1
|
Lashaki SB, Moulavi P, Ashrafi F, Sharifi A, Asadi S. Imipenem/cilastatin encapsulation in UIO-66-NH 2 carrier as a new strategy for combating imipenem-resistant Pseudomonas aeruginosa isolates. J Glob Antimicrob Resist 2025; 42:15-27. [PMID: 39892666 DOI: 10.1016/j.jgar.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND This study aims to investigate the effectiveness of UIO-66-NH2, a metal-organic framework, as a carrier for imipenem/cilastatin (Imp/Cil) in overcoming resistance in clinical isolates of imipenem-resistant Pseudomonas aeruginosa. METHODS The UIO-66-NH2-Imp/Cil formulations were synthesized and characterized using dynamic light scattering, scanning electron microscopy, and transmission electron microscopy. Drug entrapment efficiency of UIO-66-NH2-Imp/Cil, and Imp/Cil release rates were determined. The stability of formulations was assessed at room temperature and refrigeration for two months. The antibacterial, anti-biofilm, and anti-virulence activities of formulations were investigated against imipenem-resistant P. aeruginosa isolates. RESULTS The UIO-66-NH2-Imp/Cil formulation showed an average particle size of 212.3 ± 7.3 nm, a polydispersity index of 0.142 ± 0.010, and an entrapment efficiency (EE%) of 74.19% ± 1.12%. Drug release from the formulation followed a Korsmeyer-Peppas kinetic model, with 52% of the drug released over 72 h. Antibacterial testing indicated a significant decrease in minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for the UIO-66-NH2-Imp/Cil formulation compared to free Imp/Cil, demonstrating enhanced antibacterial activity. Furthermore, the anti-biofilm and anti-virulence activity of UIO-66-NH2-Imp/Cil was confirmed by the reduction of bacterial haemolysis activity, minimal pyocyanin, EPS (extracellular polymeric substance) production, and lower metabolic activity of pathogens. Also, UIO-66-NH2-Imp/Cil causes significant reduction in the expression of lasA, lasB and, rhlA genes, which resulted in the inhibition of quorum-sensing system activity. CONCLUSIONS These findings indicate that UIO-66-NH2-Imp/Cil nanocarriers offer a promising new approach against multidrug-resistant Gram-negative pathogens, providing insights into potential mechanisms of antimicrobial action.
Collapse
Affiliation(s)
- Shakila Baei Lashaki
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Pooria Moulavi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ashrafi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Aram Sharifi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Sepideh Asadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Sorieul C, Mikladal B, Wu DY, Brogioni B, Giovani C, Adamo G, Romagnoli G, Margarit Y Ros I, Codée J, Romano MR, Carboni F, Adamo R. Multimeric, multivalent fusion carrier proteins for site-selective glycoconjugate vaccines simultaneously targeting Staphylococcus aureus and Pseudomonas aeruginosa. Chem Sci 2025; 16:5688-5700. [PMID: 40041805 PMCID: PMC11875126 DOI: 10.1039/d4sc08622h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are major antimicrobial-resistant pathogens that often synergize in polymicrobial infections, such as chronic wound infections. These notorious and increasingly resistant bacteria contribute significantly to reduced antibiotic efficacy. Despite their substantial clinical burden, the urgent need to combat bacterial resistance and extensive research efforts, no vaccines currently exist for either bacterium. Glycoconjugate vaccines, which extend the range of suitable vaccine antigens to bacterial carbohydrates, could play a major role in this emergence. This study introduces a multiepitope vaccine conjugating S. aureus capsular polysaccharide serotype 8 to a chimeric protein fusing Hla and PcrV, two potent cytotoxins from S. aureus and P. aeruginosa, respectively. A conjugation strategy based on selective targeting of a purposefully introduced histidine tag was developed to preserve the structure and antigenicity of epitopes from the two proteins, leveraging their dual role as a carrier and antigen. This multivalent, multimeric and multipathogen construct successfully elicited antibodies against all three antigens as well as functional protection. This proof-of-concept highlights the potential for advanced vaccines targeting polymicrobial infections and bacteria with complex pathogenesis calling for multivalent formulations. It also points out the power of site-selective conjugation as a tool for vaccine manufacturing.
Collapse
Affiliation(s)
- Charlotte Sorieul
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden Netherlands
- GSK Siena Via Fiorentina, 1 53100 Siena SI Italy
| | | | - Dung-Yeh Wu
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden Netherlands
- GSK Siena Via Fiorentina, 1 53100 Siena SI Italy
| | | | | | - Giusy Adamo
- GSK Siena Via Fiorentina, 1 53100 Siena SI Italy
| | | | | | - Jeroen Codée
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden Netherlands
| | | | | | | |
Collapse
|
3
|
Sharma P, Kalra A, Tripathi AD, Chaturvedi VK, Chouhan B. Antimicrobial Proficiency of Amlodipine: Investigating its Impact on Pseudomonas spp. in Urinary Tract Infections. Indian J Microbiol 2025; 65:347-358. [PMID: 40371041 PMCID: PMC12069773 DOI: 10.1007/s12088-024-01280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2025] Open
Abstract
Antibiotic resistance in urinary tract infections (UTIs) is a growing concern due to extensive antibiotic use. The study explores a drug repurposing approach to find non-antibiotic drugs with antibacterial activity. In the present study, 8 strains of Pseudomonas spp. were used that were clinically isolated from UTI-infected patients. Amlodipine, a cardiovascular drug used in this study, has shown potential antimicrobial effect in reducing the various virulence factors, including swimming and twitching motility, biofilm, rhamnolipid, pyocyanin, and oxidative stress resistance against all the strains. Amlodipine exhibited the most potent antimicrobial activity with MIC in the range of 6.25 to 25 µg/ml. Significant inhibition in biofilm production was seen in the range of 45.75 to 76.70%. A maximum decrease of 54.66% and 59.45% in swimming and twitching motility was observed, respectively. Maximum inhibition of 65.87% of pyocyanin pigment was observed with the effect of amlodipine. Moreover, a significant decrease in rhamnolipids production observed after amlodipine treatment was between 16.5 and 0.001 mg/ml as compared to the control. All bacterial strains exhibited leakage of proteins and nucleic acids from their cell membranes when exposed to amlodipine which suggests the damage of the structural integrity. In conclusion, amlodipine exhibited good antimicrobial activity and can be used as a potential candidate to be repurposed for the treatment of urinary tract infections.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan 302004 India
| | - Aakanksha Kalra
- Dr. B. Lal Institute of Biotechnology, University of Rajasthan, Jaipur, Rajasthan 302017 India
| | - Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Vivek K. Chaturvedi
- Department of Gastroenterology, Institute of Medical Sciences (BHU), Varanasi, 221005 India
| | - Bharti Chouhan
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan 302004 India
| |
Collapse
|
4
|
Pant P, Chihara S, Krishnamoorthy V, Treggiari MM, Messina JA, Privratsky JR, Raghunathan K, Ohnuma T. Association of Causative Pathogens With Acute Kidney Injury in Adult Patients With Community-Onset Sepsis. Crit Care Explor 2025; 7:e1219. [PMID: 39937578 PMCID: PMC11826047 DOI: 10.1097/cce.0000000000001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
IMPORTANCE The influence of disease-causing pathogen on acute kidney injury (AKI) in septic patients is poorly understood. OBJECTIVES We examined the association of microbial pathogen with AKI among patients with community-onset sepsis. DESIGN, SETTING, AND PARTICIPANTS This was a retrospective cohort study. Patient data were acquired from the nationwide multicenter PINC AI Healthcare Database (2016-2020). Participants included adult patients with Centers for Disease Control and Prevention-defined community-onset sepsis. MAIN OUTCOMES AND MEASURES The primary exposure was pathogen type identified by culture growth. Microbial cultures from any site were included. The primary endpoint was development of AKI within 7 days of admission using the Kidney Disease: Improving Global Outcomes serum creatinine criteria. We used multilevel logistic regression to examine the association between pathogen type and AKI. Escherichia coli-positive cultures were used as the reference category. RESULTS We included 119,733 patients with community-onset sepsis. The median age was 67 years, 33.3% were mechanically ventilated, 36.1% received vasopressors, and hospital mortality was 13.1%. Forty-two thousand twenty-seven patients (35.1%) developed stage 1 AKI, 22,979 (19.2%) developed stage 2 AKI, and 25,073 (20.9%) developed stage 3 AKI. Relative to patients with E. coli infection (odds ratio [OR], 1.0), Proteus species (OR, 1.26; 95% CI, 1.06-1.50), and Streptococcus species (OR, 1.24; 95% CI, 1.10-1.41) were associated with increased odds of AKI. Meanwhile, Pseudomonas aeruginosa (OR, 0.56; 95% CI, 0.49-0.64) and Serratia species (OR, 0.70; 95% CI, 0.52-0.94) were associated with decreased odds of AKI. CONCLUSIONS AND RELEVANCE The causative pathogen in patients with sepsis may influence the development of AKI. Further mechanistic and clinical research is needed to confirm these findings and to explore how different pathogens may affect AKI risk in critically ill patients.
Collapse
Affiliation(s)
- Praruj Pant
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Shingo Chihara
- Section of Infectious Diseases, Department of Internal Medicine, Virginia Mason Medical Center, Seattle, WA
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Miriam M. Treggiari
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Julia A. Messina
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC
| | - Jamie R. Privratsky
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC
- Center for Perioperative Organ Protection (CPOP), Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Karthik Raghunathan
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC
- Anesthesiology Service, Durham VA Medical Center, Durham, NC
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| |
Collapse
|
5
|
Assaad C, Chaibi K, Jaureguy F, Plésiat P, Carbonnelle E, Cohen Y, Zahar JR, Pilmis B. Risk factors for Pseudomonas aeruginosa VIM colonization or infection in the ICU: Case-control study. Am J Infect Control 2024; 52:1160-1165. [PMID: 38925502 DOI: 10.1016/j.ajic.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Carbapenem-resistant strains of Pseudomonas aeruginosa (CRPA) have become a major health care concern in many countries, against which anti-infective strategies are limited and which require adequate infection control interventions. Knowing the different modes of transmission of CRPA in intensive care units (ICUs) would be helpful to adapt the means of prevention. METHODS The aim of this retrospective case-control study was conducted between January 1, 2017 and February 28, 2022 to identify the risk factors for the acquisition of CRPA in ICUs. RESULTS During the study period, 147 patients were included (49 cases and 98 controls). Among the 49 patients, 31 (63%) acquired CRPA in clusters and 18 (37%) sporadically. A univariate analysis showed that 4 variables were associated with CRPA acquisition, including (1) prior antibiotic prescriptions, (2) admission to rooms 203 and 207, (3) severity of illness at admission, and (4) use of mechanical ventilation. Multivariate analysis identified 3 factors of CRPA acquisition, including admission to room 203 (odds ratio [OR] = 29.5 [3.52-247.09]), previous antibiotic therapy (OR = 3.44 [1.02-11.76]), and severity of condition at admission (OR = 1.02 [1-1.04]). CONCLUSIONS Our study suggests the role of a contaminated environment in the acquisition of CRPA in the ICU, along with antibiotic use.
Collapse
Affiliation(s)
- Charbel Assaad
- Unité de Prévention du Risque Infectieux, Département de Microbiologie Clinique, Groupe Hospitalier Paris Seine Saint-Denis, Université Paris 13, Bobigny, France
| | - Khalil Chaibi
- Service de Réanimation Médico Chirurgicale, Groupe Hospitalier Paris Seine Saint-Denis, Université Paris 13, Bobigny, France
| | - Françoise Jaureguy
- Unité de Prévention du Risque Infectieux, Département de Microbiologie Clinique, Groupe Hospitalier Paris Seine Saint-Denis, Université Paris 13, Bobigny, France
| | - Patrick Plésiat
- Université de Franche-Comté, UMR CNRS 6249 Chrono-Environnement, Besançon, France; Laboratoire Associé du Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Etienne Carbonnelle
- Unité de Prévention du Risque Infectieux, Département de Microbiologie Clinique, Groupe Hospitalier Paris Seine Saint-Denis, Université Paris 13, Bobigny, France
| | - Yves Cohen
- Service de Réanimation Médico Chirurgicale, Groupe Hospitalier Paris Seine Saint-Denis, Université Paris 13, Bobigny, France
| | - Jean-Ralph Zahar
- Service de Réanimation Médico Chirurgicale, Groupe Hospitalier Paris Seine Saint-Denis, Université Paris 13, Bobigny, France.
| | - Benoit Pilmis
- Service de Microbiologie et Plateforme de Dosage des Anti-infection, Équipe Mobile de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie Lannelongue, Paris, France; Université Paris-Saclay, INRAE, AgroParisTech, UMR 1319, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
6
|
Sachdeva C, Satyamoorthy K, Murali TS. Pseudomonas aeruginosa: metabolic allies and adversaries in the world of polymicrobial infections. Crit Rev Microbiol 2024:1-20. [PMID: 39225080 DOI: 10.1080/1040841x.2024.2397359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.
Collapse
Affiliation(s)
- Chandni Sachdeva
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Sattur, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Boekema BKHL, Chrysostomou D, Ciprandi G, Elgersma A, Vlig M, Pokorná A, Peters LJF, Cremers NAJ. Comparing the antibacterial and healing properties of medical-grade honey and silver-based wound care products in burns. Burns 2024; 50:597-610. [PMID: 37940425 DOI: 10.1016/j.burns.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Burns are a major global healthcare concern, often complicated by the presence of bacteria such as Pseudomonas aeruginosa in the wounds. Silver-based dressings are commonly used in the treatment of burns but can cause skin irritation and delay healing time. Medical-grade honey (MGH) provides an interesting alternative. This study investigated the antimicrobial effects and possible cytotoxicity of L-Mesitran Soft (MGH-gel) and its individual components, Medihoney (Manuka), Flammazine (silver sulphadiazine), and silver nitrate (AgNO3) in an ex vivo human burn wound model. Bacterial survival and wound healing parameters, including re-epithelialization and keratinocyte proliferation were assessed. L-Mesitran, Flammazine, and AgNO3 reduced P. aeruginosa numbers below detection levels. L-Mesitran Soft exhibited a significantly stronger antimicrobial effect compared to Medihoney. The individual components of L-Mesitran contributed significantly to its antibacterial efficacy, thus suggesting synergistic activities. Moreover, L-Mesitran, Flammazine, and AgNO3 slightly inhibited re-epithelialization while Medihoney treatment resulted in a complete lack of re-epithelialization and keratinocyte proliferation. Furthermore, clinical cases illustrated the effectiveness of MGH therapy in infected burns. Overall, L-Mesitran Soft had similar effects as silver-based products on bacterial load and epidermal regeneration, but outperformed Medihoney. Therefore, supplemented MGH could be used as an effective alternative to silver-based dressings for P. aeruginosa-infected burns.
Collapse
Affiliation(s)
- Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centers (ADBC), P.O. Box 1015, 1940 AE Beverwijk, the Netherlands; Plastic, Reconstructive and Hand Surgery, AUMC, Amsterdam, the Netherlands
| | - Daniela Chrysostomou
- Wound Clinic Health@45, Linksfield Road 45, Dowerglen, Johannesburg 1612, South Africa; Department of Health Sciences, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Public Health, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Guido Ciprandi
- Bambino Gesu' Children's Hospital, Research Institute Division of Plastic and Maxillofacial Surgery, Department of Surgery, Sant' Onofrio Square 4, 00165 Rome, Italy
| | - Anouk Elgersma
- Preclinical Research, Association of Dutch Burn Centers (ADBC), P.O. Box 1015, 1940 AE Beverwijk, the Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centers (ADBC), P.O. Box 1015, 1940 AE Beverwijk, the Netherlands
| | - Andrea Pokorná
- Department of Health Sciences, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Public Health, Faculty of Medicine, Masaryk University, Brno, Czech Republic; College of Polytechnics Jihlava, Jihlava, Czech Republic
| | - Linsey J F Peters
- Triticum Exploitatie BV, Sleperweg 44, 6222 NK Maastricht, the Netherlands
| | - Niels A J Cremers
- Triticum Exploitatie BV, Sleperweg 44, 6222 NK Maastricht, the Netherlands; Department of Gynecology and Obstetrics, Maastricht University Medical Center, 6202 AZ Maastricht, the Netherlands.
| |
Collapse
|
8
|
Pabary R, Jaffe A, Bush A. Macrolides and Cystic Fibrosis. PROGRESS IN INFLAMMATION RESEARCH 2024:59-92. [DOI: 10.1007/978-3-031-42859-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Özsoy E, Coşkun USŞ, Dagcıoğlu Y, Demir O. Investigation of virulence factors in Pseudomonas aeruginosa isolates by phenotypic and genotypic methods. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:292-301. [PMID: 37665184 DOI: 10.1080/15257770.2023.2254346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Pseudomonas aeruginosa possesses a variety of virulence factors that may contribute to its pathogenicity, and relationship has been determined between antibiotic resistance and biofilm. The aim of this study was to investigate the virulence factors of Pseudomonas aeruginosa isolates by genotypic and phenotypic methods, as well as whether there is a relationship between other virulence factors and antibiotic resistance. METHODS A total of 80 Pseudomonas aeruginosa strains were sent from various clinics included in the study. Identification and antibiotic resistance profile of isolates were determined by Vitek 2 (Biomerioux, France) automated system. Pseudomonas P agar, Pseudomonas F agar, and motility test medium were used for phenotyping tests. Tox A, Exo S, Plc N, and Las B were evaluated with Real-time PCR (Anatolia, Geneworks, Turkey). RESULTS The highest rates of antibiotic resistance were observed against imipenem (42.5%) and meropenem (40%). Among the isolates, 81.3% tested positive for Tox A, 30% for Exo S, 32.5% for Plc N, and 42.5% for Las B. Additionally, 70.4% of the isolates tested positive for pyocyanin, 41.3% for pyoverdine, 1.8% for pyorubin, and 8.9% tested negative for pyorubin. No statistically significant difference was found between antibiotic resistance and the presence of virulence factors (p > 0.005). CONCLUSIONS The relationship between antibiotic resistance and virulence factors is controversial. There are studies demonstrating the relationship between virulence factors and antibiotic resistance, as well as studies that indicate the absence of such a relationship. Investigating virulence and antibiotic resistance rates may be important for identifying potential drug targets for subsequent research.
Collapse
Affiliation(s)
- Erhan Özsoy
- Instutite of Graduate Studies, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Umut Safiye Şay Coşkun
- Department of Medical Microbiology, Faculty of Medicine, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Yelda Dagcıoğlu
- Genetic Laboratory, Tokat Gaziosmanpaşa University Training and Research Hospital, Tokat, Turkey
| | - Osman Demir
- Department of Biostatistics, Faculty of Medicine, Tokat Gaziosmanpaşa Universirty, Tokat, Turkey
| |
Collapse
|
10
|
Mosallam FM, Abbas HA, Shaker GH, Gomaa SE. Alleviating the virulence of Pseudomonas aeruginosa and Staphylococcus aureus by ascorbic acid nanoemulsion. Res Microbiol 2023; 174:104084. [PMID: 37247797 DOI: 10.1016/j.resmic.2023.104084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
The high incidence of persistent multidrug resistant bacterial infections is a worldwide public health burden. Alternative strategies are required to deal with such issue including the use of drugs with anti-virulence activity. The application of nanotechnology to develop advanced Nano-materials that target quorum sensing regulated virulence factors is an attractive approach. Synthesis of ascorbic acid Nano-emulsion (ASC-NEs) and assessment of its activity in vitro against the virulence factors and its protective ability against pathogenesis as well as the effect against expression of quorum sensing genes of Pseudomonas aeruginosa and Staphylococcus aureus isolates. Ascorbic acid Nano-emulsion was characterized by DLS Zetasizer Technique, Zeta potential; Transmission Electron Microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The antibacterial activity of ASC-NEs was tested by the broth microdilution method and the activity of their sub-MIC against the expression of quorum sensing controlled virulence was investigated using phenotypic experiments and RT-PCR. The protective activity of ASC-NEs against P. aeruginosa as well as S. aureus pathogenesis was tested in vivo. Phenotypically, ASC-NEs had strong virulence inhibitory activity against the tested bacteria. The RT-PCR experiment showed that it exhibited significant QS inhibitory activity. The in vivo results showed that ASC-NEs protected against staphylococcal infection, however, it failed to protect mice against Pseudomonal infection. These results suggest the promising use of nanoformulations against virulence factors in multidrug resistant P. aeruginosa and S. aureus. However, further studies are required concerning the potential toxicity, clearance and phamacokinetics of the nanoformulations.
Collapse
Affiliation(s)
- Farag M Mosallam
- Drug Microbiology Lab., Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Hisham A Abbas
- Department of Microbiology and Immunology-Faculty of Pharmacy-Zagazig University, Zagazig, Egypt
| | - Ghada H Shaker
- Department of Microbiology and Immunology-Faculty of Pharmacy-Zagazig University, Zagazig, Egypt
| | - Salwa E Gomaa
- Department of Microbiology and Immunology-Faculty of Pharmacy-Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Chemical Composition, Antibacterial Test, and Antioxidant Activity of Essential Oils from Fresh and Dried Stropharia rugosoannulata. J CHEM-NY 2023. [DOI: 10.1155/2023/6965755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The essential oils, respectively, from fresh and dried Stropharia rugosoannulata fruiting bodies, an important edible mushroom, have been studied for their chemical composition, antibacterial capacity, and antioxidant activity. The essential oils were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS) combined with Kovats retention index. The oils’ antibacterial test was evaluated by the microdilution method against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, and antioxidant activity was determined through DPPH radical scavenging activity and ferric reducing power. Twenty-nine components were identified from the fresh mushroom, and the compositions were mainly dominated by hydrocarbons (54.72%), acids (32.99%), esters (5.07%), and terpenic compounds (0.96%). Thirty-five components were identified from the dried sample, and acids (31.22%), terpenic compounds (28.7%), alcohols (12.7%), and ketones (10.48%) were the major compounds. Strong antibacterial capacity and obvious antioxidant activity were observed for both essential oils from the fresh and dried mushrooms.
Collapse
|
12
|
Ramesh P, Bajire SK, Kanichery A, Najar MA, Shastry RP, Prasad TSK. 6-Methylcoumarin rescues bacterial quorum sensing induced ribosome-inactivating stress in Caenorhabditis elegans. Microb Pathog 2022; 173:105833. [PMID: 36265737 DOI: 10.1016/j.micpath.2022.105833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bacterial pathogenicity has for long posed severe effects on patient care. Pseudomonas aeruginosa is a common cause of hospital-acquired infections and nosocomial illnesses. It is known to infect the host by colonizing through quorum sensing and the production of exotoxins. METHODS The current effort is an analysis of proteomic alterations caused by P. aeruginosa PAO1 to study the effects of quorum sensing inhibitor 6-Methylcoumarin on PAO1 infectivity in the Caenorhabditis elegans model. RESULTS Through tandem mass tag-based quantitative proteomics approaches, 229 proteins were found to be differentially regulated in infection and upon inhibition. Among these, 34 proteins were found to be dysregulated in both infection and quorum-sensing inhibition conditions. Along with the dysregulation of proteins involved in host-pathogen interaction, PAO1 was found to induce ribosome-inactivating stress accompanied by the downregulating mitochondrial proteins. This in turn caused dysregulation of apoptosis. The expression of multiple proteins involved in ribosome biogenesis and structure, oxidative phosphorylation, and mitochondrial enzymes were altered due to infection. This mechanism, adapted by PAO1 to survive in the host, was inhibited by 6-Methylcoumarin by rescuing the downregulation of ribosomal and mitochondrial proteins. CONCLUSIONS Taken together, the data reflect the molecular alterations due to quorum sensing and the usefulness of inhibitors in controlling pathogenesis.
Collapse
Affiliation(s)
- Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - Sukesh Kumar Bajire
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - Anagha Kanichery
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
13
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
14
|
Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors. J Bacteriol 2022; 204:e0027222. [PMID: 36286515 PMCID: PMC9664955 DOI: 10.1128/jb.00272-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, several studies have reported an alarming increase in pathogen resistance to current antibiotic therapies and treatments. Therefore, the search for effective alternatives to counter their spread and the onset of infections is becoming increasingly important.
Collapse
|
15
|
The In Vivo and In Vitro Assessment of Pyocins in Treating Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2022; 11:antibiotics11101366. [PMID: 36290026 PMCID: PMC9598984 DOI: 10.3390/antibiotics11101366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa can cause several life-threatening infections among immunocompromised patients (e.g., cystic fibrosis) due to its ability to adapt and develop resistance to several antibiotics. In recent years, P. aeruginosa infections has become difficult to treat using conventional antibiotics due to the increase multidrug-resistant P. aeruginosa strains. Therefore, there is a growing interest to develop novel treatments against antibiotic-resistance P. aeruginosa strains. One novel method includes the application of antimicrobial peptides secreted by P. aeruginosa strains, known as pyocins. In this review, we will discuss the structure, function, and use of pyocins in the pathogenesis and treatment of P. aeruginosa infection.
Collapse
|
16
|
Alamu J, Kakithakara Vajravelu L, Venkatesan B, Thulukanam J. Correlation of phenotypic and genotypic virulence markers, antimicrobial susceptibility pattern, and outcome of Pseudomonas aeruginosa sepsis infection. Microb Pathog 2022; 170:105716. [PMID: 35961486 DOI: 10.1016/j.micpath.2022.105716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Pseudomonas aeruginosa (PA) possesses several virulence genes that enable them to evade the immune system and to cause injury in the host tissue. However, the number of studies that characterized the virulence genes profile in PA sepsis is limited. AIM The main objective of this study was to identify and characterize virulence genes in PA causing sepsis, as well as investigate the relationship between virulence genes, antimicrobial susceptibility patterns, and infection outcomes. METHODOLOGY A prospective study, conducted between October 2020-October 2021, isolates were recovered from blood samples and identified using standard microbiological procedures. Phenotypic techniques were used to screen for capsule, siderophore production, biofilm formation, serum resistance, hemolysin production, and protease. Molecular techniques were performed to screen for alginate D (alg D), exoenzyme S (Exo S), exotoxin A (tox A), phospholipase H (plc H), phospholipase N (plc N), and elastase B (las B). Kirby-Bauer disc diffusion method was used to determine the antimicrobial susceptibility pattern of isolates, which was then interpreted according to the CLSI 2021 guidelines. RESULTS Out of the n = 215 Gram-negative bacteria recovered from sepsis patients during our study, n = 20 were Pseudomonas aeruginosa. PA isolates were susceptible to all antibiotics tested except for 3 of the isolates that were resistant to gentamycin, 2 to imipenem, and 1 to ceftazidime, cefepime, meropenem, tobramycin, and amikacin. The most prevalent virulence genes present were capsule (100%), siderophore production (100%), alg D (100%), Las B (100%), and Tox A (100%). CONCLUSION Our study found that PA causing sepsis harbours a high level of virulence genes. However, the high presence of virulence factors was not statistically associated with antimicrobial susceptibility, as most isolates in our study were susceptible to the antibiotics tested.
Collapse
Affiliation(s)
- Juliana Alamu
- Department of Microbiology, SRM Medical College Hospital & Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu, India.
| | - Leela Kakithakara Vajravelu
- Department of Microbiology, SRM Medical College Hospital & Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu, India.
| | - Balamurali Venkatesan
- Department of Microbiology, SRM Medical College Hospital & Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu, India.
| | - Jayaprakash Thulukanam
- Department of Microbiology, SRM Medical College Hospital & Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
17
|
Liao C, Huang X, Wang Q, Yao D, Lu W. Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front Cell Infect Microbiol 2022; 12:926758. [PMID: 35873152 PMCID: PMC9299443 DOI: 10.3389/fcimb.2022.926758] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections in severely ill and immunocompromised patients. Ubiquitously disseminated in the environment, especially in hospitals, it has become a major threat to human health due to the constant emergence of drug-resistant strains. Multiple resistance mechanisms are exploited by P. aeruginosa, which usually result in chronic infections difficult to eradicate. Diverse virulence factors responsible for bacterial adhesion and colonization, host immune suppression, and immune escape, play important roles in the pathogenic process of P. aeruginosa. As such, antivirulence treatment that aims at reducing virulence while sparing the bacterium for its eventual elimination by the immune system, or combination therapies, has significant advantages over traditional antibiotic therapy, as the former imposes minimal selective pressure on P. aeruginosa, thus less likely to induce drug resistance. In this review, we will discuss the virulence factors of P. aeruginosa, their pathogenic roles, and recent advances in antivirulence drug discovery for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Chongbing Liao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qingxia Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Dan Yao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Characterization of Uropathogenic Pseudomonas aeruginosa: Serotypes, Resistance Phenotypes, and Virulence Genotypes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of urinary tract infections. This organism has extended resistance to antimicrobials along with multiple virulence factors, making it difficult to treat. In this study, 49 isolates from urine samples were identified as P. aeruginosa and serotyped by the slide agglutination method. The sensitivity of isolates against 10 antipseudomonal drugs was determined. Phenotypically, lipase, protease, hemolysin, and biofilm production were detected. Genes for the type III secretion system, elastase B, and exotoxin A were detected by PCR. Serotype O11 was the most predominant serotype among test isolates. High levels of resistance were observed against ceftazidime, cefepime, piperacillin, and piperacillin/tazobactam while 10.2% of isolates were resistant to amikacin. MDR was detected in 20.4% of the isolates and was significantly associated with strong biofilm producers. About 95.9% and 63.3% of P. aeruginosa isolates had proteolytic and lipolytic activity, respectively. Among the genes detected, the exoY gene was the most prevalent gene (79.6%), while the exoU gene was the least frequent one (10.2%). toxA and lasB genes were amplified in 63.27% and 75.5% of the isolates, respectively. In addition, the exoU gene was significantly associated with MDR isolates. The high incidence of exoS, exoT, exoY, lasB, and toxA genes in uropathogenic P. aeruginosa implies that these genes can be considered markers for virulent isolates. Furthermore, the coexistence of exoU and exoS genes, even in 6% of isolates, poses a significant treatment challenge because those isolates possess both the invasive and cytotoxic properties of both effector proteins.
Collapse
|
19
|
Knocking down Pseudomonas aeruginosa virulence by oral hypoglycemic metformin nano emulsion. World J Microbiol Biotechnol 2022; 38:119. [PMID: 35644864 PMCID: PMC9148876 DOI: 10.1007/s11274-022-03302-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Long-term antibiotic treatment results in the spread of multi-drug resistance in Pseudomonas aeruginosa that complicates treatment. Anti-virulence agents can be viewed as alternative options that cripple virulence factors of the bacteria to facilitate their elimination by the host immunity. The use of nanoparticles in the inhibition of P. aeruginosa virulence factors is a promising strategy. This study aims to study the effect of metformin (MET), metformin nano emulsions (MET-NEs), silver metformin nano emulsions (Ag-MET-NEs) and silver nanoparticles (AgNPs) on P. aeruginosa virulence factors’ expression. The phenotypic results showed that MET-NEs had the highest virulence inhibitory activity. However, concerning RT-PCR results, all tested agents significantly decreased the expression of quorum sensing regulatory genes of P. aeruginosa; lasR, lasI, pqsA, fliC, exoS and pslA, with Ag-MET-NEs being the most potent one, however, it failed to protect mice from P. aeruginosa pathogenesis. MET-NEs showed the highest protective activity against pseudomonal infection in vivo. Our findings support the promising use of nano formulations particularly Ag-MET-NEs as an alternative against multidrug resistant pseudomonal infections via inhibition of virulence factors and quorum sensing gene expression.
Collapse
|
20
|
Mohammed EHM, Lohan S, Tiwari RK, Parang K. Amphiphilic cyclic peptide [W 4KR 5]-Antibiotics combinations as broad-spectrum antimicrobial agents. Eur J Med Chem 2022; 235:114278. [PMID: 35339840 DOI: 10.1016/j.ejmech.2022.114278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/04/2022]
Abstract
Linear and cyclic amphiphilic peptides, (W4KR5) and [W4KR5], were evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including four multi-drug resistant strains and the corresponding four non-resistant strains. Cyclic peptide [W4KR5] showed higher antibacterial activity than the linear (W4KR5) counterpart. Cyclic [W4KR5] was subjected to combination (physical mixture or covalent conjugation) with meropenem as a model antibiotic to study the impact of the combination on antimicrobial activity. A physical mixture of meropenem and [W4KR5] showed synergistic antibacterial activity against Gram-negative P. aeruginosa (ATCC BAA-1744) and P. aeruginosa (ATCC 27883) strains. [W4KR5] was further subjected to extensive antibacterial studies against additional 10 bacteria strains, showing significant antibacterial efficacy against Gram-positive bacteria strains. Combinations studies of [W4KR5] with an additional 9 commercially available antibiotics showed significant enhancement in antibacterial activity for all tested combinations, especially with tetracycline, tobramycin, levofloxacin, clindamycin, daptomycin, polymyxin, kanamycin, and vancomycin. Time-kill kinetics assay and flow cytometry results exhibited that [W4KR5] had a time-dependent synergistic effect and membrane disruption property. These data indicate that [W4KR5] improves the antibacterial activity, presumably by facilitating the internalization of antibiotics and their interaction with the intracellular targets. This study introduces a potential strategy for treating multidrug-resistant pathogens by combining [W4KR5] and a variety of classical antibiotics to improve the antibacterial effectiveness.
Collapse
Affiliation(s)
- Eman H M Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA, 92617, USA; Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koam, 51132, Egypt
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; AJK Biopharmaceutical, 5270 California Ave, Irvine, CA, 92617, USA
| | - Rakesh K Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| |
Collapse
|
21
|
Veetilvalappil VV, Manuel A, Aranjani JM, Tawale R, Koteshwara A. Pathogenic arsenal of Pseudomonas aeruginosa: an update on virulence factors. Future Microbiol 2022; 17:465-481. [PMID: 35289684 DOI: 10.2217/fmb-2021-0158] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The emergence of Pseudomonas aeruginosa as a potential threat in persistent infections can be attributed to the plethora of virulence factors expressed by it. This review discusses the various virulence factors that help this pathogen to establish an infection and regulatory systems controlling these virulence factors. Cell-associated virulence factors such as flagella, type IV pili and non-pilus adhesins have been reviewed. Extracellular virulence factors have also been explained. Quorum-sensing systems present in P. aeruginosa play a cardinal role in regulating the expression of virulence factors. The identification of novel virulence factors in hypervirulent strains indicate that the expression of virulence is dynamic and constantly evolving. An understanding of this is critical for the better clinical management of infections.
Collapse
Affiliation(s)
- Vimal V Veetilvalappil
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Atulya Manuel
- Central Frozen Semen Production and Training Institute, Bengaluru, Karnataka, 560088, India
| | - Jesil M Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Roshan Tawale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ananthamurthy Koteshwara
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
22
|
Achouri F, Said MB, Wahab MA, Bousselmi L, Corbel S, Schneider R, Ghrabi A. Effect of photocatalysis (TiO 2/UV A) on the inactivation and inhibition of Pseudomonas aeruginosa virulence factors expression. ENVIRONMENTAL TECHNOLOGY 2021; 42:4237-4246. [PMID: 32241229 DOI: 10.1080/09593330.2020.1751729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Water disinfection using visible light-active photocatalyst has recently attracted more attention due to its potential to inactivate microbes. In this study, we have investigated the efficiency of photocatalysis (TiO2/UVA) on the inactivation of Pseudomonas aeruginosa and the attenuation of its virulence factors. For this aim, the photocatalytic effects of TiO2/UVA on the cultivability and viability of P. aeruginosa were investigated. Furthermore, during the photocatalysis, the morphology of the bacterial cells was examined by atomic force microscopy (AFM) while the virulence factors were assessed by protease and lipase activities in addition to the mobility and communication of cells. The results revealed that during the photocatalysis the bacterial cells lost their cultivability and viability on agar under the action of the reactive oxygen species generated by the photocatalytic reaction. In addition, AFM observations have shown a damage of the bacterial membrane and a total disruption of the bacterial cells. Moreover, the major virulence factors such as biofilm, lipase and protease expression have been markedly inhibited by TiO2/UVA treatment. In addition, the bacteria lost their ability of communication 'quorum sensing' and mobility with twitching and swarming types after 60 min of photocatalytic treatment. Accordingly, TiO2/UVA is an effective method to reduce P. aeruginosa virulence and to prevent biofilm formation.
Collapse
Affiliation(s)
- Faouzi Achouri
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisia
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR7274, CNRS, Université de Lorraine, Nancy Cedex, France
- Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Myriam Ben Said
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisia
| | - Mohamed Ali Wahab
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire de Traitement et Valorisation des Rejets Hydriques, Université de Carthage, Soliman, Tunisia
| | - Latifa Bousselmi
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisia
| | - Serge Corbel
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR7274, CNRS, Université de Lorraine, Nancy Cedex, France
| | - Raphaël Schneider
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR7274, CNRS, Université de Lorraine, Nancy Cedex, France
| | - Ahmed Ghrabi
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et des Technologies des Eaux (CERTE), Soliman, Tunisia
| |
Collapse
|
23
|
Ramos JF, Leite G, Martins RCR, Rizek C, Al Sanabani SS, Rossi F, Guimarães T, Levin AS, Rocha V, Costa SF. Clinical outcome from hematopoietic cell transplant patients with bloodstream infection caused by carbapenem-resistant P. aeruginosa and the impact of antimicrobial combination in vitro. Eur J Clin Microbiol Infect Dis 2021; 41:313-317. [PMID: 34651217 DOI: 10.1007/s10096-021-04361-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
Bloodstream infection (BSI) caused by carbapenem-resistant P. aeruginosa (CRPA) has high mortality in hematopoietic stem cell transplant (HSCT) recipients. We performed MIC, checkerboard, time-kill assay, PFGE, PCR, and whole genome sequence and described the clinical outcome through Epi Info comparing the antimicrobial combination in vitro. Mortality was higher in BSI caused by CRPA carrying the lasB virulence gene. The isolates were 97% resistant to meropenem displaying synergistic effect to 57% in combination with colistin. Seventy-three percent of the isolates harbored blaSPM-1 and Tn4371 and belonged to ST277. The synergistic effect in vitro with meropenem with colistin appeared to be a better therapeutic option.
Collapse
Affiliation(s)
- Jessica Fernandes Ramos
- Department of Infectious Diseases of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Department of Haematology, Hemotherapy and Cellular Therapy of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
| | - Gleice Leite
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil.
| | | | - Camila Rizek
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| | - Sabri Saeed Al Sanabani
- Laboratory of Medical Investigation - LIM 52 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| | - Flavia Rossi
- Laboratory of Clinical Microbiology of Hospital das Clínicas, Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
| | - Thais Guimarães
- Department of Infectious Diseases of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| | - Anna Sara Levin
- Department of Infectious Diseases of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Department of Haematology, Hemotherapy and Cellular Therapy of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Haematology Department, NHS BT, Oxford University, Oxford, UK
| | - Silvia Figueiredo Costa
- Department of Infectious Diseases of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Gajdács M, Baráth Z, Kárpáti K, Szabó D, Usai D, Zanetti S, Donadu MG. No Correlation between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics (Basel) 2021; 10:1134. [PMID: 34572716 PMCID: PMC8471826 DOI: 10.3390/antibiotics10091134] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) possesses a plethora of virulence determinants, including the production of biofilm, pigments, exotoxins, proteases, flagella, and secretion systems. The aim of our present study was to establish the relationship between biofilm-forming capacity, the expression of some important virulence factors, and the multidrug-resistant (MDR) phenotype in P. aeruginosa. A total of three hundred and two (n = 302) isolates were included in this study. Antimicrobial susceptibility testing and phenotypic detection of resistance determinants were carried out; based on these results, isolates were grouped into distinct resistotypes and multiple antibiotic resistance (MAR) indices were calculated. The capacity of isolates to produce biofilm was assessed using a crystal violet microtiter-plate based method. Motility (swimming, swarming, and twitching) and pigment-production (pyoverdine and pyocyanin) were also measured. Pearson correlation coefficients (r) were calculated to determine for antimicrobial resistance, biofilm-formation, and expression of other virulence factors. Resistance rates were the highest for ceftazidime (56.95%; n = 172), levofloxacin (54.97%; n = 166), and ciprofloxacin (54.64%; n = 159), while lowest for colistin (1.66%; n = 5); 44.04% (n = 133) of isolates were classified as MDR. 19.87% (n = 60), 20.86% (n = 63) and 59.27% (n = 179) were classified as weak, moderate, and strong biofilm producers, respectively. With the exception of pyocyanin production (0.371 ± 0.193 vs. non-MDR: 0.319 ± 0.191; p = 0.018), MDR and non-MDR isolates did not show significant differences in expression of virulence factors. Additionally, no relevant correlations were seen between the rate of biofilm formation, pigment production, or motility. Data on interplay between the presence and mechanisms of drug resistance with those of biofilm formation and virulence is crucial to address chronic bacterial infections and to provide strategies for their management.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 63, 6720 Szeged, Hungary
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Krisztina Kárpáti
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Donatella Usai
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.U.); (S.Z.); (M.G.D.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.U.); (S.Z.); (M.G.D.)
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (D.U.); (S.Z.); (M.G.D.)
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
25
|
Deficit schizophrenia and its features are associated with PON1 Q192R genotypes and lowered paraoxonase 1 (PON1) enzymatic activity: effects on bacterial translocation. CNS Spectr 2021; 26:406-415. [PMID: 32638685 DOI: 10.1017/s1092852920001388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Primary deficit schizophrenia (DS) is characterized by enduring negative symptoms and represents a qualitatively different disease entity with respect to non-deficit schizophrenia (NDS). No studies investigated the association between the enzyme paraoxonase 1 (PON1) and DS and its phenomenology. METHODS In this case-control study, Thai women and men, aged 18 to 65 years, were divided in DS (n = 40) and NDS (n = 40) and were compared to controls (n = 40). PON1 activities against 4-(chloromethyl)phenyl acetate (CMPA) and phenylacetate were determined. Moreover, subjects were genotyped for their PON1 Q192R polymorphism and immunoglobulin A (IgA) levels responses directed to Gram-negative bacteria were measured. RESULTS DS is significantly associated with the QQ genotype and the Q allele as compared with NDS and controls. PON1 activities are significantly and inversely associated with negative symptoms, formal thought disorders, psychomotor retardation, excitation and DS. The presence of the Q allele is associated with increased IgA responses to Pseudomonas aeruginosa, Morganella morganii, and Pseudomonas putida as compared with RR carriers. CONCLUSIONS The PON1 Q allele and lower PON1 activities especially against CMPA are associated with DS, indicating lowered quorum quenching abilities as well as lowered defenses against lipoperoxidation and immune activation. It is suggested that lowered PON1 activity in DS constitutes an impairment in the innate immune system which together with lowered natural IgM may cause lower immune regulation thereby predisposing toward greater neurotoxic effects of immune-inflammatory, oxidative and nitrosative pathways and Gram-negative microbiota.
Collapse
|
26
|
Potential of Silver Nanoparticles in Overcoming the Intrinsic Resistance of Pseudomonas aeruginosa to Secondary Metabolites from Carnivorous Plants. Int J Mol Sci 2021; 22:ijms22094849. [PMID: 34063704 PMCID: PMC8124972 DOI: 10.3390/ijms22094849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/29/2021] [Indexed: 12/05/2022] Open
Abstract
Carnivorous plants are exemplary natural sources of secondary metabolites with biological activity. However, the therapeutic antimicrobial potential of these compounds is limited due to intrinsic resistance of selected bacterial pathogens, among which Pseudomonas aeruginosa represents an extreme example. The objective of the study was to overcome the intrinsic resistance of P. aeruginosa by combining silver nanoparticles (AgNPs) with secondary metabolites from selected carnivorous plant species. We employed the broth microdilution method, the checkerboard titration technique and comprehensive phytochemical analyses to define interactions between nanoparticles and active compounds from carnivorous plants. It has been confirmed that P. aeruginosa is resistant to a broad range of secondary metabolites from carnivorous plants, i.e., naphthoquinones, flavonoids, phenolic acids (MBC = 512 µg mL−1) and only weakly sensitive to their mixtures, i.e., extracts and extracts’ fractions. However, it was shown that the antimicrobial activity of extracts and fractions with a significant level of naphthoquinone (plumbagin) was significantly enhanced by AgNPs. Our studies clearly demonstrated a crucial role of naphthoquinones in AgNPs and extract interaction, as well as depicted the potential of AgNPs to restore the bactericidal activity of naphthoquinones towards P. aeruginosa. Our findings indicate the significant potential of nanoparticles to modulate the activity of selected secondary metabolites and revisit their antimicrobial potential towards human pathogenic bacteria.
Collapse
|
27
|
Laborda P, Alcalde-Rico M, Chini A, Martínez JL, Hernando-Amado S. Discovery of inhibitors of Pseudomonas aeruginosa virulence through the search for natural-like compounds with a dual role as inducers and substrates of efflux pumps. Environ Microbiol 2021; 23:7396-7411. [PMID: 33818002 DOI: 10.1111/1462-2920.15511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 12/26/2022]
Abstract
Multidrug efflux pumps are ancient elements encoded in every genome, from bacteria to humans. In bacteria, in addition to antibiotics, efflux pumps extrude a wide range of substrates, including quorum sensing signals, bacterial metabolites, or plant-produced compounds. This indicates that their original functions may differ from their recently acquired role in the extrusion of antibiotics during human infection. Concerning plant-produced compounds, some of them are substrates and inducers of the same efflux pump, suggesting a coordinated plant/bacteria coevolution. Herein we analyse the ability of 1243 compounds from a Natural Product-Like library to induce the expression of P. aeruginosa mexCD-oprJ or mexAB-oprM efflux pumps' encoding genes. We further characterized natural-like compounds that do not trigger antibiotic resistance in P. aeruginosa and that act as virulence inhibitors, choosing those that were not only inducers but substrates of the same efflux pump. Four compounds impair swarming motility, exotoxin secretion through the Type 3 Secretion System (T3SS) and the ability to kill Caenorhabditis elegans, which might be explained by the downregulation of genes encoding flagellum and T3SS. Our results emphasize the possibility of discovering new anti-virulence drugs by screening natural or natural-like libraries for compounds that behave as both, inducers and substrates of efflux pumps.
Collapse
Affiliation(s)
- Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, 28049, Spain
| | - Manuel Alcalde-Rico
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, 28049, Spain.,Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Valparaíso, Chile
| | - Andrea Chini
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, 28049, Spain
| | - José L Martínez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, 28049, Spain
| | | |
Collapse
|
28
|
Morelli L, Polito L, Richichi B, Compostella F. Glyconanoparticles as tools to prevent antimicrobial resistance. Glycoconj J 2021; 38:475-490. [PMID: 33728545 PMCID: PMC7964520 DOI: 10.1007/s10719-021-09988-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 01/20/2023]
Abstract
The increased phenomenon of antimicrobial resistance and the slow pace of development of new antibiotics are at the base of a global health concern regarding microbial infections. Antibiotic resistance kills an estimated 700,000 people each year worldwide, and this number is expected to increase dramatically if efforts are not made to develop new drugs or alternative containment strategies. Increased vaccination coverage, improved sanitation or sustained implementation of infection control measures are among the possible areas of action. Indeed, vaccination is one of the most effective tools of preventing infections. Starting from 1970s polysaccharide-based vaccines against Meningococcus, Pneumococcus and Haemophilus influenzae type b have been licensed, and provided effective protection for population. However, the development of safe and effective vaccines for infectious diseases with broad coverage remains a major challenge in global public health. In this scenario, nanosystems are receiving attention as alternative delivery systems to improve vaccine efficacy and immunogenicity. In this report, we provide an overview of current applications of glyconanomaterials as alternative platforms in the development of new vaccine candidates. In particular, we will focus on nanoparticle platforms, used to induce the activation of the immune system through the multivalent-displacement of saccharide antigens. ![]()
Collapse
Affiliation(s)
- Laura Morelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133, Milan, Italy
| | - Laura Polito
- National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, 20138, Milan, Italy
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, FI, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133, Milan, Italy.
| |
Collapse
|
29
|
Behzadi P, Baráth Z, Gajdács M. It's Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:42. [PMID: 33406652 PMCID: PMC7823828 DOI: 10.3390/antibiotics10010042] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is the most frequent cause of infection among non-fermenting Gram-negative bacteria, predominantly affecting immunocompromised patients, but its pathogenic role should not be disregarded in immunocompetent patients. These pathogens present a concerning therapeutic challenge to clinicians, both in community and in hospital settings, due to their increasing prevalence of resistance, and this may lead to prolonged therapy, sequelae, and excess mortality in the affected patient population. The resistance mechanisms of P. aeruginosa may be classified into intrinsic and acquired resistance mechanisms. These mechanisms lead to occurrence of resistant strains against important antibiotics-relevant in the treatment of P. aeruginosa infections-such as β-lactams, quinolones, aminoglycosides, and colistin. The occurrence of a specific resistotype of P. aeruginosa, namely the emergence of carbapenem-resistant but cephalosporin-susceptible (Car-R/Ceph-S) strains, has received substantial attention from clinical microbiologists and infection control specialists; nevertheless, the available literature on this topic is still scarce. The aim of this present review paper is to provide a concise summary on the adaptability, virulence, and antibiotic resistance of P. aeruginosa to a readership of basic scientists and clinicians.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Márió Gajdács
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
30
|
Synergistic Antimicrobial Activity of Supplemented Medical-Grade Honey against Pseudomonas aeruginosa Biofilm Formation and Eradication. Antibiotics (Basel) 2020; 9:antibiotics9120866. [PMID: 33291554 PMCID: PMC7761815 DOI: 10.3390/antibiotics9120866] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Biofilms hinder wound healing. Medical-grade honey (MGH) is a promising therapy because of its broad-spectrum antimicrobial activity and the lack of risk for resistance. This study investigated the inhibitory and eradicative activity against multidrug-resistant Pseudomonas aeruginosa biofilms by different established MGH-based wound care formulations. Six different natural wound care products (Medihoney, Revamil, Mebo, Melladerm, L-Mesitran Ointment, and L-Mesitran Soft) were tested in vitro. Most of them contain MGH only, whereas some were supplemented. L-Mesitran Soft demonstrated the most potent antimicrobial activity (6.08-log inhibition and 3.18-log eradication). Other formulations ranged between 0.89-log and 4.80-log inhibition and 0.65-log and 1.66-log eradication. Therefore, the contribution of different ingredients of L-Mesitran Soft was investigated in more detail. The activity of the same batch of raw MGH (1.38-log inhibition and 2.35-log eradication), vitamins C and E (0.95-log inhibition and 0.94-log eradication), and all ingredients except MGH (1.69-log inhibition and 0.75-log eradication) clearly support a synergistic activity of components within the L-Mesitran Soft formulation. Several presented clinical cases illustrate its clinical antimicrobial efficacy against Pseudomonas aeruginosa biofilms. In conclusion, MGH is a potent treatment for Pseudomonas biofilms. L-Mesitran Soft has the strongest antimicrobial activity, which is likely due to the synergistic activity mediated by its supplements.
Collapse
|
31
|
An Evaluation of the Antibacterial Properties of Tormentic Acid Congener and Extracts From Callistemon viminalis on Selected ESKAPE Pathogens and Effects on Biofilm Formation. Adv Pharmacol Pharm Sci 2020; 2020:8848606. [PMID: 33225299 PMCID: PMC7669338 DOI: 10.1155/2020/8848606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
ESKAPE pathogens, namely, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, are responsible for a majority of all healthcare-acquired infections (HAI). The bacteria cause nosocomial infections in immunocompromised patients. Extracts from Callistemon viminalis have been shown to have antibacterial, antifungal, and anti-inflammatory activities. Tormentic acid congener, a pentacyclic triterpene saponin, was isolated from C. viminalis leaves. This study aimed to investigate the antibacterial effects of tormentic acid congener and leaf extracts on biofilm formation by A. baumannii, S. aureus, S. pyogenes, and P. aeruginosa. The antibacterial effects were determined by the microbroth dilution method, and ciprofloxacin was used as the standard antibacterial drug. Biofilm formation and detachment assays were performed using crystal violet staining. Production of extracellular polymeric DNA and polysaccharides from biofilms was also determined. Tormentic acid congener showed time-dependent antibacterial activity against P. aeruginosa with a MIC of 100 µg/ml and caused significant protein leakage. Antibacterial activity was found when tormentic acid congener was tested against both S. aureus and P. aeruginosa. The MICs were found to be 25 µg/ml and 12.5 µg/ml for P. aeruginosa and S. aureus cells, respectively. S. pyogenes was found to be susceptible to tormentic acid congener and the hydroethanolic extract with an MIC of 100 µg/ml and 25 µg/ml, respectively. A. baumannii was found not to be susceptible to the compound or the extracts. The compound and the extracts caused a significant decrease in the biofilm extracellular polysaccharide content of S. pyogenes. The extracts and tormentic acid congener caused detachment of biofilms and decreased the release of extracellular DNA and capsular polysaccharides from biofilms of P. aeruginosa and S. aureus. Tormentic acid congener and extracts, thus, have significant antibacterial and antibiofilm activities on these selected ESKAPE bacteria and can act as source lead compounds for the development of antibacterial triterpenoids.
Collapse
|
32
|
Vanderwoude J, Fleming D, Azimi S, Trivedi U, Rumbaugh KP, Diggle SP. The evolution of virulence in Pseudomonas aeruginosa during chronic wound infection. Proc Biol Sci 2020; 287:20202272. [PMID: 33081616 DOI: 10.1098/rspb.2020.2272] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Opportunistic pathogens are associated with a number of chronic human infections, yet the evolution of virulence in these organisms during chronic infection remains poorly understood. Here, we tested the evolution of virulence in the human opportunistic pathogen Pseudomonas aeruginosa in a murine chronic wound model using a two-part serial passage and sepsis experiment, and found that virulence evolved in different directions in each line of evolution. We also assessed P. aeruginosa adaptation to a chronic wound after 42 days of evolution and found that morphological diversity in our evolved populations was limited compared with that previously described in cystic fibrosis (CF) infections. Using whole-genome sequencing, we found that genes previously implicated in P. aeruginosa pathogenesis (lasR, pilR, fleQ, rpoN and pvcA) contained mutations during the course of evolution in wounds, with selection occurring in parallel across all lines of evolution. Our findings highlight that: (i) P. aeruginosa heterogeneity may be less extensive in chronic wounds than in CF lungs; (ii) genes involved in P. aeruginosa pathogenesis acquire mutations during chronic wound infection; (iii) similar genetic adaptations are employed by P. aeruginosa across multiple infection environments; and (iv) current models of virulence may not adequately explain the diverging evolutionary trajectories observed in an opportunistic pathogen during chronic wound infection.
Collapse
Affiliation(s)
- Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Derek Fleming
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sheyda Azimi
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kendra P Rumbaugh
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Stephen P Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
33
|
Madaha EL, Mienie C, Gonsu HK, Bughe RN, Fonkoua MC, Mbacham WF, Alayande KA, Bezuidenhout CC, Ateba CN. Whole-genome sequence of multi-drug resistant Pseudomonas aeruginosa strains UY1PSABAL and UY1PSABAL2 isolated from human broncho-alveolar lavage, Yaoundé, Cameroon. PLoS One 2020; 15:e0238390. [PMID: 32886694 PMCID: PMC7473557 DOI: 10.1371/journal.pone.0238390] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa has been implicated in a wide range of post-operation wound and lung infections. A wide range of acquired resistance and virulence markers indicate surviving strategy of P. aeruginosa. Complete-genome analysis has been identified as efficient approach towards understanding the pathogenicity of this organism. This study was designed to sequence the entire genome of P. aeruginosa UY1PSABAL and UY1PSABAL2; determine drug-resistance profiles and virulence factors of the isolates; assess factors that contribute toward stability of the genomes; and thereafter determine evolutionary relationships between the strains and other isolates from similar sources. The genomes of the MDR P. aeruginosa UY1PSABAL and UY1PSABAL2 were sequenced on the Illumina Miseq platform. The raw sequenced reads were assessed for quality using FastQC v.0.11.5 and filtered for low quality reads and adapter regions using Trimmomatic v.0.36. The de novo genome assembly was made with SPAdes v.3.13 and annotated using Prokka v.2.1.1 annotation pipeline; Rapid Annotation using Subsytems Technology (RAST) server v.2.0; and PATRIC annotation tool v.3.6.2. Antimicrobial resistance genes and virulence determinants were searched through the functional annotation data generated from Prokka, RAST and PATRIC annotation pipelines; In addition to ResFinder and Comprehensive Antibiotic Resistance Database (CARD) which were employed to determine resistance genes. The PHAge Search Tool Enhanced Release (PHASTER) web server was used for the rapid identification and annotation of prophage sequences within bacterial genome. Predictive secondary metabolites were identified with AntiSMASH v.5.0. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and cas genes regions were also investigated with the CRISPRone and CRISPRFinder server. The genome sizes of 7.0 and 6.4 Mb were determined for UY1PSABAL and UY1PSABAL2 strains with G+C contents of 66.1% and 66.48% respectively. β-lactamines resistance genes blaPAO, aminoglycoside phosphorylating enzymes genes aph(3')-IIb, fosfomycine resistance gene fosA, vancomycin vanW and tetracycline tetA were among identified resistance genes harboured in both isolates. UY1PSABAL bore additional aph(6)-Id, aph(3'')-Ib, ciprofloxacin-modifying enzyme crpP and ribosomal methylation enzyme rmtB. Both isolates were found harbouring virulence markers such as flagella and type IV pili; and also present various type III secretion systems such as exoA, exoS, exoU, exoT. Secondary metabolites such as pyochelin and pyoverdine with iron uptake activity were found within the genomes as well as quorum-sensing systems, and various fragments for prophages and insertion sequences. Only the UY1PSABAL2 contains CRISPR-Cas system. The phylogeny revealed a very close evolutionary relationship between UY1PSABAL and the similar strain isolated from Malaysia; the same trend was observed between UY1PSABAL2 and the strain from Chinese origin. Complete analyses of the entire genomes provide a wide range of information towards understanding pathogenicity of the pathogens in question.
Collapse
Affiliation(s)
- Estelle Longla Madaha
- Biotechnology Centre, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
- Laboratory of Bacteriology, Yaoundé University Teaching Hospital, Yaoundé, Cameroon
- Department of Disease, Epidemics and Pandemics Control, Ministry of Public Health, Yaoundé, Cameroon
- Bacteriology Service, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Charlotte Mienie
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Hortense Kamga Gonsu
- Laboratory of Bacteriology, Yaoundé University Teaching Hospital, Yaoundé, Cameroon
- Department of Disease, Epidemics and Pandemics Control, Ministry of Public Health, Yaoundé, Cameroon
| | - Rhoda Nsen Bughe
- Biotechnology Centre, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | | | - Wilfred Fon Mbacham
- Biotechnology Centre, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Kazeem Adekunle Alayande
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | | | - Collins Njie Ateba
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
34
|
Piewngam P, Chiou J, Chatterjee P, Otto M. Alternative approaches to treat bacterial infections: targeting quorum-sensing. Expert Rev Anti Infect Ther 2020; 18:499-510. [PMID: 32243194 PMCID: PMC11032741 DOI: 10.1080/14787210.2020.1750951] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Introduction: The emergence of multi- and pan-drug-resistant bacteria represents a global crisis that calls for the development of alternative anti-infective strategies. These comprise anti-virulence approaches, which target pathogenicity without exerting a bacteriostatic or bactericidal effect and are claimed to reduce the development of resistance. Because in many pathogens, quorum-sensing (QS) systems control the expression of virulence factors, interference with QS, or quorum-quenching, is often proposed as a strategy with a broad anti-virulence effect.Areas covered: We discuss the role and regulatory targets of QS control in selected Gram-positive and Gram-negative bacteria, focusing on those with clinical importance and QS control of virulence. We present the components of QS systems that form possible targets for the development of anti-virulence drugs and discuss recent research on quorum-quenching approaches to control bacterial infection.Expert opinion: While there has been extensive research on QS systems and quorum-quenching approaches, there is a paucity of in-vivo research using adequate animal models to substantiate applicability. In-vivo research on QS blockers needs to be intensified and optimized to use clinically relevant setups, in order to underscore that such drugs can be used effectively to overcome problems associated with the treatment of severe infections by antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - Janice Chiou
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - Priyanka Chatterjee
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| |
Collapse
|
35
|
de Sales RO, Migliorini LB, Puga R, Kocsis B, Severino P. A Core Genome Multilocus Sequence Typing Scheme for Pseudomonas aeruginosa. Front Microbiol 2020; 11:1049. [PMID: 32528447 PMCID: PMC7264379 DOI: 10.3389/fmicb.2020.01049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous microorganism and an important opportunistic pathogen responsible for a broad spectrum of infections mainly in immunosuppressed and critically ill patients. Molecular investigations traditionally rely on pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). In this work we propose a core genome multilocus sequence typing (cgMLST) scheme for P. aeruginosa, a methodology that combines traditional MLST principles with whole genome sequencing data. All publicly available complete P. aeruginosa genomes, representing the diversity of this species, were used to establish a cgMLST scheme targeting 2,653 genes. The scheme was then tested using genomes available at contig, chromosome and scaffold levels. The proposed cgMLST scheme for P. aeruginosa typed over 99% (2,314/2,325) of the genomes available for this study considering at least 95% of the cgMLST target genes present. The absence of a certain number gene targets at the threshold considered for both the creation and validation steps due to low genome sequence quality is possibly the main reason for this result. The cgMLST scheme was compared with previously published whole genome single nucleotide polymorphism analysis for the characterization of the population structure of the epidemic clone ST235 and results were highly similar. In order to evaluate the typing resolution of the proposed scheme, collections of isolates belonging to two important STs associated with cystic fibrosis, ST146 and ST274, were typed using this scheme, and ST235 isolates associated with an outbreak were evaluated. Besides confirming the relatedness of all the isolates, earlier determined by MLST, the higher resolution of cgMLST denotes that it may be suitable for surveillance programs, overcoming possible shortcomings of classical MLST. The proposed scheme is publicly available at: https://github.com/BioinformaticsHIAEMolecularMicrobiology/cgMLST-Pseudomonas-aeruginosa.
Collapse
Affiliation(s)
- Romário Oliveira de Sales
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | - Letícia Busato Migliorini
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | - Renato Puga
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | - Bela Kocsis
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Patricia Severino
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| |
Collapse
|
36
|
Virulence-Inhibiting Herbal Compound Falcarindiol Significantly Reduced Mortality in Mice Infected with Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9030136. [PMID: 32213958 PMCID: PMC7148489 DOI: 10.3390/antibiotics9030136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022] Open
Abstract
Antipathogenic compounds that target the virulence of pathogenic bacteria rather than their viability offer a promising alternative approach to treat infectious diseases. Using extracts from 30 Chinese herbs that are known for treating symptoms resembling infections, we identified an active compound falcarindiol from Notopterygium incisum Ting ex H. T. Chang that showed potent inhibitory activities against Pseudomonas aeruginosa multiple virulence factors. Falcarindiol significantly repressed virulence-related genes, including the type III secretion system (T3SS); quorum sensing synthase genes lasIR and rhlIR; lasB; motility-related genes fliC and fliG; and phenazine synthesis genes phzA1 and phzA2. P. aeruginosa swarming motility and pyocyanin production were reduced significantly. In a burned mouse model, falcarindiol treatment significantly reduced the mortality in mice infected with P. aeruginosa, indicating that falcarindiol is a promising antipathogenic drug candidate for treating P. aeruginosa infections.
Collapse
|
37
|
Qian Z, Hui P, Han L, Ling-Zhi Y, Bo-Shun Z, Jie Z, Wan-Li G, Nan W, Shi-Jin J, Zhi-Jing X. Serotypes and virulence genes of Pseudomonas aeruginosa isolated from mink and its pathogenicity in mink. Microb Pathog 2019; 139:103904. [PMID: 31801681 DOI: 10.1016/j.micpath.2019.103904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
In this study, 20 P. aeruginosa strains were isolated from 112 farmed mink exhibiting hemorrhagic pneumonia in mideastern Shandong province, China. Serotype G (18/20) was the dominant serotype among the isolates with prevalence in mink, followed by serotype B (1/20), serotype C (1/20). The 9 virulence-associated genes of P. aeruginosa were tested using PCR. The prevalence of the virulence genes for the isolates were algD 95% (19/20), plcH 85% (17/20), exoY 80% (16/20), aprA 75% (15/20), lasB 70% (14/20), exoS 65% (13/20), exoT 60% (12/20) and toxA 60% (12/20), respectively. The 20 isolates were negative for exoU gene. The isolates exhibited multidrug resistance and cross resistance, using antimicrobial disc susceptibility assays. The animal experiments demonstrated that LD50% of the P.aeruginosa-CS-2 in the intratracheally challenged mink was 2.2 × 107.0 CFU, and 6.8 × 104.0 CFU in the intraperitoneally challenged mink. It implied that both the inoculation doses and the routes of inoculation could have influences on the pathogenicity of P. aeruginosa in mink. Therefore, the evolutionary and epidemiological surveillance of P. aeruginosa in mink should be further strengthened for public health.
Collapse
Affiliation(s)
- Zhu Qian
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Peng Hui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Li Han
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Yang Ling-Zhi
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Binzhou Wohua Biotech Co.,LTD, Binzhou City, Shandong Province, 256600, China
| | - Zhang Bo-Shun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Zhu Jie
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Binzhou Wohua Biotech Co.,LTD, Binzhou City, Shandong Province, 256600, China
| | - Guo Wan-Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Wang Nan
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Binzhou Wohua Biotech Co.,LTD, Binzhou City, Shandong Province, 256600, China
| | - Jiang Shi-Jin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Xie Zhi-Jing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
38
|
Ruden S, Rieder A, Chis Ster I, Schwartz T, Mikut R, Hilpert K. Synergy Pattern of Short Cationic Antimicrobial Peptides Against Multidrug-Resistant Pseudomonas aeruginosa. Front Microbiol 2019; 10:2740. [PMID: 31849888 PMCID: PMC6901909 DOI: 10.3389/fmicb.2019.02740] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
With the rise of various multidrug-resistant (MDR) pathogenic bacteria, worldwide health care is under pressure to respond. Conventional antibiotics are failing and the development of novel classes and alternative strategies is a major priority. Antimicrobial peptides (AMPs) cannot only kill MDR bacteria, but also can be used synergistically with conventional antibiotics. We selected 30 short AMPs from different origins and measured their synergy in combination with polymyxin B, piperacillin, ceftazidime, cefepime, meropenem, imipenem, tetracycline, erythromycin, kanamycin, tobramycin, amikacin, gentamycin, and ciprofloxacin. In total, 403 unique combinations were tested against an MDR Pseudomonas aeruginosa isolate (PA910). As a measure of the synergistic effects, fractional inhibitory concentrations (FICs) were determined using microdilution assays with FICs ranges between 0.25 and 2. A high number of combinations between peptides and polymyxin B, erythromycin, and tetracycline were found to be synergistic. Novel variants of indolicidin also showed a high frequency in synergist interaction. Single amino acid substitutions within the peptides can have a very strong effect on the ability to synergize, making it possible to optimize future drugs toward synergistic interaction.
Collapse
Affiliation(s)
- Serge Ruden
- Institute of Biological Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annika Rieder
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Irina Chis Ster
- Institute of Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Thomas Schwartz
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kai Hilpert
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Infection and Immunity, St George's, University of London, London, United Kingdom.,Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
39
|
An innovative role for tenoxicam as a quorum sensing inhibitor in Pseudomonas aeruginosa. Arch Microbiol 2019; 202:555-565. [PMID: 31732766 DOI: 10.1007/s00203-019-01771-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
|
40
|
Ranjbar M, Behrouz B, Norouzi F, Mousavi Gargari SL. Anti-PcrV IgY antibodies protect against Pseudomonas aeruginosa infection in both acute pneumonia and burn wound models. Mol Immunol 2019; 116:98-105. [PMID: 31634816 DOI: 10.1016/j.molimm.2019.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa is a common nosocomial pathogen in burn patients, and rapidly acquires antibiotic resistance; thus, developing an effective therapeutic approach is the most promising strategy for combating infection. Type III secretion system (T3SS) translocates bacterial toxins into the cytosol of the targeted eukaryotic cells, which plays important roles in the virulence of P. aeruginosa infections in both acute pneumonia and burn wound models. The PcrV protein, a T3SS translocating protein, is required for T3SS function and is a well-validated target in animal models of immunoprophylactic strategies targeting P. aeruginosa. In the present study, we evaluated the protective efficacy of chicken egg yolk antibodies (IgY) raised against recombinant PcrV (r-PcrV) in both acute pneumonia and burn wound models. R-PcrV protein was generated by expressing the pcrV gene (cloned in pET-28a vector) in E. coli BL-21. Anti-PcrV IgY was obtained by immunization of hen. Anti-PcrV IgY induced greater protection in P. aeruginosamurine acute pneumonia and burn wound models than control IgY (C-IgY) and PBS groups. Anti-PcrV IgY improved opsonophagocytic killing and inhibition of bacterial invasion of host cells. Taken together, our data provide evidence that anti-PcrV IgY can be a promising therapeutic candidate for combating P. aeruginosa infections.
Collapse
Affiliation(s)
- Mahya Ranjbar
- Department of Microbiology, Shahed University, Faculty of Medical Sciences, Tehran, Iran; Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Bahador Behrouz
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Fatemeh Norouzi
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | | |
Collapse
|
41
|
Okada BK, Li A, Seyedsayamdost MR. Identification of the Hypertension Drug Guanfacine as an Antivirulence Agent in Pseudomonas aeruginosa. Chembiochem 2019; 20:2005-2011. [PMID: 30927315 PMCID: PMC6814388 DOI: 10.1002/cbic.201900129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 12/11/2022]
Abstract
An alternative solution to the cyclical development of new antibiotics is the concept of disarming pathogens without affecting their growth, thereby eliminating the selective pressures that lead to resistant phenotypes. Here, we have employed our previously developed HiTES methodology to identify one such compound against the ESKAPE pathogen Pseudomonas aeruginosa. Rather than induce silent biosynthetic gene clusters, we used HiTES to suppress actively expressed virulence genes. By screening a library of 770 FDA-approved drugs, we identified guanfacine, a clinical hypertension drug, as an antivirulence agent in P. aeruginosa. Follow-up studies showed that guanfacine reduces biofilm formation and pyocycanin production without altering growth. Moreover, we identified a homologue of QseC, a sensor His kinase used by multiple pathogens to turn on virulence, as a target of guanfacine. Our studies suggest that guanfacine might be an attractive antivirulence lead in P. aeruginosa and provide a template for uncovering such molecules by screening for downregulators of actively expressed biosynthetic genes.
Collapse
Affiliation(s)
- Bethany K Okada
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Anran Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
42
|
Massai F, Saleeb M, Doruk T, Elofsson M, Forsberg Å. Development, Optimization, and Validation of a High Throughput Screening Assay for Identification of Tat and Type II Secretion Inhibitors of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2019; 9:250. [PMID: 31355152 PMCID: PMC6635566 DOI: 10.3389/fcimb.2019.00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
Antibiotics are becoming less effective in treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrobial therapies based on the inhibition of specific virulence-related traits, as opposed to growth inhibitors, constitute an innovative and appealing approach to tackle the threat of P. aeruginosa infections. The twin-arginine translocation (Tat) pathway plays an important role in the pathogenesis of P. aeruginosa, and constitutes a promising target for the development of anti-pseudomonal drugs. In this study we developed and optimized a whole-cell, one-well assay, based on native phospholipase C activity, to identify compounds active against the Tat system. Statistical robustness, sensitivity and consequently suitability for high-throughput screening (HTS) were confirmed by a dry run/pre-screening test scoring a Z′ of 0.82 and a signal-to-noise ratio of 49. Using this assay, we evaluated ca. 40,000 molecules and identified 59 initial hits as possible Tat inhibitors. Since phospholipase C is exported into the periplasm by Tat, and subsequently translocated across the outer membrane by the type II secretion system (T2SS), our assay could also identify T2SS inhibitors. To validate our hits and discriminate between compounds that inhibited either Tat or T2SS, two separate counter assays were developed and optimized. Finally, three Tat inhibitors and one T2SS inhibitor were confirmed by means of dose-response analysis and additional counter and confirming assays. Although none of the identified inhibitors was suitable as a lead compound for drug development, this study validates our assay as a simple, efficient, and HTS compatible method for the identification of Tat and T2SS inhibitors.
Collapse
Affiliation(s)
- Francesco Massai
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Michael Saleeb
- Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Tugrul Doruk
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Åke Forsberg
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
43
|
Walter JM, Ren Z, Yacoub T, Reyfman PA, Shah RD, Abdala-Valencia H, Nam K, Morgan VK, Anekalla KR, Joshi N, McQuattie-Pimentel AC, Chen CI, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Aillon RP, Watanabe S, Williams KJN, Lu Z, Paonessa J, Hountras P, Breganio M, Borkowski N, Donnelly HK, Allen JP, Amaral LA, Bharat A, Misharin AV, Bagheri N, Hauser AR, Budinger GRS, Wunderink RG. Multidimensional Assessment of the Host Response in Mechanically Ventilated Patients with Suspected Pneumonia. Am J Respir Crit Care Med 2019; 199:1225-1237. [PMID: 30398927 PMCID: PMC6519857 DOI: 10.1164/rccm.201804-0650oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Rationale: The identification of informative elements of the host response to infection may improve the diagnosis and management of bacterial pneumonia. Objectives: To determine whether the absence of alveolar neutrophilia can exclude bacterial pneumonia in critically ill patients with suspected infection and to test whether signatures of bacterial pneumonia can be identified in the alveolar macrophage transcriptome. Methods: We determined the test characteristics of alveolar neutrophilia for the diagnosis of bacterial pneumonia in three cohorts of mechanically ventilated patients. In one cohort, we also isolated macrophages from alveolar lavage fluid and used the transcriptome to identify signatures of bacterial pneumonia. Finally, we developed a humanized mouse model of Pseudomonas aeruginosa pneumonia to determine if pathogen-specific signatures can be identified in human alveolar macrophages. Measurements and Main Results: An alveolar neutrophil percentage less than 50% had a negative predictive value of greater than 90% for bacterial pneumonia in both the retrospective (n = 851) and validation cohorts (n = 76 and n = 79). A transcriptional signature of bacterial pneumonia was present in both resident and recruited macrophages. Gene signatures from both cell types identified patients with bacterial pneumonia with test characteristics similar to alveolar neutrophilia. Conclusions: The absence of alveolar neutrophilia has a high negative predictive value for bacterial pneumonia in critically ill patients with suspected infection. Macrophages can be isolated from alveolar lavage fluid obtained during routine care and used for RNA-Seq analysis. This novel approach may facilitate a longitudinal and multidimensional assessment of the host response to bacterial pneumonia.
Collapse
Affiliation(s)
- James M. Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Tyrone Yacoub
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Paul A. Reyfman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Raj D. Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Kiwon Nam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Vince K. Morgan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Kishore R. Anekalla
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Nikita Joshi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Ching-I Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Monica Chi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - SeungHye Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Saul Soberanes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Raul P. Aillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Satoshi Watanabe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Ziyan Lu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Joseph Paonessa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Peter Hountras
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Madonna Breganio
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Nicole Borkowski
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Helen K. Donnelly
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Jonathan P. Allen
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois; and
| | - Luis A. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, and
| | | | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Alan R. Hauser
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois; and
| | | | | |
Collapse
|
44
|
Wandiyanto JV, Truong VK, Al Kobaisi M, Juodkazis S, Thissen H, Bazaka O, Bazaka K, Crawford RJ, Ivanova EP. The Fate of Osteoblast-Like MG-63 Cells on Pre-Infected Bactericidal Nanostructured Titanium Surfaces. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1575. [PMID: 31091694 PMCID: PMC6567816 DOI: 10.3390/ma12101575] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Biomaterials that have been newly implanted inside the body are the substratum targets for a "race for the surface", in which bacterial cells compete against eukaryotic cells for the opportunity to colonize the surface. A victory by the former often results in biomaterial-associated infections, which can be a serious threat to patient health and can undermine the function and performance of the implant. Moreover, bacteria can often have a 'head start' if implant contamination has taken place either prior to or during the surgery. Current prevention and treatment strategies often rely on systemic antibiotic therapies, which are becoming increasingly ineffective due to a growing prevalence of antibiotic-resistant bacteria. Nanostructured surfaces that kill bacteria by physically rupturing bacterial cells upon contact have recently emerged as a promising solution for the mitigation of bacterial colonization of implants. Furthermore, these nanoscale features have been shown to enhance the adhesion and proliferation of eukaryotic cells, which is a key to, for example, the successful osseointegration of load-bearing titanium implants. The bactericidal activity and biocompatibility of such nanostructured surfaces are often, however, examined separately, and it is not clear to what extent bacterial cell-surface interactions would affect the subsequent outcomes of host-cell attachment and osseointegration processes. In this study, we investigated the ability of bactericidal nanostructured titanium surfaces to support the attachment and growth of osteoblast-like MG-63 human osteosarcoma cells, despite them having been pre-infected with pathogenic bacteria. MG-63 is a commonly used osteoblastic model to study bone cell viability, adhesion, and proliferation on the surfaces of load-bearing biomaterials, such as titanium. The nanostructured titanium surfaces used here were observed to kill the pathogenic bacteria, whilst simultaneously enhancing the growth of MG-63 cells in vitro when compared to that occurring on sterile, flat titanium surfaces. These results provide further evidence in support of nanostructured bactericidal surfaces being used as a strategy to help eukaryotic cells win the "race for the surface" against bacterial cells on implant materials.
Collapse
Affiliation(s)
- Jason V Wandiyanto
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| | - Mohammad Al Kobaisi
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Saulius Juodkazis
- Center for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | | | - Olha Bazaka
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| | - Kateryna Bazaka
- Institute for Future Environments, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
45
|
Jastrzebska I, Mellea S, Salerno V, Grzes PA, Siergiejczyk L, Niemirowicz-Laskowska K, Bucki R, Monti B, Santi C. PhSeZnCl in the Synthesis of Steroidal β-Hydroxy-Phenylselenides Having Antibacterial Activity. Int J Mol Sci 2019; 20:ijms20092121. [PMID: 31032813 PMCID: PMC6539910 DOI: 10.3390/ijms20092121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/07/2023] Open
Abstract
We report here the reaction of in situ prepared PhSeZnCl with steroid derivatives having an epoxide as an electrophilic functionalization. The corresponding ring-opening reaction resulted to be regio- and stereoselective affording to novel phenylselenium-substituted steroids. Assessment of their antibacterial properties against multidrug-resistant bacteria, such as Pseudomonas aeruginosa Xen 5 strain, indicates an interesting bactericidal activity and their ability to prevent bacterial biofilm formation.
Collapse
Affiliation(s)
- Izabella Jastrzebska
- Institute of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland.
| | - Stefano Mellea
- Institute of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland.
| | - Valerio Salerno
- Institute of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland.
| | - Pawel Adam Grzes
- Institute of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland.
| | - Leszek Siergiejczyk
- Institute of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland.
| | - Katarzyna Niemirowicz-Laskowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, ul. Mickiewicza 2C, 15-222 Bialystok, Poland.
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, ul. Mickiewicza 2C, 15-222 Bialystok, Poland.
| | - Bonifacio Monti
- Group of Catalysis and Organic Green Chemistry⁻Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06132 Perugia, Italy.
| | - Claudio Santi
- Group of Catalysis and Organic Green Chemistry⁻Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06132 Perugia, Italy.
| |
Collapse
|
46
|
Wang T, Hou Y, Wang R. A case report of community-acquired Pseudomonas aeruginosa pneumonia complicated with MODS in a previously healthy patient and related literature review. BMC Infect Dis 2019; 19:130. [PMID: 30736735 PMCID: PMC6368713 DOI: 10.1186/s12879-019-3765-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/30/2019] [Indexed: 01/22/2023] Open
Abstract
Background Pseudomonas aeruginosa is an unusual pathogen in community-acquired pneumonia, especially in previously healthy adults, but often indicates poor prognosis. Case presentation We report a previously healthy patient who developed severe community-acquired pneumonia (CAP) caused by P. aeruginosa. He deteriorated to septic shock and multiple organ dysfunction syndrome (MODS) quickly, complicated by secondary hematogenous central nervous system (CNS) infection. After 1 month of organ support and antipseudomonal therapy, he had significant symptomatic improvement and was discharged from hospital. During treatment, the pathogen developed resistance to carbapenems quickly and the antibiotic regimen was adjusted accordingly. Conclusions According to our case and related literature review, we conclude that more attention should be paid to community-acquired Pseudomonas aeruginosa pneumonia, because of its rapid progression and poor prognosis.
Collapse
Affiliation(s)
- Tao Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Republic of China
| | - Yijun Hou
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Republic of China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Republic of China.
| |
Collapse
|
47
|
Ahn D, Wickersham M, Riquelme S, Prince A. The Effects of IFN-λ on Epithelial Barrier Function Contribute to Klebsiella pneumoniae ST258 Pneumonia. Am J Respir Cell Mol Biol 2019; 60:158-166. [PMID: 30183325 PMCID: PMC6376406 DOI: 10.1165/rcmb.2018-0021oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
IFN-λ and IL-22, cytokines that share the coreceptor IL-10RB, are both induced over the course of Klebsiella pneumoniae ST258 (KP35) pneumonia. IL-22 is known to protect mucosal barriers, whereas the effects of IFN-λ on the mucosa are not established. We postulated that IFN-λ plays a role in regulating the airway epithelial barrier to facilitate cellular trafficking to the site of infection. In response to IFN-λ, the transmigration of neutrophils across a polarized monolayer of airway epithelial cells was increased, consistent with diminished epithelial integrity. KP35 infection increased epithelial permeability, and pretreatment with IFN-λ amplified this effect and facilitated bacterial transmigration. These effects of IFN-λ were confirmed in vivo, in that mice lacking the receptor for IFN-λ (Ifnlr1-/-) were protected from bacteremia in a murine model of KP35 pneumonia. Conversely, the integrity of the epithelial barrier was protected by IL-22, with subsequent impairment of neutrophil and bacterial transmigration in vitro. Maximal expression of IL-22 in vivo was observed later in the course of infection than IFN-λ production, with high levels of IL-22 produced by recruited immune cells at 48 hours, consistent with a role in epithelial barrier recovery. The divergent and opposing expression of these two related cytokines suggests a regulated interaction in the host response to KP35 infection. A major physiological effect of IFN-λ signaling is a decrease in epithelial barrier integrity, which facilitates immune cell recruitment but also enables K. pneumoniae invasion.
Collapse
Affiliation(s)
- Danielle Ahn
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Matthew Wickersham
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Sebastian Riquelme
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Alice Prince
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
48
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
49
|
Tan Y, Cheng Q, Yang H, Li H, Gong N, Liu D, Wu J, Lei X. Effects of ALA-PDT on biofilm structure, virulence factor secretion, and QS in Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther 2018; 24:88-94. [DOI: 10.1016/j.pdpdt.2018.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/05/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
50
|
Hayashi N, Furue Y, Kai D, Yamada N, Yamamoto H, Nakano T, Oda M. Sulfated vizantin suppresses mucin layer penetration dependent on the flagella motility of Pseudomonas aeruginosa PAO1. PLoS One 2018; 13:e0206696. [PMID: 30383847 PMCID: PMC6211736 DOI: 10.1371/journal.pone.0206696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/17/2018] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections, such as pneumonia and bacteremia. Several studies demonstrated that flagellar motility is an important virulence factor for P. aeruginosa infection. In this study, we determined whether sulfated vizantin affects P. aeruginosa flagellar motility in the absence of direct antimicrobial activity. We found that 100 μM sulfated vizantin suppressed P. aeruginosa PAO1 from penetrating through an artificial mucin layer by affecting flagellar motility, although it did not influence growth nor bacterial protease activity. To further clarify the mechanism in which sulfated vizantin suppresses the flagellar motility of P. aeruginosa PAO1, we examined the effects of sulfated vizantin on the composition of the flagellar filament and mRNA expression of several flagella-related genes, finding that sulfated vizantin did not influence the composition of the flagellar complex (fliC, motA, and motB) in P. aeruginosa PAO1, but significantly decreased mRNA expression of the chemotaxis-related genes cheR1, cheW, and cheZ. These results indicated that sulfated vizantin is an effective inhibitor of flagellar motility in P. aeruginosa.
Collapse
Affiliation(s)
- Naoki Hayashi
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yui Furue
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daichi Kai
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Noriteru Yamada
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hirofumi Yamamoto
- Department of Chemistry and Functional Molecule, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Osaka Medical College, Osaka, Japan
| | - Masataka Oda
- Department of Microbiology and Infection Control Science, Kyoto Pharmaceutical University, Kyoto, Japan
- * E-mail:
| |
Collapse
|