1
|
Živanović I, Miš K, Pirkmajer S, Marić I, Goslar T. Markers of Mitochondrial Injury and Neurological Outcomes of Comatose Patients after Cardiac Arrest. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1286. [PMID: 39202565 PMCID: PMC11356653 DOI: 10.3390/medicina60081286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Most patients who are successfully resuscitated from cardiac arrest remain comatose, and only half regain consciousness 72 h after the arrest. Neuroprognostication methods can be complex and even inconclusive. As mitochondrial components have been identified as markers of post-cardiac-arrest injury and associated with survival, we aimed to investigate cytochrome c and mtDNA in comatose patients after cardiac arrest to compare neurological outcomes and to evaluate the markers' neuroprognostic value. Materials and Methods: This prospective observational study included 86 comatose post-cardiac-arrest patients and 10 healthy controls. Cytochrome c and mtDNA were determined at admission. Neuron-specific enolase (NSE) was measured after 72 h. Additional neuroprognostication methods were performed when patients remained unconscious. Cerebral performance category (CPC) was determined. Results: Cytochrome c was elevated in patients compared to healthy controls (2.029 [0.85-4.97] ng/mL vs. 0 [0.0-0.16], p < 0.001) but not mtDNA (95,228 [52,566-194,060] vs. 41,466 [28,199-104,708] copies/μL, p = 0.074). Compared to patients with CPC 1-2, patients with CPC 3-5 had higher cytochrome c (1.735 [0.717-3.40] vs. 4.109 [1.149-8.457] ng/mL, p = 0.011), with no differences in mtDNA (87,855 [47,598-172,464] vs. 126,452 [69,447-260,334] copies/μL, p = 0.208). Patients with CPC 1-2 and CPC 3-5 differed in all neuroprognostication methods. In patients with good vs. poor neurological outcome, ROC AUC was 0.664 (p = 0.011) for cytochrome c, 0.582 (p = 0.208) for mtDNA, and 0.860 (p < 0.001) for NSE. The correlation between NSE and cytochrome c was moderate, with a coefficient of 0.576 (p < 0.001). Conclusions: Cytochrome c was higher in comatose patients after cardiac arrest compared to healthy controls and higher in post-cardiac-arrest patients with poor neurological outcomes. Although cytochrome c correlated with NSE, its neuroprognostic value was poor. We found no differences in mtDNA.
Collapse
Affiliation(s)
- Ina Živanović
- Department of Intensive Internal Medicine, University Medical Centre Ljubljana, Zaloska cesta 7, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Katarina Miš
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska cesta 4, 1000 Ljubljana, Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska cesta 4, 1000 Ljubljana, Slovenia
| | - Ivica Marić
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000 Ljubljana, Slovenia
| | - Tomaž Goslar
- Department of Intensive Internal Medicine, University Medical Centre Ljubljana, Zaloska cesta 7, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Nakamura E, Aoki T, Endo Y, Kazmi J, Hagiwara J, Kuschner CE, Yin T, Kim J, Becker LB, Hayashida K. Organ-Specific Mitochondrial Alterations Following Ischemia-Reperfusion Injury in Post-Cardiac Arrest Syndrome: A Comprehensive Review. Life (Basel) 2024; 14:477. [PMID: 38672748 PMCID: PMC11050834 DOI: 10.3390/life14040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction, which is triggered by systemic ischemia-reperfusion (IR) injury and affects various organs, is a key factor in the development of post-cardiac arrest syndrome (PCAS). Current research on PCAS primarily addresses generalized mitochondrial responses, resulting in a knowledge gap regarding organ-specific mitochondrial dynamics. This review focuses on the organ-specific mitochondrial responses to IR injury, particularly examining the brain, heart, and kidneys, to highlight potential therapeutic strategies targeting mitochondrial dysfunction to enhance outcomes post-IR injury. METHODS AND RESULTS We conducted a narrative review examining recent advancements in mitochondrial research related to IR injury. Mitochondrial responses to IR injury exhibit considerable variation across different organ systems, influenced by unique mitochondrial structures, bioenergetics, and antioxidative capacities. Each organ demonstrates distinct mitochondrial behaviors that have evolved to fulfill specific metabolic and functional needs. For example, cerebral mitochondria display dynamic responses that can be both protective and detrimental to neuronal activity and function during ischemic events. Cardiac mitochondria show vulnerability to IR-induced oxidative stress, while renal mitochondria exhibit a unique pattern of fission and fusion, closely linked to their susceptibility to acute kidney injury. This organ-specific heterogeneity in mitochondrial responses requires the development of tailored interventions. Progress in mitochondrial medicine, especially in the realms of genomics and metabolomics, is paving the way for innovative strategies to combat mitochondrial dysfunction. Emerging techniques such as mitochondrial transplantation hold the potential to revolutionize the management of IR injury in resuscitation science. CONCLUSIONS The investigation into organ-specific mitochondrial responses to IR injury is pivotal in the realm of resuscitation research, particularly within the context of PCAS. This nuanced understanding holds the promise of revolutionizing PCAS management, addressing the unique mitochondrial dysfunctions observed in critical organs affected by IR injury.
Collapse
Affiliation(s)
- Eriko Nakamura
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Yusuke Endo
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Jacob Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Jun Hagiwara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Cyrus E. Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY 11030, USA; (E.N.); (T.A.); (Y.E.); (J.K.); (J.H.); (C.E.K.); (T.Y.); (J.K.); (L.B.B.)
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
3
|
Golubnitschaja O. Mitochondrion: The Subordinated Partner Who Agreed to Come Short But Insists in Healthy Life. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2024:17-29. [DOI: 10.1007/978-3-031-46891-9_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Kim YJ, Lee YJ, Kim YH, Kim WY. Effect of adjuvant thiamine and ascorbic acid administration on the neurologic outcomes of out-of-hospital cardiac arrest patients: A before-and-after study. Resuscitation 2023; 193:110018. [PMID: 37890576 DOI: 10.1016/j.resuscitation.2023.110018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
AIM This study aimed to evaluate the impact of early thiamine and ascorbic acid administration on the neurologic outcome in out-of-hospital cardiac arrest (OHCA) patients treated with targeted temperature management (TTM). METHODS This before-and-after cohort study used data extracted from two hospitals of the Korean Hypothermia Network prospective registry. The treatment group incorporated patients enrolled from December 2019 to May 2021, that received intravenous thiamine (200 mg) and ascorbic acid (3 g) at 12-hour intervals for a total of six doses. The control group incorporated those enrolled from May 2018 to November 2019. The one-month good neurologic outcome, defined as a Cerebral Performance Category score ≤ 2, between the groups was evaluated using inverse probability of treatment weighting (IPTW). RESULTS Among the 234 OHCA survivors with TTM, 102 were included in the treatment group and 132 were included in the control group. The one-month (31.4 % vs. 29.5 %, respectively; P = 0.76) good neurologic outcome rates did not differ between the treatment and control groups. After adjusting using the IPTW, vitamin supplementation was not associated with good neurologic outcome (odds ratio [OR], 1.134; 95 % confidence interval [CI], 0.644-1.999; P = 0.66). In subgroup analysis, vitamin administration was significantly associated with a good neurologic outcome in older (≥65 years) patients (adjusted OR, 5.53; 95 % CI, 1.21-25.23; P = 0.03). CONCLUSION Adjuvant thiamine and ascorbic acid administration in OHCA survivors with TTM did not improve their neurologic outcome after one month. Further clinical trials are warranted.
Collapse
Affiliation(s)
- Youn-Jung Kim
- Department of Emergency Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - You Jin Lee
- Department of Emergency Medicine, Gangneung Asan Hospital, Ulsan University College of Medicine, Gangneung, Korea
| | - Yong Hwan Kim
- Departments of Emergency Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea.
| | - Won Young Kim
- Department of Emergency Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Tang Y, Sun J, Yu Z, Liang B, Peng B, Ma J, Zeng X, Feng Y, Chen Q, Zha L. Association between prothrombin time-international normalized ratio and prognosis of post-cardiac arrest patients: A retrospective cohort study. Front Public Health 2023; 11:1112623. [PMID: 36741950 PMCID: PMC9895096 DOI: 10.3389/fpubh.2023.1112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Background Cardiac arrest (CA) can activate blood coagulation. This study aimed to explore the potential prognostic value of prothrombin time-international normalized ratio (INR) in post-CA patients. Methods The clinical data of eligible subjects diagnosed with CA was extracted from the MIMIC-IV database as the training cohort. Restricted cubic spline (RCS), Kaplan-Meier (K-M) survival curve, and Cox regression analyses were conducted to elucidate the association between the INR and all-cause mortality of post-CA patients. Subgroup analysis, propensity score matching (PSM), and inverse probability of treatment (IPTW) were also conducted to improve stability and reliability. Data of the validation cohort were collected from the eICU database, and logistic-regression analyses were performed to verify the findings of the training cohort. Results A total of 1,324 subjects were included in the training cohort. A linear correlation existed between INR and the risk of all-cause death of post-CA patients, as shown in RCS analysis, with a hazard ratio (HR) >1 when INR exceeded 1.2. K-M survival curve preliminarily indicated that subjects with INR ≥ 1.2 presented lower survival rate and shorter survival time, and the high level of INR was independently associated with 30-day, 90-day, 1-year, and in-hospital mortalities, with multivariate-adjusted HR of 1.44 (1.20, 1.73), 1.46 (1.23, 1.74), 1.44 (1.23, 1.69), and 1.37 (1.14, 1.64), respectively. These findings were consistent and robust across the subgroup analysis, PSM and IPTW analyses, and validation cohort. Conclusions We systematically and comprehensively demonstrated that elevated INR was associated with increased short- and long-term all-cause mortality of post-CA patients. Therefore, elevated INR may be a promising biomarker with prognosis significance.
Collapse
Affiliation(s)
- Yiyang Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Sun
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Benhui Liang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baohua Peng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Ma
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaofang Zeng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yilu Feng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Chen
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Qin Chen ✉
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders (Xiang Ya), Changsha, Hunan, China,Lihuang Zha ✉
| |
Collapse
|
6
|
Paulin Beske R, Henriksen HH, Obling L, Kjærgaard J, Bro-Jeppesen J, Nielsen N, Johanson PI, Hassager C. Targeted plasma metabolomics in resuscitated comatose out-of-hospital cardiac arrest patients. Resuscitation 2022; 179:163-171. [PMID: 35753507 DOI: 10.1016/j.resuscitation.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Out-of-hospital cardiac arrest (OHCA) is a leading cause of death. Even if successfully resuscitated, mortality remains high due to ischemic and reperfusion injury (I/R). The oxygen deprivation leads to a metabolic derangement amplified upon reperfusion resulting in an uncontrolled generation of reactive oxygen species in the mitochondria triggering cell death mechanisms. The understanding of I/R injury in humans following OHCA remains sparse, with no existing treatment to attenuate the reperfusion injury. AIM To describe metabolic derangement in patients following resuscitated OHCA. METHODS Plasma from consecutive resuscitated unconscious OHCA patients drawn at hospital admission were analyzed using ultra-performance-liquid-mass-spectrometry. Sixty-one metabolites were prespecified for quantification and studied. RESULTS In total, 163 patients were included, of which 143 (88%) were men, and the median age was 62 years (53-68). All measured metabolites from the tricarboxylic acid (TCA) cycle were significantly higher in non-survivors vs. survivors (180-days survival). Hierarchical clustering identified four clusters (A-D) of patients with distinct metabolic profiles. Cluster A and B had higher levels of TCA metabolites, amino acids and acylcarnitine species compared to C and D. The mortality was significantly higher in cluster A and B (A:62% and B:59% vs. C:21 % and D:24%, p < 0.001). Cluster A and B had longer time to return of spontaneous circulation (A:33 min (21-43), B:27 min (24-35), C:18 min (13-28), and D:18 min (12-25), p < 0.001). CONCLUSION Circulating levels of metabolites from the TCA cycle best described the variance between survivors and non-survivors. Four different metabolic phenotypes with significantly different mortality were identified.
Collapse
Affiliation(s)
- Rasmus Paulin Beske
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hanne H Henriksen
- Center for Endotheliomics, CAG, Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Laust Obling
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jesper Kjærgaard
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - John Bro-Jeppesen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Niklas Nielsen
- Department of Clinical Sciences at Helsingborg, Lund University. Lund, Sweden
| | - Pär I Johanson
- Center for Endotheliomics, CAG, Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Hassager
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Tan Y, Yu K, Liang L, Liu Y, Song F, Ge Q, Fang X, Yu T, Huang Z, Jiang L, Wang P. Sodium-Glucose Co-Transporter 2 Inhibition With Empagliflozin Improves Cardiac Function After Cardiac Arrest in Rats by Enhancing Mitochondrial Energy Metabolism. Front Pharmacol 2021; 12:758080. [PMID: 34712142 PMCID: PMC8546214 DOI: 10.3389/fphar.2021.758080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Empagliflozin is a newly developed antidiabetic drug to reduce hyperglycaemia by highly selective inhibition of sodium–glucose co-transporter 2. Hyperglycaemia is commonly seen in patients after cardiac arrest (CA) and is associated with worse outcomes. In this study, we examined the effects of empagliflozin on cardiac function in rats with myocardial dysfunction after CA. Non-diabetic male Sprague–Dawley rats underwent ventricular fibrillation to induce CA, or sham surgery. Rats received 10 mg/kg of empagliflozin or vehicle at 10 min after return of spontaneous circulation by intraperitoneal injection. Cardiac function was assessed by echocardiography, histological analysis, molecular markers of myocardial injury, oxidative stress, mitochondrial ultrastructural integrity and metabolism. We found that empagliflozin did not influence heart rate and blood pressure, but left ventricular function and survival time were significantly higher in the empagliflozin treated group compared to the group treated with vehicle. Empagliflozin also reduced myocardial fibrosis, serum cardiac troponin I levels and myocardial oxidative stress after CA. Moreover, empagliflozin maintained the structural integrity of myocardial mitochondria and increased mitochondrial activity after CA. In addition, empagliflozin increased circulating and myocardial ketone levels as well as heart β-hydroxy butyrate dehydrogenase 1 protein expression. Together, these metabolic changes were associated with an increase in cardiac energy metabolism. Therefore, empagliflozin favorably affected cardiac function in non-diabetic rats with acute myocardial dysfunction after CA, associated with reducing glucose levels and increasing ketone body oxidized metabolism. Our data suggest that empagliflozin might benefit patients with myocardial dysfunction after CA.
Collapse
Affiliation(s)
- Yunke Tan
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Kai Yu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Lian Liang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Yuanshan Liu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Fengqing Song
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Qiulin Ge
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Xiangshao Fang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Zitong Huang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Longyuan Jiang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Su C, Xiao Y, Zhang G, Liang L, Li H, Cheng C, Jin T, Bradley J, Peberdy MA, Ornato JP, Mangino MJ, Tang W. Exogenous Nicotinamide Adenine Dinucleotide Attenuates Postresuscitation Myocardial and Neurologic Dysfunction in a Rat Model of Cardiac Arrest. Crit Care Med 2021; 50:e189-e198. [PMID: 34637412 DOI: 10.1097/ccm.0000000000005268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate the therapeutic potential and underlying mechanisms of exogenous nicotinamide adenine dinucleotide+ on postresuscitation myocardial and neurologic dysfunction in a rat model of cardiac arrest. DESIGN Thirty-eight rats were randomized into three groups: 1) Sham, 2) Control, and 3) NAD. Except for the sham group, untreated ventricular fibrillation for 6 minutes followed by cardiopulmonary resuscitation was performed in the control and NAD groups. Nicotinamide adenine dinucleotide+ (20 mg/kg) was IV administered at the onset of return of spontaneous circulation. SETTING University-affiliated research laboratory. SUBJECTS Sprague-Dawley rats. INTERVENTIONS Nicotinamide adenine dinucleotide+. MEASUREMENTS AND MAIN RESULTS Hemodynamic and myocardial function were measured at baseline and within 4 hours following return of spontaneous circulation. Survival analysis and Neurologic Deficit Score were performed up to 72 hours after return of spontaneous circulation. Adenosine triphosphate (adenosine triphosphate) level was measured in both brain and heart tissue. Mitochondrial respiratory chain function, acetylation level, and expression of Sirtuin3 and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9 (NDUFA9) in isolated mitochondrial protein from both brain and heart tissue were evaluated at 4 hours following return of spontaneous circulation. The results demonstrated that nicotinamide adenine dinucleotide+ treatment improved mean arterial pressure (at 1 hr following return of spontaneous circulation, 94.69 ± 4.25 mm Hg vs 89.57 ± 7.71 mm Hg; p < 0.05), ejection fraction (at 1 hr following return of spontaneous circulation, 62.67% ± 6.71% vs 52.96% ± 9.37%; p < 0.05), Neurologic Deficit Score (at 24 hr following return of spontaneous circulation, 449.50 ± 82.58 vs 339.50 ± 90.66; p < 0.05), and survival rate compared with that of the control group. The adenosine triphosphate level and complex I respiratory were significantly restored in the NAD group compared with those of the control group. In addition, nicotinamide adenine dinucleotide+ treatment activated the Sirtuin3 pathway, down-regulating acetylated-NDUFA9 in the isolated mitochondria protein. CONCLUSIONS Exogenous nicotinamide adenine dinucleotide+ treatment attenuated postresuscitation myocardial and neurologic dysfunction. The responsible mechanisms may involve the preservation of mitochondrial complex I respiratory capacity and adenosine triphosphate production, which involves the Sirtuin3-NDUFA9 deacetylation.
Collapse
Affiliation(s)
- Chenglei Su
- Department of Emergency Medicine Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA. Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Soochow, China. Departments of Internal Medicine and Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA. Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA. Department of Surgery, Virginia Commonwealth University Health System, Richmond, VA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ji X, Bradley JL, Zheng G, Ge W, Xu J, Hu J, He F, Shabnam R, Peberdy MA, Ornato JP, Chen Q, Lesnefsky EJ, Tang W. Cerebral and myocardial mitochondrial injury differ in a rat model of cardiac arrest and cardiopulmonary resuscitation. Biomed Pharmacother 2021; 140:111743. [PMID: 34020243 DOI: 10.1016/j.biopha.2021.111743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
Brain mitochondria are more sensitive to global ischemia compared to heart mitochondria. Complex I in the electron transport chain (ETC) is sensitive to ischemic injury and is a major control point of the rate of ADP stimulated oxygen consumption. The purpose of this study was to explore whether changes in cerebral and myocardial mitochondria differ after cardiac arrest. Animals were randomized into 4 groups (n = 6): 1) Sham 2) VF 3) VF+CPR 4) ROSC 1hr. Ventricular Fibrillation (VF) was induced through a guide wire advanced from the right jugular vein into the ventricle and untreated for 8 min. Resuscitation was attempted with a 4J defibrillation after 8 min of cardiopulmonary resuscitation (CPR). Brain mitochondria and cardiac mitochondrial subpopulations were isolated. Calcium retention capacity was measured to assess susceptibility to mitochondrial permeability transition pore opening. ADP stimulated oxygen consumption and ETC activity assays were performed. Brain mitochondria are far more sensitive to injury during cardiac arrest and resuscitation compared to cardiac mitochondria. Complex I is highly sensitive to injury in brain mitochondria. With markedly decreased calcium retention capacity, mitochondria contribute to cerebral reperfusion injury. Therapeutic preservation of cerebral mitochondrial activity and mitochondrial function during cardiac arrest may improve post-resuscitation neurologic function.
Collapse
Affiliation(s)
- Xianfei Ji
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China; Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jennifer L Bradley
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Guanghui Zheng
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Weiwei Ge
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jing Xu
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Juntao Hu
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Fenglian He
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | | | - Mary Ann Peberdy
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Departments of Internal Medicine and Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA; Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Joseph P Ornato
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA; Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, VA, USA; McGuire Research Institute, Richmond, VA, USA.
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| |
Collapse
|
10
|
Volk LE, Mavroudis CD, Ko T, Hallowell T, Delso N, Roberts AL, Starr J, Landis W, Lin Y, Hefti M, Morgan RW, Melchior RW, Rosenthal TM, Chappell A, Fisher D, Dreher M, Licht DJ, Chen J, Gaynor JW, Mascio CE, Kilbaugh TJ. Increased cerebral mitochondrial dysfunction and reactive oxygen species with cardiopulmonary bypass. Eur J Cardiothorac Surg 2021; 59:1256-1264. [PMID: 33367535 DOI: 10.1093/ejcts/ezaa439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Neurodevelopmental injury after cardiac surgery using cardiopulmonary bypass (CPB) for congenital heart defects is common, but the mechanism behind this injury is unclear. This study examines the impact of CPB on cerebral mitochondrial reactive oxygen species (ROS) generation and mitochondrial bioenergetics. METHODS Twenty-three piglets (mean weight 4.2 ± 0.5 kg) were placed on CPB for either 1, 2, 3 or 4 h (n = 5 per group) or underwent anaesthesia without CPB (sham, n = 3). Microdialysis was used to measure metabolic markers of ischaemia. At the conclusion of CPB or 4 h of sham, brain tissue was harvested. Utilizing high-resolution respirometry, with simultaneous fluorometric analysis, mitochondrial respiration and ROS were measured. RESULTS There were no significant differences in markers of ischaemia between sham and experimental groups. Sham animals had significantly higher mitochondrial respiration than experimental animals, including maximal oxidative phosphorylation capacity of complex I (OXPHOSCI) (3.25 ± 0.18 vs 4-h CPB: 1.68 ± 0.10, P < 0.001) and maximal phosphorylating respiration capacity via convergent input through complexes I and II (OXPHOSCI+CII) (7.40 ± 0.24 vs 4-h CPB: 3.91 ± 0.20, P < 0.0001). At 4-h, experimental animals had significantly higher ROS related to non-phosphorylating respiration through complexes I and II (ETSCI+CII) than shams (1.08 ± 0.13 vs 0.64 ± 0.04, P = 0.026). CONCLUSIONS Even in the absence of local markers of ischaemia, CPB is associated with decreased mitochondrial respiration relative to shams irrespective of duration. Exposure to 4 h of CPB resulted in a significant increase in cerebral mitochondrial ROS formation compared to shorter durations. Further study is needed to improve the understanding of cerebral mitochondrial health and its effects on the pathophysiology of neurological injury following exposure to CPB.
Collapse
Affiliation(s)
- Lindsay E Volk
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Constantine D Mavroudis
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiffany Ko
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Thomas Hallowell
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nile Delso
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anna L Roberts
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan Starr
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - William Landis
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuxi Lin
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marco Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ryan W Morgan
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard W Melchior
- Division of Perfusion Services, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tami M Rosenthal
- Division of Perfusion Services, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexander Chappell
- Division of Perfusion Services, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Douglas Fisher
- Division of Perfusion Services, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Molly Dreher
- Division of Perfusion Services, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel J Licht
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan Chen
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - J William Gaynor
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher E Mascio
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Todd J Kilbaugh
- Division of Anesthesia and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
11
|
Senthil K, Morgan RW, Hefti MM, Karlsson M, Lautz AJ, Mavroudis CD, Ko T, Nadkarni VM, Ehinger J, Berg RA, Sutton RM, McGowan FX, Kilbaugh TJ. Haemodynamic-directed cardiopulmonary resuscitation promotes mitochondrial fusion and preservation of mitochondrial mass after successful resuscitation in a pediatric porcine model. Resusc Plus 2021; 6:100124. [PMID: 34223382 PMCID: PMC8244484 DOI: 10.1016/j.resplu.2021.100124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/09/2023] Open
Abstract
Objective Cerebral mitochondrial dysfunction is a key mediator of neurologic injury following cardiac arrest (CA) and is regulated by the balance of fusion and fission (mitochondrial dynamics). Under stress, fission can decrease mitochondrial mass and signal apoptosis, while fusion promotes oxidative phosphorylation efficiency. This study evaluates mitochondrial dynamics and content in brain tissue 24 h after CA between two cardiopulmonary resuscitation (CPR) strategies. Interventions Piglets (1 month), previously randomized to three groups: (1) Std-CPR (n = 5); (2) HD-CPR (n = 5; goal systolic blood pressure 90 mmHg, goal coronary perfusion pressure 20 mmHg); (3) Shams (n = 7). Std-CPR and HD-CPR groups underwent 7 min of asphyxia, 10 min of CPR, and standardized post-resuscitation care. Primary outcomes: (1) cerebral cortical mitochondrial protein expression for fusion (OPA1, OPA1 long to short chain ratio, MFN2) and fission (DRP1, FIS1), and (2) mitochondrial mass by citrate synthase activity. Secondary outcomes: (1) intra-arrest haemodynamics and (2) cerebral performance category (CPC) at 24 h. Results HD-CPR subjects had higher total OPA1 expression compared to Std-CPR (1.52; IQR 1.02-1.69 vs 0.67; IQR 0.54-0.88, p = 0.001) and higher OPA1 long to short chain ratio than both Std-CPR (0.63; IQR 0.46-0.92 vs 0.26; IQR 0.26-0.31, p = 0.016) and shams. Citrate synthase activity was lower in Std-CPR than sham (11.0; IQR 10.15-12.29 vs 13.4; IQR 12.28-15.66, p = 0.047), but preserved in HD-CPR. HD-CPR subjects had improved intra-arrest haemodynamics and CPC scores at 24 h compared to Std-CPR. Conclusions Following asphyxia-associated CA, HD-CPR exhibits increased pro-mitochondrial fusion protein expression, preservation of mitochondrial mass, improved haemodynamics and superior neurologic scoring compared to Std-CPR. Institutional protocol number IAC 16-001023.
Collapse
Affiliation(s)
- Kumaran Senthil
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Ryan W Morgan
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Marco M Hefti
- University of Iowa, Division of Pathology, United States
| | | | - Andrew J Lautz
- Cincinnati Children's Hospital Medical Center, Division of Critical Care Medicine, United States
| | - Constantine D Mavroudis
- Department of Neurosurgery, Righospitalet, Copenhagen, Denmark.,Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Division of Cardiothoracic Surgery, United States
| | - Tiffany Ko
- Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Division of Neurology, United States
| | - Vinay M Nadkarni
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | | | - Robert A Berg
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Robert M Sutton
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Francis X McGowan
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| | - Todd J Kilbaugh
- Children's Hospital of Philadelphia and Perelman School of Medicine at University of Pennsylvania, Department of Anesthesiology and Critical Care Medicine, United States
| |
Collapse
|
12
|
Wongtanasarasin W, Siri-Angkul N, Wittayachamnankul B, Chattipakorn SC, Chattipakorn N. Mitochondrial dysfunction in fatal ventricular arrhythmias. Acta Physiol (Oxf) 2021; 231:e13624. [PMID: 33555138 DOI: 10.1111/apha.13624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
Ventricular fibrillation (VF) and sudden cardiac arrest (SCA) remain some of the most important public health concerns worldwide. For the past 50 years, the recommendation in the Advanced Cardiac Life Support (ACLS) guidelines has been that defibrillation is the only option for shockable cardiac arrest. There is growing evidence to demonstrate that mitochondria play a vital role in the outcome of postresuscitation cardiac function. Although targeting mitochondria to improve resuscitation outcome following cardiac arrest has been proposed for many years, understanding concerning the changes in mitochondria during cardiac arrest, especially in the case of VF, is still limited. In addition, despite new research initiatives and improved medical technology, the overall survival rates of patients with SCA still remain the same. Understanding cardiac mitochondrial alterations during fatal arrhythmias may help to enable the formulation of strategies to improve the outcomes of resuscitation. The attenuation of cardiac mitochondrial dysfunction during VF through pharmacological intervention as well as ischaemic postconditioning could also be a promising target for intervention and inform a new paradigm of treatments. In this review, the existing evidence available from in vitro, ex vivo and in vivo studies regarding the roles of mitochondrial dysfunction during VF is comprehensively summarized and discussed. In addition, the effects of interventions targeting cardiac mitochondria during fatal ventricular arrhythmias are presented. Since there are no clinical reports from studies targeting mitochondria to improve resuscitation outcome available, this review will provide important information to encourage further investigations in a clinical setting.
Collapse
Affiliation(s)
- Wachira Wongtanasarasin
- Department of Emergency Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Borwon Wittayachamnankul
- Department of Emergency Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Okuma Y, Becker LB, Hayashida K, Aoki T, Saeki K, Nishikimi M, Shoaib M, Miyara SJ, Yin T, Shinozaki K. Effects of Post-Resuscitation Normoxic Therapy on Oxygen-Sensitive Oxidative Stress in a Rat Model of Cardiac Arrest. J Am Heart Assoc 2021; 10:e018773. [PMID: 33775109 PMCID: PMC8174361 DOI: 10.1161/jaha.120.018773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Cardiac arrest (CA) can induce oxidative stress after resuscitation, which causes cellular and organ damage. We hypothesized that post‐resuscitation normoxic therapy would protect organs against oxidative stress and improve oxygen metabolism and survival. We tested the oxygen‐sensitive reactive oxygen species from mitochondria to determine the association with hyperoxia‐induced oxidative stress. Methods and Results Sprague–Dawley rats were subjected to 10‐minute asphyxia‐induced CA with a fraction of inspired O2 of 0.3 or 1.0 (normoxia versus hyperoxia, respectively) after resuscitation. The survival rate at 48 hours was higher in the normoxia group than in the hyperoxia group (77% versus 28%, P<0.01), and normoxia gave a lower neurological deficit score (359±140 versus 452±85, P<0.05) and wet to dry weight ratio (4.6±0.4 versus 5.6±0.5, P<0.01). Oxidative stress was correlated with increased oxygen levels: normoxia resulted in a significant decrease in oxidative stress across multiple organs and lower oxygen consumption resulting in normalized respiratory quotient (0.81±0.05 versus 0.58±0.03, P<0.01). After CA, mitochondrial reactive oxygen species increased by ≈2‐fold under hyperoxia. Heme oxygenase expression was also oxygen‐sensitive, but it was paradoxically low in the lung after CA. In contrast, the HMGB‐1 (high mobility group box‐1) protein was not oxygen‐sensitive and was induced by CA. Conclusions Post‐resuscitation normoxic therapy attenuated the oxidative stress in multiple organs and improved post‐CA organ injury, oxygen metabolism, and survival. Additionally, post‐CA hyperoxia increased the mitochondrial reactive oxygen species and activated the antioxidation system.
Collapse
Affiliation(s)
- Yu Okuma
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY
| | - Lance B Becker
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY.,Department of Emergency Medicine Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY
| | - Kei Hayashida
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY
| | - Tomoaki Aoki
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY
| | - Kota Saeki
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY.,Nihon Kohden Innovation Center Cambridge MA
| | | | - Muhammad Shoaib
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY
| | - Santiago J Miyara
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY.,Elmezzi Graduate School of Molecular Medicine Manhasset NY
| | - Tai Yin
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY
| | - Koichiro Shinozaki
- The Feinstein Institutes for Medical ResearchNorthwell Manhasset NY.,Department of Emergency Medicine Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY
| |
Collapse
|
14
|
Coppler PJ, Elmer J. Mitochondrial resuscitation after cardiac arrest. Resuscitation 2021; 162:433-434. [PMID: 33662525 DOI: 10.1016/j.resuscitation.2021.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick J Coppler
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Nutma S, le Feber J, Hofmeijer J. Neuroprotective Treatment of Postanoxic Encephalopathy: A Review of Clinical Evidence. Front Neurol 2021; 12:614698. [PMID: 33679581 PMCID: PMC7930064 DOI: 10.3389/fneur.2021.614698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Postanoxic encephalopathy is the key determinant of death or disability after successful cardiopulmonary resuscitation. Animal studies have provided proof-of-principle evidence of efficacy of divergent classes of neuroprotective treatments to promote brain recovery. However, apart from targeted temperature management (TTM), neuroprotective treatments are not included in current care of patients with postanoxic encephalopathy after cardiac arrest. We aimed to review the clinical evidence of efficacy of neuroprotective strategies to improve recovery of comatose patients after cardiac arrest and to propose future directions. We performed a systematic search of the literature to identify prospective, comparative clinical trials on interventions to improve neurological outcome of comatose patients after cardiac arrest. We included 53 studies on 21 interventions. None showed unequivocal benefit. TTM at 33 or 36°C and adrenaline (epinephrine) are studied most, followed by xenon, erythropoietin, and calcium antagonists. Lack of efficacy is associated with heterogeneity of patient groups and limited specificity of outcome measures. Ongoing and future trials will benefit from systematic collection of measures of baseline encephalopathy and sufficiently powered predefined subgroup analyses. Outcome measurement should include comprehensive neuropsychological follow-up, to show treatment effects that are not detectable by gross measures of functional recovery. To enhance translation from animal models to patients, studies under experimental conditions should adhere to strict methodological and publication guidelines.
Collapse
Affiliation(s)
- Sjoukje Nutma
- Department of Neurology, Medisch Spectrum Twente, Enschede, Netherlands
- Clinical Neurophysiology, University of Twente, Enschede, Netherlands
| | - Joost le Feber
- Clinical Neurophysiology, University of Twente, Enschede, Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, University of Twente, Enschede, Netherlands
- Department of Neurology, Rijnstate Hospital Arnhem, Arnhem, Netherlands
| |
Collapse
|
16
|
Wu J, Chen H, Qin J, Chen N, Lu S, Jin J, Li Y. Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8865762. [PMID: 33603953 PMCID: PMC7870315 DOI: 10.1155/2021/8865762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Myocardial injury after cardiac arrest (CA) often results in severe myocardial dysfunction and death involving mitochondrial dysfunction. Here, we sought to investigate whether baicalin, a natural flavonoid compound, exerts cardioprotection against CA-induced injury via regulating mitochondrial dysfunction. We subjected the rats to asphyxia CA after a daily baicalin treatment for 4 weeks. After the return of spontaneous circulation, baicalin treatment significantly improved cardiac function performance, elevated survival rate from 35% to 75%, prevented necrosis and apoptosis in the myocardium, which was accompanied by reduced phosphorylation of Drp1 at serine 616, inhibited Drp1 translocation to the mitochondria and mitochondrial fission, and improved mitochondrial function. In H9c2 cells subjected to simulated ischemia/reperfusion, increased phosphorylation of Drp1 at serine 616 and subsequently enhanced mitochondrial Drp1 translocation as well as mitochondrial fission, augmented cardiomyocyte death, increased reactive oxygen species production, released cytochrome c from mitochondria and injured mitochondrial respiration were efficiently improved by baicalin and Drp1 specific inhibitor with Mdivi-1. Furthermore, overexpression of Drp1 augmented excessive mitochondrial fission and abolished baicalin-afforded cardioprotection, indicating that the protective impacts of baicalin are linked to the inhibition of Drp1. Altogether, our findings disclose for the first time that baicalin offers cardioprotection against ischemic myocardial injury after CA by inhibiting Drp1-mediated mitochondrial fission. Baicalin might be a prospective therapy for the treatment of post-CA myocardial injury.
Collapse
Affiliation(s)
- Jun Wu
- Department of Ultrasonography Medicine, Suzhou Hospital of Traditional Chinese Medicine, 215009 Suzhou, China
- Suzhou Research Institute of Traditional Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, 215009 Suzhou, China
| | - Hui Chen
- Department of Emergency Medicine, Traditional Chinese Medicine Hospital of Kunshan, 215300 Kunshan, China
| | - Jiahong Qin
- Department of Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, China
| | - Nan Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Shiqi Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Jun Jin
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| | - Yi Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China
| |
Collapse
|
17
|
Hayashida K, Miyara SJ, Shinozaki K, Takegawa R, Yin T, Rolston DM, Choudhary RC, Guevara S, Molmenti EP, Becker LB. Inhaled Gases as Therapies for Post-Cardiac Arrest Syndrome: A Narrative Review of Recent Developments. Front Med (Lausanne) 2021; 7:586229. [PMID: 33585501 PMCID: PMC7873953 DOI: 10.3389/fmed.2020.586229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023] Open
Abstract
Despite recent advances in the management of post-cardiac arrest syndrome (PCAS), the survival rate, without neurologic sequelae after resuscitation, remains very low. Whole-body ischemia, followed by reperfusion after cardiac arrest (CA), contributes to PCAS, for which established pharmaceutical interventions are still lacking. It has been shown that a number of different processes can ultimately lead to neuronal injury and cell death in the pathology of PCAS, including vasoconstriction, protein modification, impaired mitochondrial respiration, cell death signaling, inflammation, and excessive oxidative stress. Recently, the pathophysiological effects of inhaled gases including nitric oxide (NO), molecular hydrogen (H2), and xenon (Xe) have attracted much attention. Herein, we summarize recent literature on the application of NO, H2, and Xe for treating PCAS. Recent basic and clinical research has shown that these gases have cytoprotective effects against PCAS. Nevertheless, there are likely differences in the mechanisms by which these gases modulate reperfusion injury after CA. Further preclinical and clinical studies examining the combinations of standard post-CA care and inhaled gas treatment to prevent ischemia-reperfusion injury are warranted to improve outcomes in patients who are being failed by our current therapies.
Collapse
Affiliation(s)
- Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States
| | - Santiago J Miyara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Medicine, and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, New York, NY, United States.,Institute of Health Innovations and Outcomes Research, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Koichiro Shinozaki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States
| | - Ryosuke Takegawa
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States
| | - Daniel M Rolston
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States.,Department of Surgery, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, United States
| | - Rishabh C Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States
| | - Sara Guevara
- Department of Surgery, Northwell Health, Manhasset, NY, United States
| | - Ernesto P Molmenti
- Department of Surgery, Medicine, and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, New York, NY, United States.,Institute of Health Innovations and Outcomes Research, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, United States
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health System, Manhasset, NY, United States.,Department of Emergency Medicine, North Shore University Hospital, Northwell Health System, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, United States
| |
Collapse
|
18
|
Shoaib M, Choudhary RC, Choi J, Kim N, Hayashida K, Yagi T, Yin T, Nishikimi M, Stevens JF, Becker LB, Kim J. Plasma metabolomics supports the use of long-duration cardiac arrest rodent model to study human disease by demonstrating similar metabolic alterations. Sci Rep 2020; 10:19707. [PMID: 33184308 PMCID: PMC7665036 DOI: 10.1038/s41598-020-76401-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiac arrest (CA) is a leading cause of death and there is a necessity for animal models that accurately represent human injury severity. We evaluated a rat model of severe CA injury by comparing plasma metabolic alterations to human patients. Plasma was obtained from adult human control and CA patients post-resuscitation, and from male Sprague–Dawley rats at baseline and after 20 min CA followed by 30 min cardiopulmonary bypass resuscitation. An untargeted metabolomics evaluation using UPLC-QTOF-MS/MS was performed for plasma metabolome comparison. Here we show the metabolic commonality between humans and our severe injury rat model, highlighting significant metabolic dysfunction as seen by similar alterations in (1) TCA cycle metabolites, (2) tryptophan and kynurenic acid metabolites, and (3) acylcarnitine, fatty acid, and phospholipid metabolites. With substantial interspecies metabolic similarity in post-resuscitation plasma, our long duration CA rat model metabolically replicates human disease and is a suitable model for translational CA research.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA
| | - Rishabh C Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Nancy Kim
- Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Tsukasa Yagi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Jan F Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.,Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA.,Department of Emergency Medicine, Northwell Health, NY, USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA. .,Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Hempstead, NY, USA. .,Department of Emergency Medicine, Northwell Health, NY, USA.
| |
Collapse
|
19
|
Babini G, Ameloot K, Skrifvars MB. Cardiac function after cardiac arrest: what do we know? Minerva Anestesiol 2020; 87:358-367. [PMID: 32959631 DOI: 10.23736/s0375-9393.20.14574-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Postcardiac arrest myocardial dysfunction (PCAMD) is a frequent complication faced during post-resuscitation care that adversely impacts survival and neurological outcome. Both mechanical and electrical factors contribute to the occurrence of PCAMD. Prearrest ventricular function, the cause of cardiac arrest, global ischemia, resuscitation factors, ischemia/reperfusion injury and post-resuscitation treatments contribute to the severity of PCMAD. The pathophysiology of PCAMD is complex and include myocytes energy failure, impaired contractility, cardiac edema, mitochondrial damage, activation of inflammatory pathways and the coagulation cascade, persistent ischemic injury and myocardial stiffness. Hypotension and low cardiac output with vasopressor/inotropes need are frequent after resuscitation. However, clinical, hemodynamic and laboratory signs of shock are frequently altered by cardiac arrest pathophysiology and post-resuscitation treatment, potentially being misleading and not fully reflecting the severity of postcardiac arrest syndrome. Even if validated criteria are lacking, an extensive hemodynamic evaluation is useful to define a "benign" and a "malign" form of myocardial dysfunction and circulatory shock, potentially having treatment and prognostic implications. Cardiac output is frequently decreased after cardiac arrest, particularly in patients treated with target temperature management (TTM); however, it is not independently associated with outcome. Sinus bradycardia during TTM seems independently associated with survival and good neurological outcome, representing a promising prognostic indicator. Higher mean arterial pressure (MAP) seems to be associated with improved survival and cerebral function after cardiac arrest; however, two recent randomized clinical trials failed to replicate these results. Recommendations on hemodynamic optimization are relatively poor and are largely based on general principle of intensive care medicine.
Collapse
Affiliation(s)
- Giovanni Babini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Emergency Medicine and Services, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Koen Ameloot
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium.,Department of Cardiology, University Hospitals Leuven, Leuven, Belgium.,Faculty of Medicine and Life Sciences, University Hasselt, Diepenbeek, Belgium
| | - Markus B Skrifvars
- Department of Anesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland -
| |
Collapse
|
20
|
Efficacy of Thiamine in the Treatment of Postcardiac Arrest Patients: A Randomized Controlled Study. Crit Care Res Pract 2020; 2020:2981079. [PMID: 32587766 PMCID: PMC7298263 DOI: 10.1155/2020/2981079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 11/18/2022] Open
Abstract
Background Thiamine administration has been shown to improve survival in a postcardiac arrest animal study. We aimed to evaluate the efficacy of thiamine in comatose out-of-hospital cardiac arrest (OHCA) patients following return of spontaneous circulation. Methods A randomized, double-blinded, placebo-controlled study was conducted. Thirty-seven OHCA patients were randomly assigned to receive either thiamine 100 mg every 8 hours or a placebo. The primary outcome was 28-day all-cause mortality. Results Over the course of 2 years, 37 patients were randomized to either receive thiamine (n = 20) or a placebo (n = 17). The primary outcome was not different between the groups: 10/20 (50%) in the thiamine group vs. 8/17 (47.1%) in the placebo group (P=0.93 by the log-rank test). There were no significant differences in secondary outcomes between the groups (good neurological outcome, lactate level, and S100B level). Conclusions In this study, there were no significant differences in survival outcome. Further studies with a larger population are necessary to confirm these results.
Collapse
|
21
|
Zheng JH, Chen MH, Fu ZY, Li N, Xie L. PD98059 Protects Cerebral Cortex Mitochondrial Structure and Function at 48 h Post-Resuscitation in a Rat Model of Cardiac Arrest. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1107-1115. [PMID: 32214796 PMCID: PMC7082620 DOI: 10.2147/dddt.s231980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Background Mitochondria play a critical role as effectors and targets of brain injury in the post-resuscitation period. Although we found previously that the extracellular signal-regulated kinase (ERK)1/2 inhibitor PD98059 (PD) protects the brain against mitochondrial-mediated cell death at 24 h post-resuscitation in rats subjected to cardiac arrest/cardiopulmonary resuscitation (CA/CPR), it is not clear whether PD also exerts mitochondrial protective effect for a lasting time. Therefore, we examined the effect of PD on brain mitochondria at 48 h post-resuscitation to evaluate the time-effect of PD in the current study. Methods Experimental rats were divided randomly into 5 groups: Sham, CA, dimethylsulfoxide (DMSO), 0.15mg/kg PD and 0.3mg/kg PD. Rats except for sham group were subjected to CA for 6 min followed by CPR. We detected survival rates and neurologic deficit scores, cerebral cortex mitochondrial function by evaluating adenosine triphosphate (ATP) levels, mitochondrial permeability transition pore (MPTP) opening, and the expression of mitofusin2 (Mfn2) and observing the ultrastructure by electron microscopy at 48 h post-resuscitation in a 6-min CA rat model. Results PD improved survival rates and neurologic deficit scores, alleviated cerebral cortex mitochondrial damage by reducing MPTP opening and increasing Mfn2 production at 48 h post-resuscitation in a 6-min CA rat model. Conclusion A single dose of PD improved 48 h post-resuscitation outcome and mitochondrial function, indicating the potential of the use of ERK inhibitors for the treatment of brain injury resulting from CA in the future.
Collapse
Affiliation(s)
- Jun-Hui Zheng
- Integrated Internal Medicine, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Meng-Hua Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Zhao-Yin Fu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Nuo Li
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, People's Republic of China
| | - Lu Xie
- Department of Physiology, Pre-Clinical Science, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
22
|
Ji NN, Wu L, Shao BM, Meng QX, Xu JN, Zhu HW, Zhang YM. CTL-Derived Granzyme B Participates in Hippocampal Neuronal Apoptosis Induced by Cardiac Arrest and Resuscitation in Rats. Front Neurol 2019; 10:1306. [PMID: 31920929 PMCID: PMC6920252 DOI: 10.3389/fneur.2019.01306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Hippocampal neuronal apoptosis is a devastating consequence of cardiac arrest (CA) and subsequent cardiopulmonary resuscitation (CPR). In this study, we assessed the contribution of cytotoxic T lymphocyte (CTL)-derived toxic mediator granzyme B (Gra-b) to the hippocampal neuronal apoptosis following CA/CPR in rats. Rats that experienced CA/CPA presented with cytosomal shrinkage, dense cytoplasm, and intensive eosinophilic staining in the CA1 region of dorsal hippocampus. CA/CPR rats also exhibited inability in spatial navigation and a local infiltration of peripheral CD8+ T cells into the hippocampus. The protein levels of Gra-b, cleaved Caspase-3, and cleaved PARP1 were significantly elevated in rats undergoing CA/CPR. Pretreatment with Gra-b inhibitor suppressed Gra-b release, attenuated hippocampal neuronal apoptosis, as well as improved cognitive impairment. Together, this study indicates that CTL-derived Gra-b is involved in the CA/CPR-induced neuronal apoptosis, and pharmacological manipulation of Gra-b may represent a novel avenue for the treatment of brain injury following CA/CPR.
Collapse
Affiliation(s)
- Ning-Ning Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Liang Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Anesthesiology Department of the First People's Hospital of Xuzhou, Xuzhou, China
| | - Bo-Ming Shao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Qing-Xiang Meng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jin-Nan Xu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hao-Wen Zhu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yong-Mei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Increased Heat Generation in Postcardiac Arrest Patients During Targeted Temperature Management Is Associated With Better Outcomes. Crit Care Med 2019; 46:1133-1138. [PMID: 29620555 DOI: 10.1097/ccm.0000000000003154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Assess if amount of heat generated by postcardiac arrest patients to reach target temperature (Ttarget) during targeted temperature management is associated with outcomes by serving as a proxy for thermoregulatory ability, and whether it modifies the relationship between time to Ttarget and outcomes. DESIGN Retrospective cohort study. SETTING Urban tertiary-care hospital. PATIENTS Successfully resuscitated targeted temperature management-treated adult postarrest patients between 2008 and 2015 with serial temperature data and Ttarget less than or equal to 34°C. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Time to Ttarget was defined as time from targeted temperature management initiation to first recorded patient temperature less than or equal to 34°C. Patient heat generation ("heat units") was calculated as inverse of average water temperature × hours between initiation and Ttarget × 100. Primary outcome was neurologic status measured by Cerebral Performance Category score; secondary outcome was survival, both at hospital discharge. Univariate analyses were performed using Wilcoxon rank-sum tests; multivariate analyses used logistic regression. Of 203 patients included, those with Cerebral Performance Category score 3-5 generated less heat before reaching Ttarget (median, 8.1 heat units [interquartile range, 3.6-21.6 heat units] vs median, 20.0 heat units [interquartile range, 9.0-33.5 heat units]; p = 0.001) and reached Ttarget quicker (median, 2.3 hr [interquartile range, 1.5-4.0 hr] vs median, 3.6 hr [interquartile range, 2.0-5.0 hr]; p = 0.01) than patients with Cerebral Performance Category score 1-2. Nonsurvivors generated less heat than survivors (median, 8.1 heat units [interquartile range, 3.6-20.8 heat units] vs median, 19.0 heat units [interquartile range, 6.5-33.5 heat units]; p = 0.001) and reached Ttarget quicker (median, 2.2 hr [interquartile range, 1.5-3.8 hr] vs median, 3.6 hr [interquartile range, 2.0-5.0 hr]; p = 0.01). Controlling for average water temperature between initiation and Ttarget, the relationship between outcomes and time to Ttarget was no longer significant. Controlling for location, witnessed arrest, age, initial rhythm, and neuromuscular blockade use, increased heat generation was associated with better neurologic (adjusted odds ratio, 1.01 [95% CI, 1.00-1.03]; p = 0.039) and survival (adjusted odds ratio, 1.01 [95% CI, 1.00-1.03]; p = 0.045) outcomes. CONCLUSIONS Increased heat generation during targeted temperature management initiation is associated with better outcomes at hospital discharge and may affect the relationship between time to Ttarget and outcomes.
Collapse
|
24
|
Lu Y, Zeng X, Jing X, Yin M, Chang MMP, Wei H, Yang Y, Liao X, Dai G, Hu C. Pre-arrest hypothermia improved cardiac function of rats by ameliorating the myocardial mitochondrial injury after cardiac arrest. Exp Biol Med (Maywood) 2019; 244:1186-1192. [PMID: 31530020 DOI: 10.1177/1535370219875434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effects of hypothermia induced before cardiac arrest or after return of spontaneous circulation (ROSC) on cardiac function and myocardial mitochondrial injury after ROSC in a rat cardiac arrest model. Sixty healthy, male Wistar rats were randomly divided into the Normothermia group, pre-arrest hypothermia (Pre-HT) group, and post-resuscitation hypothermia (Post-HT) group. The rats underwent 8 min of untreated ventricular fibrillation followed by cardiopulmonary resuscitation. Twelve rats in each group were used to evaluate the left ventricular ejection fraction before ventricular fibrillation and 4 h after ROSC. Survival was determined at 24 h after ROSC. The remaining eight rats in each group were used to detect for heart malondialdehyde, reduced glutathione, adenosine triphosphate levels and mitochondrial histology. Oxygen consumption rate and mitochondrial membrane potential were evaluated 4 h after ROSC; 10 of 12 rats in Pre-HT group, 5 of 12 in Post-HT group, and 6 of 12 in normothermia group were successfully resuscitated. The survival rate of each group was 66.7%, 33.3%, and 25%, respectively. Rats in the Pre-HT group showed less alteration of the mitochondrial ultrastructure and oxidative stress injury, better maintenance of adenine nucleotides, and more preservation of the mitochondrial membrane potential and respiratory function when compared with rats in the Post-HT and normothermia groups. Transient hypothermia is an effective preconditioning stimulus to induce ischemic tolerance in a cardiac arrest model and worthy of further evaluation for potential clinical use. Impact statement In this paper, we investigated the effects of hypothermia induced before ischemia or after ROSC on cardiac function, oxidative stress damage, and myocardial mitochondrial ischemia–reperfusion injury after cardiac arrest in a rat model with VF. We demonstrated that pre-arrest hypothermia conferred greater cardio-protective benefits than delayed post-resuscitation hypothermia, reduced the number of defibrillations required and dosages of epinephrine during CPR, decreased oxidative stress, ameliorated mitochondrial dysfunction, and subsequently improved survival rate.
Collapse
Affiliation(s)
- Yuanzheng Lu
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China.,Department of Emergency Medicine, Sun Yat-sen University/The Seventh Affiliated Hospital, Shenzhen 518107, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Xiaoyun Zeng
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Xiaoli Jing
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China
| | - Meixian Yin
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Mms Mary P Chang
- Department of Emergency Medicine, University of Texas Southwestern Medical Center, Dallas 75205, USA
| | - Hongyan Wei
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China
| | - Yan Yang
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Xiaoxing Liao
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China.,Department of Emergency Medicine, Sun Yat-sen University/The Seventh Affiliated Hospital, Shenzhen 518107, China
| | - Gang Dai
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| | - Chunlin Hu
- Department of Emergency Medicine, Sun Yat-sen University/The First Affiliated Hospital, Guangzhou 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou 510080, China
| |
Collapse
|
25
|
Cocchi MN, Salciccioli J, Yankama T, Chase M, Patel PV, Liu X, Mader TJ, Donnino MW. Predicting Outcome After Out-of-Hospital Cardiac Arrest: Lactate, Need for Vasopressors, and Cytochrome c. J Intensive Care Med 2019; 35:1483-1489. [PMID: 31466497 DOI: 10.1177/0885066619873315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Outcome prediction after out-of-hospital cardiac arrest (OHCA) is difficult. We hypothesized that lactate and need for vasopressors would predict outcome, and that addition of a mitochondrial biomarker would enhance performance of the tool. METHODS Prospective observational study of OHCA patients presenting to an academic medical center September 2008 to April 2016. We conducted univariate and multivariate logistic regressions. RESULTS Patients were divided based on 2 variables: vasopressor status and initial lactate (<5 mmol/L, 5-10, ≥10). Three hundred fifty-two patients were evaluated; 249 had a lactate within 3 hours and were included. Patients on vasopressors had higher mortality (74% vs 40%; P < .001). A stepwise increase in mortality is associated with increasing lactate (45% lactate <5, 66% 5-10, and 83% ≥10; P < 001). Multivariable models with lactate group and vasopressors as predictors demonstrated excellent discrimination (area under the receiver operating curve [AUC]: 0.73 [95% confidence interval, CI: 0.66-0.79]; adjusted for additional covariates: AUC: 0.81 [95% CI: 0.75-0.86]). Thirty-six patients had cytochrome c levels available; among these 36, when comparing models with and without cytochrome c, there was no difference (AUC: 0.88 [95% CI: 0.76-1.00] vs AUC: 0.85 [95% CI: 0.73-0.98], respectively; P = .30). CONCLUSION In this prospective validation, the combination of lactate and vasopressors in the immediate postarrest period is predictive of mortality. Cytochrome c offered minimal additional predictive power.
Collapse
Affiliation(s)
- Michael N Cocchi
- Department of Emergency Medicine, 1859Beth Israel Deaconess Medical Center, Boston, MA, USA.,Division of Critical Care, Department of Anesthesia Critical Care, 1859Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Tuyen Yankama
- Department of Emergency Medicine, 1859Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maureen Chase
- Department of Emergency Medicine, 1859Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Parth V Patel
- Department of Emergency Medicine, 1859Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xiaowen Liu
- Department of Emergency Medicine, 1859Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Timothy J Mader
- Department of Emergency Medicine, Baystate Medical Center, Springfield, MA, USA
| | - Michael W Donnino
- Department of Emergency Medicine, 1859Beth Israel Deaconess Medical Center, Boston, MA, USA.,Division of Pulmonary Critical Care, Department of Medicine, 1859Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
26
|
Xu H, Li Y, Liu R, Wu L, Zhang C, Ding N, Ma A, Zhang J, Xie X. Protective effects of ghrelin on brain mitochondria after cardiac arrest and resuscitation. Neuropeptides 2019; 76:101936. [PMID: 31155149 DOI: 10.1016/j.npep.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/23/2019] [Accepted: 05/14/2019] [Indexed: 12/19/2022]
Abstract
Mitochondrial dysfunction plays a critical role in brain injury after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Our recent study demonstrated that ghrelin protected against post-resuscitation brain injury with an elevated expression of mitochondrial uncoupling protein 2 (UCP2). However, the effects of ghrelin on mitochondrial dysfunction after CA are not clear. In the present study, the protective role of ghrelin was evaluated on mitochondrial dysfunction and the subsequent damage induced by CA in rats. In addition, mitochondrial unfolded protein response (UPRmt), an intrinsic cytoprotective pathway, was observed at the same time. Either vehicle (saline) or ghrelin (80 μg/kg) was injected blindly immediately after 6 min of CA and successful resuscitation. Neurological deficit was evaluated 6 h after CA and then cortex was collected for assessments. As a result, we found that ghrelin significantly improved the neurological deficit score in rats after CA. The functional analysis of isolated mitochondria revealed that ghrelin improved the mitochondrial ATP synthesis capacity and significantly reduced the reactive oxygen species (ROS) leakage after 6 h of CA. Concomitantly, we observed an increased ATP level and an attenuated oxidative stress in ghrelin treated animals. Moreover, ghrelin markedly improved the mitochondrial morphology compared with the vehicle animals. Further research revealed that ghrelin treatment significantly activated the UPRmt as demonstrated by the increased expression of heat shock protein 60 (HSP60), heat shock protein 10 (HSP10), caseinolytic protease 1 (CLPP1), and high-temperature requirement protein A2 (HTRA2). Our results suggest that ghrelin protected against cerebral mitochondria dysfunction after CA and the mechanism may involve a UPRmt pathway.
Collapse
Affiliation(s)
- Hongying Xu
- Department of Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining 272029, PR China
| | - Yong Li
- Department of Emergency Medicine, Affiliated Hospital of Jining Medical University, Jining 272029, PR China
| | - Rongqiang Liu
- Department of Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining 272029, PR China
| | - Lin Wu
- Department of Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining 272029, PR China
| | - Chunling Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining 272029, PR China
| | - Nan Ding
- Department of Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining 272029, PR China
| | - Aiying Ma
- Department of Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining 272029, PR China
| | - Jincheng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Xuemeng Xie
- Department of Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining 272029, PR China.
| |
Collapse
|
27
|
Liu Y, Wang P, Wen C, Zheng H, Tang X, Ling Q, Liu X, Qin J, Tang W, Yang Z, Huang Z. Endovascular hypothermia improves post-resuscitation myocardial dysfunction by increasing mitochondrial biogenesis in a pig model of cardiac arrest. Cryobiology 2019; 89:6-13. [PMID: 31283936 DOI: 10.1016/j.cryobiol.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 01/11/2023]
Abstract
The aim of the study was to investigate the effects of endovascular hypothermia on mitochondrial biogenesis in a pig model of prolonged cardiac arrest (CA). Ventricular fibrillation was electrically induced, and animals were left untreated for 10 min; then after 6min of cardiopulmonary resuscitation (CPR), defibrillation was attempted. 25 animals that were successfully resuscitated were randomized into three groups: Sham group (SG, 5, no CA), normal temperature group (NTG, 5 for 12 h observation and 5 for 24 h observation), and endovascular hypothermia group (EHG, 5 for 12 h observation and 5 for 24 h observation). The core temperatures (Tc) in the EHG were maintained at 34 ± 0.5 °C for 6 h by an endovascular hypothermia device (Coolgard 3000), then actively increased at the speed of 0.5 °C per hour during the next 6 h to achieve a normal body temperature, while Tc were maintained at 37.5 ± 0.5 °C in the NTG. Cardiac and mitochondrial functions, the quantification of myocardial mitochondrial DNA (mtDNA), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α), nuclear respiratory factor (NRF)-1, and NRF-2 were examined. Results showed that myocardial and mitochondrial injury and dysfunction increased significantly at 12 h and 24 h after CA. Endovascular hypothermia offered a method to rapidly achieve the target temperature and provide stable target temperature management (TTM). Cardiac outcomes were improved and myocardial injuries were alleviated with endovascular hypothermia. Compared with NTG, endovascular hypothermia significantly increased mitochondrial activity and biogenesis by amplifying mitochondrial biogenesis factors' expressions, including PGC-1α, NRF-1, and NRF-2. In conclusions, endovascular hypothermia after CA alleviated myocardial and mitochondrial dysfunction, and was associated with increasing mitochondrial biogenesis.
Collapse
Affiliation(s)
- Yuanshan Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Peng Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Cai Wen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Houzhen Zheng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Xinran Tang
- The 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Qin Ling
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuefen Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahong Qin
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Zhengfei Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Weil Institute of Emergency and Critical Care Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China.
| | - Zitong Huang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Cardiopulmonary resuscitation ameliorates myocardial mitochondrial dysfunction in a cardiac arrest rat model. Am J Emerg Med 2019; 38:65-72. [PMID: 31027936 DOI: 10.1016/j.ajem.2019.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/14/2019] [Accepted: 04/12/2019] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Previous studies implicate that the mitochondrial injury may play an important role in the development of post-resuscitation myocardial dysfunction, however few of them are available regarding the ultrastructural alterations of myocardial mitochondria, mitochondrial energy producing and utilization ability in the stage of arrest time (no-low) and resuscitation time (low-flow). This study aimed to observe the dynamic changes of myocardial mitochondrial function and metabolic disorders during cardiac arrest (CA) and following cardiopulmonary resuscitation (CPR). METHODS A total of 30 healthy male Sprague-Dawley rats were randomized into three groups: 1) VF/CPR: Ventricular fibrillation (VF) was electrically induced, and 5 min of CPR was performed after 10 min of untreated VF; 2) Untreated VF: VF was induced and untreated for 15 min; and 3) Sham: Rats were identically prepared without VF/CPR. Amplitude spectrum area (AMSA) at VF 5, 10 and 15 min were calculated from ECG signals. The rats' hearts were quickly removed at the predetermined time of 15 min after beginning the procedure to gather measurements of myocardial mitochondrial function, high-energy phosphate stores, lactate, mitochondrial ultrastructure, and myocardial glycogen. RESULTS The mitochondrial respiratory control ratios significantly decreased after CA compared to sham group. CPR significantly increased respiratory control ratios compared with untreated VF animals. A significant decrease of myocardial glycogen was observed after CA, and a more rapid depletion of myocardial glycogen was observed in CPR animals. CPR significantly reduced the tissue lactate. The mitochondrial ultrastructure abnormalities in CPR animals were less severe than untreated VF animals. AMSA decayed during untreated VF; however, it was significantly greater in CPR group than the untreated VF group. In addition, AMSA was clearly positively correlated with ATP, but negatively correlated with myocardial glycogen. CONCLUSION Impairment of myocardial mitochondrial function and the incapability of utilizing glycogen were observed after CA. Furthermore, optimal CPR might, in part, preserved mitochondrial function and enhanced utilization of myocardial glycogen.
Collapse
|
29
|
Wiberg S, Stride N, Bro-Jeppesen J, Holmberg MJ, Kjærgaard J, Larsen S, Donnino MW, Hassager C, Dela F. Mitochondrial dysfunction in adults after out-of-hospital cardiac arrest. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2019; 9:S138-S144. [PMID: 30854867 DOI: 10.1177/2048872618814700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND While preclinical studies suggest that mitochondria play a pivotal role in ischaemia-reperfusion injury, the knowledge of mitochondrial function in human out-of-hospital cardiac arrest remains scarce. The present study sought to compare oxidative phosphorylation capacity in skeletal muscle biopsies from out-of-hospital cardiac arrest patients to healthy controls. METHODS This was a substudy of a randomised trial comparing targeted temperature management at 33°C versus 36°C for out-of-hospital cardiac arrest patients. Skeletal muscle biopsies were obtained from adult resuscitated comatose out-of-hospital cardiac arrest patients 28 hours after initiation of targeted temperature management, i.e. at target temperature prior to rewarming, and from age-matched healthy controls. Mitochondrial function was analysed by high-resolution respirometry. Maximal sustained respiration through complex I, maximal coupled respiration through complex I and complex II and maximal electron transport system capacity was compared. RESULTS A total of 20 out-of-hospital cardiac arrest patients and 21 controls were included in the analysis. We found no difference in mitochondrial function between temperature allocations. We found no difference in complex I sustained respiration between out-of-hospital cardiac arrest and controls (23 (18-26) vs. 22 (19-26) pmol O2/mg/s, P=0.76), whereas coupled complex I and complex II respiration was significantly lower in out-of-hospital cardiac arrest patients versus controls (53 (42-59) vs. 64 (54-68) pmol O2/mg/s, P=0.01). Furthermore, electron transport system capacity was lower in out-of-hospital cardiac arrest versus controls (63 (51-69) vs. 73 (66-78) pmol O2/mg/s, P=0.005). CONCLUSIONS Mitochondrial oxidative phosphorylation capacity in skeletal muscle biopsies was reduced in out-of-hospital cardiac arrest patients undergoing targeted temperature management compared to age-matched, healthy controls. The role of mitochondria as risk markers and potential targets for post-resuscitation care remains unknown.
Collapse
Affiliation(s)
- Sebastian Wiberg
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Denmark
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, USA
| | - Nis Stride
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Denmark
| | - John Bro-Jeppesen
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Mathias J Holmberg
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, USA
- Research Center for Emergency Medicine, Aarhus University Hospital, Denmark
| | - Jesper Kjærgaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Denmark
| | - Steen Larsen
- Center for Healthy Aging, University of Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Poland
| | - Michael W Donnino
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, USA
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, USA
| | | | - Flemming Dela
- Center for Healthy Aging, University of Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg Hospital, Denmark
| |
Collapse
|
30
|
Lautz AJ, Morgan RW, Karlsson M, Mavroudis CD, Ko TS, Licht DJ, Nadkarni VM, Berg RA, Sutton RM, Kilbaugh TJ. Hemodynamic-Directed Cardiopulmonary Resuscitation Improves Neurologic Outcomes and Mitochondrial Function in the Heart and Brain. Crit Care Med 2019; 47:e241-e249. [PMID: 30779720 PMCID: PMC6561502 DOI: 10.1097/ccm.0000000000003620] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Less than half of the thousands of children who suffer in-hospital cardiac arrests annually survive, and neurologic injury is common among survivors. Hemodynamic-directed cardiopulmonary resuscitation improves short-term survival, but its impact on longer term survival and mitochondrial respiration-a potential neurotherapeutic target-remains unknown. The primary objectives of this study were to compare rates of 24-hour survival with favorable neurologic outcome after cardiac arrest treated with hemodynamic-directed cardiopulmonary resuscitation versus standard depth-guided cardiopulmonary resuscitation and to compare brain and heart mitochondrial respiration between groups 24 hours after resuscitation. DESIGN Randomized preclinical large animal trial. SETTING A large animal resuscitation laboratory at a large academic children's hospital. SUBJECTS Twenty-eight 4-week-old female piglets (8-11 kg). INTERVENTIONS Twenty-two swine underwent 7 minutes of asphyxia followed by ventricular fibrillation and randomized treatment with either hemodynamic-directed cardiopulmonary resuscitation (n = 10; compression depth titrated to aortic systolic pressure of 90 mm Hg, vasopressors titrated to coronary perfusion pressure ≥ 20 mm Hg) or depth-guided cardiopulmonary resuscitation (n = 12; depth 1/3 chest diameter, epinephrine every 4 min). Six animals (sham group) underwent anesthesia and instrumentation without cardiac arrest. The primary outcomes were favorable neurologic outcome (swine Cerebral Performance Category ≤ 2) and mitochondrial maximal oxidative phosphorylation utilizing substrate for complex I and complex II (OXPHOSCI+CII) in the cerebral cortex and hippocampus. MEASUREMENTS AND MAIN RESULTS Favorable neurologic outcome was more likely with hemodynamic-directed cardiopulmonary resuscitation (7/10) than depth-guided cardiopulmonary resuscitation (1/12; p = 0.006). Hemodynamic-directed cardiopulmonary resuscitation resulted in higher intra-arrest coronary perfusion pressure, aortic pressures, and brain tissue oxygenation. Hemodynamic-directed cardiopulmonary resuscitation resulted in higher OXPHOSCI+CII (pmol oxygen/s × mg/citrate synthase) in the cortex (6.00 ± 0.28 vs 3.88 ± 0.43; p < 0.05) and hippocampus (6.26 ± 0.67 vs 3.55 ± 0.65; p < 0.05) and higher complex I respiration (pmol oxygen/s × mg) in the right (20.62 ± 1.06 vs 15.88 ± 0.81; p < 0.05) and left ventricles (20.14 ± 1.40 vs 14.17 ± 1.53; p < 0.05). CONCLUSIONS In a model of asphyxia-associated pediatric cardiac arrest, hemodynamic-directed cardiopulmonary resuscitation increases rates of 24-hour survival with favorable neurologic outcome, intra-arrest hemodynamics, and cerebral and myocardial mitochondrial respiration.
Collapse
Affiliation(s)
- Andrew J. Lautz
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Department of Anesthesiology and Critical Care Medicine
- Cincinnati Children’s Hospital Medical Center; Division of Critical Care Medicine
| | - Ryan W. Morgan
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Department of Anesthesiology and Critical Care Medicine
| | - Michael Karlsson
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Department of Anesthesiology and Critical Care Medicine
| | - Constantine D. Mavroudis
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Department of Cardiothoracic Surgery
| | - Tiffany S. Ko
- University of Pennsylvania, Department of Bioengineering
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Department of Pediatrics, Division of Neurology
| | - Vinay M. Nadkarni
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Department of Anesthesiology and Critical Care Medicine
| | - Robert A. Berg
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Department of Anesthesiology and Critical Care Medicine
| | - Robert M. Sutton
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Department of Anesthesiology and Critical Care Medicine
| | - Todd J. Kilbaugh
- Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine; Department of Anesthesiology and Critical Care Medicine
| |
Collapse
|
31
|
Mavroudis CD, Karlsson M, Ko T, Hefti M, Gentile JI, Morgan RW, Plyler R, Mensah-Brown KG, Boorady TW, Melchior RW, Rosenthal TM, Shade BC, Schiavo KL, Nicolson SC, Spray TL, Sutton RM, Berg RA, Licht DJ, Gaynor JW, Kilbaugh TJ. Cerebral mitochondrial dysfunction associated with deep hypothermic circulatory arrest in neonatal swine. Eur J Cardiothorac Surg 2018; 54:162-168. [PMID: 29346537 PMCID: PMC7448940 DOI: 10.1093/ejcts/ezx467] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/15/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Controversy remains regarding the use of deep hypothermic circulatory arrest (DHCA) in neonatal cardiac surgery. Alterations in cerebral mitochondrial bioenergetics are thought to contribute to ischaemia-reperfusion injury in DHCA. The purpose of this study was to compare cerebral mitochondrial bioenergetics for DHCA with deep hypothermic continuous perfusion using a neonatal swine model. METHODS Twenty-four piglets (mean weight 3.8 kg) were placed on cardiopulmonary bypass (CPB): 10 underwent 40-min DHCA, following cooling to 18°C, 10 underwent 40 min DHCA and 10 remained at deep hypothermia for 40 min; animals were subsequently rewarmed to normothermia. 4 remained on normothermic CPB throughout. Fresh brain tissue was harvested while on CPB and assessed for mitochondrial respiration and reactive oxygen species generation. Cerebral microdialysis samples were collected throughout the analysis. RESULTS DHCA animals had significantly decreased mitochondrial complex I respiration, maximal oxidative phosphorylation, respiratory control ratio and significantly increased mitochondrial reactive oxygen species (P < 0.05 for all). DHCA animals also had significantly increased cerebral microdialysis indicators of cerebral ischaemia (lactate/pyruvate ratio) and neuronal death (glycerol) during and after rewarming. CONCLUSIONS DHCA is associated with disruption of mitochondrial bioenergetics compared with deep hypothermic continuous perfusion. Preserving mitochondrial health may mitigate brain injury in cardiac surgical patients. Further studies are needed to better understand the mechanisms of neurological injury in neonatal cardiac surgery and correlate mitochondrial dysfunction with neurological outcomes.
Collapse
Affiliation(s)
- Constantine D Mavroudis
- Department of Cardiothoracic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael Karlsson
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiffany Ko
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marco Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Javier I Gentile
- Department of Cardiothoracic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryan W Morgan
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ross Plyler
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kobina G Mensah-Brown
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy W Boorady
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard W Melchior
- Department of Perfusion Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tami M Rosenthal
- Department of Perfusion Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brandon C Shade
- Department of Perfusion Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kellie L Schiavo
- Department of Perfusion Services, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan C Nicolson
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Thomas L Spray
- Department of Cardiothoracic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert M Sutton
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert A Berg
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel J Licht
- Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - J William Gaynor
- Department of Cardiothoracic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Todd J Kilbaugh
- Department of Anesthesia and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
32
|
Preliminary observations in systemic oxygen consumption during targeted temperature management after cardiac arrest. Resuscitation 2018; 127:89-94. [PMID: 29626611 DOI: 10.1016/j.resuscitation.2018.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/13/2018] [Accepted: 04/02/2018] [Indexed: 12/27/2022]
Abstract
AIM Limited data suggests low oxygen consumption (VO2), driven by mitochondrial injury, is associated with mortality after cardiac arrest. Due to the challenges of measurement in the critically ill, post-arrest metabolism remains poorly characterized. We monitored VO2, carbon dioxide production (VCO2) and the respiratory quotient (RQ) in post-arrest patients and explored associations with outcome. METHODS Using a gas exchange monitor, we measured continuous VO2 and VCO2 in post- arrest patients treated with targeted temperature management. We used area under the curve and medians over time to evaluate the association between VO2, VCO2, RQ and the VO2:lactate ratio with survival. RESULTS In 17 patients, VO2 in the first 12 h after return of spontaneous circulation (ROSC) was associated with survival (median in survivors 3.35 mL/kg/min [2.98,3.88] vs. non-survivors 2.61 mL/kg/min [2.21,2.94], p = .039). This did not persist over 24 h. The VO2:lactate ratio was associated with survival (median in survivors 1.4 [IQR: 1.1,1.7] vs. non-survivors 0.8 [IQR: 0.6,1.2] p < 0.001). Median RQ was 0.66 (IQR 0.63,0.70) and 71% of RQ measurements were <0.7. Patients with initial RQ < 0.7 had 17% survival versus 64% with initial RQ > 0.7 (p = .131). VCO2 was not associated with survival. CONCLUSIONS There was a significant association between VO2 and mortality in the first 12 h after ROSC, but not over 24 h. Lower VO2: lactate ratio was associated with mortality. A large percentage of patients had RQs below physiologic norms. Further research is needed to explore whether these parameters could have true prognostic value or be a potential treatment target.
Collapse
|
33
|
An Update on Cardiopulmonary Resuscitation in Children. CURRENT ANESTHESIOLOGY REPORTS 2017. [DOI: 10.1007/s40140-017-0216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Donnino MW, Liu X, Andersen LW, Rittenberger JC, Abella BS, Gaieski DF, Ornato JP, Gazmuri RJ, Grossestreuer AV, Cocchi MN, Abbate A, Uber A, Clore J, Peberdy MA, Callaway CW. Characterization of mitochondrial injury after cardiac arrest (COMICA). Resuscitation 2017; 113:56-62. [PMID: 28126408 DOI: 10.1016/j.resuscitation.2016.12.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/16/2016] [Accepted: 12/24/2016] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mitochondrial injury post-cardiac arrest has been described in pre-clinical settings but the extent to which this injury occurs in humans remains largely unknown. We hypothesized that increased levels of mitochondrial biomarkers would be associated with mortality and neurological morbidity in post-cardiac arrest subjects. METHODS We performed a prospective multicenter study of post-cardiac arrest subjects. Inclusion criteria were comatose adults who suffered an out-of-hospital cardiac arrest. Mitochondrial biomarkers were measured at 0, 12, 24, 36 and 48h after return of spontaneous circulation as well as in healthy controls. RESULTS Out of 111 subjects enrolled, 102 had evaluable samples at 0h. Cardiac arrest subjects had higher baseline cytochrome c levels compared to controls (2.18ng/mL [0.74, 7.74] vs. 0.16ng/mL [0.03, 0.91], p<0.001), and subjects who died had higher 0h cytochrome c levels compared to survivors (3.66ng/mL [1.40, 14.9] vs. 1.27ng/mL [0.16, 2.37], p<0.001). There were significantly higher Ribonuclease P (RNaseP) (3.3 [1.2, 5.7] vs. 1.2 [0.8, 1.2], p<0.001) and Beta-2microglobulin (B2M) (12.0 [1.0, 22.9], vs. 0.6 [0.6, 1.3], p<0.001) levels in cardiac arrest subjects at baseline compared to the control subjects. There were no differences between survivors and non-survivors for mitochondrial DNA, nuclear DNA, or cell free DNA. CONCLUSIONS Cytochrome c was increased in post- cardiac arrest subjects compared to controls, and in post-cardiac arrest non-survivors compared to survivors. Nuclear DNA and cell free DNA was increased in plasma of post-cardiac arrest subjects. There were no differences in mitochondrial DNA, nuclear DNA, or cell free DNA between survivors and non-survivors. Mitochondrial injury markers showed mixed results in the post-cardiac arrest period. Future research needs to investigate these differences.
Collapse
Affiliation(s)
- Michael W Donnino
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA, United States; Beth Israel Deaconess Medical Center, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Boston, MA, United States.
| | - Xiaowen Liu
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA, United States
| | - Lars W Andersen
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA, United States; Aarhus University Hospital, Research Center for Emergency Medicine, Aarhus, Denmark; Aarhus University Hospital, Department of Anesthesiology,, Aarhus, Denmark
| | | | - Benjamin S Abella
- University of Pennsylvania, Center for Resuscitation Science, Philadelphia, PA, United States
| | - David F Gaieski
- Thomas Jefferson University Hospital, Department of Emergency Medicine, Philadelphia, PA, United States
| | - Joseph P Ornato
- Virginia Commonwealth University, Department of Emergency Medicine, Richmond, VA, United States
| | - Raúl J Gazmuri
- Rosalind Franklin University of Medicine and Science, Resuscitation Institute and Division of Critical Care Medicine, North Chicago, IL, United States
| | - Anne V Grossestreuer
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA, United States
| | - Michael N Cocchi
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA, United States; Beth Israel Deaconess Medical Center, Department of Anesthesia Critical Care, Division of Critical Care, Boston, MA, United States
| | - Antonio Abbate
- Virginia Commonwealth University, Department of Internal Medicine, Richmond, VA, United States
| | - Amy Uber
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA, United States
| | - John Clore
- Virginia Commonwealth University, Department of Internal Medicine, Richmond, VA, United States
| | - Mary Anne Peberdy
- Virginia Commonwealth University, Department of Internal Medicine and Emergency Medicine, Richmond, VA, United States
| | | | | |
Collapse
|
35
|
Abstract
PURPOSE Cytochrome c is an essential component of the electron transport chain, and circulating cytochrome c might be an indicator of mitochondrial injury. The objective of this study was to determine whether cytochrome c levels are elevated in septic patients, whether there is an association between cytochrome c levels and lactate/inflammatory markers, and whether elevated levels of cytochrome c are associated with poor outcomes. METHODS This was a single-center, prospective, observational, pilot study within a randomized, placebo-controlled trial. We enrolled adult patients in septic shock and with an elevated lactate (>3 mmol/L). Blood was collected at enrollment and at 12 and 24 h thereafter. Cytochrome c was measured in plasma using an electrochemiluminescence immunoassay. RESULTS We included 77 patients. Plasma cytochrome c levels were significantly higher in septic patients than in healthy controls (0.70 ng/mL [quartiles: 0.06, 1.99] vs. 0.19 ng/mL [quartiles: 0.03, 1.32], P = 0.008). Cytochrome c levels at enrollment were positively correlated with lactate levels (r(s) = 0.40, P < 0.001) but not with inflammatory markers. Patients who died before hospital discharge had significantly higher cytochrome c levels than survivors (0.99 ng/mL [quartiles: 0.36, 4.09] vs. 0.58 ng/mL [quartiles: 0.03, 1.64], P = 0.01). When analyzed over time, the difference between survivors and nonsurvivors remained significant (P < 0.001). CONCLUSIONS Cytochrome c levels are higher in septic patients than in controls. In unadjusted analysis, septic nonsurvivors had higher cytochrome c levels than survivors.
Collapse
|
36
|
Li X, Liu YJ, Xia JM, Zeng XY, Liao XX, Wei HY, Hu CL, Jing XL, Dai G. Activation of autophagy improved the neurologic outcome after cardiopulmonary resuscitation in rats. Am J Emerg Med 2016; 34:1511-8. [DOI: 10.1016/j.ajem.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 05/02/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022] Open
|
37
|
Wang P, Yao L, Zhou LL, Liu YS, Chen MD, Wu HD, Chang RM, Li Y, Zhou MG, Fang XS, Yu T, Jiang LY, Huang ZT. Carbon Monoxide Improves Neurologic Outcomes by Mitochondrial Biogenesis after Global Cerebral Ischemia Induced by Cardiac Arrest in Rats. Int J Biol Sci 2016; 12:1000-9. [PMID: 27489503 PMCID: PMC4971738 DOI: 10.7150/ijbs.13222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 06/20/2016] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dysfunction contributes to brain injury following global cerebral ischemia after cardiac arrest. Carbon monoxide treatment has shown potent cytoprotective effects in ischemia/reperfusion injury. This study aimed to investigate the effects of carbon monoxide-releasing molecules on brain mitochondrial dysfunction and brain injury following resuscitation after cardiac arrest in rats. A rat model of cardiac arrest was established by asphyxia. The animals were randomly divided into the following 3 groups: cardiac arrest and resuscitation group, cardiac arrest and resuscitation plus carbon monoxide intervention group, and sham control group (no cardiac arrest). After the return of spontaneous circulation, neurologic deficit scores (NDS) and S-100B levels were significantly decreased at 24, 48, and 72 h, but carbon monoxide treatment improved the NDS and S-100B levels at 24 h and the 3-day survival rates of the rats. This treatment also decreased the number of damaged neurons in the hippocampus CA1 area and increased the brain mitochondrial activity. In addition, it increased mitochondrial biogenesis by increasing the expression of biogenesis factors including peroxisome proliferator-activated receptor-γ coactivator-1α, nuclear respiratory factor-1, nuclear respiratory factor-2 and mitochondrial transcription factor A. Thus, this study showed that carbon monoxide treatment alleviated brain injury after cardiac arrest in rats by increased brain mitochondrial biogenesis.
Collapse
Affiliation(s)
- Peng Wang
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Lan Yao
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China; 3. Department of Emergency Medicine, The fifth affiliated hospital, Sun Yat-sen University, Zhuhai, China
| | - Li-Li Zhou
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Shan Liu
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Ming-di Chen
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Hai-Dong Wu
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Rui-Ming Chang
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Yi Li
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Ming-Gen Zhou
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Shao Fang
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Tao Yu
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Long-Yuan Jiang
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| | - Zi-Tong Huang
- 1. Department of Emergency Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; 2. Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Ikeda K, Liu X, Kida K, Marutani E, Hirai S, Sakaguchi M, Andersen LW, Bagchi A, Cocchi MN, Berg KM, Ichinose F, Donnino MW. Thiamine as a neuroprotective agent after cardiac arrest. Resuscitation 2016; 105:138-44. [PMID: 27185216 DOI: 10.1016/j.resuscitation.2016.04.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 11/19/2022]
Abstract
AIMS Reduction of pyruvate dehydrogenase (PDH) activity in the brain is associated with neurological deficits in animals resuscitated from cardiac arrest. Thiamine is an essential co-factor of PDH. The objective of this study was to examine whether administration of thiamine improves outcomes after cardiac arrest in mice. Secondarily, we aimed to characterize the impact of cardiac arrest on PDH activity in mice and humans. METHODS Animal study: Adult mice were subjected to cardiac arrest whereupon cardiopulmonary resuscitation was performed. Thiamine or vehicle was administered 2min before resuscitation and daily thereafter. Mortality, neurological outcome, and metabolic markers were evaluated. Human study: In a convenience sample of post-cardiac arrest patients, we measured serial PDH activity from peripheral blood mononuclear cells and compared them to healthy controls. RESULTS Animal study: Mice treated with thiamine had increased 10-day survival (48% versus 17%, P<0.01) and improved neurological function when compared to vehicle-treated mice. In addition, thiamine markedly improved histological brain injury compared to vehicle. The beneficial effects of thiamine were accompanied by improved oxygen consumption in mitochondria, restored thiamine pyrophosphate levels, and increased PDH activity in the brain at 10 days. Human study: Post-cardiac arrest patients had lower PDH activity in mononuclear cells than did healthy volunteers (estimated difference: -5.8O.D./min/mg protein, P<0.001). CONCLUSIONS The provision of thiamine after cardiac arrest improved neurological outcome and 10-day survival in mice. PDH activity was markedly depressed in post-cardiac arrest patients suggesting that this pathway may represent a therapeutic target.
Collapse
Affiliation(s)
- Kohei Ikeda
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xiaowen Liu
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kotaro Kida
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shuichi Hirai
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Masahiro Sakaguchi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lars W Andersen
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Anaesthesiology, Aarhus University Hospital, Aarhus, Denmark; Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Aranya Bagchi
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael N Cocchi
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Anesthesia Critical Care, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Katherine M Berg
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Medicine, Division of Pulmonary and Critical Care, Beth Israel Deaconess Medical Center, MA, USA
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Michael W Donnino
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Medicine, Division of Pulmonary and Critical Care, Beth Israel Deaconess Medical Center, MA, USA.
| |
Collapse
|
39
|
Gong P, Zhao S, Wang J, Yang Z, Qian J, Wu X, Cahoon J, Tang W. Mild hypothermia preserves cerebral cortex microcirculation after resuscitation in a rat model of cardiac arrest. Resuscitation 2015; 97:109-14. [DOI: 10.1016/j.resuscitation.2015.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/24/2015] [Accepted: 10/02/2015] [Indexed: 11/15/2022]
|
40
|
Huang CH, Tsai MS, Chiang CY, Su YJ, Wang TD, Chang WT, Chen HW, Chen WJ. Activation of mitochondrial STAT-3 and reduced mitochondria damage during hypothermia treatment for post-cardiac arrest myocardial dysfunction. Basic Res Cardiol 2015; 110:59. [DOI: 10.1007/s00395-015-0516-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/08/2015] [Indexed: 01/05/2023]
|
41
|
Identifying the role of cytochrome c in post-resuscitation pathophysiology. Am J Emerg Med 2015; 33:1826-30. [PMID: 26494628 DOI: 10.1016/j.ajem.2015.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/06/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022] Open
Abstract
Cytochrome c, an electron carrier that normally resides in the mitochondrial intermembrane space, may translocate to the cytosol under ischemic and hypoxic conditions and contribute to mitochondrial permeability transition pore opening. In addition, reperfusion of brain tissue following ischemia initiates a cell death cascade that includes cytochrome c-mediated induction of apoptosis. Further studies are needed to determine the contribution of cytochrome c in the regulation of cell death, as well as its value as an in vivo prognostic marker after cardiac arrest and resuscitation.
Collapse
|
42
|
Baker E, Lee G. The science of reperfusion injury post cardiac arrest--Implications for emergency nurses. Int Emerg Nurs 2015; 24:66-70. [PMID: 26385262 DOI: 10.1016/j.ienj.2015.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
Survival following cardiac arrest in the developed world remains below 10%. In those who survive the initial cardiac arrest, prognosis remains poor due to the onset of multi-organ failure with both significant cardiac and neurological dysfunction. Nurses have demonstrated good understanding of cardiac arrest/post arrest guidelines and have good technical skills but deficits remain in their understanding of pathophysiological processes involved in post cardiac arrest syndromes. This article aims to provide an overview of these pathophysiological processes involved in the post cardiac arrest phase, potential treatment options and the nursing interventions that may be required within the emergency department setting. This article will focus emergency nurses to become more involved in patient management at this critical phase of treatment and highlight potential early signs of deterioration. Although return of spontaneous circulation (ROSC) is crucial in the process of recovery from cardiac arrest, it is only the first of many complex stages. Given the complexity of post cardiac arrest syndrome and its impact on the patient, healthcare professionals need to understand the cellular changes associated with reperfusion injuries in order to improve outcomes. It is only through effective nursing care and medical management that improved outcomes will become more common in the future.
Collapse
Affiliation(s)
- Edward Baker
- Emergency Department, King's College Hospital NHS Trust, Denmark Hill, London SE5 9RS, United Kingdom.
| | - Geraldine Lee
- King's College London, James Clerk Maxwell Building, 57, Waterloo Road, Waterloo, London SW1 8WA, United Kingdom
| |
Collapse
|
43
|
Kilbaugh TJ, Sutton RM, Karlsson M, Hansson MJ, Naim MY, Morgan RW, Bratinov G, Lampe JW, Nadkarni VM, Becker LB, Margulies SS, Berg RA. Persistently Altered Brain Mitochondrial Bioenergetics After Apparently Successful Resuscitation From Cardiac Arrest. J Am Heart Assoc 2015; 4:e002232. [PMID: 26370446 PMCID: PMC4599507 DOI: 10.1161/jaha.115.002232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although advances in cardiopulmonary resuscitation have improved survival from cardiac arrest (CA), neurologic injury persists and impaired mitochondrial bioenergetics may be critical for targeted neuroresuscitation. The authors sought to determine if excellent cardiopulmonary resuscitation and postresuscitation care and good traditional survival rates result in persistently disordered cerebral mitochondrial bioenergetics in a porcine pediatric model of asphyxia-associated ventricular fibrillation CA. METHODS AND RESULTS After 7 minutes of asphyxia, followed by ventricular fibrillation, 5 female 1-month-old swine (4 sham) received blood pressure-targeted care: titration of compression depth to systolic blood pressure of 90 mm Hg and vasopressor administration to a coronary perfusion pressure >20 mm Hg. All animals received protocol-based vasopressor support after return of spontaneous circulation for 4 hours before they were killed. The primary outcome was integrated mitochondrial electron transport system (ETS) function. CA animals displayed significantly decreased maximal, coupled oxidative phosphorylating respiration (OXPHOSCI + CII) in cortex (P<0.02) and hippocampus (P<0.02), as well as decreased phosphorylation and coupling efficiency (cortex, P<0.05; hippocampus, P<0.05). Complex I- and complex II-driven respiration were both significantly decreased after CA (cortex: OXPHOSCI P<0.01, ETSCII P<0.05; hippocampus: OXPHOSCI P<0.03, ETSCII P<0.01). In the hippocampus, there was a significant decrease in maximal uncoupled, nonphosphorylating respiration (ETSCI + CII), as well as a 30% reduction in citrate synthase activity (P<0.04). CONCLUSIONS Mitochondria in both the cortex and hippocampus displayed significant alterations in respiratory function after CA despite excellent cardiopulmonary resuscitation and postresuscitation care in asphyxia-associated ventricular fibrillation CA. Analysis of integrated ETS function identifies mitochondrial bioenergetic failure as a target for goal-directed neuroresuscitation after CA. IACUC Protocol: IAC 13-001023.
Collapse
Affiliation(s)
- Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden (M.K., M.J.H.)
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden (M.K., M.J.H.)
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - George Bratinov
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Joshua W Lampe
- Department of Emergency Medicine, The Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.W.L., L.B.B.)
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Lance B Becker
- Department of Emergency Medicine, The Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.W.L., L.B.B.)
| | - Susan S Margulies
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA (S.S.M.)
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| |
Collapse
|
44
|
Cour M, Jahandiez V, Loufouat J, Ovize M, Argaud L. Minor Changes in Core Temperature Prior to Cardiac Arrest Influence Outcomes: An Experimental Study. J Cardiovasc Pharmacol Ther 2014; 20:407-13. [PMID: 25540058 DOI: 10.1177/1074248414562911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/15/2014] [Indexed: 02/05/2023]
Abstract
AIM To investigate whether slight variations in core temperature prior to cardiac arrest (CA) influence short-term outcomes and mitochondrial functions. METHODS AND MATERIALS Three groups of New Zealand White rabbits (n = 12/group) were submitted to 15 minutes of CA at 38°C (T-38 group), 39°C (T-39), or 40°C (T 40) and 120 minutes of reperfusion. A Sham-operated group (n = 6) underwent only surgery. Restoration of spontaneous circulation (ROSC), survival, hemodynamics, and pupillary reactivity were recorded. Animals surviving to the end of the observation period were euthanized to assess fresh brain and heart mitochondrial functions (permeability transition and oxidative phosphorylation). Markers of brain and heart damages were also measured. RESULTS The duration of asphyxia required to induce CA was significantly lower in the T-40 group when compared to the T-38 group (P < .05). The rate of ROSC was >80% in all groups (P = nonsignificant [ns]). Survival significantly differed among the T-38, T-39, and T-40 groups: 10 (83%) of 12, 7 (58%) of 12, and 4 (33%) of 12, respectively (log-rank test, P = .027). At the end of the protocol, none of the animals in the T-40 group had pupillary reflexes compared to 8 (67%) of 12 in the T-38 group (P < .05). Troponin and protein S100B were significantly higher in the T-40 versus T-38 group (P < .05). Cardiac arrest significantly impaired both inner mitochondrial membrane integrity and oxidative phosphorylation in all groups. Brain mitochondria disorders were significantly more severe in the T-40 group compared to the T-38 group (P < .05). CONCLUSION Small changes in body temperature prior to asphyxial CA significantly influence brain mitochondrial functions and short-term outcomes in rabbits.
Collapse
Affiliation(s)
- Martin Cour
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Service de Réanimation Médicale, Lyon, France Faculté de médecine Lyon-Est, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France INSERM UMR 1060, CarMeN, Lyon, France
| | - Vincent Jahandiez
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Service de Réanimation Médicale, Lyon, France Faculté de médecine Lyon-Est, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France INSERM UMR 1060, CarMeN, Lyon, France
| | | | - Michel Ovize
- INSERM UMR 1060, CarMeN, Lyon, France Hospices Civils de Lyon, Groupement Hospitalier Est, Explorations Fonctionnelles Cardiovasculaires & Centre d'Investigations Cliniques de Lyon, Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Service de Réanimation Médicale, Lyon, France Faculté de médecine Lyon-Est, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France INSERM UMR 1060, CarMeN, Lyon, France
| |
Collapse
|
45
|
Protective effect of shen-fu injection on neuronal mitochondrial function in a porcine model of prolonged cardiac arrest. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:523847. [PMID: 25505924 PMCID: PMC4258377 DOI: 10.1155/2014/523847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 10/31/2014] [Indexed: 11/29/2022]
Abstract
Background. Shen-Fu injection (SFI) following cardiac arrest exhibits neurological effects, but its effect on neurological dysfunction is unclear. This study sought to investigate the protective effect of SFI on nerve cells in a porcine model of cardiac arrest. Methods. After eight minutes of untreated ventricular fibrillation (VF) and 2 minutes of basic life support, 24 pigs were randomized and divided into three cardiopulmonary resuscitation groups, which received central venous injection of either Shen-Fu (SFI group; 1.0 ml/kg), epinephrine (EP group; 0.02 mg/kg), or saline (SA group). Surviving pigs were sacrificed at 24 h after ROSC and brains were removed for analysis for morphologic changes of mitochondria by electron microscopy, for mitochondrial transmembrane potential (MTP) by flow cytometry, and for opening of the mitochondrial permeability transition pore (MPTP) by mitochondrial light scattering. Results. Compared with the EP and SA groups, SFI treatment reduced opening of MPTP, showing higher MMP. In addition, animals treated with SFI showed slight cerebral ultrastructure damage under the electron microscopy. Conclusion. Shen-Fu injection alleviated brain injury, improved neurological ultrastructure, stabilized membrane potential, and inhibited opening of MPTP. Therefore, SFI could significantly attenuate postresuscitation cerebral ischemia and reperfusion injury by modulating mitochondrial dysfunction of nerve cells.
Collapse
|
46
|
Pan H, Xie X, Chen D, Zhang J, Zhou Y, Yang G. Protective and biogenesis effects of sodium hydrosulfide on brain mitochondria after cardiac arrest and resuscitation. Eur J Pharmacol 2014; 741:74-82. [DOI: 10.1016/j.ejphar.2014.07.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/29/2014] [Accepted: 07/14/2014] [Indexed: 11/26/2022]
|
47
|
Cour M, Abrial M, Jahandiez V, Loufouat J, Belaïdi E, Gharib A, Varennes A, Monneret G, Thibault H, Ovize M, Argaud L. Ubiquitous protective effects of cyclosporine A in preventing cardiac arrest-induced multiple organ failure. J Appl Physiol (1985) 2014; 117:930-6. [PMID: 25213634 DOI: 10.1152/japplphysiol.00495.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Opening of the mitochondrial permeability transition pore (mPTP) appears to be a pivotal event in myocardial ischemia-reperfusion (I/R) injury. Resuscitated cardiac arrest (CA) leads to the post-CA syndrome that encompasses, not only myocardial dysfunction, but also brain injury, failure of other organs (kidney, liver, or lung), and systemic response to I/R. We aimed to determine whether cyclosporine A (CsA) might prevent multiple organ failure following CA through a ubiquitous mPTP inhibition in each distant vital organ. Anesthetized New Zealand White rabbits were subjected to 15 min of CA and 120 min of reperfusion. At the onset of resuscitation, the rabbits received CsA, its non-immunosuppressive derivative NIM811, or vehicle (controls). Survival, hemodynamics, brain damage, organ injuries, and systemic I/R response were analyzed. Fresh mitochondria were isolated from the brain, heart, kidney, liver, and lung to assess both oxidative phosphorylation and permeability transition. CsA analogs significantly improved short-term survival and prevented multiple organ failure, including brain damage and myocardial dysfunction (P < 0.05 vs. controls). Susceptibility of mPTP opening was significantly increased in heart, brain, kidney, and liver mitochondria isolated from controls, while mitochondrial respiration was impaired (P < 0.05 vs. sham). CsA analogs prevented these mitochondrial dysfunctions (P < 0.05 vs. controls). These results suggest that CsA and NIM811 can prevent the post-CA syndrome through a ubiquitous mitochondrial protective effect at the level of each major distant organ.
Collapse
Affiliation(s)
- Martin Cour
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Service de Réanimation Médicale, Lyon, France; Faculté de Médecine Lyon-Est, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; INSERM UMR 1060, CarMeN, Lyon, France
| | | | - Vincent Jahandiez
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Service de Réanimation Médicale, Lyon, France; Faculté de Médecine Lyon-Est, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; INSERM UMR 1060, CarMeN, Lyon, France
| | | | | | | | - Annie Varennes
- Laboratoire de Biochimie, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Lyon, France
| | - Guillaume Monneret
- Laboratoire d'Immunologie Clinique, Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Lyon, France; and
| | - Hélène Thibault
- INSERM UMR 1060, CarMeN, Lyon, France; Explorations Fonctionnelles Cardiovasculaires & Centre d'Investigations Cliniques de Lyon, Hospices Civils de Lyon, Groupement Hospitalier Est, Lyon, France
| | - Michel Ovize
- INSERM UMR 1060, CarMeN, Lyon, France; Explorations Fonctionnelles Cardiovasculaires & Centre d'Investigations Cliniques de Lyon, Hospices Civils de Lyon, Groupement Hospitalier Est, Lyon, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, Service de Réanimation Médicale, Lyon, France; Faculté de Médecine Lyon-Est, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; INSERM UMR 1060, CarMeN, Lyon, France;
| |
Collapse
|
48
|
Ranolazine ameliorates postresuscitation electrical instability and myocardial dysfunction and improves survival with good neurologic recovery in a rat model of cardiac arrest. Heart Rhythm 2014; 11:1641-7. [DOI: 10.1016/j.hrthm.2014.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 12/19/2022]
|
49
|
Mangus DB, Huang L, Applegate PM, Gatling JW, Zhang J, Applegate RL. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (Part I - Protection via specific pathways). Med Gas Res 2014; 4:9. [PMID: 24808942 PMCID: PMC4012247 DOI: 10.1186/2045-9912-4-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/25/2014] [Indexed: 01/04/2023] Open
Abstract
Neurocognitive deficits are a major source of morbidity in survivors of cardiac arrest. Treatment options that could be implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation to improve these neurological deficits are limited. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following cardiac arrest with associated global cerebral ischemia. The search was limited to investigational therapies that were utilized to treat global cerebral ischemia associated with cardiac arrest. In this review we discuss potential mechanisms of neurologic protection following cardiac arrest including actions of several medical gases such as xenon, argon, and nitric oxide. The 3 included mechanisms are: 1. Modulation of neuronal cell death; 2. Alteration of oxygen free radicals; and 3. Improving cerebral hemodynamics. Only a few approaches have been evaluated in limited fashion in cardiac arrest patients and results show inconclusive neuroprotective effects. Future research focusing on combined neuroprotective strategies that target multiple pathways are compelling in the setting of global brain ischemia resulting from cardiac arrest.
Collapse
Affiliation(s)
- Dustin B Mangus
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda University Medical Center, Room 2532, 11234 Anderson Street, Loma Linda, CA 92354, USA
| | - Lei Huang
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda University Medical Center, Room 2532, 11234 Anderson Street, Loma Linda, CA 92354, USA ; Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA
| | - Patricia M Applegate
- Department of Cardiology, Loma Linda University School of Medicine, 11201 Benton St, Loma Linda, CA 92354, USA
| | - Jason W Gatling
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda University Medical Center, Room 2532, 11234 Anderson Street, Loma Linda, CA 92354, USA
| | - John Zhang
- Department of Basic Sciences, Division of Physiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA ; Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda University Medical Center, Room 2532, 11234 Anderson Street, Loma Linda, CA 92354, USA ; Department of Neurosurgery, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA 92354, USA
| | - Richard L Applegate
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda University Medical Center, Room 2532, 11234 Anderson Street, Loma Linda, CA 92354, USA
| |
Collapse
|
50
|
Impaired cerebral mitochondrial oxidative phosphorylation function in a rat model of ventricular fibrillation and cardiopulmonary resuscitation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:192769. [PMID: 24696844 PMCID: PMC3947758 DOI: 10.1155/2014/192769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/04/2014] [Indexed: 01/18/2023]
Abstract
Postcardiac arrest brain injury significantly contributes to mortality and morbidity in patients suffering from cardiac arrest (CA). Evidence that shows that mitochondrial dysfunction appears to be a key factor in tissue damage after ischemia/reperfusion is accumulating. However, limited data are available regarding the cerebral mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) and its relationship to the alterations of high-energy phosphate. Here, we sought to identify alterations of mitochondrial morphology and oxidative phosphorylation function as well as high-energy phosphates during CA and CPR in a rat model of ventricular fibrillation (VF). We found that impairment of mitochondrial respiration and partial depletion of adenosine triphosphate (ATP) and phosphocreatine (PCr) developed in the cerebral cortex and hippocampus following a prolonged cardiac arrest. Optimal CPR might ameliorate the deranged phosphorus metabolism and preserve mitochondrial function. No obvious ultrastructural abnormalities of mitochondria have been found during CA. We conclude that CA causes cerebral mitochondrial dysfunction along with decay of high-energy phosphates, which would be mitigated with CPR. This study may broaden our understanding of the pathogenic processes underlying global cerebral ischemic injury and provide a potential therapeutic strategy that aimed at preserving cerebral mitochondrial function during CA.
Collapse
|