1
|
Yang Y, Jung KJ, Kwak YT. The relationship between postoperative delirium and plasma amyloid beta oligomer. Sci Rep 2025; 15:13147. [PMID: 40240804 PMCID: PMC12003799 DOI: 10.1038/s41598-025-97577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Postoperative delirium (POD) is a frequent complication in older people undergoing general anesthesia surgery. We investigated the potential link between Alzheimer's disease and POD by comparing plasma amyloid-beta oligomer levels (measured using the multimer detection system, MDS-OAβ) in patients who developed POD after general anesthesia surgery with those who did not. A total of 104 eligible participants were screened daily for delirium for three days postoperatively. After propensity score matching based on the ApoE4 allele, the final analysis included 31 patients with POD and 31 without POD. In the ICU, patients with delirium underwent immediate assessment with the Korean version of the Delirium Rating Scale-98 (K-DRS-98) and plasma MDS-OAβ levels. The control group (those without POD) received the same tests on the third postoperative day. Patients with POD had significantly higher MDS-OAβ values compared to those without POD. Within the POD group, MDS-OAβ values positively correlated with K-DRS-98 scores (both severity and total scores). These findings suggest an association between POD in older people undergoing general anesthesia surgery and elevated plasma amyloid oligomer levels. To definitively establish causality, further prospective studies are necessary.
Collapse
Affiliation(s)
- YoungSoon Yang
- Department of Neurology, Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Ki Jin Jung
- Department of Orthopaedic Surgery, Cheonan Hospital Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yong Tae Kwak
- Department of Neurology, Hyoja Geriatric Hospital, Sanghari 33, Kuseong-myeon, Yongin-si, Kyeongki-do, Korea.
| |
Collapse
|
2
|
Lin J, Zhu X, Li X, Hong Y, Liang Y, Chen S, Feng C, Cao L. Impaired hippocampal neurogenesis associated with regulatory ceRNA network in a mouse model of postoperative cognitive dysfunction. BMC Anesthesiol 2025; 25:60. [PMID: 39915734 PMCID: PMC11800588 DOI: 10.1186/s12871-025-02928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) represents a post-surgical complication that features progressive cognitive impairment and memory loss, often occurring in elderly patients. This study aimed to investigate the potential biological mechanisms underlying POCD. METHODS Male C57BL/6 mice (2 and 17 months old) were randomly assigned to surgery or control groups. The surgery group underwent laparotomy under 1.5% isoflurane anesthesia, while controls received no intervention. Cognitive function was assessed 7-10 days post-surgery using open field, Y-maze, and novel object recognition tests. Hippocampal mRNA expression was analyzed using Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment. A competing endogenous RNA (ceRNA) network was constructed using microRNA (miRNA) target prediction databases (miRanda, miRTarbase, miRcode) and sequencing results. Key findings were validated by RT-qPCR and immunofluorescence. The Connectivity Map (CMap) database was queried to predict potential POCD treatments. RESULTS Aging significantly affected mice's spontaneous activity in the open field test (F1, 28 = 8.933, P < 0.01) and the proportion of time spent in the center area (F1, 28 = 5.387, P < 0.05). Surgery significantly reduced the rate of spontaneous alternations in the Y-maze (F1, 28 = 16.94, P < 0.001) and the recognition index in novel object recognition test (F1, 28 = 6.839, P < 0.05) in aging mice, but had no effect on young mice. Transcriptome analysis revealed that aging and surgery downregulated multiple neurogenesis-related genes in the hippocampus. Doublecortin (DCX) immunofluorescence staining confirmed reduced hippocampal neurogenesis in aging mice, which was further decreased after surgery. We identified several key lncRNAs and miRNAs implicated in neurogenesis regulation. Additionally, drugs were predicted as potential therapeutic candidates for POCD treatment. CONCLUSION Both aging and surgery have complex effects on the hippocampal transcriptome in mice. The significant decrease in neurogenesis may be a potential reason for the increased susceptibility of aging mice to POCD. The identified key regulatory lncRNAs, miRNAs, and drugs provide potential therapeutic targets for POCD prevention and treatment.
Collapse
Affiliation(s)
- Jingrun Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqiu Zhu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Hong
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaohui Liang
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Siqi Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenzhuo Feng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China.
| | - Lin Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Chai D, Jiang H, Liu H. The impact of maternal anti-inflammatory drugs on surgical anesthesia-induced neuroinflammation and cognitive impairment in offspring mice. Front Cell Neurosci 2024; 18:1481630. [PMID: 39440002 PMCID: PMC11493650 DOI: 10.3389/fncel.2024.1481630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Background The impact of maternal surgery combined with general anesthesia on neuroinflammation and the development of learning and memory impairment in offspring remains unclear. This study utilized a pathogen-free laparotomy model to investigate these changes during the second trimester, as well as their response to anti-inflammatory therapy. Methods C57BL/6 pregnant mice at the 14.5-day embryo stage (E 14.5) were either exposed to sevoflurane anesthesia alone or underwent laparotomy procedure. The neuroinflammatory response was evaluated at 7, 14, 21, and 28 days postnatal (P7, P14, P21, P28). Tau phosphorylation and cognitive ability were assessed at P28 and P30, respectively. The impact of perioperative administration of ibuprofen (60 mg/kg) on these aforementioned changes was subsequently evaluated. Results In the laparotomy group, levels of inflammatory factors (IL-4, IL-8, IL-17A, TGF-β, M-CSF, CCL2) in the brains of offspring mice, including the cerebral cortex and hippocampus, remained consistently elevated from P7 to P28. At P14, while the majority of inflammatory cytokine has no statistical difference, there was still a significant reactivation of inflammatory cytokines observed in the frontal cortex and hippocampus at P28. Furthermore, abnormal phosphorylation of tau and deficits in learning and memory were observed at P28 and P30. Administration of perioperative ibuprofen led to improvements in cognitive performance, reduction of systemic inflammation, and inhibiting abnormal phosphorylation of tau in the frontal cortex and hippocampus. Conclusion Our findings indicate that cognitive dysfunction is correlated with elevated levels of inflammatory cytokines and tau phosphorylation. Cognitive impairment and tau phosphorylation after laparotomy can persist at least until P28. Anti-inflammatory medications have been shown to enhance cognitive function by rapidly reducing inflammation in the brain, while also impacting neurological changes. This discovery may have implications for the development of treatment strategies aimed at managing cognitive impairment in post-operative patients.
Collapse
|
4
|
Li R, Zhang Y, Zhu Q, Wu Y, Song W. The role of anesthesia in peri‑operative neurocognitive disorders: Molecular mechanisms and preventive strategies. FUNDAMENTAL RESEARCH 2024; 4:797-805. [PMID: 39161414 PMCID: PMC11331737 DOI: 10.1016/j.fmre.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Peri-operative neurocognitive disorders (PNDs) include postoperative delirium (POD) and postoperative cognitive dysfunction (POCD). Children and the elderly are the two populations most vulnerable to the development of POD and POCD, which results in both high morbidity and mortality. There are many factors, including neuroinflammation and oxidative stress, that are associated with POD and POCD. General anesthesia is a major risk factor of PNDs. However, the molecular mechanisms of PNDs are poorly understood. Dexmedetomidine (DEX) is a useful sedative agent with analgesic properties, which significantly improves POCD in elderly patients. In this review, the current understanding of anesthesia in PNDs and the protective effects of DEX are summarized, and the underlying mechanisms are further discussed.
Collapse
Affiliation(s)
- Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qinxin Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yili Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| | - Weihong Song
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| |
Collapse
|
5
|
Campbell E, Figueiro MG. Postoperative cognitive dysfunction: spotlight on light, circadian rhythms, and sleep. Front Neurosci 2024; 18:1390216. [PMID: 38699675 PMCID: PMC11064652 DOI: 10.3389/fnins.2024.1390216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a neurological disorder characterized by the emergence of cognitive impairment after surgery. A growing body of literature suggests that the onset of POCD is closely tied to circadian rhythm disruption (CRD). Circadian rhythms are patterns of behavioral and physiological change that repeat themselves at approximately, but not exactly, every 24 h. They are entrained to the 24 h day by the daily light-dark cycle. Postoperative CRD affects cognitive function likely by disrupting sleep architecture, which in turn provokes a host of pathological processes including neuroinflammation, blood-brain barrier disturbances, and glymphatic pathway dysfunction. Therefore, to address the pathogenesis of POCD it is first necessary to correct the dysregulated circadian rhythms that often occur in surgical patients. This narrative review summarizes the evidence for CRD as a key contributor to POCD and concludes with a brief discussion of how circadian-effective hospital lighting can be employed to re-entrain stable and robust circadian rhythms in surgical patients.
Collapse
Affiliation(s)
| | - Mariana G. Figueiro
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Tsolaki M, Sia E, Giannouli V. Anesthesia and dementia: An up-to-date review of the existing literature. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:181-190. [PMID: 35981552 DOI: 10.1080/23279095.2022.2110871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Concerns around the impact of anesthesia on cognitive decline and dementia, including Alzheimer's Disease (AD), have been increasing and recently attracting considerable attention in the research community. One unanswered question is whether anesthesia is a risk factor of dementia, specifically AD type dementia. A large body of evidence, coming from in vivo and in vitro models, suggests that exposure to anesthetic agents may increase the risk of AD through mechanisms of action similar to AD's neuropathology. In terms of clinical studies, our knowledge of the relationship between anesthesia and dementia is based on limited data, with most studies suggesting that there is no association. The aim of this paper was therefore to outline recent clinical studies exploring this controversial relationship and discuss future directions in terms of study design and potential areas of study. As the aging population and the prevalence of dementia and AD increases, we need a better understanding of anesthesia as a risk factor for neurodegeneration through well-designed studies. Despite the controversy, there seems to be little evidence to support that anesthesia itself or other surgical and patient factors can cause or accelerate AD.
Collapse
Affiliation(s)
- Magda Tsolaki
- 1st Department of Neurology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI - AUTh), Thessaloniki, Greece
| | - Eleni Sia
- Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI - AUTh), Thessaloniki, Greece
| | - Vaitsa Giannouli
- 1st Department of Neurology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI - AUTh), Thessaloniki, Greece
| |
Collapse
|
7
|
Geng J, Zhang Y, Chen H, Shi H, Wu Z, Chen J, Luo F. Associations between Alzheimer's disease biomarkers and postoperative delirium or cognitive dysfunction: A meta-analysis and trial sequential analysis of prospective clinical trials. Eur J Anaesthesiol 2024; 41:234-244. [PMID: 38038408 PMCID: PMC10842675 DOI: 10.1097/eja.0000000000001933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
BACKGROUND The relationship between Alzheimer's disease biomarkers and postoperative complications, such as postoperative delirium (POD) and postoperative cognitive dysfunction (POCD), remains a subject of ongoing debate. OBJECTIVE This meta-analysis aimed to determine whether there is an association between perioperative Alzheimer's disease biomarkers and postoperative complications. DESIGN We conducted a meta-analysis of observational clinical studies that explored the correlation between Alzheimer's disease biomarkers and POD or POCD in patients who have undergone surgery, following PRISMA guidelines. The protocol was previously published (INPLASY: INPLASY202350001). DATA SOURCES A comprehensive search was conducted across PubMed, Embase, Web of Science, and Cochrane databases until March 2023. ELIGIBILITY CRITERIA Surgical patients aged at least 18 years, studies focusing on POD or POCD, research involving Alzheimer's disease biomarkers, including Aβ or tau in blood or cerebrospinal fluid (CSF), and availability of the full text. RESULTS Our meta-analysis included 15 studies: six focusing on POD and nine on POCD. The findings revealed a negative correlation between preoperative CSF β-amyloid 42 (Aβ42) levels and the onset of POD [mean difference -86.1, 95% confidence interval (CI), -114.15 to -58.05, I2 : 47%]; this association was strongly supported by trial sequential analysis (TSA). A similar negative correlation was discerned between preoperative CSF Aβ42 levels and the incidence of POCD (-165.01, 95% CI, -261.48 to -68.53, I2 : 95%). The TSA also provided robust evidence for this finding; however, the evidence remains insufficient to confirm a relationship between other Alzheimer's disease biomarkers [β-amyloid 40 (Aβ40), total tau (T-tau), phosphorylated tau (P-tau), and Aβ42/T-tau ratio] and POD or POCD. CONCLUSION The study results indicate a negative correlation between preoperative CSF Aβ42 levels and the occurrence of both POD and POCD. Future investigations are warranted to identify the predictive cutoff value of preoperative CSF Aβ42 for POD and POCD.
Collapse
Affiliation(s)
- Jun Geng
- From the Department of Anaesthesiology, Jiangyin Hospital Affiliated to Nantong University, Wuxi City, Jiangsu Province, China (JG, YZ, HC, HH, ZW, JC) and Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Gongshu District, Hangzhou City, Zhejiang Province, China (FL)
| | | | | | | | | | | | | |
Collapse
|
8
|
Muscat SM, Butler MJ, Bettes MN, DeMarsh JW, Scaria EA, Deems NP, Barrientos RM. Post-operative cognitive dysfunction is exacerbated by high-fat diet via TLR4 and prevented by dietary DHA supplementation. Brain Behav Immun 2024; 116:385-401. [PMID: 38145855 PMCID: PMC10872288 DOI: 10.1016/j.bbi.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
Post-operative cognitive dysfunction (POCD) is an abrupt decline in neurocognitive function arising shortly after surgery and persisting for weeks to months, increasing the risk of dementia diagnosis. Advanced age, obesity, and comorbidities linked to high-fat diet (HFD) consumption such as diabetes and hypertension have been identified as risk factors for POCD, although underlying mechanisms remain unclear. We have previously shown that surgery alone, or 3-days of HFD can each evoke sufficient neuroinflammation to cause memory deficits in aged, but not young rats. The aim of the present study was to determine if HFD consumption before surgery would potentiate and prolong the subsequent neuroinflammatory response and memory deficits, and if so, to determine the extent to which these effects depend on activation of the innate immune receptor TLR4, which both insults are known to stimulate. Young-adult (3mo) & aged (24mo) male F344xBN F1 rats were fed standard chow or HFD for 3-days immediately before sham surgery or laparotomy. In aged rats, the combination of HFD and surgery caused persistent deficits in contextual memory and cued-fear memory, though it was determined that HFD alone was sufficient to cause the long-lasting cued-fear memory deficits. In young adult rats, HFD + surgery caused only cued-fear memory deficits. Elevated proinflammatory gene expression in the hippocampus of both young and aged rats that received HFD + surgery persisted for at least 3-weeks after surgery. In a separate experiment, rats were administered the TLR4-specific antagonist, LPS-RS, immediately before HFD onset, which ameliorated the HFD + surgery-associated neuroinflammation and memory deficits. Similarly, dietary DHA supplementation for 4 weeks prior to HFD onset blunted the neuroinflammatory response to surgery and prevented development of persistent memory deficits. These results suggest that HFD 1) increases risk of persistent POCD-associated memory impairments following surgery in male rats in 2) a TLR4-dependent manner, which 3) can be targeted by DHA supplementation to mitigate development of persistent POCD.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - James W DeMarsh
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Emmanuel A Scaria
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Department of Psychiatry & Behavioral Health, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Zhang Y, Su Y, Wang Z, Li T, Wang L, Ma D, Zhou M. TAK1 Reduces Surgery-induced Overactivation of RIPK1 to Relieve Neuroinflammation and Cognitive Dysfunction in Aged Rats. Neurochem Res 2023; 48:3073-3083. [PMID: 37329446 PMCID: PMC10471686 DOI: 10.1007/s11064-023-03959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/26/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common clinical complication in elderly patients, but its underlying mechanism remains unclear. Receptor-interacting protein kinase 1 (RIPK1), a key molecule mediating necroptosis and regulated by transforming growth factor β-activated kinase 1 (TAK1), was reported to be associated with cognitive impairment in several neurodegenerative diseases. This study was conducted to investigate the possible role of TAK1/RIPK1 signalling in POCD development following surgery in rats. METHODS Young (2-month-old) and old (24-month-old) Sprague-Dawley rats were subjected to splenectomy under isoflurane anaesthesia. The young rats were treated with the TAK1 inhibitor takinib or the RIPK1 inhibitor necrostatin-1 (Nec-1) before surgery, and old rats received adeno-associated virus (AAV)-TAK1 before surgery. The open field test and contextual fear conditioning test were conducted on postoperative day 3. The changes in TNF-α, pro-IL-1β, AP-1, NF-κB p65, pRIPK1, pTAK1 and TAK1 expression and astrocyte and microglia activation in the hippocampus were assessed. RESULTS Old rats had low TAK1 expression and were more susceptible to surgery-induced POCD and neuroinflammation than young rats. TAK1 inhibition exacerbated surgery-induced pRIPK1 expression, neuroinflammation and cognitive dysfunction in young rats, and this effect was reversed by a RIPK1 inhibitor. Conversely, genetic TAK1 overexpression attenuated surgery-induced pRIPK1 expression, neuroinflammation and cognitive dysfunction in old rats. CONCLUSION Ageing-related decreases in TAK1 expression may contribute to surgery-induced RIPK1 overactivation, resulting in neuroinflammation and cognitive impairment in old rats.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Yang Su
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ziheng Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Teng Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Liwei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 221009, China.
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK.
| | - Meiyan Zhou
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 221009, China.
| |
Collapse
|
10
|
Ardanaz CG, Ezkurdia A, Bejarano A, Echarte B, Smerdou C, Martisova E, Martínez-Valbuena I, Luquin MR, Ramírez MJ, Solas M. JNK3 Overexpression in the Entorhinal Cortex Impacts on the Hippocampus and Induces Cognitive Deficiencies and Tau Misfolding. ACS Chem Neurosci 2023. [PMID: 37236204 DOI: 10.1021/acschemneuro.3c00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are a family of protein kinases activated by a myriad of stimuli consequently modulating a vast range of biological processes. In human postmortem brain samples affected with Alzheimer's disease (AD), JNK overactivation has been described; however, its role in AD onset and progression is still under debate. One of the earliest affected areas in the pathology is the entorhinal cortex (EC). Noteworthy, the deterioration of the projection from EC to hippocampus (Hp) point toward the idea that the connection between EC and Hp is lost in AD. Thus, the main objective of the present work is to address if JNK3 overexpression in the EC could impact on the hippocampus, inducing cognitive deficits. Data obtained in the present work suggest that JNK3 overexpression in the EC influences the Hp leading to cognitive impairment. Moreover, proinflammatory cytokine expression and Tau immunoreactivity were increased both in the EC and in the Hp. Therefore, activation of inflammatory signaling and induction of Tau aberrant misfolding caused by JNK3 could be responsible for the observed cognitive impairment. Altogether, JNK3 overexpression in the EC may impact on the Hp inducing cognitive dysfunction and underlie the alterations observed in AD.
Collapse
Affiliation(s)
- Carlos G Ardanaz
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Amaia Ezkurdia
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Arantza Bejarano
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | - Beatriz Echarte
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | - Cristian Smerdou
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Eva Martisova
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Iván Martínez-Valbuena
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Neurosciences Division, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, M5S 1A8 Toronto, Canada
| | - María-Rosario Luquin
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Neurosciences Division, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Neurology Department, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
11
|
Payne T, Taylor J, Casey C, Kunkel D, Parker M, Blennow K, Zetterberg H, Pearce RA, Lennertz RC, Sanders RD. Prospective analysis of plasma amyloid beta and postoperative delirium in the Interventions for Postoperative Delirium: Biomarker-3 study. Br J Anaesth 2023; 130:546-556. [PMID: 36842841 PMCID: PMC10273086 DOI: 10.1016/j.bja.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND The effect of postoperative delirium on the amyloid cascade of Alzheimer's dementia is poorly understood. Using early postoperative plasma biomarkers, we explored whether surgery and delirium are associated with changes in amyloid pathways. METHODS We analysed data from 100 participants in the Interventions for Postoperative Delirium: Biomarker-3 (IPOD-B3) cohort study in the USA (NCT03124303 and NCT01980511), which recruited participants aged >65 yr undergoing non-intracranial surgery. We assessed the relationship between the change in plasma amyloid beta ratio (AβR; Aβ42:Aβ40) and delirium incidence (defined by the 3-Minute Diagnostic Confusion Assessment Method) and severity (quantified by the Delirium Rating Scale-Revised-98, the study's primary outcome). We also tested the relationship between plasma amyloid beta and intraoperative variables. RESULTS Across all participants, the plasma AβR increased from the preoperative period to postoperative Day 1 (Wilcoxon P<0.001). However, this increase was not associated with delirium incidence (Wilcoxon P=0.22) or peak severity after adjusting for confounders (log[incidence rate ratio]=0.43; P=0.14). Postoperative Day 1 change in plasma AβR was not associated with postoperative Day 1 change in plasma tau, neurofilament light, or inflammatory markers (interleukin [IL]-1β, IL-1Ra, IL-2, IL-4, IL-6, IL-8, IL-10, and IL-12), or with operative time or low intraoperative arterial pressure. CONCLUSIONS Perioperative changes in plasma amyloid do not appear to be associated with postoperative delirium. Our findings do not support associations of dynamic changes in amyloid with postoperative delirium. CLINICAL TRIAL REGISTRATION .NCT03124303 and NCT01980511.
Collapse
Affiliation(s)
- Thomas Payne
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Jennifer Taylor
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
| | - Cameron Casey
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Kunkel
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Maggie Parker
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Robert A Pearce
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard C Lennertz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert D Sanders
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia; Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia; NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Abstract
OBJECTIVE To investigate postoperative functional connectivity (FC) alterations across impaired cognitive domains and their causal relationships with systemic inflammation. BACKGROUND Postoperative cognitive dysfunction commonly occurs after cardiac surgery, and both systemic and neuroinflammation may trigger its development. Whether FC alterations underlying deficits in specific cognitive domains after cardiac surgery are affected by inflammation remains unclear. METHODS Seventeen patients, who underwent cardiac valve replacement, completed a neuropsychological test battery and brain MRI scan before surgery and on days 7 and 30 after surgery compared to age-matched healthy controls. Blood samples were taken for tumor necrosis factor-a and interleukin-6 measurements. Seed-to-voxel FC of the left dorsolateral prefrontal cortex (DLPFC) was examined. Bivariate correlation and linear regression models were used to determine the relationships among cognitive function, FC alterations, and cytokines. RESULTS Executive function was significantly impaired after cardiac surgery. At day 7 follow-up, the surgical patients, compared to the controls, demonstrated significantly decreased DLPFC FC with the superior parietal lobe and attenuated negative connectivity in the default mode network, including the angular gyrus and posterior cingulate cortex. The left DLPFC enhanced the connectivity in the right DLPFC and posterior cingulate cortex, all of which were related to the increased tumor necrosis factor-a and decreased executive function up to day 7 after cardiac surgery. CONCLUSIONS The decreased FC of executive control network and its anticorrelation with the default mode network may contribute to executive function deficits after cardiac surgery. Systemic inflammation may trigger these transient FC changes and executive function impairments.
Collapse
|
13
|
Effect of a high-fat diet and leptin on STAT3 phosphorylation in hippocampal astrocytes. Neuroreport 2023; 34:30-37. [PMID: 36504039 DOI: 10.1097/wnr.0000000000001855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of the current study was to evaluate the influence of HFD on the functionality of LepR by quantifying phosphorylated levels of 705Tyr-STAT3 in hippocampus astrocytes from mice that consumed an HFD either during the juvenile or the adult period. METHODS Five- and eight-week-old male mice, fed during 8 weeks with either control chow or HFD, received a single dose of leptin and their brains were prepared for immunofluorescence to identify double-positive GFAP/p705Tyr-STAT3 cells. RESULTS HFD intake led to increased pSTAT3 immunoreactivity in GFAP+ cells in the CA1/CA3 hippocampus areas. The effect was observed both in adolescent and adult mice. Leptin increased pSTAT3 immunoreactivity in control animals but was devoid of effect in HFD mice. HFD itself has no effect on the number of GFAP+ cells. CONCLUSIONS Our data show that regular intake of HFD enhances STAT3 signaling in CA1/CA3 astrocytes, an effect that could be linked to the increase of leptin triggered by HFD. The increase of pSTAT3 might be integral to homeostatic mechanisms aimed at maintaining hippocampus function.
Collapse
|
14
|
Zhu X, Schrader JM, Irizarry BA, Smith SO, Van Nostrand WE. Impact of Aβ40 and Aβ42 Fibrils on the Transcriptome of Primary Astrocytes and Microglia. Biomedicines 2022; 10:2982. [PMID: 36428550 PMCID: PMC9688026 DOI: 10.3390/biomedicines10112982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrillar amyloid β-protein (Aβ) deposits in the brain, which are primarily composed of Aβ40 or Aβ42 peptides, are key pathological features of Alzheimer's disease (AD) and related disorders. Although the underlying mechanisms are still not clear, the Aβ fibrils can trigger a number of cellular responses, including activation of astrocytes and microglia. In addition, fibril structures of the Aβ40 and Aβ42 peptides are known to be polymorphic, which poses a challenge for attributing the contribution of different Aβ sequences and structures to brain pathology. Here, we systematically treated primary astrocytes and microglia with single, well-characterized polymorphs of Aβ40 or Aβ42 fibrils, and performed bulk RNA sequencing to assess cell-specific changes in gene expression. A greater number of genes were up-regulated by Aβ42 fibril-treated glial cells (251 and 2133 genes in astrocyte and microglia, respectively) compared with the Aβ40 fibril-treated glial cells (191 and 251 genes in astrocytes and microglia, respectively). Immunolabeling studies in an AD rat model with parenchymal fibrillar Aβ42 plaques confirmed the expression of PAI-1, MMP9, MMP12, CCL2, and C1r in plaque-associated microglia, and iNOS, GBP2, and C3D in plaque-associated astrocytes, validating markers from the RNA sequence data. In order to better understand these Aβ fibril-induced gene changes, we analyzed gene expression patterns using the Ingenuity pathway analysis program. These analyses further highlighted that Aβ42 fibril treatment up-regulated cellular activation pathways and immune response pathways in glial cells, including IL1β and TNFα in astrocytes, and microglial activation and TGFβ1 in microglia. Further analysis revealed that a number of disease-associated microglial (DAM) genes were surprisingly suppressed in Aβ40 fibril treated microglia. Together, the present findings indicate that Aβ42 fibrils generally show similar, but stronger, stimulating activity of glial cells compared with Aβ40 fibril treatment.
Collapse
Affiliation(s)
- Xiaoyue Zhu
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Joseph M. Schrader
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Brandon A. Irizarry
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven O. Smith
- Center for Structural Biology, Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - William E. Van Nostrand
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
15
|
HDAC6 Inhibition Alleviates Anesthesia and Surgery-Induced Less Medial Prefrontal-Dorsal Hippocampus Connectivity and Cognitive Impairment in Aged Rats. Mol Neurobiol 2022; 59:6158-6169. [PMID: 35882756 DOI: 10.1007/s12035-022-02959-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022]
Abstract
To investigate the underlying mechanisms of postoperative cognitive dysfunction and the impairment of medial prefrontal cortex-hippocampus connectivity. Postoperative cognitive dysfunction frequently affects elderly following surgery. The role of inter-brain-region connectivity abnormality after anesthesia and surgery on postoperative cognitive dysfunction development remains unclear. Medial prefrontal cortex-hippocampus connectivity of aged and adult rats was evaluated by injecting neurotracer biotinylated dextranamine (BDA) into bilateral hippocampus 3 days before partial hepatectomy, and biotinylated dextranamine positive cells of medial prefrontal cortex 2 days after hepatectomy were counted. HDAC6 shRNA was injected into medial prefrontal cortex and hippocampus bilaterally before hepatectomy or an HDAC6 activity inhibitor Tubastatin A was administered systemically after hepatectomy. Neuroinflammation and HDAC6 down-target ac-tubulin in medial prefrontal cortex and hippocampus were detected. Learning and memory of rats were evaluated by Barnes Maze task during 2-5 days after surgery and delayed matching-to-place water maze task during 10-23 days after surgery. Compared to the age-matched normal controls, anesthesia and surgery significantly decreased BDA-positive neurons in medial prefrontal cortex of aged rats, but not young adult rats. Local HDAC6 knockdown and systemic HDAC6 inhibition both increased BDA-positive neurons number of medial prefrontal cortex, alleviated learning and memory impairment in the Barnes Maze task and water maze task, decreased HDAC6 expression, inflammatory cytokines, astrocyte and microglial activation, and increased ac-tubulin expression in aged rats which received surgery. Our data indicated that anesthesia and surgery impaired medial prefrontal cortex-hippocampus connectivity and cognition which was associated with HDAC6 overexpression.
Collapse
|
16
|
Berger M, Browndyke JN, Cooter Wright M, Nobuhara C, Reese M, Acker L, Bullock WM, Colin BJ, Devinney MJ, Moretti EW, Moul JW, Ohlendorf B, Laskowitz DT, Waligorska T, Shaw LM, Whitson HE, Cohen HJ, Mathew JP. Postoperative changes in cognition and cerebrospinal fluid neurodegenerative disease biomarkers. Ann Clin Transl Neurol 2022; 9:155-170. [PMID: 35104057 PMCID: PMC8862419 DOI: 10.1002/acn3.51499] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Numerous investigators have theorized that postoperative changes in Alzheimer's disease neuropathology may underlie postoperative neurocognitive disorders. Thus, we determined the relationship between postoperative changes in cognition and cerebrospinal (CSF) tau, p-tau-181p, or Aβ levels after non-cardiac, non-neurologic surgery in older adults. METHODS Participants underwent cognitive testing before and 6 weeks after surgery, and lumbar punctures before, 24 h after, and 6 weeks after surgery. Cognitive scores were combined via factor analysis into an overall cognitive index. In total, 110 patients returned for 6-week postoperative testing and were included in the analysis. RESULTS There was no significant change from before to 24 h or 6 weeks following surgery in CSF tau (median [median absolute deviation] change before to 24 h: 0.00 [4.36] pg/mL, p = 0.853; change before to 6 weeks: -1.21 [3.98] pg/mL, p = 0.827). There were also no significant changes in CSF p-tau-181p or Aβ over this period. There was no change in cognitive index (mean [95% CI] 0.040 [-0.018, 0.098], p = 0.175) from before to 6 weeks after surgery, although there were postoperative declines in verbal memory (-0.346 [-0.523, -0.170], p = 0.003) and improvements in executive function (0.394, [0.310, 0.479], p < 0.001). There were no significant correlations between preoperative to 6-week postoperative changes in cognition and CSF tau, p-tau-181p, or Aβ42 changes over this interval (p > 0.05 for each). INTERPRETATION Neurocognitive changes after non-cardiac, non-neurologic surgery in the majority of cognitively healthy, community-dwelling older adults are unlikely to be related to postoperative changes in AD neuropathology (as assessed by CSF Aβ, tau or p-tau-181p levels or the p-tau-181p/Aβ or tau/Aβ ratios). TRIAL REGISTRATION clinicaltrials.gov (NCT01993836).
Collapse
Affiliation(s)
- Miles Berger
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Center for the Study of Aging and Human DevelopmentDuke University Medical CenterDurhamNorth CarolinaUSA
- Center for Cognitive NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - Jeffrey N. Browndyke
- Center for the Study of Aging and Human DevelopmentDuke University Medical CenterDurhamNorth CarolinaUSA
- Center for Cognitive NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Division of Geriatric Behavioral Health, Department of Psychiatry and Behavioral MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
- Duke Brain Imaging and Analysis CenterDurhamNorth CarolinaUSA
| | - Mary Cooter Wright
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Chloe Nobuhara
- Duke University School of MedicineDurhamNorth CarolinaUSA
| | - Melody Reese
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Leah Acker
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - W. Michael Bullock
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Brian J. Colin
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Michael J. Devinney
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Eugene W. Moretti
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Judd W. Moul
- Urology Division, Department of SurgeryDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Brian Ohlendorf
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Daniel T. Laskowitz
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Teresa Waligorska
- Department of Pathology and Lab Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Leslie M. Shaw
- Department of Pathology and Lab Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Heather E. Whitson
- Center for the Study of Aging and Human DevelopmentDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
- Geriatrics Research Education and Clinical Center (GRECC)Durham VA Medical CenterDurhamNCUSA
| | - Harvey J. Cohen
- Center for the Study of Aging and Human DevelopmentDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of MedicineDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Joseph P. Mathew
- Department of AnesthesiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | | |
Collapse
|
17
|
Kwon YS, Lee JJ, Lee SH, Kim C, Yu H, Sohn JH, Kim DK. Risk of Dementia in Patients Who Underwent Surgery under Neuraxial Anesthesia: A Nationwide Cohort Study. J Pers Med 2021; 11:1386. [PMID: 34945858 PMCID: PMC8708516 DOI: 10.3390/jpm11121386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
The incidence of dementia in patients with surgery under neuraxial anesthesia and the possibility of surgery under neuraxial anesthesia as a risk factor for dementia were investigated. We performed a retrospective matched cohort study with nationwide, representative cohort sample data of the Korean National Health Insurance Service in South Korea between 1 January 2003, and 31 December 2004. The participants were divided into control (n = 4488) and neuraxial groups (n = 1122) using propensity score matching. After 9 years of follow-up, the corresponding incidences of dementia were 11.5 and 14.8 cases per 1000 person-years. The risk of dementia in the surgery under neuraxial group was 1.44-fold higher (95% confidence interval [95%CI], 1.17-1.76) than that in the control group. In the subgroup analysis of dementia, the risk of Alzheimer's disease in those who underwent surgery under neuraxial anesthesia was 1.48-fold higher (95%CI, 1.17-1.87) than that in those who did not undergo surgery under anesthesia. Our findings suggest that patients who underwent surgery under neuraxial anesthesia had a higher risk of dementia and Alzheimer's disease than those who did not undergo surgery under neuraxial anesthesia.
Collapse
Affiliation(s)
- Young-Suk Kwon
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (Y.-S.K.); (J.-J.L.)
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.-H.L.); (C.K.); (H.Y.)
| | - Jae-Jun Lee
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (Y.-S.K.); (J.-J.L.)
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.-H.L.); (C.K.); (H.Y.)
| | - Sang-Hwa Lee
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.-H.L.); (C.K.); (H.Y.)
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Chulho Kim
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.-H.L.); (C.K.); (H.Y.)
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Hyunjae Yu
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.-H.L.); (C.K.); (H.Y.)
| | - Jong-Hee Sohn
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.-H.L.); (C.K.); (H.Y.)
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea
| | - Dong-Kyu Kim
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea; (S.-H.L.); (C.K.); (H.Y.)
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Korea
| |
Collapse
|
18
|
Morisson L, Laferrière-Langlois P, Carrier FM, Pagé G, Godbout C, Fortier LP, Ogez D, Létourneau G, Jarry S, Denault A, Fortier A, Guertin MC, Verdonck O, Richebé P. Effect of electroencephalography-guided anesthesia on neurocognitive disorders in elderly patients undergoing major non-cardiac surgery: A trial protocol The POEGEA trial (POncd Elderly GEneral Anesthesia). PLoS One 2021; 16:e0255852. [PMID: 34375362 PMCID: PMC8354438 DOI: 10.1371/journal.pone.0255852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction The number of elderly patients undergoing major surgery is rapidly increasing. They are particularly at risk of developing postoperative neurocognitive disorders (NCD). Earlier studies suggested that processed electroencephalographic (EEG) monitors may reduce the incidence of postoperative NCD. However, none of these studies controlled for intraoperative nociception levels or personalized blood pressure targets. Their results remain unclear if the reduction in the incidence of postoperative NCD relates to avoidance of any electroencephalographic pattern suggesting excessive anesthesia depth. Objective The objective of this trial is to investigate–in patients ≥ 70 years old undergoing major non-cardiac surgery–the effect of EEG-guided anesthesia on postoperative NCD while controlling for intraoperative nociception, personalized blood pressure targets, and using detailed information provided by the EEG monitor (including burst suppression ratio, density spectral array, and raw EEG waveform). Material and methods This prospective, randomized, controlled trial will be conducted in a single Canadian university hospital. Patients ≥ 70 years old undergoing elective major non-cardiac surgery will be included in the trial. The administration of sevoflurane will be adjusted to maintain a BIS index value between 40 and 60, to keep a Suppression Ratio (SR) at 0%, to keep a direct EEG display without any suppression time and a spectrogram with most of the EEG wave frequency within the alpha, theta, and delta frequencies in the EEG-guided group. In the control group, sevoflurane will be administered to achieve an age-adjusted minimum alveolar concentration of [0.8–1.2]. In both groups, a nociception monitor will guide intraoperative opioid administration, individual blood pressure targets will be used, and cerebral oximetry used to tailor intraoperative hemodynamic management. The primary endpoint will be the incidence of NCD at postoperative day 1, as evaluated by the Montreal Cognitive Assessment (MoCA). Secondary endpoints will include the incidence of postoperative NCD at different time points and the evaluation of cognitive trajectories up to 90 days after surgery among EEG-guided and control groups. Study registration NCT04825847 on ClinicalTrials.gov.
Collapse
Affiliation(s)
- Louis Morisson
- Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital – CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Pascal Laferrière-Langlois
- Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital – CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Québec, Canada
| | - François Martin Carrier
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Québec, Canada
- Department of Anesthesiology and Department of Medicine, Critical Care Division, Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, Québec, Canada
- Research Center of the CHUM (Centre Hospitalier de l’Université de Montréal), Université de Montréal, Montréal, Québec, Canada
| | - Gabrielle Pagé
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Québec, Canada
- Research Center of the CHUM (Centre Hospitalier de l’Université de Montréal), Université de Montréal, Montréal, Québec, Canada
- Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - Cédric Godbout
- Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital – CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Québec, Canada
- Research Center of the CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Louis-Philippe Fortier
- Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital – CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Québec, Canada
- Research Center of the CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - David Ogez
- Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital – CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Québec, Canada
- Research Center of the CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Geneviève Létourneau
- Research Center of the CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Stéphanie Jarry
- Department of Anesthesiology, Montréal Heart Institute, Montréal, Québec, Canada
| | - André Denault
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Québec, Canada
- Department of Anesthesiology, Montréal Heart Institute, Montréal, Québec, Canada
| | - Annik Fortier
- Department of Statistics, Montreal Health Innovations Coordinating Center (MHICC), Montréal, Québec, Canada
| | - Marie-Claude Guertin
- Department of Statistics, Montreal Health Innovations Coordinating Center (MHICC), Montréal, Québec, Canada
| | - Olivier Verdonck
- Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital – CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Québec, Canada
- Research Center of the CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Philippe Richebé
- Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital – CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Québec, Canada
- Research Center of the CIUSSS de L’Est de l’Ile de Montréal, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
19
|
Wang X, Hua D, Tang X, Li S, Sun R, Xie Z, Zhou Z, Zhao Y, Wang J, Li S, Luo A. The Role of Perioperative Sleep Disturbance in Postoperative Neurocognitive Disorders. Nat Sci Sleep 2021; 13:1395-1410. [PMID: 34393534 PMCID: PMC8354730 DOI: 10.2147/nss.s320745] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
Postoperative neurocognitive disorder (PND) increases the length of hospital stay, mortality, and risk of long-term cognitive impairment. Perioperative sleep disturbance is prevalent and commonly ignored and may increase the risk of PND. However, the role of perioperative sleep disturbances in PND remains unclear. Nocturnal sleep plays an indispensable role in learning, memory, and maintenance of cerebral microenvironmental homeostasis. Hospitalized sleep disturbances also increase the incidence of postoperative delirium and cognitive dysfunction. This review summarizes the role of perioperative sleep disturbances in PND and elucidates the potential mechanisms underlying sleep-deprivation-mediated PND. Activated neuroinflammation and oxidative stress; impaired function of the blood-brain barrier and glymphatic pathway; decreased hippocampal brain-derived neurotrophic factor, adult neurogenesis, and sirtuin1 expression; and accumulated amyloid-beta proteins are associated with PND in individuals with perioperative sleep disorders. These findings suggest that the improvement of perioperative sleep might reduce the incidence of postoperative delirium and postoperative cognitive dysfunction. Future studies should further investigate the role of perioperative sleep disturbance in PND.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Dongyu Hua
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Jintao Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| |
Collapse
|
20
|
Pérez-Sisqués L, Sancho-Balsells A, Solana-Balaguer J, Campoy-Campos G, Vives-Isern M, Soler-Palazón F, Anglada-Huguet M, López-Toledano MÁ, Mandelkow EM, Alberch J, Giralt A, Malagelada C. RTP801/REDD1 contributes to neuroinflammation severity and memory impairments in Alzheimer's disease. Cell Death Dis 2021; 12:616. [PMID: 34131105 PMCID: PMC8206344 DOI: 10.1038/s41419-021-03899-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
RTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death. Its downregulation in Parkinson's and Huntington's disease models ameliorates the pathological phenotypes. In the context of Alzheimer's disease (AD), the coding gene for RTP801, DDIT4, is responsive to Aβ and modulates its cytotoxicity in vitro. Also, RTP801 mRNA levels are increased in AD patients' lymphocytes. However, the involvement of RTP801 in the pathophysiology of AD has not been yet tested. Here, we demonstrate that RTP801 levels are increased in postmortem hippocampal samples from AD patients. Interestingly, RTP801 protein levels correlated with both Braak and Thal stages of the disease and with GFAP expression. RTP801 levels are also upregulated in hippocampal synaptosomal fractions obtained from murine 5xFAD and rTg4510 mice models of the disease. A local RTP801 knockdown in the 5xFAD hippocampal neurons with shRNA-containing AAV particles ameliorates cognitive deficits in 7-month-old animals. Upon RTP801 silencing in the 5xFAD mice, no major changes were detected in hippocampal synaptic markers or spine density. Importantly, we found an unanticipated recovery of several gliosis hallmarks and inflammasome key proteins upon neuronal RTP801 downregulation in the 5xFAD mice. Altogether our results suggest that RTP801 could be a potential future target for theranostic studies since it could be a biomarker of neuroinflammation and neurotoxicity severity of the disease and, at the same time, a promising therapeutic target in the treatment of AD.
Collapse
Affiliation(s)
- Leticia Pérez-Sisqués
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Júlia Solana-Balaguer
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Genís Campoy-Campos
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marcel Vives-Isern
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ferran Soler-Palazón
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Anglada-Huguet
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- CAESAR Research Center, Bonn, Germany
| | | | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- CAESAR Research Center, Bonn, Germany
| | - Jordi Alberch
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Catalonia, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Catalonia, Spain.
| | - Cristina Malagelada
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
21
|
Kim JH, Jung H, Lee Y, Sohn JH. Surgery Performed Under Propofol Anesthesia Induces Cognitive Impairment and Amyloid Pathology in ApoE4 Knock-In Mouse Model. Front Aging Neurosci 2021; 13:658860. [PMID: 33981208 PMCID: PMC8107235 DOI: 10.3389/fnagi.2021.658860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Postoperative cognitive dysfunction (POCD) following anesthesia and surgery is a common and severe complication, especially in elderly patients. A pre-existing cognitive impairment may impart susceptibility to further cognitive dysfunction; the mechanism remains unclear. We hypothesized that the specific impacts of anesthesia and surgery on individuals with preclinical Alzheimer’s disease (AD) may render them more susceptible to an increase in the risk of cognitive impairment. The aim of this study was to compare the cognitive impairment between normal adult mice and those with preclinical AD after propofol anesthesia and surgery. Methods: We performed abdominal surgery in cognitively pre-symptomatic, 5-month-old male mice with sporadic AD (apolipoprotein E4 allele, ApoE4-KI) and age-matched (C57BL/6J) controls. Propofol anesthesia (170 mg/kg) was induced via retro-orbital injection over 2 h. Morris water maze (MWM) and Y-maze tests were conducted 2 days before and 2, 4, and 7 days after surgery. The mean escape latencies and spontaneous alternation percentages were the major outcomes. Neuronal apoptosis in hippocampal sections was evaluated using the terminal dUTP nick-end labeling (TUNEL) assay. Hippocampal amyloid beta (Aβ) levels were assessed via quantitative immunohistochemistry (IHC). Results: The control mice exhibited increased mean escape latencies of MWM at postoperative 2 and 4, but not at day 7; ApoE4-KI mice exhibited such increases at postoperative days 2, 4 and 7. Significant differences between ApoE4-KI and control mice in terms of the mean escape latencies were evident at days 2 and 7 (both P < 0.05). However, performance on a non-hippocampal memory tasks (Y-maze test) did not differ. More TUNEL-positive neurons were evident in the hippocampal CA3 region of ApoE4-KI mice at postoperative days 2 and 4, but not at day 7 compared to the control group (both P < 0.05). IHC revealed significantly elevated Aβ deposition in the hippocampal CA3 region of ApoE4-KI mice at postoperative days 4 and 7 compared to control mice (both P < 0.05). Conclusions: Propofol anesthesia followed by surgery induced persistent changes in cognition, and pathological hippocampal changes in pre-symptomatic, but vulnerable AD mice. It would be appropriate to explore whether preclinical AD patients are more vulnerable to POCD development.
Collapse
Affiliation(s)
- Jong-Ho Kim
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea.,Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Harry Jung
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Yeonkyeong Lee
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jong-Hee Sohn
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea.,Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, South Korea
| |
Collapse
|
22
|
Liu P, Gao Q, Guan L, Hu Y, Jiang J, Gao T, Sheng W, Xue X, Qiao H, Li T. Atorvastatin attenuates surgery-induced BBB disruption and cognitive impairment partly by suppressing NF-κB pathway and NLRP3 inflammasome activation in aged mice. Acta Biochim Biophys Sin (Shanghai) 2021; 53:528-537. [PMID: 33674828 DOI: 10.1093/abbs/gmab022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 01/12/2023] Open
Abstract
In clinic, perioperative neurocognitive disorder is becoming a common complication of surgery in old patients. Neuroinflammation and blood-brain barrier (BBB) disruption are important contributors for cognitive impairment. Atorvastatin, as a strong HMG-CoA reductase inhibitor, has been widely used in clinic. However, it remains unclear whether atorvastatin could prevent anesthesia and surgery-induced BBB disruption and cognitive injury by its anti-inflammatory property. In this study, aged C57BL/6J mice were used to address this question. Initially, the mice were subject to atorvastatin treatment for 7 days (10 mg/kg). After a simple laparotomy under 1.5% isoflurane anesthesia, Morris water maze was performed to assess spatial learning and memory. Western blot analysis, immunohistochemistry, and enzyme-linked immunosorbent assay were used to examine the inflammatory response, BBB integrity, and cell apoptosis. Terminal-deoxynucleotidyl transferase mediated nick end labeling assay was used to assess cell apoptosis. The fluorescein sodium and transmission electron microscopy were used to detect the permeability and structure of BBB. The results showed that anesthesia and surgery significantly injured hippocampal-dependent learning and memory, which was ameliorated by atorvastatin. Atorvastatin could also reverse the surgery-induced increase of systemic and hippocampal cytokines, including IL-1β, TNF-α, and IL-6, accompanied by inhibiting the nuclear factor kappa-B (NF-κB) pathway and Nucleotide-Binding Oligomerization Domain, or Leucine Rich Repeat and Pyrin Domain Containing 3 (NLRP3) inflammasome activation, as well as hippocampal neuronal apoptosis. In addition, surgery triggered an increase of BBB permeability, paralleled by a decrease of the ZO-1, occludin, and Claudin 5 proteins in the hippocampus. However, atorvastatin treatment could protect the BBB integrity from the impact of surgery, by up-regulating the expressions of ZO-1, occludin, and Claudin 5. These findings suggest that atorvastatin exhibits neuroprotective effects on cognition in aged mice undergoing surgery.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Quansheng Gao
- Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Lei Guan
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yanting Hu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Jingwen Jiang
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Teng Gao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Weixuan Sheng
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Hui Qiao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
23
|
Muscat SM, Deems NP, D'Angelo H, Kitt MM, Grace PM, Andersen ND, Silverman SN, Rice KC, Watkins LR, Maier SF, Barrientos RM. Postoperative cognitive dysfunction is made persistent with morphine treatment in aged rats. Neurobiol Aging 2021; 98:214-224. [PMID: 33341652 PMCID: PMC7870544 DOI: 10.1016/j.neurobiolaging.2020.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is the collection of cognitive impairments, lasting days to months, experienced by individuals following surgery. Persistent POCD is most commonly experienced by older individuals and is associated with a greater vulnerability to developing Alzheimer's disease, but the underlying mechanisms are not known. It is known that laparotomy (exploratory abdominal surgery) in aged rats produces memory impairments for 4 days. Here we report that postsurgical treatment with morphine extends this deficit to at least 2 months while having no effects in the absence of surgery. Indeed, hippocampal-dependent long-term memory was impaired 2, 4, and 8 weeks postsurgery only in aged, morphine-treated rats. Short-term memory remained intact. Morphine is known to have analgesic effects via μ-opioid receptor activation and neuroinflammatory effects through Toll-like receptor 4 activation. Here we demonstrate that persistent memory deficits were mediated independently of the μ-opioid receptor, suggesting that they were evoked through a neuroinflammatory mechanism and unrelated to pain modulation. In support of this, aged, laparotomized, and morphine-treated rats exhibited increased gene expression of various proinflammatory markers (IL-1β, IL-6, TNFα, NLRP3, HMGB1, TLR2, and TLR4) in the hippocampus at the 2-week time point. Furthermore, central blockade of IL-1β signaling with the specific IL-1 receptor antagonist (IL-1RA), at the time of surgery, completely prevented the memory impairment. Finally, synaptophysin and PSD95 gene expression were significantly dysregulated in the hippocampus of aged, laparotomized, morphine-treated rats, suggesting that impaired synaptic structure and/or function may play a key role in this persistent deficit. This instance of long-term memory impairment following surgery closely mirrors the timeline of persistent POCD in humans and may be useful for future treatment discoveries.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Heather D'Angelo
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Meagan M Kitt
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathan D Andersen
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Shaelyn N Silverman
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
24
|
Cavaliere F, Allegri M, Apan A, Calderini E, Carassiti M, Cohen E, Coluzzi F, DI Marco P, Langeron O, Rossi M, Spieth P, Turnbull D. A year in review in Minerva Anestesiologica 2020. Anesthesia, analgesia, and perioperative medicine. Minerva Anestesiol 2021; 87:253-265. [PMID: 33599441 DOI: 10.23736/s0375-9393.21.15570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Franco Cavaliere
- IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome Italy -
| | - Massimo Allegri
- Unit of Pain Therapy of Column and Athlete, Policlinic of Monza, Monza, Italy
| | - Alparslan Apan
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Giresun, Giresun, Turkey
| | - Edoardo Calderini
- Unit of Women-Child Anesthesia and Intensive Care, Maggiore Polyclinic Hospital, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimiliano Carassiti
- Unit of Anesthesia, Intensive Care and Pain Management, Campus Bio-Medico University Hospital, Rome, Italy
| | - Edmond Cohen
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flaminia Coluzzi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University, Polo Pontino, Latina, Italy.,Unit of Anesthesia, Intensive Care and Pain Medicine, Sant'Andrea University Hospital, Rome, Italy
| | - Pierangelo DI Marco
- Department of Internal Anesthesiologic and Cardiovascular Clinical Studies, Sapienza University, Rome, Italy
| | - Olivier Langeron
- Department of Anesthesia and Intensive Care, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), University Paris-Est Créteil (UPEC), Paris, France
| | - Marco Rossi
- Institute of Anesthesia and Intensive Care, Sacred Heart Catholic University, Rome, Italy
| | - Peter Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Dresden, Germany
| | - David Turnbull
- Department of Anaesthetics and Neuro Critical Care, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
25
|
Yu L, Wen G, Zhu S, Hu X, Huang C, Yang Y. Abnormal phosphorylation of tau protein and neuroinflammation induced by laparotomy in an animal model of postoperative delirium. Exp Brain Res 2021; 239:867-880. [PMID: 33409674 DOI: 10.1007/s00221-020-06007-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Postoperative delirium (POD) is an acute neuropsychological disturbance after surgery, whose prevalence is related with advancing age. Neuroinflammation and abnormal tau phosphorylation that commonly presenting in Alzheimer's disease (AD) may contribute to the progression and duration of POD. To study the acute influence of surgery on cognitive function, wild type male C57BL/6 N mice were randomly divided into three groups: Control (CON), Laparotomy at 4 h and 24 h (LAP-4 h, LAP-24 h), then subjected to laparotomy under sevoflurane anaesthesia. The cognitive performance, peripheral and central inflammatory responses and tau phosphorylation levels were evaluated at 4 h and 24 h postoperatively. When LAP4-hrs displayed anxiety behaviors with high mRNA levels of inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, IL-8, TNF-α and MCP-1 in the liver, and IL-8 in the hippocampus, results at 24 h were different. In the liver, only IL-10 protein was obviously elevated, but in the hippocampus, both pro- and anti-inflammatory cytokines were significantly decreased whilst the elimination of anxiety. The activity of major related kinases and phosphatases was remarkably changed which may contribute to the dephosphorylated tau protein. With tremendous neuropathological changes and significant numbers of activated microglias and astrocytes observed in the sub-regions of hippocampus, the memory impairment existed at both 4 h and 24 h. Since the association of dephosphorylated tau with POD, these findings may supply novel implications for the understanding of tauopathies and as a theoretical basis for preventions from the postoperative cognitive dysfunction (POCD).
Collapse
Affiliation(s)
- Le Yu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230001, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, People's Republic of China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People's Republic of China
| | - Guanghua Wen
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230001, People's Republic of China
| | - Shoufeng Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, People's Republic of China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People's Republic of China
| | - Xianwen Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, People's Republic of China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People's Republic of China
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, People's Republic of China. .,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People's Republic of China.
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
26
|
Yan J, Luo A, Sun R, Tang X, Zhao Y, Zhang J, Zhou B, Zheng H, Yu H, Li S. Resveratrol Mitigates Hippocampal Tau Acetylation and Cognitive Deficit by Activation SIRT1 in Aged Rats following Anesthesia and Surgery. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4635163. [PMID: 33381265 PMCID: PMC7758127 DOI: 10.1155/2020/4635163] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a sever postsurgical neurological complication in the elderly population. As the global acceleration of population ageing, POCD is proved to be a great challenge to the present labor market and healthcare system. In the present study, our findings showed that tau acetylation mediated by SIRT1 deficiency resulted in tau hyperphosphorylation in the hippocampus of the aged POCD model and consequently contributed to cognitive impairment. Interestingly, pretreatment with resveratrol almost restored the expression of SIRT1, reduced the levels of acetylated tau and hyperphosphorylated tau in the hippocampus, and improved the cognitive performance in the behavioral tests. What is more, we observed that microglia-derived neuroinflammation resulting from SIRT1 inhibition in microglia probably aggravated the tau acetylation in cultured neurons in vitro. Our findings supported the notion that activation SIRT1 provided dually beneficial effect in the aged POCD model. Taken together, our findings provided the initial evidence that tau acetylation was associated with cognitive impairment in the aged POCD model and paved a promising avenue to prevent POCD by inhibiting tau acetylation in a SIRT1-dependent manner.
Collapse
Affiliation(s)
- Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Xiaole Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Biyun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Hua Zheng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Honghui Yu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei, China
| |
Collapse
|
27
|
Zhang J, Zhu S, Jin P, Huang Y, Dai Q, Zhu Q, Wei P, Yang Z, Zhang L, Liu H, Xu G, Chen L, Gu E, Zhang Y, Wen L, Liu X. Graphene oxide improves postoperative cognitive dysfunction by maximally alleviating amyloid beta burden in mice. Theranostics 2020; 10:11908-11920. [PMID: 33204319 PMCID: PMC7667672 DOI: 10.7150/thno.50616] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: Graphene oxide (GO) based nanomaterials have shown potential for the diagnosis and treatment of amyloid-β (Aβ)-related diseases, mainly on Alzheimer's disease (AD). However, these nanomaterials have limitations. How GO is beneficial to eliminate Aβ burden, and its physiological function in Aβ-related diseases, still needs to be investigated. Moreover, postoperative cognitive dysfunction (POCD) is an Aβ-related common central nervous system complication, however, nanomedicine treatment is lacking. Methods: To evaluate the effects of GO on Aβ levels, HEK293T-APP-GFP and SHSY5Y-APP-GFP cells are established. Intramedullary fixation surgery for tibial fractures under inhalation anesthesia is used to induce dysfunction of fear memory in mice. The fear memory of mice is assessed by fear conditioning test. Results: GO treatment maximally alleviated Aβ levels by simultaneously reducing Aβ generation and enhancing its degradation through inhibiting β-cleavage of amyloid precursor protein (APP) and improving endosomal Aβ delivery to lysosomes, respectively. In postoperative mice, the hippocampal Aβ levels were significantly increased and hippocampal-dependent fear memory was impaired. However, GO administration significantly reduced hippocampal Aβ levels and improved the cognitive function of the postoperative mice. Conclusion: GO improves fear memory of postoperative mice by maximally alleviating Aβ accumulation, providing new evidence for the application of GO-based nanomedicines in Aβ-related diseases.
Collapse
|
28
|
Han D, Li Z, Liu T, Yang N, Li Y, He J, Qian M, Kuang Z, Zhang W, Ni C, Guo X. Prebiotics Regulation of Intestinal Microbiota Attenuates Cognitive Dysfunction Induced by Surgery Stimulation in APP/PS1 Mice. Aging Dis 2020; 11:1029-1045. [PMID: 33014520 PMCID: PMC7505279 DOI: 10.14336/ad.2020.0106] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence indicates that the intestinal microbiota could interact with the central nervous system and modulate multiple pathophysiological changes, including the integrity of intestinal barrier and blood-brain barrier, as well as neuroinflammatory response. In the present study, we investigated the potential role of intestinal microbiota in the pathophysiological process of postoperative cognitive dysfunction. Six-month-old APP/PS1 mice were subjected to partial hepatectomy to establish surgery model and exhibited cognitive dysfunction. The expressions of inflammatory mediators increased and tight junction proteins (ZO-1 and Occludin) levels decreased in the intestine and hippocampus. The 16S ribosomal RNA gene sequencing showed altered β diversity and intestinal microbiota richness after surgery, including genus Rodentibacter, Bacteroides, Ruminococcaceae_UCG_014 and Faecalibaculum, as well as family Eggerthellaceae and Muribaculaceae. Furthermore, prebiotics (Xylooligosaccharides, XOS) intervention effectively attenuated surgery-induced cognitive dysfunction and intestinal microbiota alteration, reduced inflammatory responses, and improved the integrity of tight junction barrier in the intestine and hippocampus. In summary, the present study indicates that intestinal microbiota alteration, the related intestinal barrier and blood-brain barrier damage, and inflammatory responses participate the pathophysiological process of postoperative cognitive dysfunction. Prebiotics intervention could be a potential preventative approach.
Collapse
Affiliation(s)
- Dengyang Han
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhengqian Li
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Taotao Liu
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ning Yang
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yue Li
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Jindan He
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Min Qian
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhongshen Kuang
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Wen Zhang
- 2National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Cheng Ni
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- 1Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
29
|
Sun JY. Anesthesia and Alzheimer's: A review. J Anaesthesiol Clin Pharmacol 2020; 36:297-302. [PMID: 33487895 PMCID: PMC7812964 DOI: 10.4103/joacp.joacp_118_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/21/2019] [Accepted: 10/28/2019] [Indexed: 11/28/2022] Open
Abstract
As early as 1955, it was Bedford who provided description of cognitive changes in elderly patients following anesthesia and surgery. Reports of individuals with catastrophic, non-stroke-related decline in cognitive functions following anesthesia and surgery lead to a perception in the lay population that anesthesia and surgery have the potential to greatly exaggerate the progression of dementia, particularly Alzheimer's disease (AD). There is a concern that anesthesia and surgery could cause irreversible impairment, leading to AD. This could also explain the accelerated decline in patients with mild cognitive impairment. We seek to explore the relevant literature to determine whether a correlation exists and then propose a possible pathophysiologic mechanism.
Collapse
Affiliation(s)
- Jeffrey Y Sun
- NYU Langone Health, Department of Anesthesiology, Perioperative Care and Pain Medicine, New York, New York, USA
| |
Collapse
|
30
|
Blocking Kv1.3 potassium channels prevents postoperative neuroinflammation and cognitive decline without impairing wound healing in mice. Br J Anaesth 2020; 125:298-307. [PMID: 32624183 DOI: 10.1016/j.bja.2020.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Postoperative cognitive decline (PCD) requires microglial activation. Voltage-gated Kv1.3 potassium channels are involved in microglial activation. We determined the role of Kv1.3 in PCD and the efficacy and safety of inhibiting Kv1.3 with phenoxyalkoxypsoralen-1 (PAP-1) in preventing PCD in a mouse model. METHODS After institutional approval, we assessed whether Kv1.3-deficient mice (Kv1.3-/-) exhibited PCD, evidenced by tibial-fracture surgery-induced decline in aversive freezing behaviour, and whether PAP-1 could prevent PCD and postoperative neuroinflammation in PCD-vulnerable diet-induced obese (DIO) mice. We also evaluated whether PAP-1 altered either postoperative peripheral inflammation or tibial-fracture healing. RESULTS Freezing behaviour was unaltered in postoperative Kv1.3-/- mice. In DIO mice, PAP-1 prevented postoperative (i) attenuation of freezing behaviour (54 [17.3]% vs 33.4 [12.7]%; P=0.03), (ii) hippocampal microglial activation by size (130 [31] pixels vs 249 [49]; P<0.001) and fluorescence intensity (12 000 [2260] vs 20 800 [5080] absorbance units; P<0.001), and (iii) hippocampal upregulation of interleukin-6 (IL-6) (14.9 [5.7] vs 25.6 [10.4] pg mg-1; P=0.011). Phenoxyalkoxypsoralen-1 neither affected surgery-induced upregulation of plasma IL-6 nor cartilage and bone components of the surgical fracture callus. CONCLUSIONS Microglial-mediated PCD requires Kv1.3 activity, determined by genetic and pharmacological targeting approaches. Phenoxyalkoxypsoralen-1 blockade of Kv1.3 prevented surgery-induced hippocampal microglial activation and neuroinflammation in mice known to be vulnerable to PCD. Regarding perioperative safety, these beneficial effects of PAP-1 treatment occurred without impacting fracture healing. Kv1.3 blockers, currently undergoing clinical trials for other conditions, may represent an effective and safe intervention to prevent PCD.
Collapse
|
31
|
Hassan WF, Tawfik MH, Nabil TM, Abd Elkareem RM. Could intraoperative magnesium sulphate protect against postoperative cognitive dysfunction? Minerva Anestesiol 2020; 86. [DOI: 10.23736/s0375-9393.20.14012-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
32
|
Abstract
Neuroinflammation has become a key hallmark of neurological complications including perioperative pathologies such as postoperative delirium and longer-lasting postoperative cognitive dysfunction. Dysregulated inflammation and neuronal injury are emerging from clinical studies as key features of perioperative neurocognitive disorders. These findings are paralleled by a growing body of preclinical investigations aimed at better understanding how surgery and anesthesia affect the central nervous system and possibly contribute to cognitive decline. Herein, we review the role of postoperative neuroinflammation and underlying mechanisms in immune-to-brain signaling after peripheral surgery.
Collapse
Affiliation(s)
- Saraswathi Subramaniyan
- From the Center for Translational Pain Medicine, Department of Anesthe siology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
33
|
Relationship Between mTOR Signaling Activation and Postoperative Neurocognitive Disorder in Aged Rats. Cogn Behav Neurol 2019; 32:193-200. [PMID: 31517703 DOI: 10.1097/wnn.0000000000000205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although incidence rates of postoperative neurocognitive disorder (PND) in aged individuals following noncardiac major surgery are rising as individuals are living longer, the mechanism of PND remains poorly understood. We wondered if mammalian target of rapamycin (mTOR) signaling might be associated with PND since mTOR controls some essential intracellular events. OBJECTIVE To investigate whether surgery activates the mTOR signaling pathway in aged rats, leading to PND, and whether the mTOR inhibitor, rapamycin, can be used to alleviate PND. METHODS We randomly assigned aged rats to four groups: normal control (C), isoflurane (I), surgery (S), and rapamycin (R). Then, we anesthetized Groups I, S, and R, following which, Groups S and R underwent a splenectomy. After surgery, Group R was administered rapamycin. We used the Morris water maze to test the rats' spatial learning and memory after surgery. RESULTS In Group S, escape latency (ie, the time to find the platform) was markedly higher, and the ratio of swimming time in the target quadrant was lower, compared to the other groups. In Group R, escape latency was markedly lower as compared with Group S, and the ratio of swimming time in the target quadrant was higher. CONCLUSIONS Our results indicate that an altered mTOR signaling pathway after a splenectomy causes PND in aged rats, which can be alleviated by rapamycin.
Collapse
|
34
|
Liang R, Ou S, Han Y, Xu J, Zhou S. Plasma amyloid beta level changes in aged mice with cognitive dysfunction following sevoflurane exposure. Exp Gerontol 2019; 129:110737. [PMID: 31521721 DOI: 10.1016/j.exger.2019.110737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/05/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Previous studies have stated that cognitive impairment induced by anesthetics was associated with amyloid beta (Aβ). However, few researchers have investigated the transport of Aβ inside and outside of the brain. AIM We attempted to probe the effects of sevoflurane on cognitive functions, the plasma Aβ, and transporters of Aβ in aged mice. The receptor for advanced glycation end-products (RAGE) is an Aβ influx protein, and Low-density lipoprotein receptor-related protein-1 (LRP-1) is an Aβ efflux protein. METHODS Aged mice were divided into the control group and the sevoflurane group. The mice were exposed to 100% oxygen or 2.5% sevoflurane for 2 h. The abilities of spatial learning and memory in mice were tested using the Morris water maze. Aβ concentrations of plasma were measured with enzyme-linked immunosorbent assay kits. The RAGE and LRP-1 gene levels in the brain were assessed with quantitative polymerase chain reaction, and the protein levels were determined by western blot analysis. The locations of RAGE in the brain were confirmed via immunofluorescence. RESULTS In the sevoflurane group mice, the escape latency was increased on the 5th day of training, and the time spent in the target quadrant was decreased on the 7th day after anesthesia. Sevoflurane reduced the concentration of plasma Aβ1-40. In addition, sevoflurane increased both gene and protein levels of RAGE in the brain, and increased RAGE proteins co-localized with the hippocampal vascular endothelial cells. CONCLUSION RAGE over-expression in the hippocampal vascular endothelial cells possibly resulted in the excessive transport of the plasma Aβ1-40 into the brain after treatment with sevoflurane, which was associated with sevoflurane-induced cognitive dysfunction in aged mice.
Collapse
Affiliation(s)
- Rui Liang
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Shanshan Ou
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Yuxiang Han
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Jie Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Shaopeng Zhou
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China.
| |
Collapse
|
35
|
Central cholinergic neuronal degeneration promotes the development of postoperative cognitive dysfunction. J Transl Med 2019; 99:1078-1088. [PMID: 30626892 DOI: 10.1038/s41374-018-0174-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is consistently associated with increased morbidity and mortality. However, its mechanism remains poorly understood. We hypothesized that central cholinergic neuronal degeneration facilitates the development of POCD. The impact of anesthesia/surgery (appendectomy) on learning and memory and the levels of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), vesicular acetylcholine transporter (VAChT), and choline transporter (CHT) in adult and aged mice were measured. Separate cohorts were analyzed after pretreatment with donepezil, an AChE inhibitor, in aged mice or with murine-p75-saporin (mu-p75-sap), a cholinergic-specific immunotoxin, in adult mice. Morris Water Maze was used to measure the learning and memory changes after anesthesia/surgery. Western blot was used to measure the changes in the protein levels of the biomarkers of the central cholinergic system. We found that anesthesia/surgery-induced memory decline and attenuation of central cholinergic biomarkers (ChAT and VAChT) in aged mice but not in adult mice. Donepezil pretreatment reduced central cholinergic impairment in the aged mice and prevented learning and memory declines after anesthesia/surgery. In contrast, when central cholinergic neurons were pre-injured with mu-p75-sap, cognitive dysfunction developed in the adult mice after anesthesia/surgery. These data suggest that central cholinergic neuronal degeneration facilitates the development of POCD.
Collapse
|
36
|
Ligsay A, El-Deeb M, Salcedo-Arellano MJ, Schloemerkemper N, Grayson JS, Hagerman R. General Anesthetic Use in Fragile X Spectrum Disorders. J Neurosurg Anesthesiol 2019; 31:285-290. [PMID: 29734272 PMCID: PMC6215737 DOI: 10.1097/ana.0000000000000508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The fragile X premutation is characterized by a repeat expansion mutation (between 55 to 200 CGG repeats) in the fragile X mental retardation 1 (FMR1) gene, which leads to RNA toxicity at the cellular level. This may cause patients with the premutation to be particularly susceptible to environmental toxins, which could manifest clinically as new or worsening ataxia and memory loss. Multiple published case reports have also suggested general anesthetics as a potential toxin leading to negative side effects when used in patients with fragile X-associated disorders. However, at this time, there have been no formal research studies regarding cellular changes or long-term clinical manifestations after general anesthetic use in this population. This review aims to highlight previous case reports regarding sequelae related to general anesthetic use in fragile X-associated disorders. New case reports related to this phenomenon are also included.
Collapse
Affiliation(s)
- Andrew Ligsay
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, CA, USA
- University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Marwa El-Deeb
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, CA, USA
- Department of Pediatrics, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Maria J Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, CA, USA
- Department of Pediatrics, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Nina Schloemerkemper
- Department of Anesthesiology and Pain Medicine, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Jeremy S. Grayson
- Department of Anesthesia, Rutgers University Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, CA, USA
- Department of Pediatrics, University of California, Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
37
|
Cao Y, Li Z, Ma L, Yang N, Guo X. Isoflurane-Induced Postoperative Neurovascular and Cognitive Dysfunction Is Associated with VEGF Overexpression in Aged Rats. J Mol Neurosci 2019; 69:215-223. [PMID: 31250275 DOI: 10.1007/s12031-019-01350-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication in older adults; however, its aetiology remains unclear. Although vascular endothelial growth factor (VEGF) is associated with blood-brain barrier (BBB) disorders and neurological disease, its role in POCD is unknown. Here, we investigated the effect of brain VEGF inhibition on isoflurane-induced cognitive impairment in an aged rat model of POCD. VEGF protein expression was increased in the hippocampus after isoflurane exposure, suggesting that inhalation anaesthesia induces hippocampal VEGF protein overexpression in aged rats. Pretreatment with 2 mg/kg RB-222, an anti-VEGF neutralizing antibody, may partially abolish the degradation of occludin protein in cerebral capillaries, thereby maintaining the ultrastructural and functional integrity of the hippocampal BBB. Inhibition of VEGF also significantly attenuated the isoflurane-induced cognitive deficits in the Morris water maze task. Together, our findings show, for the first time, that elevated expression of brain VEGF after isoflurane exposure contributes to POCD in aged rats. Therefore, therapeutic strategies involving VEGF should take into consideration its role in the pathogenesis of POCD.
Collapse
Affiliation(s)
- Yiyun Cao
- Department of Anesthesiology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 200233, China.,Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Lijun Ma
- Department of Medical Imaging, North Minzu University, Yinchuan, 750021, Ningxia, China
| | - Ning Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
38
|
Abstract
Cognitive dysfunction is a common complication in primary or metastatic brain tumors and can be correlated to disease itself or various treatment modalities. The symptoms of cognitive deficits may include problems with memory, attention and information processing. Primary brain tumors are highly associated with neurocognitive deficit and poor quality of life. This review discusses the pathophysiology, risk factors and assessment of cognitive dysfunction. It also gives an overview of the effect of anesthetics on postoperative cognitive dysfunction and its management.
Collapse
Affiliation(s)
- Indu Kapoor
- Department of Neuroanesthesiology and Critical Care, AIIMS, Delhi, India
| | - Hemanshu Prabhakar
- Department of Neuroanesthesiology and Critical Care, AIIMS, Delhi, India
| | - Charu Mahajan
- Department of Neuroanesthesiology and Critical Care, AIIMS, Delhi, India
| |
Collapse
|
39
|
Oh J, Ham J, Cho D, Park JY, Kim JJ, Lee B. The Effects of Transcranial Direct Current Stimulation on the Cognitive and Behavioral Changes After Electrode Implantation Surgery in Rats. Front Psychiatry 2019; 10:291. [PMID: 31156472 PMCID: PMC6531794 DOI: 10.3389/fpsyt.2019.00291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/15/2019] [Indexed: 11/22/2022] Open
Abstract
Postoperative delirium can lead to increased morbidity and mortality, and may even be a potentially life-threatening clinical syndrome. However, the neural mechanism underlying this condition has not been fully understood and there is little knowledge regarding potential preventive strategies. To date, investigation of transcranial direct current stimulation (tDCS) for the relief of symptoms caused by neuropsychiatric disorders and the enhancement of cognitive performance has led to promising results. In this study, we demonstrated that tDCS has a possible effect on the fast recovery from delirium in rats after microelectrode implant surgery, as demonstrated by postoperative behavior and neurophysiology compared with sham stimulation. This is the first study to describe the possible effects of tDCS for the fast recovery from delirium based on the study of both electroencephalography and behavioral changes. Postoperative rats showed decreased attention, which is the core symptom of delirium. However, anodal tDCS over the right frontal area immediately after surgery exhibited positive effects on acute attentional deficit. It was found that relative power of theta was lower in the tDCS group than in the sham group after surgery, suggesting that the decrease might be the underlying reason for the positive effects of tDCS. Connectivity analysis revealed that tDCS could modulate effective connectivity and synchronization of brain activity among different brain areas, including the frontal cortex, parietal cortex, and thalamus. It was concluded that anodal tDCS on the right frontal regions may have the potential to help patients recover quickly from delirium.
Collapse
Affiliation(s)
- Jooyoung Oh
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University Health System, Seoul, South Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinsil Ham
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Dongrae Cho
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Jin Young Park
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University Health System, Seoul, South Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Jin Kim
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University Health System, Seoul, South Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Boreom Lee
- Department of Biomedical Science and Engineering (BMSE), Institute of Integrated Technology (IIT), Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| |
Collapse
|
40
|
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer's disease. Inflammopharmacology 2019; 27:663-677. [PMID: 30874945 DOI: 10.1007/s10787-019-00580-x] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/06/2019] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is of high importance to the neuroscience world, yet the complex pathogenicity is not fully understood. Inflammation is usually observed in AD and could implicate both beneficial or detrimental effects depending on the severity of the disease. During initial AD pathology, microglia and astrocyte activation is beneficial since they are involved in amyloid-beta clearance. However, with the progression of the disease, activated microglia elicit detrimental effects by the overexpression of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) bringing forth neurodegeneration in the surrounding brain regions. This results in decline in Aβ clearance by microglia; Aβ accumulation thus increases in the brain resulting in neuroinflammation. Thus, Aβ accumulation is the effect of increased release of pro-inflammatory molecules. Reactive astrocytes acquire gain of toxic function and exhibits neurotoxic effects with loss of neurotrophic functions. Astrocyte dysfunctioning results in increased release of cytokines and inflammatory mediators, neurodegeneration, decreased glutamate uptake, loss of neuronal synapses, and ultimately cognitive deficits in AD. We discuss the role of intracellular signaling pathways in the inflammatory responses produced by astrocytes and microglial activation, including the glycogen synthase kinase-3β, nuclear factor kappa B cascade, mitogen-activated protein kinase pathways and c-Jun N-terminal kinase. In this review, we describe the role of neuroinflammation in the chronicity of AD pathogenesis and an overview of the recent research towards the development of new therapies to treat this disorder.
Collapse
Affiliation(s)
- Darshpreet Kaur
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Vivek Sharma
- Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India.
| |
Collapse
|
41
|
Almahozi A, Radhi M, Alzayer S, Kamal A. Effects of Memantine in a Mouse Model of Postoperative Cognitive Dysfunction. Behav Sci (Basel) 2019; 9:bs9030024. [PMID: 30845688 PMCID: PMC6466583 DOI: 10.3390/bs9030024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 02/08/2023] Open
Abstract
Persistent impairment in cognitive functioning postoperatively is reported by clinical and animal studies, and is labeled as postoperative cognitive dysfunction (POCD). Evidence points to an exaggerated neuroinflammatory response resulting from peripheral systemic inflammation after surgery, with subsequent cytokine-induced glutamatergic excitotoxicity and synaptic impairment. These immunological changes, among many others, are also observed in Alzheimer’s disease. Memantine is an N-methyl-D-aspartate receptor (NMDAR) antagonist commonly used to treat Alzheimer’s disease. Surprisingly, little research exists on the role of memantine in preventing POCD. The purpose of this study is to investigate the effects of memantine on a spectrum of cognitive functions postoperatively. Mice were divided into 3 groups and each received treatment for 4 weeks. Placebo groups received a placebo then underwent either a sham procedure or a laparotomy procedure. The memantine group received memantine hydrochloride then underwent a laparotomy procedure. Cognitive tests were performed on postoperative days (POD) 1 and 7. Compared to sham-operated mice, placebo groups that underwent a laparotomy procedure showed impaired memory in the Morris water maze test, higher anxiety-like behavior in the open field and the elevated plus maze tests, increased depression-like behavior in the tail suspension test, and lack of preference for social novelty in the three-chamber test. On the other hand, memantine-treated mice that underwent a laparotomy procedure showed enhanced memory on POD7, improved depression-like behavior on POD1 and POD7, enhanced preference for social novelty on POD1, and no improvement in anxiety-like behavior. These findings suggest a potential protective effect of memantine in mice postoperatively on memory, depression-like behavior, and preference for social novelty.
Collapse
Affiliation(s)
- Ahmad Almahozi
- Physiology Department, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671, Manama 1111, Bahrain.
| | - Mohamed Radhi
- Physiology Department, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671, Manama 1111, Bahrain.
| | - Suja Alzayer
- Physiology Department, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671, Manama 1111, Bahrain.
| | - Amer Kamal
- Physiology Department, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671, Manama 1111, Bahrain.
| |
Collapse
|
42
|
Postoperative cognitive dysfunction and the possible underlying neurodegenerative effect of anaesthesia. Int J Neurosci 2019; 129:729-737. [DOI: 10.1080/00207454.2018.1561451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
43
|
Luo A, Yan J, Tang X, Zhao Y, Zhou B, Li S. Postoperative cognitive dysfunction in the aged: the collision of neuroinflammaging with perioperative neuroinflammation. Inflammopharmacology 2019; 27:27-37. [PMID: 30607668 DOI: 10.1007/s10787-018-00559-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/26/2018] [Indexed: 12/25/2022]
Abstract
The aging population is burgeoning globally and this trend presents great challenges to the current healthcare system as the growing number of aged individuals receives procedures of surgery and anesthesia. Postoperative cognitive dysfunction (POCD) is a severe postoperative neurological sequela. Advanced age is considered as an independent risk factor of POCD. Mounting evidence have shown that neuroinflammation plays an essential role in POCD. However, it remains debatable why this complication occurs highly in the aged individuals. As known, aging itself is the major common high-risk factor for age-associated disorders including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. Chronic low-grade neuroinflammation (dubbed neuroinflammaging in the present paper) is a hallmark alternation and contributes to age-related cognitive decline in the normal aging. Interestingly, several lines of findings show that the neuroinflammatory pathogenesis of POCD is age-dependent. It suggests that age-related changes, especially the neuroinflammaging, are possibly associated with the postoperative cognitive impairment. Understanding the role of neuroinflammaging in POCD is crucial to elucidate the mechanism of POCD and develop strategies to prevent or treat POCD. Here the focus of this review is on the potential role of neuroinflammaging in the mechanism of POCD. Lastly, we briefly review promising interventions for this neurological sequela.
Collapse
Affiliation(s)
- AiLin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - XiaoLe Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - YiLin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - BiYun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - ShiYong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
44
|
Netto MB, de Oliveira Junior AN, Goldim M, Mathias K, Fileti ME, da Rosa N, Laurentino AO, de Farias BX, Costa AB, Rezin GT, Fortunato JJ, Giustina AD, Barichello T, Dal-Pizzol F, Petronilho F. Oxidative stress and mitochondrial dysfunction contributes to postoperative cognitive dysfunction in elderly rats. Brain Behav Immun 2018; 73:661-669. [PMID: 30041011 DOI: 10.1016/j.bbi.2018.07.016] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 11/25/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is defined by cognitive impairment determined by neuropsychological tests from before to after surgery. Several mechanisms have been proposed in this bidirectional communication between the immune system and the brain after surgery. We aimed at understanding the mechanisms underlying POCD elderly rats in an experimental tibial fracture model. Elderly male Wistar rats were subjected to tibial fracture (TF) model. Control (sham) and fracture (TF) groups were followed to determine nitrite/nitrate concentration; oxidative damage to lipids and proteins; the activity of antioxidant enzymes (superoxide dismutase-SOD and catalase-CAT), mitochondrial respiratory chain enzymes, and creatine kinase (CK); and BDNF levels in the hippocampus and prefrontal cortex (at 24 h and at seven days) and cognitive function through habituation to the open field task and novel object recognition task (only at seven days). TF group presented increased concentration of nitrite/nitrate, hippocampal lipid peroxidation at seven days, protein oxidative damage in the prefrontal cortex and hippocampus at 24 h, decreased antioxidant activity in both structures on the first postoperative day and compromised function of the mitochondrial respiratory chain complexes as well as the CK enzyme. In addition, the levels of BDNF were reduced and memory function was impaired in the TF group. In conclusion, elderly rats submitted to an experimental model of tibial fracture displayed memory impairment accompanied by an increase in oxidative stress, mitochondrial dysfunction and reduced neurotrophin level.
Collapse
Affiliation(s)
- Martins Back Netto
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Mariana Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Khiany Mathias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Maria Eduarda Fileti
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Ana Olivia Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Bianca Xavier de Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Jucelia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Amanda Della Giustina
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil.
| |
Collapse
|
45
|
Varenicline reduces DNA damage, tau mislocalization and post surgical cognitive impairment in aged mice. Neuropharmacology 2018; 143:217-227. [PMID: 30273594 DOI: 10.1016/j.neuropharm.2018.09.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/02/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
Postoperative cognitive dysfunction (POCD) occurs more frequently in elderly patients undergoing major surgery. Age associated cholinergic imbalance may exacerbate postoperative systemic and neuroinflammation, but the effect nicotinic acetylcholine receptor (nAchR) stimulation on the development of POCD remains unclear. Aged male C57BL/6N mice (18 months old) underwent a midline laparotomy or were exposed to sevoflurane anesthesia alone (4-5%), with or without concomitant varenicline, a partial nAchR, at 1 mg/kg/day. Laparotomy increased pro-inflammatory cytokines in the liver and hippocampus (IL-1β and MCP-1) and induced a decline in cognitive performance, indicated by lower discrimination index in the Novel Object Recognition test, greater error number and longer escape latency in the Y-maze test. Glia activation, aberrant tau phosphorylation (AT8) and accumulation of phosphorylated H2AX in the hippocampus were detectable up to postoperative day 14, with neuronal apoptosis seen in the hippocampus. Perioperative varenicline attenuated the cognitive decline and associated tau protein mislocalization, DNA damage and neuronal apoptosis. The modulation of JAK2/STAT3 signaling may play a critical role in this process. Neuroinflammation, tau phosphorylation and DNA damage contribute to the development of cognitive dysfunction following laparotomy. Cholinergic stimulation by varenicline attenuated these changes through preventing the mislocalization of phosphorylated tau and DNA damage.
Collapse
|
46
|
Gu SM, Lee HP, Ham YW, Son DJ, Kim HY, Oh KW, Han SB, Yun J, Hong JT. Piperlongumine Improves Lipopolysaccharide-Induced Amyloidogenesis by Suppressing NF-KappaB Pathway. Neuromolecular Med 2018; 20:312-327. [PMID: 29802525 PMCID: PMC6097046 DOI: 10.1007/s12017-018-8495-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/19/2018] [Indexed: 01/02/2023]
Abstract
Amyloidogenesis is known to cause Alzheimer's disease. Our previous studies have found that lipopolysaccharide (LPS) causes neuroinflammation and amyloidogenesis through activation of nuclear factor kappaB (NF-κB). Piperlongumine (PL) is an alkaloid amide found naturally in long pepper (Piper longum) isolates; it was reported to have inhibitory effects on NF-κB activity. We therefore investigated whether PL exhibits anti-inflammatory and anti-amyloidogenic effects by inhibiting NF-κB. A murine model of LPS-induced memory impairment was made via the intraperitoneal (i.p.) injection of LPS (0.25 mg/kg/day, i.p.). We then injected PL (1.5 or 3.0 mg/kg/day, i.p.) for 7 days in three groups of mice to observe effects on memory. We also conducted an in vitro study with astrocytes and microglial BV-2 cells, which were treated with LPS (1 µg/mL) or PL (0.5 or 1.0 or 2.5 µM). Results from our behavioral tests showed that PL inhibited LPS-induced memory. PL also prevented LPS-induced beta-amyloid (Aβ) accumulation and inhibited the activities of β- and γ-secretases. The expression of inflammatory proteins also was decreased in PL-treated mice, cultured BV-2, and primary astrocyte cells. These effects were associated with the inhibition of NF-κB activity. A docking model analysis and pull-down assay showed that PL binds to p50. Taken together, our findings suggest that PL diminishes LPS-induced amyloidogenesis and neuroinflammation by inhibiting NF-κB signaling; PL therefore demonstrates potential for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Young Wan Ham
- Department of Chemistry, Utah Valley University, 800W University Pkwy, Orem, UT, 84058, USA
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Hoi Yeong Kim
- Department of Food Science and Technology, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong-eup, Jeungpyeong-gun, Chungbuk, 27909, Republic of Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- Department of Neuroimmunology, College of Pharmacy, Wonkwang University, 460 Iksan-daero, Iksan-si, Jeonbuk, 54538, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
47
|
Huang C, Irwin MG, Wong GTC, Chang RCC. Evidence of the impact of systemic inflammation on neuroinflammation from a non-bacterial endotoxin animal model. J Neuroinflammation 2018; 15:147. [PMID: 29776428 PMCID: PMC5960121 DOI: 10.1186/s12974-018-1163-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Systemic inflammation induces neuroinflammation and cellular changes such as tau phosphorylation to impair cognitive function, including learning and memory. This study uses a single model, laparotomy without any pathogen, to characterize these changes and their responses to anti-inflammatory treatment in the intermediate term. METHODS In a two-part experiment, wild-type C57BL/6N mice (male, 3 month old, 25 ± 2 g) were subjected to sevoflurane anesthesia alone or to a laparotomy. Cognitive performance, systemic and neuroinflammatory responses, and tau phosphorylation were evaluated on postoperative days (POD) 1, 3, and 14. The effect of perioperative ibuprofen intervention (60 mg/kg) on these changes was then assessed. RESULTS Mice in the laparotomy group displayed memory impairment up to POD 14 with initial high levels of inflammatory cytokines in the liver, frontal cortex (IL-1β, IL-6, and TNF-α), and hippocampus (IL-1β and IL-8). On POD 14, although most circulating and resident cytokine levels returned to normal, a significant number of microglia and astrocytes remained activated in the frontal cortex and microglia in the hippocampus, as well as abnormal tau phosphorylation in these two brain regions. Perioperative ibuprofen improved cognitive performance, attenuated systemic inflammation and glial activation, and suppressed the abnormal tau phosphorylation both in the frontal cortex and hippocampus. CONCLUSIONS Our results suggest that (1) cognitive dysfunction is associated with an unbalanced pro-inflammatory and anti-inflammatory response, tauopathy, and gliosis; (2) cognitive dysfunction, gliosis, and tauopathy following laparotomy can persist well beyond the immediate postoperative period; and (3) anti-inflammatory drugs can act rapidly to attenuate inflammatory responses in the brain and negatively modulate neuropathological changes to improve cognition. These findings may have implications for the duration of therapeutic strategies aimed at curtaining cognitive dysfunction following surgery.
Collapse
Affiliation(s)
- Chunxia Huang
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.,Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Room L4-49, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Michael Garnet Irwin
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China.
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Room L4-49, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
48
|
Punjasawadwong Y, Chau‐in W, Laopaiboon M, Punjasawadwong S, Pin‐on P. Processed electroencephalogram and evoked potential techniques for amelioration of postoperative delirium and cognitive dysfunction following non-cardiac and non-neurosurgical procedures in adults. Cochrane Database Syst Rev 2018; 5:CD011283. [PMID: 29761891 PMCID: PMC6494561 DOI: 10.1002/14651858.cd011283.pub2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Postoperative delirium (POD) and postoperative cognitive dysfunction (POCD) may complicate a patient's postoperative recovery in several ways. Monitoring of processed electroencephalogram (EEG) or evoked potential (EP) indices may prevent or minimize POD and POCD, probably through optimization of anaesthetic doses. OBJECTIVES To assess whether the use of processed EEG or auditory evoked potential (AEP) indices (bispectral index (BIS), narcotrend index, cerebral state index, state entropy and response entropy, patient state index, index of consciousness, A-line autoregressive index, and auditory evoked potentials (AEP index)) as guides to anaesthetic delivery can reduce the risk of POD and POCD in non-cardiac surgical or non-neurosurgical adult patients undergoing general anaesthesia compared with standard practice where only clinical signs are used. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase and clinical trial registry databases up to 28 March 2017. We updated this search in February 2018, but these results have not been incorporated in the review. SELECTION CRITERIA We included randomized or quasi-randomized controlled trials comparing any method of processed EEG or evoked potential techniques (entropy, BIS, AEP etc.) against a control group where clinical signs were used to guide doses of anaesthetics in adults aged 18 years or over undergoing general anaesthesia for non-cardiac or non-neurosurgical elective operations. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures expected by Cochrane. Our primary outcomes were: occurrence of POD; and occurrence of POCD. Secondary outcomes included: all-cause mortality; any postoperative complications; and postoperative length of stay. We used GRADE to assess the quality of evidence for each outcome. MAIN RESULTS We included six randomized controlled trials (RCTs) with 2929 participants comparing processed EEG or EP indices-guided anaesthesia with clinical signs-guided anaesthesia. There are five ongoing studies and one study awaiting classification.Anaesthesia administration guided by the indices from a processed EEG (bispectral index) probably reduces the risk of POD within seven days after surgery with risk ratio (RR) of 0.71 (95% CI 0.59 to 0.85; number needed to treat for an additional beneficial outcome (NNTB) of 17, 95% CI 11 to 34; 2197 participants; 3 RCTs; moderate quality of evidence). Three trials also showed the lower rate of POCD at 12 weeks after surgery (RR 0.71, 95% CI 0.53 to 0.96; NNTB 38, 95% CI 21 to 289; 2051 participants; moderate-quality evidence), but it is uncertain whether processed EEG indices reduce POCD at one week (RR 0.84, 95% CI 0.69 to 1.02; 3 trials; 1989 participants; moderate-quality evidence), and at 52 weeks (RR 0.30, 95% CI 0.05 to 1.80; 1 trial; 59 participants; very low quality of evidence). There may be little or no effect on all-cause mortality (RR 1.01, 95% CI 0.62 to 1.64; 1 trial; 1155 participants; low-quality evidence). One trial suggested a lower risk of any postoperative complications with processed EEG (RR 0.51, 95% CI 0.37 to 0.71; 902 participants, moderate-quality evidence). There may be little or no effect on reduced postoperative length of stay (mean difference -0.2 days, 95% CI -2.02 to 1.62; 1155 participants; low-quality evidence). AUTHORS' CONCLUSIONS There is moderate-quality evidence that optimized anaesthesia guided by processed EEG indices could reduce the risk of postoperative delirium in patients aged 60 years or over undergoing non-cardiac surgical and non-neurosurgical procedures. We found moderate-quality evidence that postoperative cognitive dysfunction at three months could be reduced in these patients. The effect on POCD at one week and over one year after surgery is uncertain. There are no data available for patients under 60 years. Further blinded randomized controlled trials are needed to elucidate strategies for the amelioration of postoperative delirium and postoperative cognitive dysfunction, and their consequences such as dementia (including Alzheimer's disease (AD)) in both non-elderly (below 60 years) and elderly (60 years or over) adult patients. The one study awaiting classification and five ongoing studies may alter the conclusions of the review once assessed.
Collapse
Affiliation(s)
- Yodying Punjasawadwong
- Chiang Mai UniversityDepartment of Anesthesiology, Faculty of MedicineChiang MaiThailand50200
| | - Waraporn Chau‐in
- Faculty of Medicine, Khon Kaen UniversityDepartment of Anesthesiology19‐32 Chuabchuen RoadKhon KaenThailand
| | - Malinee Laopaiboon
- Khon Kaen UniversityDepartment of Epidemiology and Biostatistics, Faculty of Public Health123 Mitraparb RoadAmphur MuangKhon KaenThailand40002
| | | | - Pathomporn Pin‐on
- Faculty of Medicine, Chiang Mai UniversityDepartment of AnesthesiologyChiang MaiThailand50200
| | | |
Collapse
|
49
|
Cheon SY, Koo BN. Postoperative cognitive dysfunction: advances based on pre-clinical studies. Anesth Pain Med (Seoul) 2018. [DOI: 10.17085/apm.2018.13.2.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- So Yeong Cheon
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Bon-Nyeo Koo
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Klinger RY, James OG, Borges-Neto S, Bisanar T, Li YJ, Qi W, Berger M, Terrando N, Newman MF, Doraiswamy PM, Mathew JP. 18F-florbetapir Positron Emission Tomography-determined Cerebral β-Amyloid Deposition and Neurocognitive Performance after Cardiac Surgery. Anesthesiology 2018; 128:728-744. [PMID: 29389750 PMCID: PMC5849499 DOI: 10.1097/aln.0000000000002103] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Amyloid deposition is a potential contributor to postoperative cognitive dysfunction. The authors hypothesized that 6-week global cortical amyloid burden, determined by F-florbetapir positron emission tomography, would be greater in those patients manifesting cognitive dysfunction at 6 weeks postoperatively. METHODS Amyloid deposition was evaluated in cardiac surgical patients at 6 weeks (n = 40) and 1 yr (n = 12); neurocognitive function was assessed at baseline (n = 40), 6 weeks (n = 37), 1 yr (n = 13), and 3 yr (n = 9). The association of 6-week amyloid deposition with cognitive dysfunction was assessed by multivariable regression, accounting for age, years of education, and baseline cognition. Differences between the surgical cohort with cognitive deficit and the Alzheimer's Disease Neuroimaging Initiative cohorts (normal and early/late mild cognitive impairment) was assessed, adjusting for age, education, and apolipoprotein E4 genotype. RESULTS The authors found that 6-week abnormal global cortical amyloid deposition was not associated with cognitive dysfunction (13 of 37, 35%) at 6 weeks postoperatively (median standard uptake value ratio [interquartile range]: cognitive dysfunction 0.92 [0.89 to 1.07] vs. 0.98 [0.93 to 1.05]; P = 0.455). In post hoc analyses, global cortical amyloid was also not associated with cognitive dysfunction at 1 or 3 yr postoperatively. Amyloid deposition at 6 weeks in the surgical cohort was not different from that in normal Alzheimer's Disease Neuroimaging Initiative subjects, but increased over 1 yr in many areas at a rate greater than in controls. CONCLUSIONS In this study, postoperative cognitive dysfunction was not associated with 6-week cortical amyloid deposition. The relationship between cognitive dysfunction and regional amyloid burden and the rate of postoperative amyloid deposition merit further investigation.
Collapse
Affiliation(s)
| | - Olga G. James
- Department of Radiology, Duke University, Durham, NC
| | | | | | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | - Wenjing Qi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | - Miles Berger
- Department of Anesthesiology, Duke University, Durham, NC
| | | | - Mark F. Newman
- Department of Anesthesiology, Duke University, Durham, NC
| | | | | | | | | |
Collapse
|