia with a mean peak chloride of 125 (S.D. 12.0) mEq/L and mean difference between peak and presenting chloride of 16 (S.D. 12.7) mEq/L. Twenty-three patients (44%) developed AKI; of those with hyperchloremia, 62% (23/37) developed AKI, while among those without hyperchloremia, 0% (0/15) developed AKI (difference 62%, 95% CI 42-82%, p < 0.001). Attributable risk of hyperchloremia leading to AKI was 62.2 (95% CI 46.5-77.8, p = 0.0015). CONCLUSION Hyperchloremia is common in the management of pediatric TBI and is associated with development of AKI. Risk appears to be associated with both the height of serum chloride and duration of hyperchloremia.
Collapse
Affiliation(s)
- Mohamed Almuqamam
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Brian Novi
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Connie J Rossini
- Department of Surgery, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Ajit Mammen
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Ryan L DeSanti
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA, USA. .,Department of Critical Care Medicine, St. Christopher's Hospital for Children, 160 East Erie Avenue, Third Floor Suite, Office A3-20k, Philadelphia, PA, 19143, USA.
| |
Collapse
|
19
|
Barea-Mendoza JA, Chico-Fernández M, Quintana-Díaz M, Serviá-Goixart L, Fernández-Cuervo A, Bringas-Bollada M, Ballesteros-Sanz MÁ, García-Sáez Í, Pérez-Bárcena J, Llompart-Pou JA. Traumatic Brain Injury and Acute Kidney Injury-Outcomes and Associated Risk Factors. J Clin Med 2022; 11:jcm11237216. [PMID: 36498789 PMCID: PMC9739137 DOI: 10.3390/jcm11237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Our objective was to analyze the contribution of acute kidney injury (AKI) to the mortality of isolated TBI patients and its associated risk factors. Observational, prospective and multicenter registry (RETRAUCI) methods were used, from March 2015 to December 2019. Isolated TBI was defined as abbreviated injury scale (AIS) ≥ 3 head with no additional score ≥ 3. A comparison of groups was conducted using the Wilcoxon test, chi-square test or Fisher's exact test, as appropriate. A multiple logistic regression analysis was conducted to analyze associated risk factors in the development of AKI. For the result, overall, 2964 (30.2%) had AIS head ≥ 3 with no other area with AIS ≥ 3. The mean age was 54.7 (SD 19.5) years, 76% were men, and the ground-level falls was 49.1%. The mean ISS was 18.4 (SD 8). The in-hospital mortality was 22.2%. Up to 310 patients (10.6%) developed AKI, which was associated with increased mortality (39% vs. 17%, adjusted OR 2.2). Associated risk factors (odds ratio (OR) (95% confidence interval)) were age (OR 1.02 (1.01-1.02)), hemodynamic instability (OR 2.87 to OR 5.83 (1.79-13.1)), rhabdomyolysis (OR 2.94 (1.69-5.11)), trauma-associated coagulopathy (OR 1.67 (1.05-2.66)) and transfusion of packed red-blood-cell concentrates (OR 1.76 (1.12-2.76)). In conclusion, AKI occurred in 10.6% of isolated TBI patients and was associated with increased mortality.
Collapse
Affiliation(s)
- Jesús Abelardo Barea-Mendoza
- UCI de Trauma y Emergencias, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Mario Chico-Fernández
- UCI de Trauma y Emergencias, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Manuel Quintana-Díaz
- Servicio de Medicina Intensiva, Hospital Universitario La Paz, 28029 Madrid, Spain
| | - Lluís Serviá-Goixart
- Servei de Medicina Intensiva, Hospital Universitari Arnau de Vilanova, Universitat de Lleida, IRBLleida, 25198 Lleida, Spain
| | - Ana Fernández-Cuervo
- Servicio de Medicina Intensiva, Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain
| | - María Bringas-Bollada
- Servicio de Medicina Intensiva, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | | | - Íker García-Sáez
- Servicio de Medicina Intensiva, Hospital Universitario de Donostia, 20014 Donostia, Spain
| | - Jon Pérez-Bárcena
- Servei de Medicina Intensiva, Hospital Universitari Son Espases, Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
| | - Juan Antonio Llompart-Pou
- Servei de Medicina Intensiva, Hospital Universitari Son Espases, Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- Correspondence:
| |
Collapse
|
20
|
Maas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell MJ, Bodien YG, Brett BL, Büki A, Chesnut RM, Citerio G, Clark D, Clasby B, Cooper DJ, Czeiter E, Czosnyka M, Dams-O’Connor K, De Keyser V, Diaz-Arrastia R, Ercole A, van Essen TA, Falvey É, Ferguson AR, Figaji A, Fitzgerald M, Foreman B, Gantner D, Gao G, Giacino J, Gravesteijn B, Guiza F, Gupta D, Gurnell M, Haagsma JA, Hammond FM, Hawryluk G, Hutchinson P, van der Jagt M, Jain S, Jain S, Jiang JY, Kent H, Kolias A, Kompanje EJO, Lecky F, Lingsma HF, Maegele M, Majdan M, Markowitz A, McCrea M, Meyfroidt G, Mikolić A, Mondello S, Mukherjee P, Nelson D, Nelson LD, Newcombe V, Okonkwo D, Orešič M, Peul W, Pisică D, Polinder S, Ponsford J, Puybasset L, Raj R, Robba C, Røe C, Rosand J, Schueler P, Sharp DJ, Smielewski P, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Temkin N, Tenovuo O, Theadom A, Thomas I, Espin AT, Turgeon AF, Unterberg A, Van Praag D, van Veen E, Verheyden J, Vyvere TV, Wang KKW, Wiegers EJA, Williams WH, Wilson L, Wisniewski SR, Younsi A, Yue JK, Yuh EL, Zeiler FA, Zeldovich M, et alMaas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell MJ, Bodien YG, Brett BL, Büki A, Chesnut RM, Citerio G, Clark D, Clasby B, Cooper DJ, Czeiter E, Czosnyka M, Dams-O’Connor K, De Keyser V, Diaz-Arrastia R, Ercole A, van Essen TA, Falvey É, Ferguson AR, Figaji A, Fitzgerald M, Foreman B, Gantner D, Gao G, Giacino J, Gravesteijn B, Guiza F, Gupta D, Gurnell M, Haagsma JA, Hammond FM, Hawryluk G, Hutchinson P, van der Jagt M, Jain S, Jain S, Jiang JY, Kent H, Kolias A, Kompanje EJO, Lecky F, Lingsma HF, Maegele M, Majdan M, Markowitz A, McCrea M, Meyfroidt G, Mikolić A, Mondello S, Mukherjee P, Nelson D, Nelson LD, Newcombe V, Okonkwo D, Orešič M, Peul W, Pisică D, Polinder S, Ponsford J, Puybasset L, Raj R, Robba C, Røe C, Rosand J, Schueler P, Sharp DJ, Smielewski P, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Temkin N, Tenovuo O, Theadom A, Thomas I, Espin AT, Turgeon AF, Unterberg A, Van Praag D, van Veen E, Verheyden J, Vyvere TV, Wang KKW, Wiegers EJA, Williams WH, Wilson L, Wisniewski SR, Younsi A, Yue JK, Yuh EL, Zeiler FA, Zeldovich M, Zemek R. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol 2022; 21:1004-1060. [PMID: 36183712 PMCID: PMC10427240 DOI: 10.1016/s1474-4422(22)00309-x] [Show More Authors] [Citation(s) in RCA: 490] [Impact Index Per Article: 163.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, and poses a substantial public health burden. TBI is increasingly documented not only as an acute condition but also as a chronic disease with long-term consequences, including an increased risk of late-onset neurodegeneration. The first Lancet Neurology Commission on TBI, published in 2017, called for a concerted effort to tackle the global health problem posed by TBI. Since then, funding agencies have supported research both in high-income countries (HICs) and in low-income and middle-income countries (LMICs). In November 2020, the World Health Assembly, the decision-making body of WHO, passed resolution WHA73.10 for global actions on epilepsy and other neurological disorders, and WHO launched the Decade for Action on Road Safety plan in 2021. New knowledge has been generated by large observational studies, including those conducted under the umbrella of the International Traumatic Brain Injury Research (InTBIR) initiative, established as a collaboration of funding agencies in 2011. InTBIR has also provided a huge stimulus to collaborative research in TBI and has facilitated participation of global partners. The return on investment has been high, but many needs of patients with TBI remain unaddressed. This update to the 2017 Commission presents advances and discusses persisting and new challenges in prevention, clinical care, and research. In LMICs, the occurrence of TBI is driven by road traffic incidents, often involving vulnerable road users such as motorcyclists and pedestrians. In HICs, most TBI is caused by falls, particularly in older people (aged ≥65 years), who often have comorbidities. Risk factors such as frailty and alcohol misuse provide opportunities for targeted prevention actions. Little evidence exists to inform treatment of older patients, who have been commonly excluded from past clinical trials—consequently, appropriate evidence is urgently required. Although increasing age is associated with worse outcomes from TBI, age should not dictate limitations in therapy. However, patients injured by low-energy falls (who are mostly older people) are about 50% less likely to receive critical care or emergency interventions, compared with those injured by high-energy mechanisms, such as road traffic incidents. Mild TBI, defined as a Glasgow Coma sum score of 13–15, comprises most of the TBI cases (over 90%) presenting to hospital. Around 50% of adult patients with mild TBI presenting to hospital do not recover to pre-TBI levels of health by 6 months after their injury. Fewer than 10% of patients discharged after presenting to an emergency department for TBI in Europe currently receive follow-up. Structured follow-up after mild TBI should be considered good practice, and urgent research is needed to identify which patients with mild TBI are at risk for incomplete recovery. The selection of patients for CT is an important triage decision in mild TBI since it allows early identification of lesions that can trigger hospital admission or life-saving surgery. Current decision making for deciding on CT is inefficient, with 90–95% of scanned patients showing no intracranial injury but being subjected to radiation risks. InTBIR studies have shown that measurement of blood-based biomarkers adds value to previously proposed clinical decision rules, holding the potential to improve efficiency while reducing radiation exposure. Increased concentrations of biomarkers in the blood of patients with a normal presentation CT scan suggest structural brain damage, which is seen on MR scanning in up to 30% of patients with mild TBI. Advanced MRI, including diffusion tensor imaging and volumetric analyses, can identify additional injuries not detectable by visual inspection of standard clinical MR images. Thus, the absence of CT abnormalities does not exclude structural damage—an observation relevant to litigation procedures, to management of mild TBI, and when CT scans are insufficient to explain the severity of the clinical condition. Although blood-based protein biomarkers have been shown to have important roles in the evaluation of TBI, most available assays are for research use only. To date, there is only one vendor of such assays with regulatory clearance in Europe and the USA with an indication to rule out the need for CT imaging for patients with suspected TBI. Regulatory clearance is provided for a combination of biomarkers, although evidence is accumulating that a single biomarker can perform as well as a combination. Additional biomarkers and more clinical-use platforms are on the horizon, but cross-platform harmonisation of results is needed. Health-care efficiency would benefit from diversity in providers. In the intensive care setting, automated analysis of blood pressure and intracranial pressure with calculation of derived parameters can help individualise management of TBI. Interest in the identification of subgroups of patients who might benefit more from some specific therapeutic approaches than others represents a welcome shift towards precision medicine. Comparative-effectiveness research to identify best practice has delivered on expectations for providing evidence in support of best practices, both in adult and paediatric patients with TBI. Progress has also been made in improving outcome assessment after TBI. Key instruments have been translated into up to 20 languages and linguistically validated, and are now internationally available for clinical and research use. TBI affects multiple domains of functioning, and outcomes are affected by personal characteristics and life-course events, consistent with a multifactorial bio-psycho-socio-ecological model of TBI, as presented in the US National Academies of Sciences, Engineering, and Medicine (NASEM) 2022 report. Multidimensional assessment is desirable and might be best based on measurement of global functional impairment. More work is required to develop and implement recommendations for multidimensional assessment. Prediction of outcome is relevant to patients and their families, and can facilitate the benchmarking of quality of care. InTBIR studies have identified new building blocks (eg, blood biomarkers and quantitative CT analysis) to refine existing prognostic models. Further improvement in prognostication could come from MRI, genetics, and the integration of dynamic changes in patient status after presentation. Neurotrauma researchers traditionally seek translation of their research findings through publications, clinical guidelines, and industry collaborations. However, to effectively impact clinical care and outcome, interactions are also needed with research funders, regulators, and policy makers, and partnership with patient organisations. Such interactions are increasingly taking place, with exemplars including interactions with the All Party Parliamentary Group on Acquired Brain Injury in the UK, the production of the NASEM report in the USA, and interactions with the US Food and Drug Administration. More interactions should be encouraged, and future discussions with regulators should include debates around consent from patients with acute mental incapacity and data sharing. Data sharing is strongly advocated by funding agencies. From January 2023, the US National Institutes of Health will require upload of research data into public repositories, but the EU requires data controllers to safeguard data security and privacy regulation. The tension between open data-sharing and adherence to privacy regulation could be resolved by cross-dataset analyses on federated platforms, with the data remaining at their original safe location. Tools already exist for conventional statistical analyses on federated platforms, however federated machine learning requires further development. Support for further development of federated platforms, and neuroinformatics more generally, should be a priority. This update to the 2017 Commission presents new insights and challenges across a range of topics around TBI: epidemiology and prevention (section 1 ); system of care (section 2 ); clinical management (section 3 ); characterisation of TBI (section 4 ); outcome assessment (section 5 ); prognosis (Section 6 ); and new directions for acquiring and implementing evidence (section 7 ). Table 1 summarises key messages from this Commission and proposes recommendations for the way forward to advance research and clinical management of TBI.
Collapse
Affiliation(s)
- Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Mathew Abrams
- International Neuroinformatics Coordinating Facility, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Åkerlund
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Nada Andelic
- Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marcel Aries
- Department of Intensive Care, Maastricht UMC, Maastricht, Netherlands
| | - Tom Bashford
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Michael J Bell
- Critical Care Medicine, Neurological Surgery and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yelena G Bodien
- Department of Neurology and Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - András Büki
- Department of Neurosurgery, Faculty of Medicine and Health Örebro University, Örebro, Sweden
- Department of Neurosurgery, Medical School; ELKH-PTE Clinical Neuroscience MR Research Group; and Neurotrauma Research Group, Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Randall M Chesnut
- Department of Neurological Surgery and Department of Orthopaedics and Sports Medicine, University of Washington, Harborview Medical Center, Seattle, WA, USA
| | - Giuseppe Citerio
- School of Medicine and Surgery, Universita Milano Bicocca, Milan, Italy
- NeuroIntensive Care, San Gerardo Hospital, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
| | - David Clark
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Betony Clasby
- Department of Sociological Studies, University of Sheffield, Sheffield, UK
| | - D Jamie Cooper
- School of Public Health and Preventive Medicine, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Endre Czeiter
- Department of Neurosurgery, Medical School; ELKH-PTE Clinical Neuroscience MR Research Group; and Neurotrauma Research Group, Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Marek Czosnyka
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance and Department of Neurology, Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Véronique De Keyser
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Ramon Diaz-Arrastia
- Department of Neurology and Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Thomas A van Essen
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
- Department of Neurosurgery, Medical Center Haaglanden, The Hague, Netherlands
| | - Éanna Falvey
- College of Medicine and Health, University College Cork, Cork, Ireland
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco and San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Anthony Figaji
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Dashiell Gantner
- School of Public Health and Preventive Medicine, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Guoyi Gao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Joseph Giacino
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Benjamin Gravesteijn
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fabian Guiza
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Deepak Gupta
- Department of Neurosurgery, Neurosciences Centre and JPN Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Mark Gurnell
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Juanita A Haagsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Flora M Hammond
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
| | - Gregory Hawryluk
- Section of Neurosurgery, GB1, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Hutchinson
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Mathieu van der Jagt
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health, University of California, San Diego, CA, USA
| | - Swati Jain
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Ji-yao Jiang
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hope Kent
- Department of Psychology, University of Exeter, Exeter, UK
| | - Angelos Kolias
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Erwin J O Kompanje
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fiona Lecky
- Centre for Urgent and Emergency Care Research, Health Services Research Section, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Hester F Lingsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marc Maegele
- Cologne-Merheim Medical Center, Department of Trauma and Orthopedic Surgery, Witten/Herdecke University, Cologne, Germany
| | - Marek Majdan
- Institute for Global Health and Epidemiology, Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
| | - Amy Markowitz
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Michael McCrea
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Ana Mikolić
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - David Nelson
- Section for Anesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lindsay D Nelson
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Virginia Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - David Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Wilco Peul
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - Dana Pisică
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Suzanne Polinder
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Louis Puybasset
- Department of Anesthesiology and Intensive Care, APHP, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rahul Raj
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino IRCCS for Oncology and Neuroscience, Genova, Italy, and Dipartimento di Scienze Chirurgiche e Diagnostiche, University of Genoa, Italy
| | - Cecilie Røe
- Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
| | - Peter Smielewski
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Murray B Stein
- Department of Psychiatry and Department of Family Medicine and Public Health, UCSD School of Medicine, La Jolla, CA, USA
| | - Nicole von Steinbüchel
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Goettingen, Germany
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences Leiden University Medical Center, Leiden, Netherlands
| | - Nino Stocchetti
- Department of Pathophysiology and Transplantation, Milan University, and Neuroscience ICU, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nancy Temkin
- Departments of Neurological Surgery, and Biostatistics, University of Washington, Seattle, WA, USA
| | - Olli Tenovuo
- Department of Rehabilitation and Brain Trauma, Turku University Hospital, and Department of Neurology, University of Turku, Turku, Finland
| | - Alice Theadom
- National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand
| | - Ilias Thomas
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Abel Torres Espin
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Alexis F Turgeon
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, CHU de Québec-Université Laval Research Center, Québec City, QC, Canada
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominique Van Praag
- Departments of Clinical Psychology and Neurosurgery, Antwerp University Hospital, and University of Antwerp, Edegem, Belgium
| | - Ernest van Veen
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Thijs Vande Vyvere
- Department of Radiology, Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences (MOVANT), Antwerp University Hospital, and University of Antwerp, Edegem, Belgium
| | - Kevin K W Wang
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Eveline J A Wiegers
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - W Huw Williams
- Centre for Clinical Neuropsychology Research, Department of Psychology, University of Exeter, Exeter, UK
| | - Lindsay Wilson
- Division of Psychology, University of Stirling, Stirling, UK
| | - Stephen R Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Esther L Yuh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Frederick A Zeiler
- Departments of Surgery, Human Anatomy and Cell Science, and Biomedical Engineering, Rady Faculty of Health Sciences and Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Marina Zeldovich
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Goettingen, Germany
| | - Roger Zemek
- Departments of Pediatrics and Emergency Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario, ON, Canada
| | | |
Collapse
|
21
|
Chan WH, Hsu YJ, Cheng CP, Chou KN, Chen CL, Huang SM, Kan WC, Chiu YL. Assessing the Global Impact on the Mouse Kidney After Traumatic Brain Injury: A Transcriptomic Study. J Inflamm Res 2022; 15:4833-4851. [PMID: 36042866 PMCID: PMC9420446 DOI: 10.2147/jir.s375088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose In this study, we use animal models combined with bioinformatics strategies to investigate the potential changes in overall renal transcriptional expression after traumatic brain injury. Methods Microarray analysis was performed after kidney acquisition using unilateral controlled cortical impact as the primary mouse TBI model. Multi-oriented gene set enrichment analysis was performed for differentially expressed genes. Results The results showed that TBI affected the gene set associated with mitochondria function in kidney cells, and a negative enrichment of gene sets associated with immune cell migration and epidermal development was also observed. Analysis of the disease phenotype gene set revealed that differential expression of mitochondria-related genes was associated with lactate metabolism. Alternatively, activation and adhesion of immune cells associated with the complement system may promote autoinflammation in kidney tissue. The simulated immune cell infiltration analysis showed an increase in the proportion of activated memory CD4 T cells and a decrease in the proportion of resting memory CD4 T cells, suggesting that activated memory CD4 T cell infiltration may be involved in the inflammation of renal tissue and cause damage to renal cells, such as principal cells, mesangial cells and loops of Henle cells. Conclusion This study is the first to reveal the effects of brain trauma on the kidney. TBI may affect the expression of mitochondria function-related gene sets in renal cells by increasing lactate. It may also affect renal mesangial cells by inducing increased infiltration of immune cells through mechanisms related to complement system activation or autoimmune antibodies.
Collapse
Affiliation(s)
- Wei-Hung Chan
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Chiao-Pei Cheng
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Kuan-Nien Chou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan, Republic of China.,Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| | - Wei-Chih Kan
- Department of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan City, Taiwan, Republic of China.,Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan City, Taiwan, Republic of China
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan, Republic of China
| |
Collapse
|
22
|
Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Med 2022; 48:649-666. [PMID: 35595999 DOI: 10.1007/s00134-022-06702-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/09/2022] [Indexed: 01/04/2023]
Abstract
Traumatic brain injury (TBI) remains one of the most fatal and debilitating conditions in the world. Current clinical management in severe TBI patients is mainly concerned with reducing secondary insults and optimizing the balance between substrate delivery and consumption. Over the past decades, multimodality monitoring has become more widely available, and clinical management protocols have been published that recommend potential interventions to correct pathophysiological derangements. Even while evidence from randomized clinical trials is still lacking for many of the recommended interventions, these protocols and algorithms can be useful to define a clear standard of therapy where novel interventions can be added or be compared to. Over the past decade, more attention has been paid to holistic management, in which hemodynamic, respiratory, inflammatory or coagulation disturbances are detected and treated accordingly. Considerable variability with regards to the trajectories of recovery exists. Even while most of the recovery occurs in the first months after TBI, substantial changes may still occur in a later phase. Neuroprognostication is challenging in these patients, where a risk of self-fulfilling prophecies is a matter of concern. The present article provides a comprehensive and practical review of the current best practice in clinical management and long-term outcomes of moderate to severe TBI in adult patients admitted to the intensive care unit.
Collapse
|
23
|
Huang ZY, Liu Y, Huang HF, Huang SH, Wang JX, Tian JF, Zeng WX, Lv RG, Jiang S, Gao JL, Gao Y, Yu XX. Acute kidney injury in traumatic brain injury intensive care unit patients. World J Clin Cases 2022; 10:2751-2763. [PMID: 35434091 PMCID: PMC8968802 DOI: 10.12998/wjcc.v10.i9.2751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The exact definition of Acute kidney injury (AKI) for patients with traumatic brain injury (TBI) is unknown.
AIM To compare the power of the “Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease” (RIFLE), Acute Kidney Injury Network (AKIN), Creatinine kinetics (CK), and Kidney Disease Improving Global Outcomes (KDIGO) to determine AKI incidence/stage and their association with the in-hospital mortality rate of patients with TBI.
METHODS This retrospective study collected the data of patients admitted to the intensive care unit for neurotrauma from 2001 to 2012, and 1648 patients were included. The subjects in this study were assessed for the presence and stage of AKI using RIFLE, AKIN, CK, and KDIGO. In addition, the propensity score matching method was used.
RESULTS Among the 1648 patients, 291 (17.7%) had AKI, according to KDIGO. The highest incidence of AKI was found by KDIGO (17.7%), followed by AKIN (17.1%), RIFLE (12.7%), and CK (11.5%) (P = 0.97). Concordance between KDIGO and RIFLE/AKIN/CK was 99.3%/99.1%/99.3% for stage 0, 36.0%/91.5%/44.5% for stage 1, 35.9%/90.6%/11.3% for stage 2, and 47.4%/89.5%/36.8% for stage 3. The in-hospital mortality rates increased with the AKI stage in all four definitions. The severity of AKI by all definitions and stages was not associated with in-hospital mortality in the multivariable analyses (all P > 0.05).
CONCLUSION Differences are seen in AKI diagnosis and in-hospital mortality among the four AKI definitions or stages. This study revealed that KDIGO is the best method to define AKI in patients with TBI.
Collapse
Affiliation(s)
- Zheng-Yang Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518037, Guangdong Province, China
| | - Yong Liu
- Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Hao-Fan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518037, Guangdong Province, China
| | - Shu-Hua Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518037, Guangdong Province, China
| | - Jing-Xin Wang
- Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Jin-Fei Tian
- Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Wen-Xian Zeng
- Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Rong-Gui Lv
- Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Song Jiang
- Intensive Care Unit, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Jun-Ling Gao
- Department of Medicine, LKS Medical Faculty, The University of Hong Kong, Hongkong 999077, China
| | - Yi Gao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518037, Guangdong Province, China
| | - Xia-Xia Yu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518037, Guangdong Province, China
| |
Collapse
|
24
|
Maragkos GA, Cho LD, Legome E, Wedderburn R, Margetis K. Prognostic Factors for Stage 3 Acute Kidney Injury in Isolated Serious Traumatic Brain Injury. World Neurosurg 2022; 161:e710-e722. [PMID: 35257954 DOI: 10.1016/j.wneu.2022.02.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Stage 3 acute kidney injury (AKI) has been observed to develop following serious traumatic brain injury (TBI) and is associated with worse outcomes, though its incidence is not consistently established. This study aims to report the incidence of stage 3 AKI in serious isolated TBI in a large, national trauma database, and explore associated predictive factors. METHODS This was a retrospective cohort study using 2015-2018 data from the American College of Surgeons Trauma Quality Improvement Program (ACS-TQIP), a national database of trauma patients. Adult trauma patients admitted to the hospital with isolated serious TBI were included. Variables relating to demographics, comorbidities, vitals, hospital presentation, and course of stay were assessed. Imputed multivariable logistic regression assessed factors predictive of stage 3 AKI development. RESULTS A total of 342,675 patients with isolated serious TBI were included, 1,585 (0.5%) of whom developed stage 3 AKI. Variables associated with stage 3 AKI in multivariable analysis were older age, male sex, Black race, higher BMI, history of hypertension, diabetes, peripheral artery disease, chronic kidney disease, higher injury severity score, higher heart rate on arrival, lower oxygen saturation and motor Glasgow coma scale (GCS), admission to the intensive care unit (ICU) or operating room, development of catheter-associated urinary tract infections (CAUTI) or acute respiratory distress syndrome (ARDS), longer ICU stay and ventilation duration. CONCLUSIONS Stage 3 AKI occurred in 0.5% of serious TBI cases. Complications of ARDS and CAUTI are more likely to co-occur with stage 3 AKI in serious TBI patients.
Collapse
Affiliation(s)
- Georgios A Maragkos
- Department of Neurosurgery, Mount Sinai Morningside Hospital, Icahn School of Medicine, New York, NY
| | - Logan D Cho
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric Legome
- Department of Emergency Medicine, Mount Sinai West and Mount Sinai Morningside Hospitals, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Raymond Wedderburn
- Department of Surgery, Mount Sinai Morningside Hospital, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Konstantinos Margetis
- Department of Neurosurgery, Mount Sinai Morningside Hospital, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
25
|
Wang R, Wang S, Zhang J, He M, Xu J. Serum Lactate Level in Early Stage Is Associated With Acute Kidney Injury in Traumatic Brain Injury Patients. Front Surg 2022; 8:761166. [PMID: 35174203 PMCID: PMC8841417 DOI: 10.3389/fsurg.2021.761166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/24/2021] [Indexed: 01/27/2023] Open
Abstract
Background Acute kidney injury (AKI) is a common complication in the clinical practice of managing patients with traumatic brain injury (TBI). Avoiding the development of AKI is beneficial for the prognosis of patients with TBI. We designed this study to testify whether serum lactate could be used as a predictive marker of AKI in patients with TBI. Materials and Methods In total, 243 patients with TBI admitted to our hospital were included in this study. Univariate and multivariate logistic regression analyses were utilized to analyze the association between lactate and AKI. The receiver operating characteristic (ROC) curves were drawn to verify the predictive value of lactate and the logistic model. Results Acute kidney injury group had higher age (p = 0.016), serum creatinine (p < 0.001), lactate (p < 0.001), and lower Glasgow Coma Scale (GCS; p = 0.021) than non-AKI group. Multivariate logistic regression showed that age [odds ratio (OR) = 1.026, p = 0.022], serum creatinine (OR = 1.020, p = 0.010), lactate (OR = 1.227, p = 0.031), fresh frozen plasma (FFP) transfusion (OR = 2.421, p = 0.045), and platelet transfusion (OR = 5.502, p = 0.044) were risk factors of AKI in patients with TBI. The area under the ROC curve (AUC) values of single lactate and predictive model were 0.740 and 0.807, respectively. Conclusion Serum lactate level in the early phase is associated with AKI in patients with TBI. Lactate is valuable for clinicians to evaluate the probability of AKI in patients with TBI.
Collapse
Affiliation(s)
- Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shaobo Wang
- Department of Infectious Diseases, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Min He
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Jianguo Xu
| |
Collapse
|
26
|
Battaglini D, Robba C, Pelosi P. Traumatic brain injury and translational research: pharmacological and nonpharmacological perspectives. PERIOPERATIVE NEUROSCIENCE 2022:139-154. [DOI: 10.1016/b978-0-323-91003-3.00014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Zhang Y, Huang Z, Xia H, Xiong J, Ma X, Liu C. The benefits of exercise for outcome improvement following traumatic brain injury: Evidence, pitfalls and future perspectives. Exp Neurol 2021; 349:113958. [PMID: 34951984 DOI: 10.1016/j.expneurol.2021.113958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI), also known as a silent epidemic, is currently a substantial public health problem worldwide. Given the increased energy demands following brain injury, relevant guidelines tend to recommend absolute physical and cognitive rest for patients post-TBI. Nevertheless, recent evidence suggests that strict rest does not provide additional benefits to patients' recovery. By contrast, as a cost-effective non-pharmacological therapy, exercise has shown promise for enhancing functional outcomes after injury. This article summarizes the most recent evidence supporting the beneficial effects of exercise on TBI outcomes, focusing on the efficacy of exercise for cognitive recovery after injury and its potential mechanisms. Available evidence demonstrates the potential of exercise in improving cognitive impairment, mood disorders, and post-concussion syndrome following TBI. However, the clinical application for exercise rehabilitation in TBI remains challenging, particularly due to the inadequacy of the existing clinical evaluation system. Also, a better understanding of the underlying mechanisms whereby exercise promotes its most beneficial effects post-TBI will aid in the development of new clinical strategies to best benefit of these patients.
Collapse
Affiliation(s)
- Yulan Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Zhihai Huang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Honglin Xia
- Laboratory of Regenerative Medicine in Sports Science, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jing Xiong
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Xu Ma
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Chengyi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
28
|
Wang R, Zhang J, Xu J, He M, Xu J. Incidence and Burden of Acute Kidney Injury among Traumatic Brain-Injury Patients. Risk Manag Healthc Policy 2021; 14:4571-4580. [PMID: 34795542 PMCID: PMC8593602 DOI: 10.2147/rmhp.s335150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/31/2021] [Indexed: 02/05/2023] Open
Abstract
Background Acute kidney injury (AKI) has been occurs commonly in the clinical management of traumatic brain injury (TBI) patients and is correlated with outcomes in these patients. We designed this study to investigate the incidence, duration, stage, and burden of AKI among these patients. Methods A total of 419 TBI inpatients at our hospital were included in the study. We calculated the AKI burden, reflecting both stage and duration, and then analyzed associations among AKI occurrence, highest AKI stage, AKI duration, AKI burden, and outcomes with logistic regression analysis. Results Incidence of AKI among TBI patients was 19.8%. These patients’ AKIs occurred mainly on the first day from admission (10.74%), and mostly developed stage 1 AKI (9.79%). Modes of AKI duration and burden in those with AKI were both 1. Multivariate logistic regression showed AKI occurrence (OR 3.792, p=0.004) and the highest AKI stage (OR 3.122, p<0.001) was significantly associated with mortality. Neither AKI duration (OR 1.083, p=0.206) nor AKI burden (OR 1.062, p=0.171) were associated with mortality. Incorporating AKI occurrence or highest AKI stage did not improve the predictive value of the constructed prognostic model. Conclusion The high-incidence period of AKI in TBI patients was the first 3 days after admission. AKI occurrence and highest AKI stage were associated with mortality, while AKI duration and AKI burden were not associated with mortality.
Collapse
Affiliation(s)
- Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Jing Xu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
29
|
Acute Kidney Injury Definition in Traumatic Brain Injury Patients Only Based on Serum Creatinine Criteria and Not Together With Urine Output Criteria: Are We Missing Some Acute Kidney Injury Patients? Crit Care Med 2021; 49:e553-e554. [PMID: 33854023 DOI: 10.1097/ccm.0000000000004914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
The authors reply. Crit Care Med 2021; 49:e554-e555. [PMID: 33854024 DOI: 10.1097/ccm.0000000000004961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Skrifvars MB, Bailey M, Moore E, Mårtensson J, French C, Presneill J, Nichol A, Little L, Duranteau J, Huet O, Haddad S, Arabi YM, McArthur C, Cooper DJ, Bendel S, Bellomo R. A Post Hoc Analysis of Osmotherapy Use in the Erythropoietin in Traumatic Brain Injury Study-Associations With Acute Kidney Injury and Mortality. Crit Care Med 2021; 49:e394-e403. [PMID: 33566466 PMCID: PMC7963441 DOI: 10.1097/ccm.0000000000004853] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Mannitol and hypertonic saline are used to treat raised intracerebral pressure in patients with traumatic brain injury, but their possible effects on kidney function and mortality are unknown. DESIGN A post hoc analysis of the erythropoietin trial in traumatic brain injury (ClinicalTrials.gov NCT00987454) including daily data on mannitol and hypertonic saline use. SETTING Twenty-nine university-affiliated teaching hospitals in seven countries. PATIENTS A total of 568 patients treated in the ICU for 48 hours without acute kidney injury of whom 43 (7%) received mannitol and 170 (29%) hypertonic saline. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We categorized acute kidney injury stage according to the Kidney Disease Improving Global Outcome classification and defined acute kidney injury as any Kidney Disease Improving Global Outcome stage-based changes from the admission creatinine. We tested associations between early (first 2 d) mannitol and hypertonic saline and time to acute kidney injury up to ICU discharge and death up to 180 days with Cox regression analysis. Subsequently, acute kidney injury developed more often in patients receiving mannitol (35% vs 10%; p < 0.001) and hypertonic saline (23% vs 10%; p < 0.001). On competing risk analysis including factors associated with acute kidney injury, mannitol (hazard ratio, 2.3; 95% CI, 1.2-4.3; p = 0.01), but not hypertonic saline (hazard ratio, 1.6; 95% CI, 0.9-2.8; p = 0.08), was independently associated with time to acute kidney injury. In a Cox model for predicting time to death, both the use of mannitol (hazard ratio, 2.1; 95% CI, 1.1-4.1; p = 0.03) and hypertonic saline (hazard ratio, 1.8; 95% CI, 1.02-3.2; p = 0.04) were associated with time to death. CONCLUSIONS In this post hoc analysis of a randomized controlled trial, the early use of mannitol, but not hypertonic saline, was independently associated with an increase in acute kidney injury. Our findings suggest the need to further evaluate the use and choice of osmotherapy in traumatic brain injury.
Collapse
Affiliation(s)
- Markus B Skrifvars
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Division of Intensive Care, Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Emergency Care and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Centre for Integrated Critical Care, The University of Melbourne, Melbourne, VIC, Australia
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Physiology and Pharmacology, Section of Anaesthesia and Intensive Care, Karolinska Institutet, Stockholm, Sweden
- Department of Intensive Care, Western Health, Melbourne, VIC, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- St. Vincent's University Hospital, Dublin, Ireland
- Department of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, VIC, Australia
- Department of Anaesthesia and Intensive Care, Hôpitaux universitaires Paris Sud (HUPS), Université Paris Sud XI, Paris, France
- Departement d'anesthésie-réanimation, Hopital de la Cavale Blanche, Boulevard Tanguy Prigent, CHRU de Brest, Univeristé de Bretagne Occidental, Brest, France
- King Saud Bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Critical Care Medicine, Auckland City Hospital, Auckland, New Zealand
- Department of Anesthesiology and Intensive Care, Kuopio University Hospital & University of Eastern Finland, Kuopio, Finland
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia
| | - Michael Bailey
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Integrated Critical Care, The University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth Moore
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Johan Mårtensson
- Department of Physiology and Pharmacology, Section of Anaesthesia and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Craig French
- Department of Intensive Care, Western Health, Melbourne, VIC, Australia
| | - Jeffrey Presneill
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Alistair Nichol
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Lorraine Little
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Jacques Duranteau
- Department of Anaesthesia and Intensive Care, Hôpitaux universitaires Paris Sud (HUPS), Université Paris Sud XI, Paris, France
| | - Olivier Huet
- Departement d'anesthésie-réanimation, Hopital de la Cavale Blanche, Boulevard Tanguy Prigent, CHRU de Brest, Univeristé de Bretagne Occidental, Brest, France
| | - Samir Haddad
- King Saud Bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Yaseen M Arabi
- King Saud Bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Colin McArthur
- Department of Critical Care Medicine, Auckland City Hospital, Auckland, New Zealand
| | - David James Cooper
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, VIC, Australia
| | - Stepani Bendel
- Department of Anesthesiology and Intensive Care, Kuopio University Hospital & University of Eastern Finland, Kuopio, Finland
| | - Rinaldo Bellomo
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Integrated Critical Care, The University of Melbourne, Melbourne, VIC, Australia
- Department of Intensive Care, Austin Health, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Rossong H, Hasen M, Ahmed B, Zeiler FA, Dhaliwal P. Hypertonic Saline for Moderate Traumatic Brain Injury: A Scoping Review of Impact on Neurological Deterioration. Neurotrauma Rep 2020; 1:253-260. [PMID: 33381773 PMCID: PMC7769038 DOI: 10.1089/neur.2020.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypertonic saline (HTS) is a commonly administered agent for intracranial pressure (ICP) control in traumatic brain injury (TBI). The literature on its use is mainly in moderate/severe TBI where invasive ICP monitoring is present. The role of HTS in patients with moderate TBI (mTBI) outside of the intensive care unit (ICU) setting remains unclear. The goal of this scoping review was to provide an overview of the available literature on HTS administration in patients with mTBI without ICP monitoring, assessing its impact on outcome and transitions in care. We performed a scoping systematic review of the literature of MEDLINE, Embase, Scopus, BIOSIS, and the Cochrane Databases from inception to July 31, 2020. We searched for those published articles documenting the administration of HTS in patients with mTBI with recorded functional outcome or transitions in hospital care. A two-step review process was conducted in accordance with methodology outlined in the Cochrane Handbook for Systematic Reviews of Interventions. There were many studies with combined moderate/severe TBI populations. However, most failed to document subgroup analysis for patients with mTBI. Our search strategy identified only one study that documented the administration of HTS in mTBI in which subgroup analysis for mTBI and outcomes were provided. This retrospective cohort study assessed patients with mTBI who did/did not receive prophylactic HTS, finding that those not receiving HTS demonstrated a deterioration in Glasgow Coma Scale (GCS) score in the first 48 h. However, the HTS group did demonstrate a trend to longer hospital stay and pneumonia. Our scoping review identified a significant gap in knowledge surrounding the use of HTS for patients with mTBI without invasive ICP monitoring. The limited identified literature suggests prophylactic administration prevents clinical deterioration, although this is based on a single study with data available for mTBI sub-analysis. Further studies on HTS in non-monitored patients with mTBI are required.
Collapse
Affiliation(s)
- Heather Rossong
- Undergraduate Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohammed Hasen
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bilal Ahmed
- Undergraduate Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Perry Dhaliwal
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|