1
|
Niemelä VH, Reinikainen M, Nielsen N, Bass F, Young P, Lilja G, Dankiewicz J, Hammond N, Hästbacka J, Levin H, Moseby‐Knappe M, Saxena M, Tiainen M, Ceric A, Holgersson J, Kamp CB, Tirkkonen J, Oksanen T, Kaakinen T, Bendel S, Düring J, Lybeck A, Johnsson J, Unden J, Lundin A, Kåhlin J, Grip J, Lotman E, Romundstad L, Seidel P, Stammet P, Graf T, Mengel A, Leithner C, Nee J, Druwé P, Ameloot K, Wise MP, McGuigan PJ, White J, Govier M, Maccaroni M, Ostermann M, Hopkins P, Proudfoot A, Handslip R, Pogson D, Jackson P, Nichol A, Haenggi M, Hilty MP, Iten M, Schrag C, Nafi M, Joannidis M, Robba C, Pellis T, Belohlavek J, Rob D, Arabi Y, Buabbas S, Yew Woon C, Aneman A, Stewart A, Arnott C, Ramanan M, Panwar R, Delaney A, Reade M, Venkatesh B, Navarra L, Crichton B, Knight D, Williams A, Friberg H, Cronberg T, Jakobsen JC, Skrifvars MB. Higher versus lower mean arterial blood pressure after cardiac arrest and resuscitation (MAP-CARE): A protocol for a randomized clinical trial. Acta Anaesthesiol Scand 2025; 69:e70040. [PMID: 40392139 PMCID: PMC12090973 DOI: 10.1111/aas.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND In patients resuscitated after cardiac arrest, a higher mean arterial pressure (MAP) may increase cerebral perfusion and attenuate hypoxic brain injury. Here we present the protocol of the mean arterial pressure after cardiac arrest and resuscitation (MAP-CARE) trial aiming to investigate the influence of MAP targets on patient outcomes. METHODS MAP-CARE is one component of the Sedation, Temperature and Pressure after Cardiac Arrest and Resuscitation (STEPCARE) 2 x 2 x 2 factorial randomized trial. The MAP-CARE trial is an international, multicenter, parallel-group, investigator-initiated, superiority trial designed to test the hypothesis that targeting a higher (>85 mmHg) (intervention) versus a lower (>65 mmHg) (comparator) MAP after resuscitation from cardiac arrest reduces 6-month mortality (primary outcome). Trial participants are adults with sustained return of spontaneous circulation who are comatose following resuscitation from out-of-hospital cardiac arrest. The two other components of the STEPCARE trial evaluate sedation and temperature control strategies. Apart from the STEPCARE trial interventions, all other aspects of general intensive care will be according to the local practices of the participating site. Neurological prognostication will be performed according to European Resuscitation Council and European Society of Intensive Care Medicine guidelines by a physician blinded to allocation group. The sample size of 3500 participants provides 90% power with an alpha of 0.05 to detect a 5.6 absolute risk reduction in 6-month mortality, assuming a mortality of 60% in the control group. Secondary outcomes will be poor functional outcome 6 months after randomization, patient-reported overall health 6 months after randomization, and the proportion of participants with predefined severe adverse events. CONCLUSION The MAP-CARE trial will investigate if targeting a higher MAP compared to a lower MAP during intensive care of adults who are comatose following resuscitation from out-of-hospital cardiac arrest reduces 6-month mortality.
Collapse
Affiliation(s)
- V. H. Niemelä
- Department of Anaesthesia and Intensive CareHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - M. Reinikainen
- Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
- Department of Anaesthesiology and Intensive CareKuopio University HospitalKuopioFinland
| | - N. Nielsen
- Department of Clinical Sciences Lund, Anesthesia and Intensive CareLund UniversityLundSweden
- Department of Anesthesia and Intensive CareHelsingborg HospitalHelsingborgSweden
| | - F. Bass
- The George Institute for Global HealthSydneyAustralia
- Royal North Shore HospitalSydneyAustralia
| | - P. Young
- Intensive Care UnitWellington HospitalWellingtonNew Zealand
- Medical Research Institute of New ZealandWellingtonNew Zealand
- Australian and New Zealand Intensive Care Research CentreMonash UniversityMelbourneVictoriaAustralia
- Department of Critical CareUniversity of MelbourneMelbourneVictoriaAustralia
| | - G. Lilja
- Neurology, Department of Clinical Sciences LundLund UniversityLundSweden
- Department of NeurologySkåne University HospitalLundSweden
| | - J. Dankiewicz
- Department of Clinical Sciences Lund, Section of CardiologySkåne University HospitalLundSweden
| | - N. Hammond
- Critical Care Program, The George Institute for Global HealthUNSWSydneyAustralia
- Malcolm Fisher Department of Intensive CareRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - J. Hästbacka
- Wellbeing Services County of Pirkanmaa and Tampere University, Faculty of Medicine and Health TechnologyTampere University HospitalTampereFinland
| | - H. Levin
- Department of Clinical Sciences LundLund UniversityLundSweden
- Department of Research, Development, Education and InnovationSkåne University HospitalLundSweden
| | - M. Moseby‐Knappe
- Department of Clinical Sciences LundLund UniversityLundSweden
- Department of Neurology and RehabilitationSkåne University HospitalLundSweden
| | - M. Saxena
- Critical Care Division, Department of Intensive Care MedicineThe George Institute for Global HealthSydneyAustralia
- St George Hospital Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - M. Tiainen
- Department of NeurologyHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - A. Ceric
- Anesthesia and Intensive Care, Department of Clinical SciencesLund University, Skane University HospitalMalmöSweden
| | - J. Holgersson
- Department of Clinical Sciences Lund, Anesthesia and Intensive CareLund UniversityLundSweden
- Department of Anesthesia and Intensive CareHelsingborg HospitalHelsingborgSweden
| | - C. B. Kamp
- Copenhagen Trial Unit, Centre for Clinical Intervention ResearchCopenhagen University Hospital—RigshospitaletCopenhagenDenmark
- Department of Regional Health Research, Faculty of Health SciencesUniversity of Southern DenmarkCopenhagenDenmark
| | - J. Tirkkonen
- Intensive Care UnitTampere University HospitalTampereFinland
| | - T. Oksanen
- Department of Anaesthesia and Intensive Care, Jorvi HospitalUniversity Hospital of Helsinki and University of HelsinkiHelsinkiFinland
| | - T. Kaakinen
- Research Unit of Translational Medicine, Research Group of Anaesthesiology, Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
- OYS Heart, Oulu University HospitalMRC Oulu and University of OuluOuluFinland
| | - S. Bendel
- Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
- Department of Anaesthesiology and Intensive CareKuopio University HospitalKuopioFinland
| | - J. Düring
- Department of Clinical Sciences, Anesthesia and Intensive CareLund University, Skåne University HospitalMalmöSweden
| | - A. Lybeck
- Anesthesia and Intensive Care, Department of Clinical Sciences LundLund University, Skane University HospitalLundSweden
| | - J. Johnsson
- Department of Anesthesia and Intensive CareHelsingborg HospitalHelsingborgSweden
| | - J. Unden
- Department of Operation and Intensive CareHallands Hospital HalmstadHalmstadSweden
- Department of Intensive and Perioperative Care, Skåne University HospitalLund UniversityLundSweden
| | - A. Lundin
- Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - J. Kåhlin
- Perioperative Medicine and Intensive Care (PMI)Karolinska University HospitalStockholmSweden
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - J. Grip
- Perioperative Medicine and Intensive CareKarolinska University HospitalStockholmSweden
- Department of Clinical Science, Intervention and TechnologyKarolinska InstituteStockholmSweden
| | - E. Lotman
- North Estonia Medical CentreTallinnEstonia
| | - L. Romundstad
- Department of Anesthesia and Intensive Care Medicine, Division of Emergencies and Critical careOslo University HospitalOsloNorway
- Lovisenberg Diaconal University CollegeOsloNorway
| | - P. Seidel
- Department of Intensive Care MedicineStavanger University HospitalStavangerNorway
| | - P. Stammet
- Department of Anaesthesia and Intensive Care Medicine CentreHospitalier de LuxembourgLuxembourgLuxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and MedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - T. Graf
- University Hospital Schleswig‐HolsteinUniversity Heart Center LübeckLübeckGermany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/KielGermany
| | - A. Mengel
- Department of Neurology and StrokeUniversity Hospital TuebingenTuebingenGermany
- Hertie Institute of Clinical Brain ResearchTuebingenGermany
| | - C. Leithner
- Department of NeurologyFreie Universität and Humboldt‐Universität zu Berlin, Charité—Universitätsmedizin BerlinBerlinGermany
| | - J. Nee
- Department of Nephrology and Medical Intensive CareCharité—Universitaetsmedizin BerlinBerlinGermany
| | - P. Druwé
- Department of Intensive Care MedicineGhent University HospitalGhentBelgium
| | - K. Ameloot
- Department of CardiologyZiekenhuis Oost‐LimburgGenkBelgium
| | - M. P. Wise
- Adult Critical CareUniversity Hospital of WalesCardiffUK
| | - P. J. McGuigan
- Wellcome‐Wolfson Institute for Experimental MedicineQueen's University BelfastBelfastUK
- Regional Intensive Care UnitRoyal Victoria HospitalBelfastUK
| | - J. White
- CEDAR (Centre for Healthcare Evaluation, Device Assessment and Research)Cardiff and Vale University Health Board CardiffCardiffUK
| | - M. Govier
- Bristol Royal InfirmaryUniversity Hospitals Bristol and WestonBristolUK
| | - M. Maccaroni
- Essex Cardiothoracic CentreEssexUK
- Anglia Ruskin School of MedicineARUEssexUK
| | | | - P. Hopkins
- Intensive Care Medicine Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life SciencesMedicine King's CollegeLondonUK
- Intensive Care Medicine, King's Critical CareKing's College Hospital, NHS Foundation TrustLondonUK
| | - A. Proudfoot
- Department of Perioperative Medicine, Barts Heart CentreSt Bartholomew's HospitalLondonUK
| | - R. Handslip
- St George's University Hospital NHS Foundation TrustLondonUK
| | - D. Pogson
- Department of Critical CarePortsmouth University Hospitals Trust CoshamPortsmouthUK
| | - P. Jackson
- Leeds Teaching Hospitals NHS TrustLeedsUK
| | - A. Nichol
- Australian and New Zealand Intensive Care Research CentreMonash UniversityMelbourneVictoriaAustralia
- University College Dublin Clinical Research Centre at St Vincent's University HospitalUniversity College DublinDublinIreland
- The Alfred HospitalMelbourneAustralia
| | - M. Haenggi
- Institute of Intensive Care MedicineUniversity Hospital ZurichZurichSwitzerland
| | - M. P. Hilty
- Institute of Intensive Care MedicineUniversity Hospital ZurichZurichSwitzerland
| | - M. Iten
- Department of Intensive Care MedicineInselspital University Hospital BernBernSwitzerland
| | - C. Schrag
- Klinik für IntensivmedizinKantonsspital St. GallenSt. GallenSwitzerland
| | - M. Nafi
- Istituto Cardiocentro TicinoLuganoSwitzerland
| | - M. Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal MedicineMedical University InsbruckInnsbruckAustria
| | - C. Robba
- IRCCS Policlinico San MartinoGenoaItaly
- Dipartimento di Scienze Chirurgiche Diagnostiche IntegrateUniversity of GenovaGenovaItaly
| | - T. Pellis
- Anaesthesia and Intensive CarePordenone Hospital Azienda Sanitaria Friuli OccidentalePordenoneItaly
| | - J. Belohlavek
- 2nd Department of Internal Medicine, Cardiovascular MedicineGeneral University Hospital, 1st Faculty of Medicine, Charles University in PraguePragueCzech Republic
- Institute for Heart DiseasesWroclaw Medical UniversityWrocławPoland
| | - D. Rob
- 2nd Department of Medicine, Department of Cardiovascular Medicine, First Faculty of MedicineCharles University in Prague, General University Hospital in PraguePragueCzech Republic
| | - Y. Arabi
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - S. Buabbas
- Department of Anesthesia, Critical Care and Pain MedicineJaber Alahmad Alsabah HospitalKuwait
| | - C. Yew Woon
- Tan Tock Seng HospitalSingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - A. Aneman
- Intensive Care UnitLiverpool Hospital, South Western Sydney Local Health DistrictSydneyNew South WalesAustralia
- South Western Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
- The Ingham Institute for Applied Medical ResearchSydneyNew South WalesAustralia
| | - A. Stewart
- Liverpool HospitalSydneyNew South WalesAustralia
| | - C. Arnott
- The George Institute for Global HealthSydneyAustralia
| | - M. Ramanan
- Department of CardiologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
- Caboolture and Royal Brisbane and Women's HospitalsMetro North Hospital and Health ServiceBrisbaneQueenslandAustralia
- School of Clinical MedicineQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - R. Panwar
- Critical Care Division, The George Institute for Global HealthUniversity of New South WalesSydneyNew South WalesAustralia
- School of Medicine and Public HealthUniversity of NewcastleNewcastleNew South WalesAustralia
| | - A. Delaney
- Critical Care Program, The George Institute for Global HealthUNSWSydneyAustralia
- Malcolm Fisher Department of Intensive CareRoyal North Shore HospitalSydneyNew South WalesAustralia
- Intensive Care UnitJohn Hunter HospitalNewcastleNew South WalesAustralia
| | - M. Reade
- Northern Clinical School, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - B. Venkatesh
- The George Institute for Global HealthSydneyAustralia
| | - L. Navarra
- Medical Research Institute of New ZealandWellingtonNew Zealand
| | - B. Crichton
- Medical Research Institute of New ZealandWellingtonNew Zealand
| | - D. Knight
- Department of Intensive CareChristchurch HospitalChristchurchNew Zealand
| | | | - H. Friberg
- Anesthesia and Intensive Care, Department of Clinical Sciences LundLund UniversityLundSweden
- Intensive and Perioperative CareSkåne University HospitalMalmöSweden
| | - T. Cronberg
- Neurology, Department of Clinical Sciences LundLund UniversityLundSweden
- Department of NeurologySkåne University HospitalLundSweden
| | - J. C. Jakobsen
- Copenhagen Trial Unit, Centre for Clinical Intervention ResearchCopenhagen University Hospital—RigshospitaletCopenhagenDenmark
- Department of Regional Health Research, Faculty of Health SciencesUniversity of Southern DenmarkCopenhagenDenmark
| | - M. B. Skrifvars
- Department of Anaesthesia and Intensive CareHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Long B, Gottlieb M. Emergency medicine updates: Managing the patient with return of spontaneous circulation. Am J Emerg Med 2025; 93:26-36. [PMID: 40133018 DOI: 10.1016/j.ajem.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
INTRODUCTION Patients with return of spontaneous circulation (ROSC) following cardiac arrest are a critically important population requiring close monitoring and targeted interventions in the emergency department (ED). Therefore, it is important for emergency clinicians to be aware of the current evidence regarding the management of this condition. OBJECTIVE This paper provides evidence-based updates concerning the management of the post-ROSC patient. DISCUSSION The patient with ROSC following cardiac arrest is critically ill, including a post-cardiac arrest syndrome which may include hypoxic brain injury, myocardial dysfunction, systemic ischemia and reperfusion injury, and persistent precipitating pathophysiology. Initial priorities in the ED setting in the post-ROSC patient include supporting cardiopulmonary function, addressing and managing the underlying cause of arrest, minimizing secondary cerebral injury, and correcting physiologic derangements. Testing including laboratory assessment, electrocardiogram (ECG), and imaging are necessary, aiming to evaluate for the precipitating cause and assess end-organ injury. Computed tomography head-to-pelvis may be helpful in the post-ROSC patient, particularly when the etiology of arrest is unclear. There are several important components of management, including targeting a mean arterial pressure of at least 65 mmHg, preferably >80 mmHg, to improve end-organ and cerebral perfusion pressure. An oxygenation target of 92-98 % is recommended using ARDSnet protocol, along with carbon dioxide partial pressure values of 35-55 mmHg. Antibiotics should be reserved for those with evidence of infection but may be considered if the patient is comatose, intubated, and undergoing hypothermic targeted temperature management (TTM). Corticosteroids should not be routinely administered. While the majority of cardiac arrests in adults are associated with cardiovascular disease, not all post-ROSC patients require emergent coronary angiography. However, if the patient has ST-segment elevation on ECG following ROSC, emergent angiography and catheterization is recommended. This should also be considered if the patient had an initial history concerning for acute coronary syndrome or a presenting arrhythmia of ventricular fibrillation or pulseless ventricular tachycardia. TTM at 32-34° C does not appear to demonstrate improved outcomes compared with targeted normothermia, but fever should be avoided. CONCLUSIONS An understanding of literature updates can improve the ED care of patients post-ROSC.
Collapse
Affiliation(s)
- Brit Long
- Department of Emergency Medicine, University of Virginia Medical School, Charlottesville, VA, USA.
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
3
|
Vadlakonda A, Bakhtiyar SS, Ebrahimian S, Sakowitz S, Chervu N, Verma A, Branche C, Darbinian K, Benharash P. Examining safety of cardiac surgery in patients with preoperative cardiac arrest. PLoS One 2025; 20:e0319563. [PMID: 40067831 PMCID: PMC11896030 DOI: 10.1371/journal.pone.0319563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/04/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Although postoperative cardiac arrest is a well-studied complication of cardiac surgery, few guidelines exist regarding timing of surgery in preoperative cardiac arrest (pCA). We examined the association between delayed timing of operation and postoperative outcomes following cardiac surgery in a large cohort of pCA. METHODS Adults with a diagnosis of pCA undergoing a cardiac operation were identified in the 2016-2020 National Inpatient Sample. Those requiring surgery within 24 hours fo cardiac arrest were excluded. Patients who underwent a cardiac procedure after 5 days of cardiopulmonary resuscitation were classified as Delayed (others: Early). Multivariable regression models were constructed to evaluate associations between delayed timing of surgery with in-hospital mortality, postoperative complications, hospitalization duration, and costs. RESULTS Of an estimated 9,240 patients meeting study criteria, 4,860 (52.6%) received delayed cardiac surgery. Following entropy balancing, delayed surgery was significantly associated with decreased odds of in-hospital mortality (Adjusted Odds Ratio [AOR] 0.75, 95% Confidence Interval [CI] 0.58 - 0.97). However, delayed operation demonstrated greater odds of postoperative thromboembolic (AOR 1.44, 95% CI 1.02 - 2.04), and infectious (AOR 1.65, 95% CI 1.31 - 2.08) complications. Notably, delay did not alter odds of neurologic complication, and was linked to a decrement in per-day costs (β -$2,100, 95% CI -2,600 - -1,700). CONCLUSIONS While preoperative cardiac arrest remains challenging, the present study demonstrates the safety profile of delaying cardiac operation among patients tolerating at least 24 hours of a delay to surgery. Future studies are needed to elucidate the factors associated with favorable outcomes in this population.
Collapse
Affiliation(s)
- Amulya Vadlakonda
- Department of Surgery, Center for Advanced Surgical and Interventional Technology, University of California, Los Angeles, California, Unites States of America
- Department of Surgery, University of California, Los Angeles, California, Unites States of America
| | - Syed Shahyan Bakhtiyar
- Department of Surgery, University of Colorado, Aurora, Colorado, Unites States of America
| | - Shayan Ebrahimian
- Department of Surgery, Center for Advanced Surgical and Interventional Technology, University of California, Los Angeles, California, Unites States of America
- Department of Surgery, University of California, Los Angeles, California, Unites States of America
| | - Sara Sakowitz
- Department of Surgery, Center for Advanced Surgical and Interventional Technology, University of California, Los Angeles, California, Unites States of America
- Department of Surgery, University of California, Los Angeles, California, Unites States of America
| | - Nikhil Chervu
- Department of Surgery, Center for Advanced Surgical and Interventional Technology, University of California, Los Angeles, California, Unites States of America
- Department of Surgery, University of California, Los Angeles, California, Unites States of America
| | - Arjun Verma
- Department of Surgery, Center for Advanced Surgical and Interventional Technology, University of California, Los Angeles, California, Unites States of America
- Department of Surgery, University of California, Los Angeles, California, Unites States of America
| | - Corynn Branche
- Department of Surgery, Center for Advanced Surgical and Interventional Technology, University of California, Los Angeles, California, Unites States of America
| | - Khajack Darbinian
- Department of Surgery, Center for Advanced Surgical and Interventional Technology, University of California, Los Angeles, California, Unites States of America
| | - Peyman Benharash
- Department of Surgery, Center for Advanced Surgical and Interventional Technology, University of California, Los Angeles, California, Unites States of America
- Department of Surgery, University of California, Los Angeles, California, Unites States of America
- Division of Cardiac Surgery, Department of Surgery, University of California, Los Angeles, California, Unites States of America
| |
Collapse
|
4
|
Dillon DG, Montoy JCC, Bosson N, Toy J, Kidane S, Ballard DW, Gausche‐Hill M, Donofrio‐Odmann J, Schlesinger SA, Staats K, Kazan C, Morr B, Thompson K, Mackey K, Brown J, Menegazzi JJ, the California Resuscitation Outcomes Consortium. Rationale and development of a prehospital goal-directed bundle of care to prevent rearrest after return of spontaneous circulation. J Am Coll Emerg Physicians Open 2024; 5:e13321. [PMID: 39503017 PMCID: PMC11536478 DOI: 10.1002/emp2.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 11/08/2024] Open
Abstract
In patients with out-of-hospital cardiac arrest (OHCA) who attain return of spontaneous circulation (ROSC), rearrest while in the prehospital setting represents a significant barrier to survival. To date, there are limited data to guide prehospital emergency medical services (EMS) management immediately following successful resuscitation resulting in ROSC and prior to handoff in the emergency department. Post-ROSC care encompasses a multifaceted approach including hemodynamic optimization, airway management, oxygenation, and ventilation. We sought to develop an evidenced-based, goal-directed bundle of care targeting specified vital parameters in the immediate post-ROSC period, with the goal of decreasing the incidence of rearrest and improving survival outcomes. Here, we describe the rationale and development of this goal-directed bundle of care, which will be adopted by several EMS agencies within California. We convened a group of EMS experts, including EMS Medical Directors, quality improvement officers, data managers, educators, EMS clinicians, emergency medicine clinicians, and resuscitation researchers to develop a goal-directed bundle of care to be applied in the field during the period immediately following ROSC. This care bundle includes guidance for prehospital personnel on recognition of impending rearrest, hemodynamic optimization, ventilatory strategies, airway management, and diagnosis of underlying causes prior to the initiation of transport.
Collapse
Affiliation(s)
- David G. Dillon
- Department of Emergency MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Nichole Bosson
- Los Angeles County EMS AgencySanta Fe SpringsCaliforniaUSA
- Lundquist Institute for Biomedical InnovationHarbor‐UCLA Medical CenterTorranceCaliforniaUSA
- Department of Emergency MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Department of Emergency MedicineHarbor‐UCLA Medical CenterTorranceCaliforniaUSA
| | - Jake Toy
- Los Angeles County EMS AgencySanta Fe SpringsCaliforniaUSA
- Lundquist Institute for Biomedical InnovationHarbor‐UCLA Medical CenterTorranceCaliforniaUSA
- Department of Emergency MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Department of Emergency MedicineHarbor‐UCLA Medical CenterTorranceCaliforniaUSA
| | - Senai Kidane
- Contra Costa County Emergency Medical ServicesMartinezCaliforniaUSA
- The Permanente Medical GroupOaklandCaliforniaUSA
| | - Dustin W. Ballard
- Department of Emergency MedicineUniversity of CaliforniaDavisCaliforniaUSA
- The Permanente Medical GroupOaklandCaliforniaUSA
- Division of ResearchKaiser Permanente Northern CaliforniaOaklandCaliforniaUSA
| | - Marianne Gausche‐Hill
- Los Angeles County EMS AgencySanta Fe SpringsCaliforniaUSA
- Lundquist Institute for Biomedical InnovationHarbor‐UCLA Medical CenterTorranceCaliforniaUSA
- Department of Emergency MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Department of Emergency MedicineHarbor‐UCLA Medical CenterTorranceCaliforniaUSA
| | - Joelle Donofrio‐Odmann
- Departments of Emergency Medicine and PediatricsUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Shira A. Schlesinger
- Department of Emergency MedicineDavid Geffen School of MedicineLos AngelesCaliforniaUSA
- Harbor‐UCLA Medical CenterLos AngelesCaliforniaUSA
- Newport Beach Fire DepartmentNewport BeachCaliforniaUSA
| | - Katherine Staats
- Imperial County Emergency Medical ServicesImperialUSA
- Department of Emergency MedicineUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Clayton Kazan
- Los Angeles County Fire DepartmentLos AngelesCaliforniaUSA
| | - Brian Morr
- Sacramento City Fire DepartmentSacramentoCaliforniaUSA
| | | | - Kevin Mackey
- The Permanente Medical GroupOaklandCaliforniaUSA
- Sacramento City Fire DepartmentSacramentoCaliforniaUSA
| | - John Brown
- San Francisco Emergency Medical Services AgencySan Francisco Department of Public HealthSan FranciscoCaliforniaUSA
| | - James J. Menegazzi
- Department of Emergency MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | | |
Collapse
|
5
|
Chun MK, Park JS, Han J, Jhang WK, Kim DH. The association between initial post-resuscitation diastolic blood pressure and survival after pediatric cardiac arrest: a retrospective study. BMC Pediatr 2024; 24:563. [PMID: 39232714 PMCID: PMC11373354 DOI: 10.1186/s12887-024-05037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Limited research has analyzed the association between diastolic blood pressure (DBP) and survival after pediatric cardiopulmonary resuscitation (CPR). This study aimed to explore the association between post-resuscitation diastolic blood pressure and survival in pediatric patients who underwent CPR. METHOD This retrospective single-center study included pediatric patients admitted to the pediatric intensive care unit of Asan Medical Center between January 2016 to November 2022. Patients undergoing extracorporeal CPR and those with unavailable data were excluded. The primary endpoint was survival to ICU discharge. RESULTS A total of 106 patients were included, with 67 (63.2%) achieving survival to ICU discharge. Multivariate logistic regression analysis identified DBP within 1 h after ROSC as the sole significant variable (p = 0.002, aOR, 1.043; 95% CI, 1.016-1.070). Additionally, DBP within 1 h demonstrated an area under the ROC curve of 0.7 (0.592-0.809) for survival to ICU discharge, along with mean blood pressure within the same timeframe. CONCLUSION Our study highlights the importance of DBP within 1-hour post-ROSC as a significant prognostic factor for survival to ICU discharge. However, further validation through further prospective large-scale studies is warranted to confirm the appropriate post-resuscitation DBP of pediatric patients.
Collapse
Affiliation(s)
- Min Kyo Chun
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun Sung Park
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeeho Han
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Kyoung Jhang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Da Hyun Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Liu R, Majumdar T, Gardner MM, Burnett R, Graham K, Beaulieu F, Sutton RM, Nadkarni VM, Berg RA, Morgan RW, Topjian AA, Kirschen MP. Association of Postarrest Hypotension Burden With Unfavorable Neurologic Outcome After Pediatric Cardiac Arrest. Crit Care Med 2024; 52:1402-1413. [PMID: 38832829 PMCID: PMC11326994 DOI: 10.1097/ccm.0000000000006339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
OBJECTIVE Quantify hypotension burden using high-resolution continuous arterial blood pressure (ABP) data and determine its association with outcome after pediatric cardiac arrest. DESIGN Retrospective observational study. SETTING Academic PICU. PATIENTS Children 18 years old or younger admitted with in-of-hospital or out-of-hospital cardiac arrest who had invasive ABP monitoring during postcardiac arrest care. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS High-resolution continuous ABP was analyzed up to 24 hours after the return of circulation (ROC). Hypotension burden was the time-normalized integral area between mean arterial pressure (MAP) and fifth percentile MAP for age. The primary outcome was unfavorable neurologic status (pediatric cerebral performance category ≥ 3 with change from baseline) at hospital discharge. Mann-Whitney U tests compared hypotension burden, duration, and magnitude between favorable and unfavorable patients. Multivariable logistic regression determined the association of unfavorable outcomes with hypotension burden, duration, and magnitude at various percentile thresholds from the 5th through 50th percentile for age. Of 140 patients (median age 53 [interquartile range 11-146] mo, 61% male); 63% had unfavorable outcomes. Monitoring duration was 21 (7-24) hours. Using a MAP threshold at the fifth percentile for age, the median hypotension burden was 0.01 (0-0.11) mm Hg-hours per hour, greater for patients with unfavorable compared with favorable outcomes (0 [0-0.02] vs. 0.02 [0-0.27] mm Hg-hr per hour, p < 0.001). Hypotension duration and magnitude were greater for unfavorable compared with favorable patients (0.03 [0-0.77] vs. 0.71 [0-5.01]%, p = 0.003; and 0.16 [0-1.99] vs. 2 [0-4.02] mm Hg, p = 0.001). On logistic regression, a 1-point increase in hypotension burden below the fifth percentile for age (equivalent to 1 mm Hg-hr of burden per hour of recording) was associated with increased odds of unfavorable outcome (adjusted odds ratio [aOR] 14.8; 95% CI, 1.1-200; p = 0.040). At MAP thresholds of 10th-50th percentiles for age, MAP burden below the threshold was greater in unfavorable compared with favorable patients in a dose-dependent manner. CONCLUSIONS High-resolution continuous ABP data can be used to quantify hypotension burden after pediatric cardiac arrest. The burden, duration, and magnitude of hypotension are associated with unfavorable neurologic outcomes.
Collapse
Affiliation(s)
- Raymond Liu
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Tanmay Majumdar
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA
| | - Monique M Gardner
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ryan Burnett
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Forrest Beaulieu
- Department of Anesthesiology, Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Robert M Sutton
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Vinay M Nadkarni
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Robert A Berg
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ryan W Morgan
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Alexis A Topjian
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matthew P Kirschen
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Lai YC. Blood Pressure Threshold Following Pediatric Cardiac Arrest: How Low Can We Really Go, and How Long Can We Stay There? Crit Care Med 2024; 52:1493-1495. [PMID: 39145709 DOI: 10.1097/ccm.0000000000006356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
- Yi-Chen Lai
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| |
Collapse
|
8
|
Preuß S, Multmeier J, Stenzel W, Major S, Ploner CJ, Storm C, Nee J, Leithner C, Endisch C. Survival, but not the severity of hypoxic-ischemic encephalopathy, is associated with higher mean arterial blood pressure after cardiac arrest: a retrospective cohort study. Front Cardiovasc Med 2024; 11:1337344. [PMID: 38774664 PMCID: PMC11106407 DOI: 10.3389/fcvm.2024.1337344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Background This study investigates the association between the mean arterial blood pressure (MAP), vasopressor requirement, and severity of hypoxic-ischemic encephalopathy (HIE) after cardiac arrest (CA). Methods Between 2008 and 2017, we retrospectively analyzed the MAP 200 h after CA and quantified the vasopressor requirements using the cumulative vasopressor index (CVI). Through a postmortem brain autopsy in non-survivors, the severity of the HIE was histopathologically dichotomized into no/mild and severe HIE. In survivors, we dichotomized the severity of HIE into no/mild cerebral performance category (CPC) 1 and severe HIE (CPC 4). We investigated the regain of consciousness, causes of death, and 5-day survival as hemodynamic confounders. Results Among the 350 non-survivors, 117 had histopathologically severe HIE while 233 had no/mild HIE, without differences observed in the MAP (73.1 vs. 72.0 mmHg, pgroup = 0.639). Compared to the non-survivors, 211 patients with CPC 1 and 57 patients with CPC 4 had higher MAP values that showed significant, but clinically non-relevant, MAP differences (81.2 vs. 82.3 mmHg, pgroup < 0.001). The no/mild HIE non-survivors (n = 54), who regained consciousness before death, had higher MAP values compared to those with no/mild HIE (n = 179), who remained persistently comatose (74.7 vs. 69.3 mmHg, pgroup < 0.001). The no/mild HIE non-survivors, who regained consciousness, required fewer vasopressors (CVI 2.1 vs. 3.6, pgroup < 0.001). Independent of the severity of HIE, the survivors were weaned faster from vasopressors (CVI 1.0). Conclusions Although a higher MAP was associated with survival in CA patients treated with a vasopressor-supported MAP target above 65 mmHg, the severity of HIE was not. Awakening from coma was associated with less vasopressor requirements. Our results provide no evidence for a MAP target above the current guideline recommendations that can decrease the severity of HIE.
Collapse
Affiliation(s)
- Sandra Preuß
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Multmeier
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- Ada Health GmbH, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité Campus Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph J. Ploner
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Storm
- Department of Nephrology and Intensive Care Medicine, Cardiac Arrest Center of Excellence Berlin, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Nee
- Department of Nephrology and Intensive Care Medicine, Cardiac Arrest Center of Excellence Berlin, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Leithner
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Endisch
- Department of Neurology, AG Emergency and Critical Care Neurology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Gerecht RB, Nable JV. Out-of-Hospital Cardiac Arrest. Cardiol Clin 2024; 42:317-331. [PMID: 38631798 DOI: 10.1016/j.ccl.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Survival from out-of-hospital cardiac arrest (OHCA) is predicated on a community and system-wide approach that includes rapid recognition of cardiac arrest, capable bystander CPR, effective basic and advanced life support (BLS and ALS) by EMS providers, and coordinated postresuscitation care. Management of these critically ill patients continues to evolve. This article focuses on the management of OHCA by EMS providers.
Collapse
Affiliation(s)
- Ryan B Gerecht
- District of Columbia Fire and EMS Department, MedStar Washington Hospital Center, 110 Irving Street Northwest, Washington, DC 20010, USA
| | - Jose V Nable
- Georgetown University School of Medicine, Georgetown EMS, MedStar Georgetown University Hospital, 3800 Reservoir Road Northwest, Washington, DC 20007, USA.
| |
Collapse
|
10
|
Schuurmans J, van Rossem BTB, Rellum SR, Tol JTM, Kurucz VC, van Mourik N, van der Ven WH, Veelo DP, Schenk J, Vlaar APJ. Hypotension during intensive care stay and mortality and morbidity: a systematic review and meta-analysis. Intensive Care Med 2024; 50:516-525. [PMID: 38252288 PMCID: PMC11018652 DOI: 10.1007/s00134-023-07304-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
PURPOSE The aim of this study is to provide a summary of the existing literature on the association between hypotension during intensive care unit (ICU) stay and mortality and morbidity, and to assess whether there is an exposure-severity relationship between hypotension exposure and patient outcomes. METHODS CENTRAL, Embase, and PubMed were searched up to October 2022 for articles that reported an association between hypotension during ICU stay and at least one of the 11 predefined outcomes. Two independent reviewers extracted the data and assessed the risk of bias. Results were gathered in a summary table and studies designed to investigate the hypotension-outcome relationship were included in the meta-analyses. RESULTS A total of 122 studies (176,329 patients) were included, with the number of studies varying per outcome between 0 and 82. The majority of articles reported associations in favor of 'no hypotension' for the outcomes mortality and acute kidney injury (AKI), and the strength of the association was related to the severity of hypotension in the majority of studies. Using meta-analysis, a significant association was found between hypotension and mortality (odds ratio: 1.45; 95% confidence interval (CI) 1.12-1.88; based on 13 studies and 34,829 patients), but not for AKI. CONCLUSION Exposure to hypotension during ICU stay was associated with increased mortality and AKI in the majority of included studies, and associations for both outcomes increased with increasing hypotension severity. The meta-analysis reinforced the descriptive findings regarding mortality but did not yield similar support for AKI.
Collapse
Affiliation(s)
- Jaap Schuurmans
- Amsterdam UMC location University of Amsterdam, Anesthesiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Intensive Care, Meibergdreef 9, Amsterdam, The Netherlands
| | - Benthe T B van Rossem
- Amsterdam UMC location University of Amsterdam, Anesthesiology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Santino R Rellum
- Amsterdam UMC location University of Amsterdam, Anesthesiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Intensive Care, Meibergdreef 9, Amsterdam, The Netherlands
| | - Johan T M Tol
- Amsterdam UMC location University of Amsterdam, Anesthesiology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Vincent C Kurucz
- Amsterdam UMC location University of Amsterdam, Anesthesiology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Niels van Mourik
- Amsterdam UMC location University of Amsterdam, Intensive Care, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ward H van der Ven
- Amsterdam UMC location University of Amsterdam, Anesthesiology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Denise P Veelo
- Amsterdam UMC location University of Amsterdam, Anesthesiology, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Jimmy Schenk
- Amsterdam UMC location University of Amsterdam, Anesthesiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Intensive Care, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Amsterdam Public Health, Meibergdreef 9, Amsterdam, The Netherlands
| | - Alexander P J Vlaar
- Amsterdam UMC location University of Amsterdam, Intensive Care, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Heikkilä E, Setälä P, Jousi M, Nurmi J. Association among blood pressure, end-tidal carbon dioxide, peripheral oxygen saturation and mortality in prehospital post-resuscitation care. Resusc Plus 2024; 17:100577. [PMID: 38375443 PMCID: PMC10875297 DOI: 10.1016/j.resplu.2024.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Aim Post-resuscitation care is described as the fourth link in a chain of survival in resuscitation guidelines. However, data on prehospital post-resuscitation care is scarce. We aimed to examine the association among systolic blood pressure (SBP), peripheral oxygen saturation (SpO2) and end-tidal carbon dioxide (EtCO2) after prehospital stabilisation and outcome among patients resuscitated from out-of-hospital cardiac arrest (OHCA). Methods In this retrospective study, we evaluated association of the last measured prehospital SBP, SpO2 and EtCO2 before patient handover with 30-day and one-year mortality in 2,611 patients receiving prehospital post-resuscitation care by helicopter emergency medical services in Finland. Statistical analyses were completed through locally estimated scatterplot smoothing (LOESS) and multivariable logistic regression. The regression analyses were adjusted by sex, age, initial rhythm, bystander CPR, and time interval from collapse to the return of spontaneous circulation (ROSC). Results Mortality related to SBP and EtCO2 values were U-shaped and lowest at 135 mmHg and 4.7 kPa, respectively, whereas higher SpO2 shifted towards lower mortality. In adjusted analyses, increased 30-day mortality and one year mortality was observed in patients with SBP < 100 mmHg (OR 1.9 [95% CI 1.4-2.4]) and SBP < 100 (OR 1.8 [1.2-2.6]) or EtCO2 < 4.0 kPa (OR 1.4 [1.1-1.5]), respectively. SpO2 was not significantly associated with either 30-day or one year mortality. Conclusions After prehospital post-resuscitation stabilization, SBP < 100 mmHg and EtCO2 < 4.0 kPa were observed to be independently associated with higher mortality. The optimal targets for prehospital post-resuscitation care need to be established in the prospective studies.
Collapse
Affiliation(s)
- Elina Heikkilä
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Finland
| | - Piritta Setälä
- Emergency Medical Services, Centre for Prehospital Emergency Care, Tampere University Hospital, Tampere, Finland
| | - Milla Jousi
- Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Finland
| | - Jouni Nurmi
- Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Finland
- FinnHEMS Research and Development Unit, Finland 4
| |
Collapse
|
12
|
Dong S, Wang Q, Wang S, Zhou C, Wang H. Hypotension prediction index for the prevention of hypotension during surgery and critical care: A narrative review. Comput Biol Med 2024; 170:107995. [PMID: 38325215 DOI: 10.1016/j.compbiomed.2024.107995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 02/09/2024]
Abstract
Surgeons and anesthesia clinicians commonly face a hemodynamic disturbance known as intraoperative hypotension (IOH), which has been linked to more severe postoperative outcomes and increases mortality rates. Increased occurrence of IOH has been positively associated with mortality and incidence of myocardial infarction, stroke, and organ dysfunction hypertension. Hence, early detection and recognition of IOH is meaningful for perioperative management. Currently, when hypotension occurs, clinicians use vasopressor or fluid therapy to intervene as IOH develops but interventions should be taken before hypotension occurs; therefore, the Hypotension Prediction Index (HPI) method can be used to help clinicians further react to the IOH process. This literature review evaluates the HPI method, which can reliably predict hypotension several minutes before a hypotensive event and is beneficial for patients' outcomes.
Collapse
Affiliation(s)
- Siwen Dong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qing Wang
- Department of Anesthesiology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Shuai Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Congcong Zhou
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Hongwei Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Anesthesiology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| |
Collapse
|
13
|
Morton S, Spurgeon Z, Ashworth C, Samouelle J, Sherren PB. Cardiorespiratory consequences of attenuated fentanyl and augmented rocuronium dosing during protocolised prehospital emergency anaesthesia at a regional air ambulance service: a retrospective study. Scand J Trauma Resusc Emerg Med 2024; 32:12. [PMID: 38347604 PMCID: PMC10863113 DOI: 10.1186/s13049-024-01183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Pre-Hospital Emergency Anaesthesia (PHEA) has undergone significant developments since its inception. However, optimal drug dosing remains a challenge for both medical and trauma patients. Many prehospital teams have adopted a drug regimen of 3 mcg/kg fentanyl, 2 mg/kg ketamine and 1 mg/kg rocuronium ('3:2:1'). At Essex and Herts Air Ambulance Trust (EHAAT) a new standard dosing regimen was introduced in August 2021: 1 mcg/kg fentanyl, 2 mg/kg ketamine and 2 mg/kg rocuronium (up to a maximum dose of 150 mg) ('1:2:2'). The aim of this study was to evaluate the cardiorespiratory consequences of a new attenuated fentanyl and augmented rocuronium dosing regimen. METHODS A retrospective study was conducted at EHAAT as a service evaluation. Anonymized records were reviewed from an electronic database to compare the original ('3:2:1') drug dosing regimen (December 2019-July 2021) and the new ('1:2:2') dosing regimen (September 2021-May 2023). The primary outcome was the incidence of absolute hypotension within ten minutes of induction. Secondary outcomes included immediate hypertension, immediate hypoxia and first pass success (FPS) rates. RESULTS Following exclusions (n = 121), 720 PHEA cases were analysed (360 new vs. 360 original, no statistically significant difference in demographics). There was no difference in the rate of absolute hypotension (24.4% '1:2:2' v 23.8% '3:2:1', p = 0.93). In trauma patients, there was an increased first pass success (FPS) rate with the new regimen (95.1% v 86.5%, p = 0.01) and a reduced incidence of immediate hypoxia (7.9% v 14.8%, p = 0.05). There was no increase in immediate hypertensive episodes (22.7% vs. 24.2%, p = 0.73). No safety concerns were identified. CONCLUSION An attenuated fentanyl and augmented rocuronium dosing regimen showed no difference in absolute hypotensive episodes in a mixed cohort of medical and trauma patients. In trauma patients, the new regimen was associated with an increased FPS rate and reduced episodes of immediate hypoxia. Further research is required to understand the impact of such drug dosing in the most critically ill and injured subpopulation.
Collapse
Affiliation(s)
- Sarah Morton
- Essex & Herts Air Ambulance Trust, Essex, UK.
- Imperial College London, London, UK.
| | | | | | | | - Peter B Sherren
- Essex & Herts Air Ambulance Trust, Essex, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Nikolovski SS, Lazic AD, Fiser ZZ, Obradovic IA, Tijanic JZ, Raffay V. Recovery and Survival of Patients After Out-of-Hospital Cardiac Arrest: A Literature Review Showcasing the Big Picture of Intensive Care Unit-Related Factors. Cureus 2024; 16:e54827. [PMID: 38529434 PMCID: PMC10962929 DOI: 10.7759/cureus.54827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
As an important public health issue, out-of-hospital cardiac arrest (OHCA) requires several stages of high quality medical care, both on-field and after hospital admission. Post-cardiac arrest shock can lead to severe neurological injury, resulting in poor recovery outcome and increased risk of death. These characteristics make this condition one of the most important issues to deal with in post-OHCA patients hospitalized in intensive care units (ICUs). Also, the majority of initial post-resuscitation survivors have underlying coronary diseases making revascularization procedure another crucial step in early management of these patients. Besides keeping myocardial blood flow at a satisfactory level, other tissues must not be neglected as well, and maintaining mean arterial pressure within optimal range is also preferable. All these procedures can be simplified to a certain level along with using targeted temperature management methods in order to decrease metabolic demands in ICU-hospitalized post-OHCA patients. Additionally, withdrawal of life-sustaining therapy as a controversial ethical topic is under constant re-evaluation due to its possible influence on overall mortality rates in patients initially surviving OHCA. Focusing on all of these important points in process of managing ICU patients is an imperative towards better survival and complete recovery rates.
Collapse
Affiliation(s)
- Srdjan S Nikolovski
- Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola University Chicago Health Science Campus, Maywood, USA
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| | - Aleksandra D Lazic
- Emergency Center, Clinical Center of Vojvodina, Novi Sad, SRB
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| | - Zoran Z Fiser
- Emergency Medicine, Department of Emergency Medicine, Novi Sad, SRB
| | - Ivana A Obradovic
- Anesthesiology, Resuscitation, and Intensive Care, Sveti Vračevi Hospital, Bijeljina, BIH
| | - Jelena Z Tijanic
- Emergency Medicine, Municipal Institute of Emergency Medicine, Kragujevac, SRB
| | - Violetta Raffay
- School of Medicine, European University Cyprus, Nicosia, CYP
- Emergency Medicine, Serbian Resuscitation Council, Novi Sad, SRB
| |
Collapse
|
15
|
Slovis JC, Bach A, Beaulieu F, Zuckerberg G, Topjian A, Kirschen MP. Neuromonitoring after Pediatric Cardiac Arrest: Cerebral Physiology and Injury Stratification. Neurocrit Care 2024; 40:99-115. [PMID: 37002474 PMCID: PMC10544744 DOI: 10.1007/s12028-023-01685-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/30/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Significant long-term neurologic disability occurs in survivors of pediatric cardiac arrest, primarily due to hypoxic-ischemic brain injury. Postresuscitation care focuses on preventing secondary injury and the pathophysiologic cascade that leads to neuronal cell death. These injury processes include reperfusion injury, perturbations in cerebral blood flow, disturbed oxygen metabolism, impaired autoregulation, cerebral edema, and hyperthermia. Postresuscitation care also focuses on early injury stratification to allow clinicians to identify patients who could benefit from neuroprotective interventions in clinical trials and enable targeted therapeutics. METHODS In this review, we provide an overview of postcardiac arrest pathophysiology, explore the role of neuromonitoring in understanding postcardiac arrest cerebral physiology, and summarize the evidence supporting the use of neuromonitoring devices to guide pediatric postcardiac arrest care. We provide an in-depth review of the neuromonitoring modalities that measure cerebral perfusion, oxygenation, and function, as well as neuroimaging, serum biomarkers, and the implications of targeted temperature management. RESULTS For each modality, we provide an in-depth review of its impact on treatment, its ability to stratify hypoxic-ischemic brain injury severity, and its role in neuroprognostication. CONCLUSION Potential therapeutic targets and future directions are discussed, with the hope that multimodality monitoring can shift postarrest care from a one-size-fits-all model to an individualized model that uses cerebrovascular physiology to reduce secondary brain injury, increase accuracy of neuroprognostication, and improve outcomes.
Collapse
Affiliation(s)
- Julia C Slovis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA.
| | - Ashley Bach
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Forrest Beaulieu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Gabe Zuckerberg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, 6 Wood - 6105, Philadelphia, PA, 19104, USA
| |
Collapse
|
16
|
Ushpol A, Je S, Niles D, Majmudar T, Kirschen M, Del Castillo J, Buysse C, Topjian A, Nadkarni V, Gangadharan S. Association of blood pressure with neurologic outcome at hospital discharge after pediatric cardiac arrest resuscitation. Resuscitation 2024; 194:110066. [PMID: 38056760 PMCID: PMC11024592 DOI: 10.1016/j.resuscitation.2023.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Poor outcomes are associated with post cardiac arrest blood pressures <5th percentile for age. We aimed to study the relationship of mean arterial pressure (MAP) with favorable neurologic outcome following cardiac arrest and return of spontaneous circulation (ROSC). METHODS This retrospective, multi-center, observational study analyzed data from the Pediatric Resuscitation Quality Collaborative (pediRES-Q). Children (<18 years) who achieved ROSC following index in-hospital or out-of-hospital cardiac arrest and survived ≥6 hours were included. Lowest documented MAP within the first 6 hours of ROSC was percentile adjusted for age and categorized into six groups - Group I: <5th, II: 5-24th, III: 25-49th, IV: 50-74th, V: 75-94th; and VI: 95-100th percentile. Primary outcome was favorable neurologic status at hospital discharge, defined as PCPC score 1, 2, or no change from pre-arrest baseline. Multivariable logistic regression was performed to analyze the association of MAP group with favorable outcome, controlling for illness category (surgical-cardiac), initial rhythm (shockable), arrest time (weekend or overnight), age, CPR duration, and clustering by site. RESULTS 787 patients were included: median [Q1,Q3] age 17.9 [4.8,90.6] months; male 58%; OHCA 21%; shockable rhythm 13%; CPR duration 7 [3,16] min; favorable neurologic outcome 54%. Median lowest documented MAP percentile for the favorable outcome group was 13 [3,43] versus 8 [1,37] for the unfavorable group. The distribution of blood pressures by MAP group was I: 37%, II: 28%, III: 13%, IV: 11%, V: 7%, and VI: 4%. Compared with patients in Group I (<5%ile), Groups II, III, and IV had higher odds of favorable outcome (aOR, 1.84 [95% CI, 1.24, 2.73]; 2.20 [95% CI, 1.32, 3.68]; 1.90 [95% CI, 1.12, 3.25]). There was no association between Groups V or VI and favorable outcome (aOR, 1.44 [95% CI, 0.75, 2.80]; 1.11 [95% CI, 0.47, 2.59]). CONCLUSION In the first 6-hours post-ROSC, a lowest documented MAP between the 5th-74th percentile for age was associated with favorable neurologic outcome compared to MAP <5th percentile for age.
Collapse
Affiliation(s)
- A Ushpol
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
| | - S Je
- Departments of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - D Niles
- Departments of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - T Majmudar
- Drexel University College of Medicine, 2900 W Queen Ln, Philadelphia, PA 19129, USA
| | - M Kirschen
- Departments of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - J Del Castillo
- Unidad de Cuidados Intensivos Pediátricos, Hospital General Universitario Gregorio Marañón, C. del Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - C Buysse
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - A Topjian
- Departments of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - V Nadkarni
- Departments of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - S Gangadharan
- Department of Pediatrics, Division of Critical Care Medicine, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, 1184 5th Ave, New York, NY 10029, USA
| |
Collapse
|
17
|
Gardner MM, Hehir DA, Reeder RW, Ahmed T, Bell MJ, Berg RA, Bishop R, Bochkoris M, Burns C, Carcillo JA, Carpenter TC, Dean JM, Diddle JW, Federman M, Fernandez R, Fink EL, Franzon D, Frazier AH, Friess SH, Graham K, Hall M, Harding ML, Horvat CM, Huard LL, Maa T, Manga A, McQuillen PS, Meert KL, Morgan RW, Mourani PM, Nadkarni VM, Naim MY, Notterman D, Pollack MM, Sapru A, Schneiter C, Sharron MP, Srivastava N, Tilford B, Viteri S, Wessel D, Wolfe HA, Yates AR, Zuppa AF, Sutton RM, Topjian AA. Identification of post-cardiac arrest blood pressure thresholds associated with outcomes in children: an ICU-Resuscitation study. Crit Care 2023; 27:388. [PMID: 37805481 PMCID: PMC10559632 DOI: 10.1186/s13054-023-04662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023] Open
Abstract
INTRODUCTION Though early hypotension after pediatric in-hospital cardiac arrest (IHCA) is associated with inferior outcomes, ideal post-arrest blood pressure (BP) targets have not been established. We aimed to leverage prospectively collected BP data to explore the association of post-arrest BP thresholds with outcomes. We hypothesized that post-arrest systolic and diastolic BP thresholds would be higher than the currently recommended post-cardiopulmonary resuscitation BP targets and would be associated with higher rates of survival to hospital discharge. METHODS We performed a secondary analysis of prospectively collected BP data from the first 24 h following return of circulation from index IHCA events enrolled in the ICU-RESUScitation trial (NCT02837497). The lowest documented systolic BP (SBP) and diastolic BP (DBP) were percentile-adjusted for age, height and sex. Receiver operator characteristic curves and cubic spline analyses controlling for illness category and presence of pre-arrest hypotension were generated exploring the association of lowest post-arrest SBP and DBP with survival to hospital discharge and survival to hospital discharge with favorable neurologic outcome (Pediatric Cerebral Performance Category of 1-3 or no change from baseline). Optimal cutoffs for post-arrest BP thresholds were based on analysis of receiver operator characteristic curves and spline curves. Logistic regression models accounting for illness category and pre-arrest hypotension examined the associations of these thresholds with outcomes. RESULTS Among 693 index events with 0-6 h post-arrest BP data, identified thresholds were: SBP > 10th percentile and DBP > 50th percentile for age, sex and height. Fifty-one percent (n = 352) of subjects had lowest SBP above threshold and 50% (n = 346) had lowest DBP above threshold. SBP and DBP above thresholds were each associated with survival to hospital discharge (SBP: aRR 1.21 [95% CI 1.10, 1.33]; DBP: aRR 1.23 [1.12, 1.34]) and survival to hospital discharge with favorable neurologic outcome (SBP: aRR 1.22 [1.10, 1.35]; DBP: aRR 1.27 [1.15, 1.40]) (all p < 0.001). CONCLUSIONS Following pediatric IHCA, subjects had higher rates of survival to hospital discharge and survival to hospital discharge with favorable neurologic outcome when BP targets above a threshold of SBP > 10th percentile for age and DBP > 50th percentile for age during the first 6 h post-arrest.
Collapse
Affiliation(s)
- Monique M Gardner
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - David A Hehir
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ron W Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Tageldin Ahmed
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Michael J Bell
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Robert Bishop
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Matthew Bochkoris
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Candice Burns
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Joseph A Carcillo
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Todd C Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - J Michael Dean
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - J Wesley Diddle
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Myke Federman
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Richard Fernandez
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ericka L Fink
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deborah Franzon
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Aisha H Frazier
- Nemours Cardiac Center, Nemours Children's Health and Thomas Jefferson University, Wilmington, DE, USA
| | - Stuart H Friess
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Mark Hall
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Monica L Harding
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Christopher M Horvat
- Department of Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leanna L Huard
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Tensing Maa
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Arushi Manga
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick S McQuillen
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen L Meert
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Peter M Mourani
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR, USA
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Daniel Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Murray M Pollack
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Anil Sapru
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Carleen Schneiter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Matthew P Sharron
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Neeraj Srivastava
- Department of Pediatrics, Mattel Children's Hospital, University of California Los Angeles, Los Angeles, CA, USA
| | - Bradley Tilford
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, USA
| | - Shirley Viteri
- Department of Pediatrics, Nemours Children's Health and Thomas Jefferson University, Wilmington, DE, USA
| | - David Wessel
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine, Washington, DC, USA
| | - Heather A Wolfe
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Andrew R Yates
- Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Athena F Zuppa
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Alexis A Topjian
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Sharpe AR, Richardson K, Stanton M, Dang C, Feih J, Brazauskas R, Teng BQ, Feldman R. Lack of Association of Initial Vasopressor Dosing with Survival and Cardiac Re-Arrest Likelihood After Return of Spontaneous Circulation. J Emerg Med 2023; 65:e209-e220. [PMID: 37635036 DOI: 10.1016/j.jemermed.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/26/2023] [Accepted: 05/26/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Cardiac arrest occurs in approximately 350,000 patients outside the hospital and approximately 30,000 patients in the emergency department (ED) annually in the United States. When return of spontaneous circulation (ROSC) is achieved, hypotension is a common complication. However, optimal dosing of vasopressors is not clear. OBJECTIVE The objective of this study was to determine if initial vasopressor dosing was associated with cardiac re-arrest in patients after ROSC. METHODS This was a retrospective, single-center analysis of adult patients experiencing cardiac arrest prior to arrival or within the ED. Patients were assigned to one of four groups based on starting dose of vasopressor: low dose (LD; < 0.25 µg/kg/min), medium dose (MD; 0.25-0.49 µg/kg/min), high dose (HD; 0.5-0.99 µg/kg/min), and very high dose (VHD; ≥ 1 µg/kg/min). Data collection was performed primarily via manual chart review of medical records. The primary outcome was incidence of cardiac re-arrest within 1 h of vasopressor initiation. Multivariate logistic regression analysis was conducted to identify any covariates strongly associated with the primary outcome. RESULTS No difference in cardiac re-arrest incidence was noted between groups. The VHD group was significantly more likely to require a second vasopressor (p = 0.003). The HD group had lower survival rates to hospital discharge compared with the LD and MD groups (p = 0.0033 and p = 0.0147). In the multivariate regression, longer duration of pre-vasopressor re-arrests and hyperkalemic cardiac arrest etiology were significant predictors of cardiac re-arrest after vasopressor initiation. CONCLUSIONS Initial vasopressor dosing was not found to be associated with risk of cardiac re-arrest or, conversely, risk of adverse events.
Collapse
Affiliation(s)
- Abigail R Sharpe
- Department of Pharmacy, Froedtert & the Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kelly Richardson
- Department of Pharmacy, Froedtert & the Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew Stanton
- Department of Pharmacy, Froedtert & the Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cathyyen Dang
- Department of Pharmacy, Froedtert & the Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Feih
- Department of Pharmacy, Froedtert & the Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ruta Brazauskas
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bi Qing Teng
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ryan Feldman
- Department of Pharmacy, Froedtert & the Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
19
|
Skrifvars MB, Ameloot K, Åneman A. Blood pressure targets and management during post-cardiac arrest care. Resuscitation 2023; 189:109886. [PMID: 37380065 DOI: 10.1016/j.resuscitation.2023.109886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Blood pressure is one modifiable physiological target in patients treated in the intensive care unit after cardiac arrest. Current Guidelines recommend targeting a mean arterial pressure (MAP) of higher than 65-70 mmHg using fluid resuscitation and the use of vasopressors. Management strategies will vary based in the setting, i.e. the pre-hospital compared to the in-hospital phase. Epidemiological data suggest that some degree of hypotension requiring vasopressors occur in almost 50% of patients. A higher MAP could theoretically increase coronary blood flow but on the other hand the use of vasopressor may result in an increase in cardiac oxygen demand and arrhythmia. An adequate MAP is paramount for maintaining cerebral blood flow. In some cardiac arrest patients the cerebral autoregulation may be disturbed resulting in the need for higher MAP in order to avoid decreasing cerebral blood flow. Thus far, four studies including little more than 1000 patients have compared a lower and higher MAP target in cardiac arrest patients. The achieved mean difference of MAP between groups has varied from 10-15 mmHg. Based on these studies a Bayesian meta-analysis suggests that the posterior probability that a future study would find treatment effects higher than a 5% difference between groups to be less than 50%. On the other hand, this analysis also suggests, that the likelihood of harm with a higher MAP target is also low. Noteworthy is that all studies to date have focused mainly on patients with a cardiac cause of the arrest with the majority of patients being resuscitated from a shockable initial rhythm. Future studies should aim to include also non-cardiac causes and aim to target a wider separation in MAP between groups.
Collapse
Affiliation(s)
- Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Finland, Meilahden Sairaala, Haartmaninkatu 9, 00029 HUS, Finland.
| | - Koen Ameloot
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium; Department of Cardiology, University Hospitals Leuven, Leuven, Belgium; Faculty of Medicine and Life Sciences, University Hasselt, Diepenbeek, Belgium
| | - Anders Åneman
- Intensive Care Unit, Liverpool Hospital, South Western Sydney Clinical School, University of New South Wales, Australia; Faculty of Medicine and Health Sciences, Macquarie University, Australia
| |
Collapse
|
20
|
Abstract
Survival from out-of-hospital cardiac arrest (OHCA) is predicated on a community and system-wide approach that includes rapid recognition of cardiac arrest, capable bystander CPR, effective basic and advanced life support (BLS and ALS) by EMS providers, and coordinated postresuscitation care. Management of these critically ill patients continues to evolve. This article focuses on the management of OHCA by EMS providers.
Collapse
Affiliation(s)
- Ryan B Gerecht
- District of Columbia Fire and EMS Department, MedStar Washington Hospital Center, 110 Irving Street Northwest, Washington, DC 20010, USA
| | - Jose V Nable
- Georgetown University School of Medicine, Georgetown EMS, MedStar Georgetown University Hospital, 3800 Reservoir Road Northwest, Washington, DC 20007, USA.
| |
Collapse
|
21
|
Wilcox J, Redwood S, Patterson T. Cardiac arrest centres: what do they add? Resuscitation 2023:109865. [PMID: 37315916 DOI: 10.1016/j.resuscitation.2023.109865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
There are wide regional variations in outcome following resuscitated out of hospital cardiac arrest. These geographical differences appear to be due to hospital infrastructure and provider experience rather than baseline characteristics. It is proposed that post-arrest care be delivered in a systematic fashion by concentrating services in Cardiac Arrest Centres, with greater provider experience, 24-hour access to diagnostics, and specialist treatment to minimise the impact of ischaemia-reperfusion injury and treat the causative pathology. These cardiac arrest centres would provide access to targeted critical care, acute cardiac care, radiology services and appropriate neuro-prognostication. However implementation of cardiac arrest networks with specialist receiving hospitals is complex and requires alignment of pre-hospital care services with those delivered in hospital. Furthermore there are no randomised trial data currently supporting pre-hospital delivery to a Cardiac Arrest Centre and definitions are heterogeneous. In this review article, we propose a universal definition of a Cardiac Arrest Centre and review the current observational data evidence and the potential impact of the ARREST trial.
Collapse
Affiliation(s)
- Joshua Wilcox
- Cardiovascular Department, Guy's and St. Thomas' NHS Foundation Trust.
| | - Simon Redwood
- Cardiovascular Department, Guy's and St. Thomas' NHS Foundation Trust; Cardiovascular, FOLSM, King's College London
| | - Tiffany Patterson
- Cardiovascular Department, Guy's and St. Thomas' NHS Foundation Trust
| |
Collapse
|
22
|
Schuurmans J, van Nieuw Amerongen AR, Terwindt LE, Schenk J, Veelo DP, Vlaar APJ, van der Ster BJP. Feasibility of continuous non-invasive finger blood pressure monitoring in adult patients admitted to an intensive care unit: A retrospective cohort study. Heart Lung 2023; 61:51-58. [PMID: 37148815 DOI: 10.1016/j.hrtlng.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Arterial catheters are often used for blood pressure monitoring in the intensive care unit (ICU), but they can cause complications. Non-invasive continuous finger blood pressure monitors could serve as an alternative. However, failure to obtain finger blood pressure signals is reported in up to 12% of ICU patients. OBJECTIVES Our primary objective was to identify the success rate of finger blood pressure monitoring in ICU patients. Secondary objectives were to assess whether patient admission characteristics could be used to identify patients unsuitable for non-invasive blood pressure monitoring and to determine the quality of non-invasive blood pressure waveforms. METHODS Retrospective observational study conducted in a cohort of 499 ICU patients. When available, the signal quality of the first hour of finger measurement was determined using an open-source waveform algorithm. RESULTS Finger blood pressure signals were obtained in 94% of patients. These patients had a high quality blood pressure waveform for 84% of the measurement time. Patients without a finger blood pressure signal significantly more frequently had a history of kidney and vascular disease, were more often treated with inotropic agents, had lower hemoglobin levels, and had higher arterial lactate levels. CONCLUSIONS Finger blood pressure signals were obtained in nearly all ICU patients. Significant differences in baseline characteristics between patients with and without finger blood pressure signals were found, but they were not clinically relevant. The characteristics studied could therefore not be used to identify patients unsuitable for finger blood pressure monitoring.
Collapse
Affiliation(s)
- Jaap Schuurmans
- Department of Intensive Care, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | | | - Lotte Elisabeth Terwindt
- Department of Anesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, the Netherlands
| | - Jimmy Schenk
- Department of Anesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, the Netherlands; Department of Epidemiology and Data Science, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Denise Petra Veelo
- Department of Anesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, the Netherlands.
| | - Alexander Petrus Johannes Vlaar
- Department of Intensive Care, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands; Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Björn Jacob Petrus van der Ster
- Department of Anesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, AZ 1105, the Netherlands
| |
Collapse
|
23
|
Ceric A, May TL, Lybeck A, Cronberg T, Seder DB, Riker RR, Hassager C, Kjaergaard J, Haxhija Z, Friberg H, Dankiewicz J, Nielsen N. Cardiac Arrest Treatment Center Differences in Sedation and Analgesia Dosing During Targeted Temperature Management. Neurocrit Care 2023; 38:16-25. [PMID: 35896768 PMCID: PMC9935704 DOI: 10.1007/s12028-022-01564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sedation and analgesia are recommended during targeted temperature management (TTM) after cardiac arrest, but there are few data to provide guidance on dosing to bedside clinicians. We evaluated differences in patient-level sedation and analgesia dosing in an international multicenter TTM trial to better characterize current practice and clinically important outcomes. METHODS A total 950 patients in the international TTM trial were randomly assigned to a TTM of 33 °C or 36 °C after resuscitation from cardiac arrest in 36 intensive care units. We recorded cumulative doses of sedative and analgesic drugs at 12, 24, and 48 h and normalized to midazolam and fentanyl equivalents. We compared number of medications used, dosing, and titration among centers by using multivariable models, including common severity of illness factors. We also compared dosing with time to awakening, incidence of clinical seizures, and survival. RESULTS A total of 614 patients at 18 centers were analyzed. Propofol (70%) and fentanyl (51%) were most frequently used. The average dosages of midazolam and fentanyl equivalents were 0.13 (0.07, 0.22) mg/kg/h and 1.16 (0.49, 1.81) µg/kg/h, respectively. There were significant differences in number of medications (p < 0.001), average dosages (p < 0.001), and titration at all time points between centers (p < 0.001), and the outcomes of patients in these centers were associated with all parameters described in the multivariate analysis, except for a difference in the titration of sedatives between 12 and 24 h (p = 0.40). There were associations between higher dosing at 48 h (p = 0.003, odds ratio [OR] 1.75) and increased titration of analgesics between 24 and 48 h (p = 0.005, OR 4.89) with awakening after 5 days, increased titration of sedatives between 24 and 48 h with awakening after 5 days (p < 0.001, OR > 100), and increased titration of sedatives between 24 and 48 h with a higher incidence of clinical seizures in the multivariate analysis (p = 0.04, OR 240). There were also significant associations between decreased titration of analgesics and survival at 6 months in the multivariate analysis (p = 0.048). CONCLUSIONS There is significant variation in choice of drug, dosing, and titration when providing sedation and analgesics between centers. Sedation and analgesia dosing and titration were associated with delayed awakening, incidence of clinical seizures, and survival, but the causal relation of these findings cannot be proven.
Collapse
Affiliation(s)
- Ameldina Ceric
- Division of Anesthesia and Intensive Care, Department of Clinical Sciences Lund, Helsingborg Hospital, Lund University, Svartbrödragränden 3, 251 87, Helsingborg, Sweden.
| | - Teresa L May
- Department of Critical Care, Maine Medical Center, Portland, ME, USA
| | - Anna Lybeck
- Division of Anesthesia and Intensive Care, Department of Clinical Sciences Lund, Skane University Hospital, Lund University, Lund, Sweden
| | - Tobias Cronberg
- Division of Neurology, Department of Clinical Sciences, Skane University Hospital, Lund University, Lund, Sweden
| | - David B Seder
- Department of Critical Care, Maine Medical Center, Portland, ME, USA
| | - Richard R Riker
- Department of Critical Care, Maine Medical Center, Portland, ME, USA
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Zana Haxhija
- Division of Anesthesia and Intensive Care, Department of Clinical Sciences Lund, Helsingborg Hospital, Lund University, Svartbrödragränden 3, 251 87, Helsingborg, Sweden
| | - Hans Friberg
- Division of Anesthesia and Intensive Care, Department of Clinical Sciences Lund, Skane University Hospital, Lund University, Malmö, Sweden
| | - Josef Dankiewicz
- Division of Cardiology, Department of Clinical Sciences Lund, Skane University Hospital, Lund University, Lund, Sweden
| | - Niklas Nielsen
- Division of Anesthesia and Intensive Care, Department of Clinical Sciences Lund, Helsingborg Hospital, Lund University, Svartbrödragränden 3, 251 87, Helsingborg, Sweden
| |
Collapse
|
24
|
McGuigan PJ, Giallongo E, Blackwood B, Doidge J, Harrison DA, Nichol AD, Rowan KM, Shankar-Hari M, Skrifvars MB, Thomas K, McAuley DF. The effect of blood pressure on mortality following out-of-hospital cardiac arrest: a retrospective cohort study of the United Kingdom Intensive Care National Audit and Research Centre database. Crit Care 2023; 27:4. [PMID: 36604745 PMCID: PMC9817239 DOI: 10.1186/s13054-022-04289-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hypotension following out-of-hospital cardiac arrest (OHCA) may cause secondary brain injury and increase mortality rates. Current guidelines recommend avoiding hypotension. However, the optimal blood pressure following OHCA is unknown. We hypothesised that exposure to hypotension and hypertension in the first 24 h in ICU would be associated with mortality following OHCA. METHODS We conducted a retrospective analysis of OHCA patients included in the Intensive Care National Audit and Research Centre Case Mix Programme from 1 January 2010 to 31 December 2019. Restricted cubic splines were created following adjustment for important prognostic variables. We report the adjusted odds ratio for associations between lowest and highest mean arterial pressure (MAP) and systolic blood pressure (SBP) in the first 24 h of ICU care and hospital mortality. RESULTS A total of 32,349 patients were included in the analysis. Hospital mortality was 56.2%. The median lowest and highest MAP and SBP were similar in survivors and non-survivors. Both hypotension and hypertension were associated with increased mortality. Patients who had a lowest recorded MAP in the range 60-63 mmHg had the lowest associated mortality. Patients who had a highest recorded MAP in the range 95-104 mmHg had the lowest associated mortality. The association between SBP and mortality followed a similar pattern to MAP. CONCLUSIONS We found an association between hypotension and hypertension in the first 24 h in ICU and mortality following OHCA. The inability to distinguish between the median blood pressure of survivors and non-survivors indicates the need for research into individualised blood pressure targets for survivors following OHCA.
Collapse
Affiliation(s)
- Peter J McGuigan
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK.
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK.
| | - Elisa Giallongo
- Intensive Care National Audit and Research Centre, Napier House, 24 High Holborn, London, UK
| | - Bronagh Blackwood
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - James Doidge
- Intensive Care National Audit and Research Centre, Napier House, 24 High Holborn, London, UK
| | - David A Harrison
- Intensive Care National Audit and Research Centre, Napier House, 24 High Holborn, London, UK
| | - Alistair D Nichol
- University College Dublin Clinical Research Centre, St Vincent's University Hospital, Dublin, Ireland
- The Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- The Alfred Hospital, Melbourne, Australia
| | - Kathryn M Rowan
- Intensive Care National Audit and Research Centre, Napier House, 24 High Holborn, London, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
| | - Karen Thomas
- Intensive Care National Audit and Research Centre, Napier House, 24 High Holborn, London, UK
| | - Danny F McAuley
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
25
|
Brennan KA, Bhutiani M, Kingeter MA, McEvoy MD. Updates in the Management of Perioperative Vasoplegic Syndrome. Adv Anesth 2022; 40:71-92. [PMID: 36333053 DOI: 10.1016/j.aan.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vasoplegic syndrome occurs relatively frequently in cardiac surgery, liver transplant, major noncardiac surgery, in post-return of spontaneous circulation situations, and in pateints with sepsis. It is paramount for the anesthesiologist to understand both the pathophysiology of vasoplegia and the different treatment strategies available for rescuing a patient from life-threatening hypotension.
Collapse
Affiliation(s)
- Kaitlyn A Brennan
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 21st Avenue South, MAB 422, Nashville, TN 37212, USA
| | - Monica Bhutiani
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 21st Avenue South, VUH 4107, Nashville, TN 37212, USA
| | - Meredith A Kingeter
- Anesthesia Residency, Vanderbilt University Medical Center, 1215 21st Avenue South, Suite 5160 MCE NT, Nashville, TN 37212, USA
| | - Matthew D McEvoy
- VUMC Enhanced Recovery Programs, Department of Anesthesiology, Vanderbilt University Medical Center, 1301 Medical Center Drive, TVC 4648, Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Elmer J, Guyette FX. Early Oxygen Supplementation After Resuscitation From Cardiac Arrest. JAMA 2022; 328:1811-1813. [PMID: 36286079 DOI: 10.1001/jama.2022.18620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jonathan Elmer
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Francis X Guyette
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
van Diepen S, Tavazzi G, Morrow DA. Blood pressure and oxygenation targets after out-of-hospital cardiac arrest-trial (BOX). EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2022; 11:714-715. [PMID: 36106622 PMCID: PMC9522253 DOI: 10.1093/ehjacc/zuac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Sean van Diepen
- Department of Critical Care Medicine and Division of Cardiology, Department of Medicine, University of Alberta , Edmonton, Alberta , Canada
| | - Guido Tavazzi
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia , Pavia , Italy
- Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation , Pavia , Italy
| | - David A Morrow
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
28
|
Chi CY, Tsai MS, Kuo LK, Hsu HH, Huang WC, Lai CH, Chang HCH, Tsai CL, Huang CH. Post-resuscitation diastolic blood pressure is a prognostic factor for outcomes of cardiac arrest patients: a multicenter retrospective registry-based analysis. J Intensive Care 2022; 10:39. [PMID: 35933429 PMCID: PMC9356498 DOI: 10.1186/s40560-022-00631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background Post-resuscitation hemodynamic level is associated with outcomes. This study was conducted to investigate if post-resuscitation diastolic blood pressure (DBP) is a favorable prognostic factor. Methods Using TaIwan Network of Targeted Temperature ManagEment for CARDiac Arrest (TIMECARD) registry, we recruited adult patients who received targeted temperature management in nine medical centers between January 2014 and September 2019. After excluding patients with extracorporeal circulation support, 448 patients were analyzed. The first measured, single-point blood pressure after resuscitation was used for analysis. Study endpoints were survival to discharge and discharge with favorable neurologic outcomes (CPC 1–2). Multivariate analysis, area under the receiver operating characteristic curve (AUC), and generalized additive model (GAM) were used for analysis. Results Among the 448 patients, 182 (40.7%) patients survived, and 89 (19.9%) patients had CPC 1–2. In the multivariate analysis, DBP > 70 mmHg was an independent factor for survival (adjusted odds ratio [aOR] 2.16, 95% confidence interval [CI, 1.41–3.31]) and > 80 mmHg was an independent factor for CPC 1–2 (aOR 2.04, 95% CI [1.14–3.66]). GAM confirmed that DBP > 80 mmHg was associated with a higher likelihood of CPC 1–2. In the exploratory analysis, patients with DBP > 80 mmHg had a significantly higher prevalence of cardiogenic cardiac arrest (p = 0.015) and initial shockable rhythm (p = 0.045). Conclusion We found that DBP after resuscitation can predict outcomes, as a higher DBP level correlated with cardiogenic cardiac arrest.
Collapse
Affiliation(s)
- Chien-Yu Chi
- Department of Emergency Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan.,Graduate Institute of Clinical Medicine, Medical College, National Taiwan University, Taipei, Taiwan
| | - Min-Shan Tsai
- Department of Emergency Medicine, National Taiwan University Hospital, #7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Li-Kuo Kuo
- Department of Critical Care Medicine, MacKay Memorial Hospital, Taipei branch, Taiwan
| | - Hsin-Hui Hsu
- Department of Critical Care Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Hung Lai
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Herman Chih-Heng Chang
- Department of Emergency and Critical Care Medicine, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Chu-Lin Tsai
- Department of Emergency Medicine, National Taiwan University Hospital, #7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chien-Hua Huang
- Department of Emergency Medicine, National Taiwan University Hospital, #7, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
29
|
Mentzelopoulos SD, Pappa E, Malachias S, Vrettou CS, Giannopoulos A, Karlis G, Adamos G, Pantazopoulos I, Megalou A, Louvaris Z, Karavana V, Aggelopoulos E, Agaliotis G, Papadaki M, Baladima A, Lasithiotaki I, Lagiou F, Temperikidis P, Louka A, Asimakos A, Kougias M, Makris D, Zakynthinos E, Xintara M, Papadonta ME, Koutsothymiou A, Zakynthinos SG, Ischaki E. Physiologic effects of stress dose corticosteroids in in-hospital cardiac arrest (CORTICA): A randomized clinical trial. Resusc Plus 2022; 10:100252. [PMID: 35652112 PMCID: PMC9149191 DOI: 10.1016/j.resplu.2022.100252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/15/2023] Open
Abstract
Aim Postresuscitation hemodynamics are associated with hospital mortality/functional outcome. We sought to determine whether low-dose steroids started during and continued after cardiopulmonary resuscitation (CPR) affect postresuscitation hemodynamics and other physiological variables in vasopressor-requiring, in-hospital cardiac arrest. Methods We conducted a two-center, randomized, double-blind trial of patients with adrenaline (epinephrine)-requiring cardiac arrest. Patients were randomized to receive either methylprednisolone 40 mg (steroids group) or normal saline-placebo (control group) during the first CPR cycle post-enrollment. Postresuscitation shock was treated with hydrocortisone 240 mg daily for 7 days maximum and gradual taper (steroids group), or saline-placebo (control group). Primary outcomes were arterial pressure and central-venous oxygen saturation (ScvO2) within 72 hours post-ROSC. Results Eighty nine of 98 controls and 80 of 86 steroids group patients with ROSC were treated as randomized. Primary outcome data were collected from 100 patients with ROSC (control, n = 54; steroids, n = 46). In intention-to-treat mixed-model analyses, there was no significant effect of group on arterial pressure, marginal mean (95% confidence interval) for mean arterial pressure, steroids vs. control: 74 (68–80) vs. 72 (66–79) mmHg] and ScvO2 [71 (68–75)% vs. 69 (65–73)%], cardiac index [2.8 (2.5–3.1) vs. 2.9 (2.5–3.2) L/min/m2], and serum cytokine concentrations [e.g. interleukin-6, 89.1 (42.8–133.9) vs. 75.7 (52.1–152.3) pg/mL] determined within 72 hours post-ROSC (P = 0.12–0.86). There was no between-group difference in body temperature, echocardiographic variables, prefrontal blood flow index/cerebral autoregulation, organ failure-free days, and hazard for poor in-hospital/functional outcome, and adverse events (P = 0.08–>0.99). Conclusions Our results do not support the use of low-dose corticosteroids in in-hospital cardiac arrest. Trial Registration:ClinicalTrials.gov number: NCT02790788 (https://www.clinicaltrials.gov).
Collapse
Affiliation(s)
- Spyros D. Mentzelopoulos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
- Corresponding author at: Department of Intensive Care Medicine, Evaggelismos General Hospital, 45-47 Ipsilandou Street, GR-10675 Athens, Greece.
| | - Evanthia Pappa
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Sotirios Malachias
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Charikleia S. Vrettou
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Achilleas Giannopoulos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - George Karlis
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - George Adamos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Ioannis Pantazopoulos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Aikaterini Megalou
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Zafeiris Louvaris
- Faculty of Movement and Rehabilitation Sciences, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Belgium
- University Hospitals Leuven, Department of Intensive Care Medicine, Leuven, Belgium
| | - Vassiliki Karavana
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Epameinondas Aggelopoulos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Gerasimos Agaliotis
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Marielen Papadaki
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Aggeliki Baladima
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | | | - Fotini Lagiou
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Prodromos Temperikidis
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Aggeliki Louka
- Department of Anesthesiology, Evaggelismos General Hospital, Athens, Greece
| | - Andreas Asimakos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Marios Kougias
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Demosthenes Makris
- Department of Intensive Care Medicine, University of Thessaly Medical School, Larissa, Greece
| | | | - Maria Xintara
- Department of Intensive Care Medicine, University of Thessaly Medical School, Larissa, Greece
| | | | | | - Spyros G. Zakynthinos
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Eleni Ischaki
- First Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| |
Collapse
|
30
|
Nowadly CD, Johnson MA, Youngquist ST, Williams TK, Neff LP, Hoareau GL. Automated aortic endovascular balloon volume titration prevents re-arrest immediately after return of spontaneous circulation in a swine model of nontraumatic cardiac arrest. Resusc Plus 2022; 10:100239. [PMID: 35542691 PMCID: PMC9079240 DOI: 10.1016/j.resplu.2022.100239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Endovascular aortic occlusion as an adjunct to cardiopulmonary resuscitation (CPR) for non-traumatic cardiac arrest is gaining interest. In a recent clinical trial, return of spontaneous circulation (ROSC) was achieved despite prolonged no-flow times. However, 66% of patients re-arrested upon balloon deflation. We aimed to determine if automated titration of endovascular balloon volume following ROSC can augment diastolic blood pressure (DBP) to prevent re-arrest. Methods Twenty swine were anesthetized and placed into ventricular fibrillation (VF). Following 7 minutes of no-flow VF and 5 minutes of mechanical CPR, animals were subjected to complete aortic occlusion to adjunct CPR. Upon ROSC, the balloon was either deflated steadily over 5 minutes (control) or underwent automated, dynamic adjustments to maintain a DBP of 60 mmHg (Endovascular Variable Aortic Control, EVAC). Results ROSC was obtained in ten animals (5 EVAC, 5 REBOA). Sixty percent (3/5) of control animals rearrested while none of the EVAC animals rearrested (p = 0.038). Animals in the EVAC group spent a significantly higher proportion of the post-ROSC period with a DBP > 60 mmHg [median (IQR)] [control 79.7 (72.5–86.0)%; EVAC 97.7 (90.8–99.7)%, p = 0.047]. The EVAC group had a statistically significant reduction in arterial lactate concentration [7.98 (7.4–8.16) mmol/L] compared to control [9.93 (8.86–10.45) mmol/L, p = 0.047]. There were no statistical differences between the two groups in the amount of adrenaline (epinephrine) required. Conclusion In our swine model of cardiac arrest, automated aortic endovascular balloon titration improved DBP and prevented re-arrest in the first 20 minutes after ROSC.
Collapse
Affiliation(s)
- Craig D. Nowadly
- Department of Emergency Medicine, Brooke Army Medical Center, San Antonio, TX, United States
| | - M. Austin Johnson
- Department of Emergency Medicine, University of Utah, School of Medicine, Salt Lake City, UT, United States
| | - Scott T. Youngquist
- Department of Emergency Medicine, University of Utah, School of Medicine, Salt Lake City, UT, United States
- The Salt Lake City Fire Department, Salt Lake City, UT, United States
| | - Timothy K. Williams
- Department of Vascular and Endovascular Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Lucas P. Neff
- Department of General Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Guillaume L. Hoareau
- Department of Emergency Medicine, University of Utah, School of Medicine, Salt Lake City, UT, United States
- The Nora Eccles-Harrison Cardiovascular and Research Training Institute, University of Utah, School of Medicine, Salt Lake City, Utah, United States
- Corresponding author at: University of Utah Health, Department of Emergency Medicine, 30 N. 1900 E. Room 1C26, Salt Lake City, UT 84132, United States.
| |
Collapse
|
31
|
Düring J, Annborn M, Dankiewicz J, Dupont A, Forsberg S, Friberg H, Kern KB, May TL, McPherson J, Patel N, Seder DB, Stammet P, Sunde K, Søreide E, Ullén S, Nielsen N. Influence of circulatory shock at hospital admission on outcome after out-of-hospital cardiac arrest. Sci Rep 2022; 12:8293. [PMID: 35585159 PMCID: PMC9117194 DOI: 10.1038/s41598-022-12310-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Hypotension after cardiac arrest could aggravate prolonged hypoxic ischemic encephalopathy. The association of circulatory shock at hospital admission with outcome after cardiac arrest has not been well studied. The objective of this study was to investigate the independent association of circulatory shock at hospital admission with neurologic outcome, and to evaluate whether cardiovascular comorbidities interact with circulatory shock. 4004 adult patients with out-of-hospital cardiac arrest enrolled in the International Cardiac Arrest Registry 2006-2017 were included in analysis. Circulatory shock was defined as a systolic blood pressure below 90 mmHg and/or medical or mechanical supportive measures to maintain adequate perfusion during hospital admission. Primary outcome was cerebral performance category (CPC) dichotomized as good, (CPC 1-2) versus poor (CPC 3-5) outcome at hospital discharge. 38% of included patients were in circulatory shock at hospital admission, 32% had good neurologic outcome at hospital discharge. The adjusted odds ratio for good neurologic outcome in patients without preexisting cardiovascular disease with circulatory shock at hospital admission was 0.60 [0.46-0.79]. No significant interaction was detected with preexisting comorbidities in the main analysis. We conclude that circulatory shock at hospital admission after out-of-hospital cardiac arrest is independently associated with poor neurologic outcome.
Collapse
Affiliation(s)
- Joachim Düring
- Department of Clinical Sciences, Anesthesia & Intensive Care, Lund University, Skåne University Hospital, Malmö, Sweden.
| | - Martin Annborn
- Department of Clinical Sciences Lund, Anesthesia & Intensive Care, Lund University, Helsingborg Hospital, Helsingborg, Sweden
| | - Josef Dankiewicz
- Department of Clinical Sciences, Cardiology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Allison Dupont
- Department of Cardiology, Northside Cardiovascular Institute, Atlanta, GA, USA
| | - Sune Forsberg
- Department of Intensive Care, Norrtälje Hospital, Karolinska Institute, Norrtälje, Sweden
- Center for Resuscitation Science, Karolinska Institute, Stockholm, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anesthesia & Intensive Care, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Karl B Kern
- Division of Cardiology Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Teresa L May
- Department of Critical Care Services, Maine Medical Center, Portland, ME, USA
| | | | - Nainesh Patel
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA, USA
| | - David B Seder
- Division of Cardiology Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Pascal Stammet
- Department of Intensive Care Medicine, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kjetil Sunde
- Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eldar Søreide
- Critical Care and Anesthesiology Research Group, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Susann Ullén
- Clinical Studies Sweden- Forum South, Skåne University Hospital, Lund, Sweden
| | - Niklas Nielsen
- Department of Clinical Sciences Lund, Anesthesia & Intensive Care, Lund University, Helsingborg Hospital, Helsingborg, Sweden
| |
Collapse
|
32
|
Monitoring, management, and outcome of hypotension in Intensive Care Unit patients, an international survey of the European Society of Intensive Care Medicine. J Crit Care 2021; 67:118-125. [PMID: 34749051 DOI: 10.1016/j.jcrc.2021.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Hypotension in the ICU is common, yet management is challenging and variable. Insight in management by ICU physicians and nurses may improve patient care and guide future hypotension treatment trials and guidelines. METHODS We conducted an international survey among ICU personnel to provide insight in monitoring, management, and perceived consequences of hypotension. RESULTS Out of 1464 respondents, 1197 (81.7%) were included (928 physicians (77.5%) and 269 nurses (22.5%)). The majority indicated that hypotension is underdiagnosed (55.4%) and largely preventable (58.8%). Nurses are primarily in charge of monitoring changes in blood pressure, physicians are in charge of hypotension treatment. Balanced crystalloids, dobutamine, norepinephrine, and Trendelenburg position were the most frequently reported fluid, inotrope, vasopressor, and positional maneuver used to treat hypotension. Reported complications believed to be related to hypotension were AKI and myocardial injury. Most ICUs do not have a specific hypotension treatment guideline or protocol (70.6%), but the majority would like to have one in the future (58.1%). CONCLUSIONS Both physicians and nurses report that hypotension in ICU patients is underdiagnosed, preventable, and believe that hypotension influences morbidity. Hypotension management is generally not protocolized, but the majority of respondents would like to have a specific hypotension management protocol.
Collapse
|
33
|
Jouffroy R, Vivien B. Time to Return of Spontaneous Circulation (ROSC) and Survival: Tissue and Brain Perfusion Is Probably More Important than ROSC. PREHOSP EMERG CARE 2021; 26:314-315. [PMID: 34505822 DOI: 10.1080/10903127.2021.1979144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Sekhon MS, Hoiland RL, Griesdale DE. The importance of the oxygen cascade after cardiac arrest. Resuscitation 2021; 168:231-233. [PMID: 34592401 DOI: 10.1016/j.resuscitation.2021.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada; Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, BC, Canada
| | - Donald E Griesdale
- Centre for Heart, Lung, & Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, BC, Canada
| |
Collapse
|
35
|
King C, Lewinsohn A, Keeliher C, McLachlan S, Sherrin J, Khan-Cheema H, Sherren P. Cardiovascular complications of prehospital emergency anaesthesia in patients with return of spontaneous circulation following medical cardiac arrest: a retrospective comparison of ketamine-based and midazolam-based induction protocols. Emerg Med J 2021; 39:672-678. [PMID: 34588175 DOI: 10.1136/emermed-2020-210531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/19/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Hypotension following intubation and return of spontaneous circulation (ROSC) after cardiac arrest is associated with poorer patient outcomes. In patients with a sustained ROSC requiring emergency anaesthesia, there is limited evidence to guide anaesthetic practice. At the Essex & Herts Air Ambulance Trust, a UK-based helicopter emergency medical service, we assessed the relative haemodynamic stability of two different induction agents for post-cardiac arrest medical patients requiring prehospital emergency anaesthesia (PHEA). METHODS We performed a retrospective database review over a 5-year period between December 2014 and December 2019 comparing ketamine-based and midazolam-based anaesthesia in this patient cohort. Our primary outcome was clinically significant hypotension within 30 min of PHEA, defined as a new systolic BP less than 90 mm Hg, or a 10% drop if less than 90 mm Hg before induction. RESULTS One hundred ninety-eight patients met inclusion criteria. Forty-eight patients received a ketamine-based induction, median dose (IQR) 1.00 (1.00-1.55) mg/kg, and a 150 midazolam-based regime, median dose 0.03 (0.02-0.04) mg/kg. Hypotension occurred in 54.2% of the ketamine group and 50.7% of the midazolam group (p=0.673). Mean maximal HRs within 30 min of PHEA were 119 beats/min and 122 beats/min, respectively (p=0.523). A shock index greater than 1.0 beats/min/mm Hg and age greater than 70 years were both associated with post-PHEA hypotension with ORs 1.96 (CI 1.02 to 3.71) and 1.99 (CI 1.01 to 3.90), respectively. Adverse event rates did not significantly differ between groups. CONCLUSION PHEA following a medical cardiac arrest is associated with potentially significant cardiovascular derangements when measured up to 30 min after induction of anaesthesia. There was no demonstrable difference in post-induction hypotension between ketamine-based and midazolam-based PHEA. Choice of induction agent alone is insufficient to mitigate haemodynamic disturbance, and alternative strategies should be used to address this.
Collapse
Affiliation(s)
| | | | | | - Sarah McLachlan
- Research Department, Essex & Herts Air Ambulance, Essex, UK.,Department of Allied Health and Medicine, Anglia Ruskin University, Chelmsford, UK
| | - James Sherrin
- University College London Medical School, London, UK
| | | | | |
Collapse
|
36
|
Jouffroy R, Vivien B. Prehospital, post-ROSC blood pressure and associated neurologic outcome: Do not dismiss other outcome cofounders. Am J Emerg Med 2021; 56:280-281. [PMID: 34332814 DOI: 10.1016/j.ajem.2021.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022] Open
Affiliation(s)
- Romain Jouffroy
- Service de médecine intensive réanimation, Hôpital Universitaire Ambroise Paré, Assistance Publique - Hôpitaux de Paris, Paris Saclay University, France; Intensive Care Unit, Ambroise Paré Hospital, Assistance Publique Hôpitaux Paris and Parsi Saclay University, Boulogne Billancourt, France; Centre de recherche en Epidémiologie et Santé des Populations - U1018 INSERM - Paris Saclay University - France; Institut de Recherche bioMédicale et d'Epidémiologie du Sport - EA7329, INSEP - Paris University - France.
| | - Benoît Vivien
- SAMU de Paris, Service d'Anesthésie Réanimation, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Université Paris Descartes - Paris 5, Paris, France
| |
Collapse
|
37
|
Lacocque J, Siegel L, Sporer KA. Prehospital, post-ROSC blood pressure and associated neurologic outcome. Am J Emerg Med 2021; 49:195-199. [PMID: 34144261 DOI: 10.1016/j.ajem.2021.05.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To investigate the relationship between hypotension and neurologic outcome in adults with return of spontaneous circulation after out-of-hospital cardiac arrest. METHODS Blood pressure and medication data were extracted from adult patients who had ROSC after OHCA in Alameda County and matched with neurologic outcome using the CARES database from January 1, 2018 through July 1, 2019. We used univariate logistic regression with p ≤ 0.2 followed by multivariate logistic regression and reported an odds ratio with 95% confidence intervals. RESULTS Among the 781 adult patients who had ROSC after OHCA, 107 (13.7%) were noted to be hypotensive and 61 (57% of the hypotensive group) received vasopressors. Patients with a final prehospital blood pressure recording of <90 mmHg were more likely to have a poor neurologic outcome (adjusted odds ratio 2.13, adj p = 0.048). About twice as many patients who were not hypotensive had a good neurologic outcome compared to hypotensive patients who had a good neurologic outcome (23% to 10.3%). Additionally, patients who were hypotensive and did not receive vasopressors had a similar neurologic outcome compared to patients who did receive vasopressors. CONCLUSION Prehospital post-ROSC hypotension was associated with worse neurologic outcome and giving hypotensive patients vasopressors may not improve neurologic outcome in the prehospital setting.
Collapse
Affiliation(s)
- Jeremy Lacocque
- UCSF, Department of Emergency Medicine, United States of America.
| | - Lee Siegel
- Alameda County EMS Agency, United States of America
| | - Karl A Sporer
- UCSF, Department of Emergency Medicine, United States of America; Alameda County EMS Agency, United States of America
| |
Collapse
|
38
|
Schenk J, van der Ven WH, Schuurmans J, Roerhorst S, Cherpanath TGV, Lagrand WK, Thoral P, Elbers PWG, Tuinman PR, Scheeren TWL, Bakker J, Geerts BF, Veelo DP, Paulus F, Vlaar APJ. Definition and incidence of hypotension in intensive care unit patients, an international survey of the European Society of Intensive Care Medicine. J Crit Care 2021; 65:142-148. [PMID: 34148010 DOI: 10.1016/j.jcrc.2021.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Although hypotension in ICU patients is associated with adverse outcome, currently used definitions are unknown and no universally accepted definition exists. METHODS We conducted an international, peer-reviewed survey among ICU physicians and nurses to provide insight in currently used definitions, estimations of incidence, and duration of hypotension. RESULTS Out of 1394 respondents (1055 physicians (76%) and 339 nurses (24%)), 1207 (82%) completed the questionnaire. In all patient categories, hypotension definitions were predominantly based on an absolute MAP of 65 mmHg, except for the neuro(trauma) category (75 mmHg, p < 0.001), without differences between answers from physicians and nurses. Hypotension incidence was estimated at 55%, and time per day spent in hypotension at 15%, both with nurses reporting higher percentages than physicians (estimated mean difference 5%, p = 0.01; and 4%, p < 0.001). CONCLUSIONS An absolute MAP threshold of 65 mmHg is most frequently used to define hypotension in ICU patients. In neuro(trauma) patients a higher threshold was reported. The majority of ICU patients are estimated to endure hypotension during their ICU admission for a considerable amount of time, with nurses reporting a higher estimated incidence and time spent in hypotension than physicians.
Collapse
Affiliation(s)
- J Schenk
- Amsterdam UMC, University of Amsterdam, Department of Anesthesiology, Meibergdreef 9, Amsterdam, Netherlands
| | - W H van der Ven
- Amsterdam UMC, University of Amsterdam, Department of Anesthesiology, Meibergdreef 9, Amsterdam, Netherlands
| | - J Schuurmans
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, Meibergdreef 9, Amsterdam, Netherlands
| | - S Roerhorst
- Amsterdam UMC, University of Amsterdam, Department of Anesthesiology, Meibergdreef 9, Amsterdam, Netherlands
| | - T G V Cherpanath
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, Meibergdreef 9, Amsterdam, Netherlands
| | - W K Lagrand
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, Meibergdreef 9, Amsterdam, Netherlands
| | - P Thoral
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Intensive Care, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity, de Boelelaan 1117, Amsterdam, Netherlands
| | - P W G Elbers
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Intensive Care, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity, de Boelelaan 1117, Amsterdam, Netherlands
| | - P R Tuinman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Intensive Care, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity, de Boelelaan 1117, Amsterdam, Netherlands
| | - T W L Scheeren
- University Medical Center Groningen, University of Groningen, Department of Anesthesiology, Groningen, Netherlands
| | - J Bakker
- New York University Langone Medical Center, New York University Langone Health, Department of Pulmonary and Critical Care, New York, USA; Columbia University Medical Center, Columbia University, Department of Pulmonology and Critical Care, New York, USA; Erasmus MC University Medical Center, Erasmus University, Department of Intensive Care, Rotterdam, Netherlands; Hospital Clínico Pontificia Universidad Católica de Chile, Pontificia Universidad Católica de Chile, Departamento de Medicina Intensiva, Santiago, Chile
| | - B F Geerts
- Amsterdam UMC, University of Amsterdam, Department of Anesthesiology, Meibergdreef 9, Amsterdam, Netherlands
| | - D P Veelo
- Amsterdam UMC, University of Amsterdam, Department of Anesthesiology, Meibergdreef 9, Amsterdam, Netherlands
| | - F Paulus
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Meibergdreef 9, Amsterdam, Netherlands
| | - A P J Vlaar
- Amsterdam UMC, University of Amsterdam, Department of Intensive Care, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Meibergdreef 9, Amsterdam, Netherlands.
| | | |
Collapse
|
39
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. Postreanimationsbehandlung. Notf Rett Med 2021. [DOI: 10.1007/s10049-021-00892-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Katz A, Brosnahan SB, Papadopoulos J, Parnia S, Lam JQ. Pharmacologic neuroprotection in ischemic brain injury after cardiac arrest. Ann N Y Acad Sci 2021; 1507:49-59. [PMID: 34060087 DOI: 10.1111/nyas.14613] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022]
Abstract
Cardiac arrest has many implications for morbidity and mortality. Few interventions have been shown to improve return of spontaneous circulation (ROSC) and long-term outcomes after cardiac arrest. Ischemic-reperfusion injury upon achieving ROSC creates an imbalance between oxygen supply and demand. Multiple events occur in the postcardiac arrest period, including excitotoxicity, mitochondrial dysfunction, and oxidative stress and inflammation, all of which contribute to ongoing brain injury and cellular death. Given that complex pathophysiology underlies global brain hypoxic ischemia, neuroprotective strategies targeting multiple stages of the neuropathologic cascade should be considered as a means of mitigating secondary neuronal injury and improving neurologic outcomes and survival in cardiac arrest victims. In this review article, we discuss a number of different pharmacologic agents that may have a potential role in targeting these injurious pathways following cardiac arrest. Pharmacologic therapies most relevant for discussion currently include memantine, perampanel, magnesium, propofol, thiamine, methylene blue, vitamin C, vitamin E, coenzyme Q10 , minocycline, steroids, and aspirin.
Collapse
Affiliation(s)
- Alyson Katz
- Department of Pharmacy, NYU Langone Health, New York, New York
| | - Shari B Brosnahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York
| | | | - Sam Parnia
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, New York
| | - Jason Q Lam
- Division of Pulmonary and Critical Care, Department of Medicine, Kaiser Permanente South Sacramento Medical Center, Sacramento, California
| |
Collapse
|
41
|
Kim YM, Jeung KW, Kim WY, Park YS, Oh JS, You YH, Lee DH, Chae MK, Jeong YJ, Kim MC, Ha EJ, Hwang KJ, Kim WS, Lee JM, Cha KC, Chung SP, Park JD, Kim HS, Lee MJ, Na SH, Kim ARE, Hwang SO, on behalf of the Steering Committee of 2020 Korean Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. 2020 Korean Guidelines for Cardiopulmonary Resuscitation. Part 5. Post-cardiac arrest care. Clin Exp Emerg Med 2021; 8:S41-S64. [PMID: 34034449 PMCID: PMC8171174 DOI: 10.15441/ceem.21.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Young-Min Kim
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Kyung Woon Jeung
- Department of Emergency Medicine, Chonnam National University College of Medicine, Gwangju, Korea
| | - Won Young Kim
- Department of Emergency Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Yoo Seok Park
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Suk Oh
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Yeon Ho You
- Department of Emergency Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Dong Hoon Lee
- Department of Emergency Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Minjung Kathy Chae
- Department of Emergency Medicine, Ajou University College of Medicine, Suwon, Korea
| | - Yoo Jin Jeong
- Department of Emergency Medicine, Chonnam National University College of Medicine, Gwangju, Korea
| | - Min Chul Kim
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Korea
| | - Eun Jin Ha
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Jin Hwang
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jae Myung Lee
- Department of General Surgery, Korea University College of Medicine, Seoul, Korea
| | - Kyoung-Chul Cha
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sung Phil Chung
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - June Dong Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Suk Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Mi Jin Lee
- Department of Emergency Medicine, Kyoungbook University College of Medicine, Daegu, Korea
| | - Sang-Hoon Na
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ai-Rhan Ellen Kim
- Department of Pediatrics, Ulsan University College of Medicine, Seoul, Korea
| | - Sung Oh Hwang
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - on behalf of the Steering Committee of 2020 Korean Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care
- Department of Emergency Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Chonnam National University College of Medicine, Gwangju, Korea
- Department of Emergency Medicine, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Emergency Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Ajou University College of Medicine, Suwon, Korea
- Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of General Surgery, Korea University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Kyoungbook University College of Medicine, Daegu, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Ulsan University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Grand J, Hassager C, Skrifvars MB, Tiainen M, Grejs AM, Jeppesen AN, Duez CHV, Rasmussen BS, Laitio T, Nee J, Taccone F, Søreide E, Kirkegaard H. Haemodynamics and vasopressor support during prolonged targeted temperature management for 48 hours after out-of-hospital cardiac arrest: a post hoc substudy of a randomised clinical trial. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2021; 10:132–141. [PMID: 32551835 DOI: 10.1177/2048872620934305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Comatose patients admitted after out-of-hospital cardiac arrest frequently experience haemodynamic instability and anoxic brain injury. Targeted temperature management is used for neuroprotection; however, targeted temperature management also affects patients' haemodynamic status. This study assessed the haemodynamic status of out-of-hospital cardiac arrest survivors during prolonged (48 hours) targeted temperature management at 33°C. METHODS Analysis of haemodynamic and vasopressor data from 311 patients included in a randomised, clinical trial conducted in 10 European hospitals (the TTH48 trial). Patients were randomly allocated to targeted temperature management at 33°C for 24 (TTM24) or 48 (TTM48) hours. Vasopressor and haemodynamic data were reported hourly for 72 hours after admission. Vasopressor load was calculated as norepinephrine (µg/kg/min) plus dopamine(µg/kg/min/100) plus epinephrine (µg/kg/min). RESULTS After 24 hours, mean arterial pressure (mean±SD) was 74±9 versus 75±9 mmHg (P=0.19), heart rate was 57±16 and 55±14 beats/min (P=0.18), vasopressor load was 0.06 (0.03-0.15) versus 0.08 (0.03-0.15) µg/kg/min (P=0.22) for the TTM24 and TTM48 groups, respectively. From 24 to 48 hours, there was no difference in mean arterial pressure (Pgroup=0.32) or lactate (Pgroup=0.20), while heart rate was significantly lower (average difference 5 (95% confidence interval 2-8) beats/min, Pgroup<0.0001) and vasopressor load was significantly higher in the TTM48 group (Pgroup=0.005). In a univariate Cox regression model, high vasopressor load was associated with mortality in univariate analysis (hazard ratio 1.59 (1.05-2.42) P=0.03), but not in multivariate analysis (hazard ratio 0.77 (0.46-1.29) P=0.33). CONCLUSIONS In this study, prolonged targeted temperature management at 33°C for 48 hours was associated with higher vasopressor requirement but no sign of any detrimental haemodynamic effects.
Collapse
Affiliation(s)
- Johannes Grand
- Department of Cardiology, Rigshospitalet - Copenhagen University Hospital, Denmark
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet - Copenhagen University Hospital, Denmark
| | - Markus B Skrifvars
- Department of Anesthesia and Intensive Care, Helsinki University Hospital and University of Helsinki, Finland
| | - Marjaana Tiainen
- Department of Anesthesia and Intensive Care, Helsinki University Hospital and University of Helsinki, Finland
| | - Anders M Grejs
- Department of Intensive Care Medicine, Aarhus University Hospital, Denmark
| | | | | | - Bodil S Rasmussen
- Anaesthesiology and Intensive Care, Aalborg University Hospital, Denmark
| | - Timo Laitio
- Division of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital, Finland
| | - Jens Nee
- Department of Intensive Care Medicine, Charité - Universitaetsmedizin Berlin, Germany
| | | | - Eldar Søreide
- Critical Care and Anesthesiology Research Group, Stavanger University Hospital, Norway
- Department of Clinical Medicine, University of Bergen, Norway
| | - Hans Kirkegaard
- Research Center for Emergency Medicine, Aarhus University Hospital and Aarhus University, Denmark
| |
Collapse
|
43
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 2021; 47:369-421. [PMID: 33765189 PMCID: PMC7993077 DOI: 10.1007/s00134-021-06368-4] [Citation(s) in RCA: 576] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation and organ donation.
Collapse
Affiliation(s)
- Jerry P. Nolan
- University of Warwick, Warwick Medical School, Coventry, CV4 7AL UK
- Royal United Hospital, Bath, BA1 3NG UK
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W. Böttiger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain, Brussels, Belgium
- Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Division of Health Sciences, Warwick Medical School, University of Warwick, Room A108, Coventry, CV4 7AL UK
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Véronique R. M. Moulaert
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Markus B. Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol, BS10 5NB UK
| |
Collapse
|
44
|
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Mariero Olasveengen T, Skrifvars MB, Taccone F, Soar J. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-resuscitation care. Resuscitation 2021; 161:220-269. [PMID: 33773827 DOI: 10.1016/j.resuscitation.2021.02.012] [Citation(s) in RCA: 448] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation, and organ donation.
Collapse
Affiliation(s)
- Jerry P Nolan
- University of Warwick, Warwick Medical School, Coventry CV4 7AL, UK; Royal United Hospital, Bath, BA1 3NG, UK.
| | - Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy; Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bernd W Böttiger
- University Hospital of Cologne, Kerpener Straße 62, D-50937 Cologne, Germany
| | - Alain Cariou
- Cochin University Hospital (APHP) and University of Paris (Medical School), Paris, France
| | - Tobias Cronberg
- Department of Clinical Sciences, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences, Anaesthesia and Intensive Care Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Cornelia Genbrugge
- Acute Medicine Research Pole, Institute of Experimental and Clinical Research (IREC) Université Catholique de Louvain, Brussels, Belgium; Emergency Department, University Hospitals Saint-Luc, Brussels, Belgium
| | - Kirstie Haywood
- Warwick Research in Nursing, Room A108, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Gisela Lilja
- Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | - Véronique R M Moulaert
- University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands
| | - Nikolaos Nikolaou
- Cardiology Department, Konstantopouleio General Hospital, Athens, Greece
| | - Theresa Mariero Olasveengen
- Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Finland
| | - Fabio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Brussels, Belgium
| | - Jasmeet Soar
- Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK
| |
Collapse
|
45
|
Jung YH, Shamsiev K, Mamadjonov N, Jeung KW, Lee HY, Lee BK, Kang BS, Heo T, Min YI. Relationship of common hemodynamic and respiratory target parameters with brain tissue oxygen tension in the absence of hypoxemia or hypotension after cardiac arrest: A post-hoc analysis of an experimental study using a pig model. PLoS One 2021; 16:e0245931. [PMID: 33539360 PMCID: PMC7861448 DOI: 10.1371/journal.pone.0245931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 11/18/2022] Open
Abstract
Brain tissue oxygen tension (PbtO2)-guided care, a therapeutic strategy to treat or prevent cerebral hypoxia through modifying determinants of cerebral oxygen delivery, including arterial oxygen tension (PaO2), end-tidal carbon dioxide (ETCO2), and mean arterial pressure (MAP), has recently been introduced. Studies have reported that cerebral hypoxia occurs after cardiac arrest in the absence of hypoxemia or hypotension. To obtain preliminary information on the degree to which PbtO2 is responsive to changes in the common target variables for PbtO2-guided care in conditions without hypoxemia or hypotension, we investigated the relationships between the common target variables for PbtO2-guided care and PbtO2 using data from an experimental study in which the animals did not experience hypoxemia or hypotension after resuscitation. We retrospectively analyzed 170 sets of MAP, ETCO2, PaO2, PbtO2, and cerebral microcirculation parameters obtained during the 60-min post-resuscitation period in 10 pigs resuscitated from ventricular fibrillation cardiac arrest. PbtO2 and cerebral microcirculation parameters were measured on parietal cortices exposed through burr holes. Multiple linear mixed effect models were used to test the independent effects of each variable on PbtO2. Despite the absence of arterial hypoxemia or hypotension, seven (70%) animals experienced cerebral hypoxia (defined as PbtO2 <20 mmHg). Linear mixed effect models revealed that neither MAP nor ETCO2 were related to PbtO2. PaO2 had a significant linear relationship with PbtO2 after adjusting for significant covariates (P = 0.030), but it could explain only 17.5% of the total PbtO2 variance (semi-partial R2 = 0.175; 95% confidence interval, 0.086-0.282). In conclusion, MAP and ETCO2 were not significantly related to PbtO2 in animals without hypoxemia or hypotension during the early post-resuscitation period. PaO2 had a significant linear association with PbtO2, but its ability to explain PbtO2 variance was small.
Collapse
Affiliation(s)
- Yong Hun Jung
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kamoljon Shamsiev
- Department of Medical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Najmiddin Mamadjonov
- Department of Medical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Kyung Woon Jeung
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| | - Hyoung Youn Lee
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Byung Kook Lee
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Byung Soo Kang
- Department of Medical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Tag Heo
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yong Il Min
- Department of Emergency Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
46
|
Slessarev M, Mahmoud O, McIntyre CW, Ellis CG. Cerebral Blood Flow Deviations in Critically Ill Patients: Potential Insult Contributing to Ischemic and Hyperemic Injury. Front Med (Lausanne) 2021; 7:615318. [PMID: 33553208 PMCID: PMC7854569 DOI: 10.3389/fmed.2020.615318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/14/2020] [Indexed: 11/27/2022] Open
Abstract
Background: Ischemic and hyperemic injury have emerged as biologic mechanisms that contribute to cognitive impairment in critically ill patients. Spontaneous deviations in cerebral blood flow (CBF) beyond ischemic and hyperemic thresholds may represent an insult that contributes to this brain injury, especially if they accumulate over time and coincide with impaired autoregulation. Methods: We used transcranial Doppler to measure the proportion of time that CBF velocity (CBFv) deviated beyond previously reported ischemic and hyperemic thresholds in a cohort of critically ill patients with respiratory failure and/or shock within 48 h of ICU admission. We also assessed whether these CBFv deviations were more common during periods of impaired dynamic autoregulation, and whether they are explained by concurrent variations in mean arterial pressure (MAP) and end-tidal PCO2 (PetCO2). Results: We enrolled 12 consecutive patients (three females) who were monitored for a mean duration of 462.6 ± 39.8 min. Across patients, CBFv deviated by more than 20–30% from its baseline for 17–24% of the analysis time. These CBFv deviations occurred equally during periods of preserved and impaired autoregulation, while concurrent variations in MAP and PetCO2 explained only 13–21% of these CBFv deviations. Conclusion: CBFv deviations beyond ischemic and hyperemic thresholds are common in critically ill patients with respiratory failure or shock. These deviations occur irrespective of the state of dynamic autoregulation and are not explained by changes in MAP and CO2. Future studies should explore mechanisms responsible for these CBFv deviations and establish whether their cumulative burden predicts poor neurocognitive outcomes.
Collapse
Affiliation(s)
- Marat Slessarev
- Department of Medicine, Western University, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada.,Brain & Mind Institute, Western University, London, ON, Canada
| | - Ossama Mahmoud
- Department of Computer Science, Western University, London, ON, Canada
| | - Christopher W McIntyre
- Department of Medicine, Western University, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Christopher G Ellis
- Department of Medical Biophysics, Western University, London, ON, Canada.,Robarts Research Institute, Western University, London, ON, Canada
| |
Collapse
|
47
|
Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ, Kurz MC, Lavonas EJ, Morley PT, O’Neil BJ, Peberdy MA, Rittenberger JC, Rodriguez AJ, Sawyer KN, Berg KM, Arafeh J, Benoit JL, Chase M, Fernandez A, de Paiva EF, Fischberg BL, Flores GE, Fromm P, Gazmuri R, Gibson BC, Hoadley T, Hsu CH, Issa M, Kessler A, Link MS, Magid DJ, Marrill K, Nicholson T, Ornato JP, Pacheco G, Parr M, Pawar R, Jaxton J, Perman SM, Pribble J, Robinett D, Rolston D, Sasson C, Satyapriya SV, Sharkey T, Soar J, Torman D, Von Schweinitz B, Uzendu A, Zelop CM, Magid DJ. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020; 142:S366-S468. [DOI: 10.1161/cir.0000000000000916] [Citation(s) in RCA: 1025] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Youngquist ST, Tonna JE, Bartos JA, Johnson MA, Hoareau GL, Hutin A, Lamhaut L. Current Work in Extracorporeal Cardiopulmonary Resuscitation. Crit Care Clin 2020; 36:723-735. [DOI: 10.1016/j.ccc.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Lindqwister AL, Lampe JW, Gould JR, Kaufman CL, Moodie KL, Paradis NA. Intravenous calcium as a pressor in a swine model of hypoxic pseudo-pulseless electrical mechanical activity-a preliminary report. Intensive Care Med Exp 2020; 8:50. [PMID: 32886315 PMCID: PMC7472679 DOI: 10.1186/s40635-020-00340-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudo-pulseless electrical activity (pseudo-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Pseudo-PEA may constitute up to 40% of reported cases of cardiac arrest. Resuscitation from pseudo-PEA is often associated with hypotension refractory to catecholamine pressors. We hypothesized that this post-resuscitation state may be associated with hypocalcemic hypotension responsive to intravenous calcium. METHODS Using pre-existing data from our hypoxic swine pseudo-PEA model, we measured blood pressure, hemodynamics, and electrolytes. Physiological data were analyzed on a heartbeat by heartbeat basis. The midpoint of the calcium response was defined using change of curvature feature detection. Hemodynamic parameters were shifted such that the value at the midpoint was equal to zero. RESULTS In 9 animals with refractory hypotension, we administered 37 boluses of intravenous calcium in the dosage range of 5-20 mg. Comparisons were made between the average values in the time period 40-37 s before the midpoint and 35-40 s after the midpoint. Of the 37 administered boluses, 34 manifested a change in the blood pressure, with mean aortic pressure, systolic and diastolic pressures all increasing post bolus administration. CONCLUSIONS Administration of intravenous calcium may be associated with a pressor-like response in refractory hypotension after resuscitation from pseudo-PEA. Relative ionized hypocalcemia may cause hypotension after resuscitation from pseudo-PEA. Therapy with intravenous calcium should be further investigated in this setting.
Collapse
Affiliation(s)
| | | | | | | | - Karen L Moodie
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03775, USA
| | - Norman A Paradis
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03775, USA. .,Geisel School of Medicine, Dartmouth Hitchcock Medical Center, 1 Medical Center Dr #4B, Lebanon, NH, 03756, USA.
| |
Collapse
|
50
|
Kim YH, Lee JH, Seo JI, Lee DH, Kim WY, Lee BK. Risks According to the Timing and Frequency of Hypotension Episodes in Postanoxic Comatose Patients. J Clin Med 2020; 9:jcm9092750. [PMID: 32854395 PMCID: PMC7563401 DOI: 10.3390/jcm9092750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to assess the risk of unfavorable outcomes according to the timing of hypotension episodes in cardiac arrest patients. This prospectively conducted multicenter observational study included 1373 out-of-hospital cardiac arrest patients treated with 33 °C targeted temperature management (TTM). Unfavorable neurological outcome and the incidence of complications were analyzed according to the timing of hypotension. Compared with hypotension before TTM initiation (adjusted hazard ratio (aHR) 1.51), hypotension within 6 h after TTM initiation was associated with an increased risk of unfavorable neurologic outcome (aHR 1.693), and after 24 h of TTM, was connected with decreased risk (aHR 1.277). The risk of unfavorable neurological outcome was gradually reduced over time after TTM initiation. Hypotension, persisting both before and during TTM, demonstrated a greater risk (aHR 2) than transient hypotension (aHR 1.265). Hypotension was correlated with various complications. Differences in lactate levels were persistent, regardless of the initial fluid therapy (p < 0.001). Hypotension showed a strong correlation with unfavorable neurological outcome, especially in the early phase after TTM initiation, and complications. It is essential to manage hypotension that occurs at the beginning of TTM initiation to recover cerebral function in cardiac arrest patients.
Collapse
Affiliation(s)
- Yong Hwan Kim
- Department of Emergency Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Gyeongsangnam-do 51353, Korea;
| | - Jae Hoon Lee
- Department of Emergency Medicine, Dong-A University College of Medicine, Busan 49201, Korea
- Correspondence: ; Tel.: +82-51-240-5590
| | - Jung In Seo
- Division of Convergence Education, Halla University, Wonju 26404, Korea;
| | - Dong Hoon Lee
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju 35015, Korea; (D.H.L.); (B.K.L.)
| | - Won Young Kim
- Department of Emergency Medicine, Ulsan University College of Medicine, Seoul 44033, Korea;
| | - Byung Kook Lee
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju 35015, Korea; (D.H.L.); (B.K.L.)
| |
Collapse
|