1
|
Zhu YW, Liu ZT, Tang AQ, Liang XY, Wang Y, Liu YF, Jin YQ, Gao W, Yuan H, Wang DY, Ji XY, Wu DD. The Emerging Roles of Hydrogen Sulfide in Ferroptosis. Antioxid Redox Signal 2024; 41:1150-1172. [PMID: 39041626 DOI: 10.1089/ars.2023.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Significance: Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H2S) in ferroptosis has emerged at the forefront of research. Recent Advances: Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H2S inhibition of ferroptosis. Safe, effective, and tolerable novel H2S donors have been developed and have shown promising results in phase I clinical trials. Critical Issues: Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H2S is still a challenging task. Future Directions: Discovering more reliable and stable novel H2S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H2S, determining their safety, efficacy, and tolerance. Antioxid. Redox Signal. 41, 1150-1172.
Collapse
Affiliation(s)
- Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Zi-Tao Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
| | - Da-Yong Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, China
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Xing P, Zhou M, Sun J, Wang D, Huang W, An P. NAT10-mediated ac 4C acetylation of TFRC promotes sepsis-induced pulmonary injury through regulating ferroptosis. Mol Med 2024; 30:140. [PMID: 39251905 PMCID: PMC11382515 DOI: 10.1186/s10020-024-00912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Sepsis-induced pulmonary injury (SPI) is a common complication of sepsis with a high rate of mortality. N4-acetylcytidine (ac4C) is mediated by the ac4C "writer", N-acetyltransferase (NAT)10, to regulate the stabilization of mRNA. This study aimed to investigate the role of NAT10 in SPI and the underlying mechanism. METHODS Twenty-three acute respiratory distress syndrome (ARDS) patients and 27 non-ARDS volunteers were recruited. A sepsis rat model was established. Reverse transcription-quantitative polymerase chain reaction was used to detect the expression of NAT10 and transferrin receptor (TFRC). Cell viability was detected by cell counting kit-8. The levels of Fe2+, glutathione, and malondialdehyde were assessed by commercial kits. Lipid reactive oxygen species production was measured by flow cytometric analysis. Western blot was used to detect ferroptosis-related protein levels. Haematoxylin & eosin staining was performed to observe the pulmonary pathological symptoms. RESULTS The results showed that NAT10 was increased in ARDS patients and lipopolysaccharide-treated human lung microvascular endothelial cell line-5a (HULEC-5a) cells. NAT10 inhibition increased cell viability and decreased ferroptosis in HULEC-5a cells. TFRC was a downstream regulatory target of NAT10-mediated ac4C acetylation. Overexpression of TFRC decreased cell viability and promoted ferroptosis. In in vivo study, NAT10 inhibition alleviated SPI. CONCLUSION NAT10-mediated ac4C acetylation of TFRC aggravated SPI through promoting ferroptosis.
Collapse
Affiliation(s)
- Pengcheng Xing
- Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 222, West Three Road Aroud Lake, Nanhui New Town, Pudong New Area, Shanghai, 201306, China
| | - Minjie Zhou
- Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 222, West Three Road Aroud Lake, Nanhui New Town, Pudong New Area, Shanghai, 201306, China
| | - Jian Sun
- Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 222, West Three Road Aroud Lake, Nanhui New Town, Pudong New Area, Shanghai, 201306, China
| | - Donglian Wang
- Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 222, West Three Road Aroud Lake, Nanhui New Town, Pudong New Area, Shanghai, 201306, China
| | - Weipeng Huang
- Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 222, West Three Road Aroud Lake, Nanhui New Town, Pudong New Area, Shanghai, 201306, China
| | - Peng An
- Department of Emergency and Intensive Care Unit, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 222, West Three Road Aroud Lake, Nanhui New Town, Pudong New Area, Shanghai, 201306, China.
| |
Collapse
|
3
|
Zhang X, Wang H, Cai X, Zhang A, Liu E, Li Z, Jiang T, Li D, Ding W. α7nAChR Activation Combined with Endothelial Progenitor Cell Transplantation Attenuates Lung Injury in Diabetic Rats with Sepsis through the NF-κB Pathway. Inflammation 2024; 47:1344-1355. [PMID: 38302679 DOI: 10.1007/s10753-024-01980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Chronic diabetes mellitus compromises the vascular system, which causes organ injury, including in the lung. Due to the strong compensatory ability of the lung, patients always exhibit subclinical symptoms. Once sepsis occurs, the degree of lung injury is more severe under hyperglycemic conditions. The α7 nicotinic acetylcholine receptor (α7nAChR) plays an important role in regulating inflammation and metabolism and can improve endothelial progenitor cell (EPC) functions. In the present study, lung injury caused by sepsis was compared between diabetic rats and normal rats. We also examined whether α7nAChR activation combined with EPC transplantation could ameliorate lung injury in diabetic sepsis rats. A type 2 diabetic model was induced in rats via a high-fat diet and streptozotocin. Then, a rat model of septic lung injury was established by intraperitoneal injection combined with endotracheal instillation of LPS. The oxygenation indices, wet-to-dry ratios, and histopathological scores of the lungs were tested after PNU282987 treatment and EPC transplantation. IL-6, IL-8, TNF-α, and IL-10 levels were measured. Caspase-3, Bax, Bcl-2, and phosphorylated NF-κB (p-NF-κB) levels were determined by blotting. Sepsis causes obvious lung injury, which is exacerbated by diabetic conditions. α7nAChR activation and endothelial progenitor cell transplantation reduced lung injury in diabetic sepsis rats, alleviating inflammation and decreasing apoptosis. This treatment was more effective when PNU282987 and endothelial progenitor cells were administered together. p-NF-κB levels decreased following treatment with PNU282987 and EPCs. In conclusion, α7nAChR activation combined with EPC transplantation can alleviate lung injury in diabetic sepsis rats through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Haixu Wang
- Department of Anesthesiology, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xuemin Cai
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Aijia Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Enran Liu
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Zhiyuan Li
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Tao Jiang
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Dongmei Li
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China
| | - Wengang Ding
- Department of Anesthesiology, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
4
|
Yu W, Yang M, Lv B, Yu Y, Zhu W. CD40L-Activated DC Promotes Th17 Differentiation and Inhibits Th2 Differentiation in Sepsis-Induced Lung Injury via cGAS-STING Signaling. Biochem Genet 2024:10.1007/s10528-024-10835-0. [PMID: 38802692 DOI: 10.1007/s10528-024-10835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Immune hemostasis due to an infection plays a vital role in sepsis-induced multiple organ dysfunction. Dendritic cells (DC) and T helper (Th) cells are the key members of the immune system maintaining immune homeostasis. This study aimed to explore the effect and mechanism of CD40L on the activation of DC and activated DC-induced Th2/Th17 differentiation. A CD40L knockout and cecal ligation and puncture (CLP) mouse model was established via cecal ligation. HE staining was used to evaluate the pathological changes. The gene expressions were studied using quantitative real-time polymerase chain reaction (qRT-PCR), while a transwell system was used to perform the co-culture of DC and T-cells. Flow cytometry was performed to detect the subtype of T and DC cells. ELISA was used to assess the amount of inflammatory factors. CD40L was highly expressed in the plasma of CLP mice. Knock out of CD40L inhibited the activation of DC cell and Th17 differentiation while promoting the Th2 differentiation. The mechanistic investigations revealed that CD40L promoted the activation of cGAS-STING pathway. Rescue experiments indicated that CD40L mediated DC activation via cGAS-STING signaling. Moreover, co-culturing of CD and CD+4 T-cells demonstrated that silencing of CD40L in DC suppressed the DC activation and inhibited Th17 differentiation while promoting Th2 differentiation. These findings revealed a relationship between CD40L, DC activation, and Th2/Th17 differentiation balance in sepsis-induced acute lung injury for the first time. These findings are envisaged to provide novel molecular targets for sepsis-induced lung injury treatment.
Collapse
Affiliation(s)
- Weijie Yu
- Department of Paediatrics, Jiaxing Second Hospital, No.1518, Huancheng North Road, Nanhu District, Jiaxing, 314000, Zhejiang, China
| | - Minling Yang
- Department of Paediatrics, Jiaxing Second Hospital, No.1518, Huancheng North Road, Nanhu District, Jiaxing, 314000, Zhejiang, China
| | - Binwang Lv
- Department of Paediatrics, Jiaxing Second Hospital, No.1518, Huancheng North Road, Nanhu District, Jiaxing, 314000, Zhejiang, China
| | - Yixue Yu
- Department of Paediatrics, Jiaxing Second Hospital, No.1518, Huancheng North Road, Nanhu District, Jiaxing, 314000, Zhejiang, China
| | - Wen Zhu
- Department of Paediatrics, Jiaxing Second Hospital, No.1518, Huancheng North Road, Nanhu District, Jiaxing, 314000, Zhejiang, China.
| |
Collapse
|
5
|
Han M, Liu H, Liu G, Li X, Zhou L, Liu Y, Dou T, Yang S, Tang W, Wang Y, Li L, Ding H, Liu Z, Wang J, Chen X. Mogroside V alleviates inflammation response by modulating miR-21-5P/SPRY1 axis. Food Funct 2024; 15:1909-1922. [PMID: 38258992 DOI: 10.1039/d3fo01901b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mogroside V (MV) is a natural sweetener extracted from the edible plant Siraitia grosvenorii that possesses anti-inflammatory bioactivity. It has been reported that microRNAs (miRNAs) play an important role in the inflammation response suppression by natural agents. However, whether the anti-inflammation effect of mogroside V is related to miRNAs and the underlying mechanism remains unclear. Our study aimed to identify the key miRNAs important for the anti-inflammation effect of MV and reveal its underlying mechanisms. Our results showed that MV effectively alleviated lung inflammation in ovalbumin-induced (OVA-induced) asthmatic mice. miRNA-seq and mRNA-seq combined analysis identified miR-21-5p as an important miRNA for the inflammation inhibition effect of MV and it predicted SPRY1 to be a target gene of miR-21-5p. We found that MV significantly inhibited the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), and nitric oxide (NO), as well as the protein expression of p-P65/P65, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in OVA-induced asthmatic mice and LPS-treated RAW 264.7 cells. Moreover, the release of ROS increased in LPS-stimulated RAW 264.7 cells but was mitigated by MV pretreatment. In the meantime, the expression of miR-21-5p was decreased by MV, leading to an increase in the expression of SPRY1 in RAW 264.7 cells. Furthermore, miR-21-5p overexpression or SPRY1 knockdown reversed MV's protective effect on inflammatory responses. Conversely, miR-21-5p inhibition or SPRY1 overexpression enhanced MV's effect on inflammatory responses in LPS-exposed RAW 264.7 cells. Therefore, the significant protective effect of mogroside V on inflammation response is related to the downregulation of miR-21-5p and upregulation of SPRY1 in vitro and in vivo, MiR-21-5p/SPRY1 may be novel therapeutic targets of MV for anti-inflammation treatment.
Collapse
Affiliation(s)
- Mengjie Han
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Haiping Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, P.R. China
| | - Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Tong Dou
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, P.R. China
| | - Sijie Yang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Wei Tang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Yan Wang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Linjun Li
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Hongfang Ding
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Zhangchi Liu
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| | - Juan Wang
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, 541001, P.R. China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
- Faculty of Basic Medicine, Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin 541199, P.R. China.
| |
Collapse
|
6
|
Kaur J, Rana P, Matta T, Sodhi RK, Pathania K, Pawar SV, Kuhad A, Kondepudi KK, Kaur T, Dhingra N, Sah SP. Protective effect of olopatadine hydrochloride against LPS-induced acute lung injury: via targeting NF-κB signaling pathway. Inflammopharmacology 2024; 32:603-627. [PMID: 37847473 DOI: 10.1007/s10787-023-01353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Morbidity and mortality rates associated with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are high (30-40%). Nuclear factor-kappa B (NF-κB) is a transcription factor, associated with transcription of numerous cytokines leading to cytokine storm, and thereby, plays a major role in ALI/ARDS and in advanced COVID-19 syndrome. METHODS Considering the role of NF-κB in ALI, cost-effective in silico approaches were utilized in the study to identify potential NF-κB inhibitor based on the docking and pharmacokinetic results. The identified compound was then pharmacologically validated in lipopolysaccharide (LPS) rodent model of acute lung injury. LPS induces ALI by altering alveolar membrane permeability, recruiting activated neutrophils and macrophages to the lungs, and compromising the alveolar membrane integrity and ultimately impairs the gaseous exchange. Furthermore, LPS exposure is associated with exaggerated production of various proinflammatory cytokines in lungs. RESULTS Based on in silico studies Olopatadine Hydrochloride (Olo), an FDA-approved drug was found as a potential NF-κB inhibitor which has been reported for the first time, and considered further for the pharmacological validation. Intraperitoneal LPS administration resulted in ALI/ARDS by fulfilling 3 out of the 4 criteria described by ATS committee (2011) published workshop report. However, treatment with Olo attenuated LPS-induced elevation of proinflammatory markers (IL-6 and NF-κB), oxidative stress, neutrophil infiltration, edema, and damage in lungs. Histopathological studies also revealed that Olo treatment significantly ameliorated LPS-induced lung injury, thus conferring improvement in survival. Especially, the effects produced by Olo medium dose (1 mg/kg) were comparable to dexamethasone standard. CONCLUSION In nutshell, inhibition of NF-κB pathway by Olo resulted in protection and reduced mortality in LPS- induced ALI and thus has potential to be used clinically to arrest disease progression in ALI/ARDS, since the drug is already in the market. However, the findings warrant further extensive studies, and also future studies can be planned to elucidate its role in COVID-19-associated ARDS or cytokine storm.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Priyanka Rana
- Pharmaceutical Chemistry Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Tushar Matta
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
- Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Rupinder Kaur Sodhi
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Khushboo Pathania
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Sandip V Pawar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Kanthi Kiran Kondepudi
- Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Neelima Dhingra
- Pharmaceutical Chemistry Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
7
|
Eloutify YT, El-Shiekh RA, Ibrahim KM, Hamed AR, Al-Karmalawy AA, Shokry AA, Ahmed YH, Avula B, Katragunta K, Khan IA, Meselhy MR. Bioactive fraction from Plumeria obtusa L. attenuates LPS-induced acute lung injury in mice and inflammation in RAW 264.7 macrophages: LC/QToF-MS and molecular docking. Inflammopharmacology 2023; 31:859-875. [PMID: 36773191 PMCID: PMC10140140 DOI: 10.1007/s10787-023-01144-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/26/2022] [Indexed: 02/12/2023]
Abstract
In this study, the anti-inflammatory effects of the methanolic extract (TE) of Plumeria obtusa L. (aerial parts) and its fractions were evaluated in vitro, and active fraction was evaluated in vivo. Among tested extracts, dichloromethane fraction (DCM-F) exhibited the strongest inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) in RAW 264.7 macrophages. The effect of DCM-F on LPS-induced acute lung injury (ALI) in mice was studied. The animals were divided into five groups (n = 7) randomly; Gp I: negative control, GP II: positive control (LPS group), GP III: standard (dexamethasone, 2 mg/kg b.wt), GP IV and V: DCM-F (100 mg/kg), and DEM-F (200 mg/kg), respectively. DCM-F at a dose of 200 mg/kg suppressed the ability of LPS to increase the levels of nitric oxide synthase (iNOS), NO, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), as measured by ELISA. In addition, the expression of cyclooxygenase-2 (COX-2) was reduced (determined by immunohistochemistry) and the level of malondialdehyde (MDA) was decreased while that of catalase was restored to the normal values. Furthermore, the histopathological scores of inflammation induced by LPS were reduced. Twenty-two compounds were tentatively identified in DCM-F using LC/ESI-QToF with iridoids, phenolic derivatives and flavonoids as major constituents. Identified compounds were subjected to two different molecular docking processes against iNOS and prostaglandin E synthase-1 target receptors. Notably, protoplumericin A and 13-O-coumaroyl plumeride were the most promising members compared to the co-crystallized inhibitor in each case. These findings suggested that DCM-F attenuates the LPS-induced ALI in experimental animals through its anti-inflammatory and antioxidant potential.
Collapse
Affiliation(s)
- Yousra T Eloutify
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
| | - Khaled Meselhy Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department and Biology Unit, Central Lab for the Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St, Giza, 12622, Dokki, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Aya A Shokry
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Kumar Katragunta
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.,Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Meselhy R Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
8
|
Rahimi A, Alimohammadi M, Faramarzi F, Alizadeh-Navaei R, Rafiei A. The effects of apigenin administration on the inhibition of inflammatory responses and oxidative stress in the lung injury models: a systematic review and meta-analysis of preclinical evidence. Inflammopharmacology 2022; 30:1259-1276. [PMID: 35661071 DOI: 10.1007/s10787-022-00994-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND/OBJECTIVE Apigenin is a member of the flavonoid family that can regulate various biological processes, which is characterized as a treatment of different inflammatory disorders and pathological problems associated with oxidative stress (OS). Recent research has focused on apigenin immunomodulatory properties as a potential treatment for different types of lung injuries. This meta-analysis was designed to determine the impact of apigenin treatment on inflammatory markers and OS parameters in animal models of lung injuries. METHODS The comprehensive literature search was conducted using electronic databases such as Google Scholar, PubMed, Web of Science, Scopus, and Embase up to August 2021. To assess apigenin's effect on inflammatory mediators and OS biomarkers in lung injury animal models, we used the I2 statistic to determine the heterogeneity. We then pooled data as standardized mean difference (SMD) with a 95% confidence interval (CI). RESULTS Our meta-analysis of the pooled data for inflammatory biomarkers demonstrated that the apigenin administration significantly decreased the NF-κB expression (SMD - 1.60, 95% CI [- 2.93 to - 0.26]; I2 = 89.0%, p < 0.001), IL-1β (SMD - 4.30, 95% CI [- 6.24 to - 2.37]; I2 = 67.3%, p = 0.047), IL-6 (SMD - 4.10, 95% CI [- 5.04 to - 3.16]; I2 = 72.6%, p < 0.001), TNF-α (SMD - 3.74, 95% CI [- 4.67 to - 2.82]; I2 = 84.1%, p < 0.001), and TNF-α gene expression (SMD - 3.44, 95% CI [- 4.44 to - 2.43]; I2 = 0.0%, p = 0.622). This study also indicated the efficacy of apigenin in increasing the level of CAT (SMD 4.56, 95% CI [3.57 to 5.55]; I2 = 15.3%, p = 3.15), GSH (SMD 5.12, 95% CI [3.53 to 6.70]; I2 = 77.6%, p < 0.001), and SOD (SMD 3.45, 95% CI [2.50 to 4.40]; I2 = 79.2%, p < 0.001), and decreasing the level of MDA (SMD - 3.87, 95% CI [- 5.25 to - 2.49]; I2 = 80.3%, p < 0.001) and MPO (SMD - 4.02, 95% CI [- 5.64 to - 2.40]; I2 = 88.9%, p < 0.001), TGF- β (SMD - 3.81, 95% CI [- 4.91 to - 2.70]; I2 = 73.4%, p = 0.001) and W/D level (SMD - 3.22, 95% CI [- 4.47 to - 1.97]; I2 = 82.1%, p < 0.001) than control groups. CONCLUSION Overall, our findings showed the immunomodulatory potential of apigenin as an alternative treatment for the suppression of inflammatory responses and OS in different types of lung injury diseases. Nevertheless, due to the paucity of clinical studies, reliable preclinical models, and clinical settings, evaluating the influence of apigenin on lung injury is required in the future. Before conducting large-scale clinical trials, detailed human pharmacokinetic studies are also needed to establish dosage ranges and determine the initial safety and tolerability of apigenin.
Collapse
Affiliation(s)
- Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Satilmis B, Cicek GS, Cicek E, Akbulut S, Sahin TT, Yilmaz S. Adipose-derived stem cells in the treatment of hepatobiliary diseases and sepsis. World J Clin Cases 2022; 10:4348-4356. [PMID: 35663078 PMCID: PMC9125284 DOI: 10.12998/wjcc.v10.i14.4348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Determination of the mesenchymal stem cells is one of the greatest and most exciting achievements that tissue engineering and regenerative medicine have achieved. Adipose-derived mesenchymal stem cells (AD-MSC) are easily isolated and cultured for a long time before losing their stem cell characteristics, which are self-renewal and pluripotency. AD-MSC are mesenchymal stem cells that have pluripotent lineage characteristics. They are easily accessible, and the fraction of stem cells in the adipose tissue lysates is highest among all other sources of mesenchymal stem cells. It is also HLA-DR negative and can be transplanted allogenically without the need for immunosuppression. These advantages have popularized its use in many fields including plastic reconstructive surgery. However, in the field of hepatology and liver transplantation, the progress is slower. AD-MSC have the potential to modulate inflammation, ameliorate ischemia-reperfusion injury, and support liver and biliary tract regeneration. These are very important for the treatment of various hepatobiliary diseases. Furthermore, the anti-inflammatory potential of these cells has paramount importance in the treatment of sepsis. We need alternative therapeutic approaches to treat end-stage liver failure. AD-MSC can provide a means of therapy to bridge to definitive therapeutic alternatives such as liver transplantation. Here we propose to review theoretic applications of AD-MSC in the treatment of hepatobiliary diseases and sepsis.
Collapse
Affiliation(s)
- Basri Satilmis
- Hepatology Research Laboratory, Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
- Department of Biochemistry, Faculty of Pharmacy, Inonu University, Malatya 44000, Battalgazi, Turkey
| | - Gizem Selen Cicek
- Department of Anesthesiology and Reanimation, Malatya Training and Research Hospital, Malatya 44000, Yesilyurt, Turkey
| | - Egemen Cicek
- Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
| | - Sami Akbulut
- Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
| | - Tevfik Tolga Sahin
- Hepatology Research Laboratory, Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
- Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
| | - Sezai Yilmaz
- Hepatology Research Laboratory, Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
- Liver Transplant Institute, Inonu University, Malatya 44000, Battalgazi, Turkey
| |
Collapse
|
10
|
Shokry AA, El-Shiekh RA, Kamel G, Bakr AF, Ramadan A. Bioactive phenolics fraction of Hedera helix L. (Common Ivy Leaf) standardized extract ameliorates LPS-induced acute lung injury in the mouse model through the inhibition of proinflammatory cytokines and oxidative stress. Heliyon 2022; 8:e09477. [PMID: 35647334 PMCID: PMC9130539 DOI: 10.1016/j.heliyon.2022.e09477] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/06/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Hedera helix L. (family Araliaceae) is classified as a conventional plant used as a medicinal product in the cure and prevention of upper respiratory tract inflammation and infection due to its secretolytic and broncholytic effects. Our research was conducted to authenticate the anti-inflammatory effect of ivy leaves extract in the prevention of acute lung injury (ALI) caused by intranasal administration of lipopolysaccharides (LPS). In-vitro antimicrobial, anti-inflammatory, and anti-oxidant were evaluated, in addition to the in-vivo acute lung inflammation model induced by LPS in mice. The animals were divided into seven groups randomly (each group containing 10 mice): control negative (saline only), control positive (LPS group), standard (Dexamethasone 2 mg/kg), ethanolic ivy leaves extract (EIE, 100 mg/kg), ethanolic ivy leaves extract (EIE, 200 mg/kg), saponin rich fraction (SRF, 100 mg/kg) and phenolic rich fraction (PRF, 100 mg/kg). Right lungs were homogenized to determine the levels of SOD, MDA, catalase, IL-10, TNF-α, NO, IL-1β, IL-6, PGE2, and MPO. Left lungs were excised for histopathology and histomorphometry. Immunohistochemistry of Cox-2 and TNF-α levels were measured. Additionally, Western blotting was used to determine the levels of phosphorylated MAPK. Also, the ethanolic extract was also standardized through HPLC analysis for its content of rutin.The data showed that the oral supplementation with EIE, 200 mg/kg significantly (P < 0.05) decreased the pro-inflammatory mediators, and oxidative stress biomarkers induced by LPS. Interestingly, the phenolics showed promising activity, therefore they are responsible for the action. In conclusion, the standardized ivy leaf extract could be advised for acute lung injury for its antimicrobial, anti-oxidant, and anti-inflammatory activities. Ivy leaf is a traditional perennial edible herb used as an anti-inflammatory agent for respiratory disorders. The plant significantly reduced the serum oxidative stress biomarkers and inflammatory cytokines in the in-vivo acute lung inflammation model induced by LPS. Also, it had antimicrobial activity. Phenolics not saponins are responsible for the activity of the plant.
Collapse
Affiliation(s)
- Aya A. Shokry
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
- Corresponding author.
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Gehan Kamel
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Alaa F. Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amer Ramadan
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
- Corresponding author.
| |
Collapse
|
11
|
Zhao Y, Pu M, Zhang J, Wang Y, Yan X, Yu L, He Z. Recent advancements of nanomaterial-based therapeutic strategies toward sepsis: bacterial eradication, anti-inflammation, and immunomodulation. NANOSCALE 2021; 13:10726-10747. [PMID: 34165483 DOI: 10.1039/d1nr02706a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sepsis is a life threatening disease that is caused by a dysregulated host immune response to infection, resulting in tissue damage and organ dysfunction, which account for a high in-hospital mortality (approximately 20%). However, there are still no effective and specific therapeutics for clinical sepsis management. Nanomaterial-based strategies have emerged as promising tools for improving the therapeutic efficacy of sepsis by combating lethal bacterial infection, modulating systemic inflammatory response, preventing multiple organ failure, etc. This review has comprehensively summarized the recent advancements in nanomaterial-based strategies for the management of sepsis and severe complications, in which those nanosystems act either as inherent therapeutics or as nanocarriers for the precise delivery of agents. These formulations mechanically possess antibacterial, anti-inflammatory, immunomodulatory, and anti-oxidative effects, achieving multifunctional synergistic treatment efficacy against sepsis. Furthermore, several cell membrane-derived biomimetic nanoplatforms have been used as decoys to trap and neutralize the pathogenic toxins. The critical role of other adjuvant therapies in sepsis management, including the combination of nanotechnology and stem cell therapy, is also highlighted. Overall, this review provides insights into innovative nanotechnology-based strategies applied in sepsis treatment.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Minju Pu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Jingwen Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| |
Collapse
|
12
|
Sadeghian Chaleshtori S, Mokhber Dezfouli MR, Abbasi J, Dehghan MM, Jabbari Fakhr M, Yadollahi S, Mirabad MM. Prevention of LPS-induced acute respiratory distress syndrome in sheep by bone marrow-derived mesenchymal stem/stromal cells. Life Sci 2020; 263:118600. [PMID: 33068598 DOI: 10.1016/j.lfs.2020.118600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
MATERIALS AND METHODS In this study, 10 male Shall sheep were used in two groups and bone marrow samples were collected and BM-MSCs isolated. Then experimental model of ARDS was induced by intrapulmonary injection of LPS to dose of 400 μg/kg. Twenty-four hours after LPS injection, 5 × 107 cells of BM-MSCs were autologous transferred in the group of treatment and 1 ml PBS was infused in the group of control as intrapulmonary. Then, the symptoms of clinical, complete blood count, analysis of arterial blood gases and the concentrations of IL6,IL10,TNF-α,total protein, Ig M and albumin BAL were determined before and at times of 3,6,12,24,48,72, and 168 after transplantation/infusion. KEY FINDINGS The results of the investigations 24 h post-LPS injection(time 0) indicated the occurrence of acute inflammation which confirmed ARDS model. These changes included increase in RR, HR and RT, decrease in PO2 and SatO2 and increase in PCO2, WBC, neutrophils, macrophages, total protein,IL6,IL10, TNF-α,Ig M and albumin. But the stem/stromal cells transplantation reduced the severity of clinical signs induced by LPS, caused significant increase in PO2, SatO2 and IL-10 and significant decrease in PCO2, the total protein, TNF-α,IL-6, Ig M, albumin, WBCs, neutrophils and macrophages at different times of sampling both in compared with before transplantation(time 0) and in compared with the group of control. While in the control group, inflammation continued until the end of the study. SIGNIFICANCE These results showed that BM-MSCs are able to reduce inflammation and have an important role in reconstruction of the damaged lung.
Collapse
Affiliation(s)
- Sirous Sadeghian Chaleshtori
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Mokhber Dezfouli
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran.
| | - Javad Abbasi
- Graduate of Residency in Large Animal Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Massoumeh Jabbari Fakhr
- Department of Tissue Engineering, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Shokufeh Yadollahi
- Graduated in Doctorate of Veterinary Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Mirabad
- Graduate of Residency in Large Animal Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Zhang K, Gao Y, Deng Y, Zhou X, Zhu C, He Z, Lv D. Studies on the effects of bone marrow stem cells on mitochondrial function and the alleviation of ARDS. Mol Cell Biochem 2020; 476:93-107. [PMID: 32845436 PMCID: PMC7447610 DOI: 10.1007/s11010-020-03888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) can alleviate acute respiratory distress syndrome (ARDS), but the mechanisms involved are unclear, especially about their specific effects on cellular mitochondrial respiratory function. Thirty mice were allocated into the Control, LPS, and LPS + Bone marrow mesenchymal stem cell (BMSC) group (n = 10/group). Mouse alveolar epithelial cells (MLE-12) and macrophage cells (RAW264.7) were divided into the same groups. Pathological variation, inflammation-related factors, reactive oxygen species (ROS), ATP levels, and oxygen consumption rate (OCR) were analyzed. Pathologic features of ARDS were observed in the LPS group and were significantly alleviated by BMSCs. The trend in inflammation-related factors among the three groups was the LPS group > LPS + BMSC group > Control group. In the MLE-12 co-culture system, IL-6 was increased in the LPS group but not significantly reduced in the LPS + BMSC group. In the RAW264.7 co-culture system, IL-1β, TNF-α, and IL-10 levels were all increased in the LPS group, IL-1β and TNF-α levels were reduced by BMSCs, while IL-10 level kept increasing. ROS and ATP levels were increased and decreased respectively in both MLE-12 and RAW264.7 cells in the LPS groups but reversed by BMSCs. Basal OCR, ATP-linked OCR, and maximal OCR were lower in the LPS groups. Impaired basal OCR and ATP-linked OCR in MLE-12 cells were partially restored by BMSCs, while impaired basal OCR and maximal OCR in RAW264.7 cells were restored by BMSCs. BMSCs improved the mitochondrial respiration dysfunction of macrophages and alveolar epithelial cells induced by LPS, alleviated lung tissue injury, and inflammatory response in a mouse model of ARDS.
Collapse
Affiliation(s)
- Keji Zhang
- Department of Emergency, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yuxiao Deng
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xiao Zhou
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Changqing Zhu
- Department of Emergency, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dan Lv
- Department of Emergency, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
14
|
Martin GS, Kempker JA. A Brief History of Time, As It Relates to ARDS. Semin Respir Crit Care Med 2019; 40:1-2. [PMID: 31060082 DOI: 10.1055/s-0039-1685211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Greg S Martin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia.,Grady Health System, Atlanta, Georgia
| | - Jordan A Kempker
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia.,Grady Health System, Atlanta, Georgia
| |
Collapse
|
15
|
Liu Y, Wang Y, Song X, Dong L, Wang W, Wu H. P38 mitogen-activated protein kinase inhibition attenuates mechanical stress induced lung injury via up-regulating AQP5 expression in rats. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1590159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Yuelan Wang
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Xiumei Song
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Ling Dong
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Wei Wang
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| | - Hongchao Wu
- Department of Anesthesiology, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
16
|
Mesenchymal stem cells preconditioned by staphylococcal enterotoxin B enhance survival and bacterial clearance in murine sepsis model. Cytotherapy 2018; 21:41-53. [PMID: 30477894 DOI: 10.1016/j.jcyt.2018.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 01/08/2023]
Abstract
Sepsis, a health-threatening progressive infectious disease, is the major cause of morbidity and mortality worldwide. Cell therapy using mesenchymal stromal cells (MSCs) is an innovative strategy with excessive therapeutic potential in the treatment of sepsis. Staphylococcal enterotoxin B (SEB) preconditioning aims to prolong the interval of survival of transplanted MSCs which induces the production of cytoprotective agents, anti-apoptotic and anti-inflammatory factors. The MSCs were preconditioned with an optimum dose of SEB (470 μmol/L). The expression levels of apoptosis genes and antibacterial activity of MSC and SEB-MSC and their conditioned medium (CM), as well as cell survival, were studied in vitro in an oxidative stress and serum deprivation condition. Following treatment of the septic mice with MSCs and SEB-MSCs, pro/anti-inflammatory cytokines, hematological factors, bacterial clearance and animal survival were assessed. The apoptotic and pro-inflammatory cytokine's genes expression was down-regulated while antibacterial peptides and anti-inflammatory cytokines were up-regulated in SEB-MSC-treated mice. The animal survival rates were improved; bacterial clearance was enhanced in the peritoneal fluids, blood and organs; aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were reduced in blood, compared with saline and MSCs alone. This research concludes that transplantation of SEB-MSCs presents improved therapeutic effects on a live bacterial model of sepsis.
Collapse
|
17
|
Quintans JSS, Shanmugam S, Heimfarth L, Araújo AAS, Almeida JRGDS, Picot L, Quintans-Júnior LJ. Monoterpenes modulating cytokines - A review. Food Chem Toxicol 2018; 123:233-257. [PMID: 30389585 DOI: 10.1016/j.fct.2018.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory response can be driven by cytokine production and is a pivotal target in the management of inflammatory diseases. Monoterpenes have shown that promising profile as agents which reduce the inflammatory process and also modulate the key chemical mediators of inflammation, such as pro and anti-inflammatory cytokines. The main interest focused on monoterpenes were to develop the analgesic and anti-inflammatory drugs. In this review, we summarized current knowledge on monoterpenes that produce anti-inflammatory effects by modulating the release of cytokines, as well as suggesting that which monoterpenoid molecules may be most effective in the treatment of inflammatory disease. Several different inflammatory markers were evaluated as a target of monoterpenes. The proinflammatory and anti-inflammatory cytokines were found TNF-α, IL-1β, IL-2, IL-5, IL-4, IL-6, IL-8, IL-10, IL-12 IL-13, IL-17A, IFNγ, TGF-β1 and IFN-γ. Our review found evidence that NF-κB and MAPK signaling are important pathways for the anti-inflammatory action of monoterpenes. We found 24 monoterpenes that modulate the production of cytokines, which appears to be the major pharmacological mechanism these compounds possess in relation to the attenuation of inflammatory response. Despite the compelling evidence supporting the anti-inflammatory effect of monoterpenes, further studies are necessary to fully explore their potential as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Saravanan Shanmugam
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Jackson R G da S Almeida
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
18
|
Induced Pluripotent Stem Cell-Derived Hematopoietic Embryoid Bodies Secrete Sphingosine-1-Phosphate and Revert Endothelial Injury. Bull Exp Biol Med 2018; 164:775-779. [PMID: 29658075 DOI: 10.1007/s10517-018-4078-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 10/17/2022]
Abstract
The possibility of sphingosine-1-phosphate production by induced pluripotent stem cells is examined to assess their potential in treatment of sepsis. The hematopoietic embryoid bodies were derived from the culture of 6-day-old differentiated induced pluripotent stem cells. These embryoid bodies secreted sphingosine-1-phosphate, an important bioactive lipid that regulates integrity of the pulmonary endothelial barrier, prevents elevation of its permeability, and impedes the formation of stress fibers in human endotheliocytes derived from umbilical vein. The data attest to potentiality of induced pluripotent stem cells in treatment of sepsis.
Collapse
|
19
|
Sun LC, Zhang HB, Gu CD, Guo SD, Li G, Lian R, Yao Y, Zhang GQ. Protective effect of acacetin on sepsis-induced acute lung injury via its anti-inflammatory and antioxidative activity. Arch Pharm Res 2017; 41:1199-1210. [PMID: 29243040 PMCID: PMC7101724 DOI: 10.1007/s12272-017-0991-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 11/19/2017] [Indexed: 01/14/2023]
Abstract
Sepsis is a clinical syndrome with no effective protective or therapeutic treatments. Acacetin, a natural flavonoid compound, has anti-oxidative and anti-inflammatory effects which can potentially work to reduce sepsis. We investigated the potential protective effect of acacetin on sepsis-induced acute lung injury (ALI) ALI and dissect out the underlying mechanisms. Mice were divided into five groups: a sham group, a sepsis-induced ALI group, and three sepsis groups pre-treated with 20, 40, and 80 mg/kg body weight of acacetin. We found that acacetin significantly attenuated sepsis-induced ALI, in histological examinations and lung edema. Additionally, acacetin treatment decreased protein and inflammatory cytokine concentration and the number of infiltrated inflammatory cells in BALF compared with that in the non-treated sepsis mice. Pulmonary myeloperoxidase (MPO) activity was lower in the acacetin-pre-treated sepsis groups than in the sepsis group. The mechanism underlying the protective effect of acacetin on sepsis is related to the regulation of certain antioxidation genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), superoxide dismutases (SODs), and heme oxygenase 1 (HO-1).Taken together, our results indicate that acacetin pre-treatment inhibits sepsis-induced ALI through its anti-inflammatory and antioxidative activity, suggesting that acacetin may be a potential protective agent for sepsis-induced ALI.
Collapse
Affiliation(s)
- Li-Chao Sun
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Hong-Bo Zhang
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Cheng-Dong Gu
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Shi-Dong Guo
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Gang Li
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Rui Lian
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Yao Yao
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China
| | - Guo-Qiang Zhang
- Emergency Department of China-Japan Friendship Hospital, 2 Yinghua Dongjie, Chaoyang District, Hepingli, Beijing, 100029, China.
| |
Collapse
|
20
|
Liu W, Zhu H, Fang H. Propofol Potentiates Sevoflurane-Induced Inhibition of Nuclear Factor--κB-Mediated Inflammatory Responses and Regulation of Mitogen-Activated Protein Kinases Pathways via Toll-like Receptor 4 Signaling in Lipopolysaccharide-Induced Acute Lung Injury in Mice. Am J Med Sci 2017; 354:493-505. [DOI: 10.1016/j.amjms.2017.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 12/24/2022]
|
21
|
Mesenchymal Stem Cells in Sepsis and Associated Organ Dysfunction: A Promising Future or Blind Alley? Stem Cells Int 2017; 2017:7304121. [PMID: 29098010 PMCID: PMC5618761 DOI: 10.1155/2017/7304121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/06/2017] [Indexed: 12/17/2022] Open
Abstract
Sepsis, newly defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection, is the most common cause of death in ICUs and one of the principal causes of death worldwide. Although substantial progress has been made in the understanding of fundamental mechanisms of sepsis, translation of these advances into clinically effective therapies has been disappointing. Given the extreme complexity of sepsis pathogenesis, the paradigm “one disease, one drug” is obviously flawed and combinations of multiple targets that involve early immunomodulation and cellular protection are needed. In this context, the immune-reprogramming properties of cell-based therapy using mesenchymal stem cells (MSC) represent an emerging therapeutic strategy in sepsis and associated organ dysfunction. This article provides an update of the current knowledge regarding MSC in preclinical models of sepsis and sepsis-induced acute kidney injury. Recommendations for further translational research in this field are discussed.
Collapse
|
22
|
Chen XY, Dou YX, Luo DD, Zhang ZB, Li CL, Zeng HF, Su ZR, Xie JH, Lai XP, Li YC. β-Patchoulene from patchouli oil protects against LPS-induced acute lung injury via suppressing NF-κB and activating Nrf2 pathways. Int Immunopharmacol 2017; 50:270-278. [DOI: 10.1016/j.intimp.2017.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/21/2017] [Accepted: 07/02/2017] [Indexed: 01/20/2023]
|
23
|
HUCMNCs protect vascular endothelium and prevent ISR after endovascular interventional therapy for vascular diseases in T2DM rabbits. Mol Cell Biochem 2017; 433:161-167. [PMID: 28474283 DOI: 10.1007/s11010-017-3024-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/01/2017] [Indexed: 12/12/2022]
Abstract
The therapeutic effect of transplantation of human umbilical cord blood cell-derived mononuclear cells (HUCMNCs) on treating in-stent restenosis (ISR) after endovascular interventional therapy (EIT) was evaluated in preclinical rabbit model of type 2 diabetes mellitus (T2DM)-related peripheral artery disease (PAD). HUCMNCs were transplanted to T2DM rabbits subjected to femoral artery occlusion surgery and received EIT. Serum concentration of soluble vascular endothelial cadherin (VE-cad) and plasma concentration of lipoprotein-associated phospholipase A2 (Lp-PLA2) were determined with enzyme-linked immunosorbent assay before and after the transplantation. The injury and the recovery of right femoral artery at stenting site were evaluated with Hematoxylin and Eosin (HE) staining. HUCMNCs purified from umbilical cord blood were 100% CD45+ and 96.5% CD34- with round or oval morphology and adherent growth pattern. The soluble VE-cad and Lp-PLA2 were significantly attenuated after HUCMNC transplantation. The intimal area and the ratio between intimal area and medium film area in the dilated occlusion site were also dramatically decreased 4 weeks after receiving HUCMNCs. HUCMNC transplantation is effective in protecting vascular endothelial function and preventing ISR after EIT in T2DM rabbits suffering from PAD.
Collapse
|
24
|
A novel paradigm links mitochondrial dysfunction with muscle stem cell impairment in sepsis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2546-2553. [PMID: 28456665 DOI: 10.1016/j.bbadis.2017.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Sepsis is an acute systemic inflammatory response of the body to microbial infection and a life threatening condition associated with multiple organ failure. Survivors may display long-term disability with muscle weakness that remains poorly understood. Recent data suggest that long-term myopathy in sepsis survivors is due to failure of skeletal muscle stem cells (satellite cells) to regenerate the muscle. Satellite cells impairment in the acute phase of sepsis is linked to unusual mitochondrial dysfunctions, characterized by a dramatic reduction of the mitochondrial mass and hyperactivity of residual organelles. Survivors maintain the impairment of satellite cells, including alterations of the mitochondrial DNA (mtDNA), in the long-term. This condition can be rescued by treatment with mesenchymal stem cells (MSCs) that restore mtDNA alterations and mitochondrial function in satellite cells, and in fine their regenerative potential. Injection of MSCs in turn increases the force of isolated muscle fibers and of the whole animal, and improves the survival rate. These effects occur in the context of reduced inflammation markers that also raised during sepsis. Targeting muscle stem cells mitochondria, in a context of reduced inflammation, may represent a valuable strategy to reduce morbidity and long-term impairment of the muscle upon sepsis.
Collapse
|
25
|
Sangxingtang inhibits the inflammation of LPS-induced acute lung injury in mice by down-regulating the MAPK/NF-κB pathway. Chin J Nat Med 2016; 13:889-95. [PMID: 26721707 DOI: 10.1016/s1875-5364(15)30094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Indexed: 01/08/2023]
Abstract
In the present study, we investigated anti-inflammatory effects of Sangxingtang (SXT) on acute lung injury using a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The cell counting in the bronchoalveolar lavage fluid (BALF) was performed. The degree of lung edema was evaluated by measuring the wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), were assayed by the enzyme-linked immunosorbent assay methods. Pathological changes of lung tissues were observed by Hematoxylin and eosin (HE) staining. The inflammatory signaling pathway-related proteins nuclear factor mitogen activated protein kinases (P38MAPK), extracellular regulated protein kinases (Erk), c-Jun N-terminal kinase (Jnk) and nuclear transcription factor (NF-κB) p65 expressions were measured by Western blotting. Our results showed that the treatment with the SXT markedly attenuated the inflammatory cell numbers in the BALF, decreased the levels of P-P38MAPK, P-Erk, P-Jnk and P-NF-κB p65 and the total protein levels in lungs, improved the SOD activity and inhibited the MPO activity. Histological studies demonstrated that SXT substantially reduced the LPS-induced neutrophils in lung tissues, compared with the untreated LPS group. In conclusion, our results indicated that SXT had protective effects on LPS-induced ALI in mice.
Collapse
|
26
|
Müller-Redetzky H, Lienau J, Suttorp N, Witzenrath M. Therapeutic strategies in pneumonia: going beyond antibiotics. Eur Respir Rev 2016; 24:516-24. [PMID: 26324814 DOI: 10.1183/16000617.0034-2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of the innate immune system drives lung injury and its systemic sequelae due to breakdown of vascular barrier function, harmful hyperinflammation and microcirculatory failure, which contribute to the unfavourable outcome of patients with severe pneumonia. A variety of promising therapeutic targets have been identified and numerous innovative therapeutic approaches demonstrated to improve lung injury in experimental preclinical studies. However, at present specific preventive or curative strategies for the treatment of lung failure in pneumonia in addition to antibiotics are still missing. The aim of this mini-review is to give a short overview of some, but not all, adjuvant therapeutic strategies for pneumonia and its most important complications, sepsis and acute respiratory distress syndrome, and briefly discuss future perspectives.
Collapse
Affiliation(s)
- Holger Müller-Redetzky
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jasmin Lienau
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Could stem cells be the future therapy for sepsis? Blood Rev 2016; 30:439-452. [PMID: 27297212 DOI: 10.1016/j.blre.2016.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
The severity and threat of sepsis is well known, and despite several decades of research, the mortality continues to be high. Stem cells have great potential to be used in various clinical disorders. The innate ability of stem cells such as pluripotency, self-renewal makes them potential agents for therapeutic intervention. The pathophysiology of sepsis is a plethora of complex mechanisms which include the initial microbial infection, followed by "cytokine storm," endothelial dysfunction, coagulation cascade, and the late phase of apoptosis and immune paralysis which ultimately results in multiple organ dysfunction. Stem cells could potentially alter each step of this complex pathophysiology of sepsis. Multiple organ dysfunction associated with sepsis most often leads to death and stem cells have shown their ability to prevent the organ damage and improve the organ function. The possible mechanisms of therapeutic potential of stem cells in sepsis have been discussed in detail. The route of administration, dose level, and timing also play vital role in the overall effect of stem cells in sepsis.
Collapse
|
28
|
Qiu J, Chi G, Wu Q, Ren Y, Chen C, Feng H. Pretreatment with the compound asperuloside decreases acute lung injury via inhibiting MAPK and NF-κB signaling in a murine model. Int Immunopharmacol 2016; 31:109-15. [DOI: 10.1016/j.intimp.2015.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022]
|
29
|
Su Z, Liao J, Liu Y, Liang Y, Chen H, Chen X, Lai X, Feng X, Wu D, Zheng Y, Zhang X, Li Y. Protective effects of patchouli alcohol isolated from Pogostemon cablin on lipopolysaccharide-induced acute lung injury in mice. Exp Ther Med 2015; 11:674-682. [PMID: 26893665 DOI: 10.3892/etm.2015.2918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 10/22/2015] [Indexed: 01/11/2023] Open
Abstract
Patchouli alcohol (PA) is a tricyclic sesquiterpene isolated from Pogostemon cablin, which exerts anti-inflammatory, anti-influenza and cognitive-enhancing bioactivities. The present study aimed to investigate the protective effects of PA on acute lung injury (ALI) induced by intratracheal instillation of lipopolysaccharide (LPS) in mice. Dexamethasone was used as a positive drug for protection against LPS-induced ALI. The results of the present study demonstrated that pretreatment with PA significantly increased survival rate, attenuated histopathologic damage and lung edema, and decreased the protein content in the bronchoalveolar lavage fluid (BALF) of mice with ALI. Furthermore, PA significantly inhibited the expression levels of proinflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-6 in the BALF, downregulated the levels of myeloperoxidase and malondialdehyde, and upregulated the activity levels of superoxide dismutase and glutathione peroxidase in lung tissue. These results indicated that PA may exert potent protective effects against LPS-induced ALI in mice, the mechanisms of which are possibly associated with the anti-inflammatory and antioxidative activities of PA.
Collapse
Affiliation(s)
- Zuqing Su
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China; Guangdong Provincal Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Jinbin Liao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China; Pharmaceutical Department, Guangdong Second Province Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P.R. China
| | - Yuhong Liu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yongzhuo Liang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Haiming Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaoying Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaoping Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, Guangdong 523808, P.R. China
| | - Xuexuan Feng
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dianwei Wu
- Department of Pharmacy, Shantou Hospital of Traditional Chinese Medicine, Shantou, Guangdong 515031, P.R. China
| | - Yifeng Zheng
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaojun Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yucui Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
30
|
Jia L, Ren J, Zhang W, Qi Y, Zheng L, Guo Y. Effects of basic drugs on prognosis of acute lung injury in mice. Int J Clin Exp Med 2015; 8:19079-19085. [PMID: 26770536 PMCID: PMC4694436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the effects of basic drugs that alkalizes blood, on prognosis of acute lung injury in mice. Mice were randomized into three groups: Group normal saline, Group THAM, injected with 3.64% tri-(hydroxymethyl) methylamine (THAM), and Group NaHCO3, injected with 5% NaHCO3 (n=26, each group). The acute lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS; 50 mg/kg), followed by infusion of varying concentrations of the above solution into tail vein at the rate of 0.5 ml/h (controlled by micro pump) for over 2 h. Thirty minutes later, 6 mice from each group were randomly selected for blood gas analysis; then, the mice were killed and their lung tissues were sampled for detection of relative indicators, and the remaining mice were observed for signs of mortality for 72 h. Arterial pH, bicarbonate (HCO3 (-)), and BE and mortality of group THAM and NaHCO3 increased significantly compared to the corresponding parameters of the group normal saline (P<0.05); compared to the group normal saline, group NaHCO3 had increased blood [Na(+)] and decreased [K(+)] and [Ca(2+)] (P<0.05). Blood [Na(+)] of group THAM decreased while the lactic acid concentration increased (P<0.05) compared to the corresponding values of the group normal saline. Malondialdehyde (MDA) and myeloperoxidase (MPO) activity and wet-to-dry lung weight ratio (W/D) of group THAM and NaHCO3 increased significantly relative to group normal saline (P<0.05). Compared with the biopsy results of (A), pathological biopsy of (B) and (C) clearly revealed alveolar wall thickening, edema of alveolar epithelial cells, and infiltration of large neutrophils. Alkalizing blood could neither inhibit inflammatory reactions in LPS mouse model nor reduce the mortality rate of mice with acute lung injury, while excessive alkalization of blood could increase mice mortality.
Collapse
Affiliation(s)
- Liming Jia
- Department of Anesthesiology, The People’s Hospital of Shanxi ProvinceTaiyuan 030012, China
| | - Junming Ren
- Department of Anesthesiology of Shanxi Medical UniversityTaiyuan 030012, China
| | - Weiwei Zhang
- Department of Anesthesiology, The People’s Hospital of Shanxi ProvinceTaiyuan 030012, China
| | - Yuehong Qi
- Department of Anesthesiology, The People’s Hospital of Shanxi ProvinceTaiyuan 030012, China
| | - Lina Zheng
- Department of Anesthesiology, The People’s Hospital of Shanxi ProvinceTaiyuan 030012, China
| | - Yongqing Guo
- Department of Anesthesiology, The People’s Hospital of Shanxi ProvinceTaiyuan 030012, China
| |
Collapse
|
31
|
Wang J, Liu YT, Xiao L, Zhu L, Wang Q, Yan T. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation 2015; 37:2085-90. [PMID: 24958013 DOI: 10.1007/s10753-014-9942-x] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of apigenin lipopolysaccharide (LPS)-induced inflammatory in acute lung injury. In this study, the anti-inflammatory effects of apigenin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible mechanisms involved in this protection were investigated. Pretreatment with apigenin prior to the administration of intratracheal LPS significantly induced a decrease in lung wet weight/dry weight ratio in total leukocyte number and neutrophil percent in the bronchoalveolar lavage fluid (BALF) and in IL-6 and IL-1β, the tumor neurosis factor-α (TNF-α) in the BALF. These results showed that anti-inflammatory effects of apigenin against the LPS-induced ALI may be due to its ability of primary inhibition of cyclooxygenase-2 (COX-2) gene expression and nuclear factor kB (NF-kB) gene expression of lung. The results presented here suggest that the protective mechanism of apigenin may be attributed partly to decreased production of proinflammatory cytokines through the inhibition of COX-2 and NF-kB activation. The results support that use of apigenin is beneficial in the treatment of ALI.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physiology and Pharmacology, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, China
| | | | | | | | | | | |
Collapse
|
32
|
Ma CH, Liu JP, Qu R, Ma SP. Tectorigenin inhibits the inflammation of LPS-induced acute lung injury in mice. Chin J Nat Med 2015; 12:841-6. [PMID: 25480515 DOI: 10.1016/s1875-5364(14)60126-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 01/09/2023]
Abstract
AIM In a previous study, the anti-inflammatory effects of tectorigenin were disclosed. In this study, the anti-inflammatory effects of tectorigenin on acute lung injury using a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model were investigated METHOD The cell-count in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by the wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity was assayed using SOD and MPO kits, respectively. The levels of inflammatory mediators, including tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 were assayed using an enzyme-linked immunosorbent assay method. Pathological changes of lung tissues were observed through HE staining. The inflammatory signal pathway related protein nuclear factor NF-κB p65 mRNA expression was measured by real-time PCR, and the protein level of NF-κB p65 was measured using Western blotting analysis. RESULTS The data showed that treatment with the tectorigenin markedly attenuated the inflammatory cell numbers in the BALF, decreased nuclear factor NF-κB p65 mRNA level and protein level in the lungs, and improved SOD activity and inhibited MPO activity. Histological studies showed that tectorigenin substantially inhibited LPS-induced neutrophils in lung tissue compared with the model group. CONCLUSION The results indicated that tectorigenin had a protective effect on LPS-induced ALI in mice.
Collapse
Affiliation(s)
- Chun-Hua Ma
- Discipline of Chinese and Western Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China; Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Ji-Ping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Rong Qu
- Discipline of Chinese and Western Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Shi-Ping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
33
|
Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status. Int Immunopharmacol 2015; 26:265-71. [DOI: 10.1016/j.intimp.2015.03.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/04/2015] [Accepted: 03/19/2015] [Indexed: 01/21/2023]
|
34
|
Qiu J, Yu L, Zhang X, Wu Q, Wang D, Wang X, Xia C, Feng H. Asiaticoside attenuates lipopolysaccharide-induced acute lung injury via down-regulation of NF-κB signaling pathway. Int Immunopharmacol 2015; 26:181-7. [PMID: 25835778 DOI: 10.1016/j.intimp.2015.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 11/20/2022]
Abstract
Asiaticoside (AS), a triterpene glycoside isolated from Centella asiatica, has been shown to possess potent anti-inflammatory activity. However, the detailed molecular mechanisms of AS on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in mice are scanty. The purpose of this study was to evaluate the effect of AS on LPS-induced mouse ALI via down-regulation of NF-κB signaling pathway. We investigated the efficacy of AS on cytokine levels induced by LPS in bronchoalveolar lavage fluid (BALF) and RAW 264.7 cells. The production of cytokine (TNF-α and IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). The lung wet-to-dry weight ratios were measured in LPS-challenged mice, and lung histopathologic changes observed via paraffin section were assessed. To further study the mechanism of AS protective effects on ALI, the activation of NF-κB p65 subunit and the degradation of IκBα were tested by western blot assay. We found that AS treatment at 15, 30 or 45mg/kg dose-dependently attenuated LPS-induced pulmonary inflammation by reducing inflammatory infiltration, histopathological changes, descended cytokine production, and pulmonary edema initiated by LPS. Furthermore, our results suggested that AS suppressed inflammatory responses in LPS-induced ALI through inhibition of the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα, and might be a new preventive agent of ALI in the clinical setting.
Collapse
Affiliation(s)
- Jiaming Qiu
- Key Laboratory of Animal Medicine of Heilongjiang Bayi Agricaltural University, Daqing High-tech Industrial Development Zone, Daqing, PR China; Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Lijun Yu
- Institute of Medicinal Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region, 028000, PR China
| | - Xingxing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Qianchao Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Di Wang
- Institute of Medicinal Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region, 028000, PR China
| | - Xiuzhi Wang
- Institute of Medicinal Chemistry and Pharmacology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region, 028000, PR China
| | - Cheng Xia
- Key Laboratory of Animal Medicine of Heilongjiang Bayi Agricaltural University, Daqing High-tech Industrial Development Zone, Daqing, PR China.
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China.
| |
Collapse
|
35
|
Ma MM, Li Y, Liu XY, Zhu WW, Ren X, Kong GQ, Huang X, Wang LP, Luo LQ, Wang XZ. Cyanidin-3-O-Glucoside Ameliorates Lipopolysaccharide-Induced Injury Both In Vivo and In Vitro Suppression of NF-κB and MAPK Pathways. Inflammation 2015; 38:1669-82. [DOI: 10.1007/s10753-015-0144-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Müller-Redetzky HC, Lienau J, Witzenrath M. The Lung Endothelial Barrier in Acute Inflammation. THE VERTEBRATE BLOOD-GAS BARRIER IN HEALTH AND DISEASE 2015. [PMCID: PMC7123850 DOI: 10.1007/978-3-319-18392-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Abstract
In the previous study, the anti-inflammatory effect of p-cymene had been found. In this study, we investigated anti-inflammatory effects of p-cymene on acute lung injury using lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The cell counting in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity was assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators including tumor necrosis factor alpha (TNF-α), IL-1β, and IL-6 were assayed by enzyme-linked immunosorbent assay method. The pathological changes of the lung tissues were observed by hematoxylin and eosin staining. The inflammatory signal pathway-related protein levels of NF-κB were measured using Western blotting. The data showed that treatment with the p-cymene markedly attenuated inflammatory cell numbers in the BALF, decreased NF-κB protein level in the lungs, improved SOD activity, and inhibited MPO activity. Histological studies demonstrated that p-cymene substantially inhibited LPS-induced neutrophils in the lung tissue compared with the model group. The results indicated that p-cymene had a protective effect on LPS-induced ALI in mice.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Acute respiratory distress syndrome (ARDS) is a multifaceted lung disease with no current effective therapy. Many clinical trials using conventional pharmacologic therapies have failed, suggesting the need to examine alternative approaches. Thus, attention has focused on the therapeutic potential of cell-based therapies for ARDS, with promising results demonstrated in relevant preclinical disease models. We review data concerning the therapeutic promise of cell-based therapies for ARDS. RECENT FINDINGS Recent experimental studies provide further evidence for the potential of cell-based therapies in ARDS. A number of cell types, particularly mesenchymal stem/stromal cells (MSCs), bone marrow-derived mononuclear cells, endothelial progenitor cells, and embryonic stem cells have been demonstrated to reduce mortality and modulate the inflammatory and remodeling processes in relevant preclinical ARDS models. Multiple insights have emerged in regard to the mechanisms by which cell therapies - particularly MSCs - exert their effects, with evidence supporting direct cell-mediated and paracrine-mediated mechanisms of action. Diverse paracrine mechanisms exist, including the release of cytokines, growth factors (such as keratinocyte growth factor), and antimicrobial peptides, and transfer of cellular contents such as peptides, nucleic acids, and mitochondria via either microvesicular or direct cell-cell contact-mediated transfer. SUMMARY Cell-based therapies offer considerable promise for the treatment of ARDS. While MSC-based therapies are being rapidly advanced toward clinical testing, clear therapeutic potential exists for other cell types for ARDS. A greater understanding of current knowledge gaps should further enhance the therapeutic potential of cell-based therapies for ARDS.
Collapse
|
39
|
Li D, Ci X, Li Y, Liu C, Wen Z, Jie J, Peng L. Alleviation of severe inflammatory responses in LPS-exposed mice by Schisantherin A. Respir Physiol Neurobiol 2014; 202:24-31. [DOI: 10.1016/j.resp.2014.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/08/2014] [Accepted: 07/21/2014] [Indexed: 12/24/2022]
|
40
|
Witzenrath M. Endothelial progenitor cells for acute respiratory distress syndrome treatment: support your local sheriff! Am J Respir Crit Care Med 2014; 189:1452-5. [PMID: 24930525 DOI: 10.1164/rccm.201405-0827ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Martin Witzenrath
- 1 Department of Infectious Diseases and Pulmonary Medicine Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
41
|
Zhan J, Xiao F, Li JJ, Zhang ZZ, Chen K, Wang YP, Wang YL. Penehyclidine hydrochloride decreases pulmonary microvascular permeability by upregulating beta arrestins in a murine cecal ligation and puncture model. J Surg Res 2014; 193:391-8. [PMID: 25096356 DOI: 10.1016/j.jss.2014.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Penehyclidine hydrochloride (PHC) is a new anticholinergic drug, which has been shown to have a good curative effect for sepsis. Beta arrestins have been demonstrated to play important roles in sepsis. This study is to investigate the effects of PHC on pulmonary microvascular permeability and on expressions of beta arrestins in lung injury induced by the cecal ligation and puncture (CLP) procedure. MATERIALS AND METHODS Thirty healthy female mice were randomly divided into three groups (n = 10 each): sham operation group (control group), CLP group (CLP group), and PHC 0.45 mg/kg group (PHC group). In the PHC group, mice were given an intraperitoneal injection of PHC 0.45 mg/kg 1 h before surgery. Mice in the other two groups received an intraperitoneal injection of the same volume of normal saline. At 12 h after surgery, serum and bronchoalveolar lavage fluid were collected to examine lung permeability index. The lung tissue samples were collected to examine expressions of myosin light chain kinase (MLCK), vascular endothelial-cadherin (VE-cadherin), vascular cell adhesion molecule 1 (VCAM-1), myeloperoxidase (MPO), NF-κB, and beta arrestins. RESULTS Compared with the control group, pulmonary microvascular permeability, MPO activity, NF-κB, VCAM-1, and MLCK expressions were significantly increased, whereas VE-cadherin and beta-arrestin protein expressions were obviously decreased in CLP group. Furthermore, compared with the CLP group, PHC group markedly decreased pulmonary microvascular permeability, MPO activity, NF-κB, VCAM-1, and MLCK expressions, and increased expressions of VE-cadherin and beta arrestins. CONCLUSIONS This study suggests that in the CLP-induced lung injury model, PHC could reduce pulmonary microvascular permeability by upregulating expressions of beta arrestins.
Collapse
Affiliation(s)
- Jia Zhan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Fei Xiao
- Department of Osteology, Pu Ai Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jin-Jie Li
- Department of Anesthesiology, Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zong-Ze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Kai Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yi-Peng Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yan-Lin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
42
|
Zhou E, Li Y, Wei Z, Fu Y, Lei H, Zhang N, Yang Z, Xie G. Schisantherin A protects lipopolysaccharide-induced acute respiratory distress syndrome in mice through inhibiting NF-κB and MAPKs signaling pathways. Int Immunopharmacol 2014; 22:133-40. [PMID: 24975658 DOI: 10.1016/j.intimp.2014.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 11/29/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by polymorphonuclear neutrophils (PMNs) adhesion, activation, sequestration and inflammatory damage to alveolar-capillary membrane. Schisantherin A, a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been reported to have anti-inflammatory properties. In the present study, we aimed to investigate the protective effects of schisantherin A on LPS-induced mouse ARDS. The pulmonary injury severity was evaluated 7 h after LPS administration and the protective effects of schisantherin A on LPS-induced mouse ARDS were assayed by enzyme-linked immunosorbent assay and Western blot. The results revealed that the wet/dry weight ratio, myeloperoxidase activity, and the number of total cells, neutrophils and macrophages in the bronchoalveolar lavage fluid (BALF) were significantly reduced by schisantherin A in a dose-dependent manner. Meanwhile, pretreatment with schisantherin A markedly ameliorated LPS-induced histopathologic changes and decreased the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in the BALF. In addition, the phosphorylation of nuclear transcription factor-kappaB (NF-κB) p65, inhibitory kappa B alpha (IκB-α), c-jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 induced by LPS were suppressed by schisantherin A. These findings indicated that schisantherin A exerted potent anti-inflammatory properties in LPS-induced mouse ARDS, possibly through blocking the activation of NF-KB and mitogen activated protein kinases (MAPKs) signaling pathways. Therefore, schisantherin A may be a potential agent for the prophylaxis of ARDS.
Collapse
Affiliation(s)
- Ershun Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yimeng Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zhengkai Wei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - He Lei
- TongLe School, Nanshan ShenZhen, Guangdong Province, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Zhengtao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Guanghong Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
43
|
He Z, Chen X, Wang S, Zou Z. Toll-like receptor 4 monoclonal antibody attenuates lipopolysaccharide-induced acute lung injury in mice. Exp Ther Med 2014; 8:871-876. [PMID: 25120616 PMCID: PMC4113535 DOI: 10.3892/etm.2014.1805] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022] Open
Abstract
Toll-like receptor 4 (TLR4) has an important role in the recognition of lipopolysaccharide (LPS) and in the activation of the inflammatory cascade. In the present study, the effect of TLR4 monoclonal antibody (mAb) on LPS-induced acute lung injury (ALI) was investigated in mice. A total of 45 male BALB/c mice were randomly divided into three groups, namely, the control (group C), sepsis (group S) and pretreatment groups (group P). Mice in group P were intraperitoneally treated with TLR4 mAb 1 h prior to the intraperitoneal administration of LPS. Following treatment with LPS for increasing times periods in groups S and P, the mRNA expression level of TLR4 in the lung tissue and the expression of inflammatory factors in the serum were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assays, respectively. The degree of pulmonary edema, expressed as (wet weight - dry weight)/wet weight, as well as the lung injury scores, observed using a light microscope, were also analyzed. The results demonstrated that intraperitoneal administration of LPS in mice increased the mRNA expression levels of TLR4, the secretion of inflammatory factors in the serum, the degree of pulmonary edema and the lung injury score in a time-dependent manner. However, pretreatment with TLR4 mAb effectively attenuated the increased mRNA expression of TLR4 and the overproduction of inflammatory factors to correct the pulmonary edema and the elevated lung injury score induced by LPS. Therefore, TLR4 plays a critical role in LPS-induced ALI, and the TLR4 mAb decreases the secretion of inflammatory factors and attenuates the degree of pulmonary edema, thereby protecting the lungs from LPS-induced ALI.
Collapse
Affiliation(s)
- Zhijie He
- Department of Critical Care Medicine, Sun Yat-sen Memorial Hospital, University of Sun Yat-sen, Guangzhou, Guangdong 510120, P.R. China
| | - Xiaotong Chen
- Department of Critical Care Medicine, Sun Yat-sen Memorial Hospital, University of Sun Yat-sen, Guangzhou, Guangdong 510120, P.R. China
| | - Shouping Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, University of Sun Yat-sen, Guangzhou, Guangdong 510120, P.R. China
| | - Zijun Zou
- Department of Critical Care Medicine, Sun Yat-sen Memorial Hospital, University of Sun Yat-sen, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
44
|
Shi D, Zheng M, Wang Y, Liu C, Chen S. Protective effects and mechanisms of mogroside V on LPS-induced acute lung injury in mice. PHARMACEUTICAL BIOLOGY 2014; 52:729-734. [PMID: 24621273 DOI: 10.3109/13880209.2013.867451] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Mogroside V, a compound isolated from Momordica grosvenori Swingle, which belongs to the Cucurbitaceae, is a traditional Chinese medicine reported to have anti-inflammatory potential in murine macrophages and a murine ear edema model. OBJECTIVE To investigate the effects and mechanisms of action of this compound in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS). MATERIALS AND METHODS Female BALB/c mice were treated with commercial mogroside V (2.5, 5 and 10 mg/kg) for 1 h prior to intranasal injection of LPS (10 μg in 50 μl). After 12 h, airway inflammation in the ALI model was determined by the wet/dry weight (W/D) ratio, myeloperoxidase (MPO) activity of lung tissue, leukocyte recruitment and cytokine levels in the bronchoalveolar lavage fluid (BALF). Additionally, lung tissue was examined by histology and western blotting to investigate the changes in pathology and the signalling in the presence and absence of mogroside V. RESULTS Mogroside V at 5 and 10 mg/kg inhibited airway inflammation induced by LPS as measured by the decrease in the histological changes (44 and 67.3% reduction in lung injury score, respectively), a 28.9 and 55.3% reduction in lung MPO activity, and inflammatory cell counts, interleukin-1β (IL-1β, 382 and 280 pg/ml, respectively), IL-6 (378 and 232 pg/ml, respectively) and tumor necrosis factor-α (TNF-α, 12.5 and 7.8 ng/ml, respectively) levels in the BALF. Additionally, mogroside V treatment reduced the activation of cyclooxygenase 2 (COX-2), inducible NO synthase (iNOS), and the nuclear factor (NF)-κB. DISCUSSIONS AND CONCLUSIONS Together, these data suggest that mogroside V has the potential to protect against LPS-induced airway inflammation in a model of ALI.
Collapse
Affiliation(s)
- Dongfang Shi
- School of Life Science, Northeast Normal University , Changchun , China and
| | | | | | | | | |
Collapse
|
45
|
Tianzhu Z, Shihai Y, Juan D. The Effects of Morin on Lipopolysaccharide-Induced Acute Lung Injury by Suppressing the Lung NLRP3 Inflammasome. Inflammation 2014; 37:1976-83. [DOI: 10.1007/s10753-014-9930-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Protective effect of taraxasterol on acute lung injury induced by lipopolysaccharide in mice. Int Immunopharmacol 2014; 19:342-50. [DOI: 10.1016/j.intimp.2014.01.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/11/2014] [Accepted: 01/28/2014] [Indexed: 12/27/2022]
|
47
|
Zhu YG, Hao Q, Monsel A, Feng XM, Lee JW. Adult stem cells for acute lung injury: remaining questions and concerns. Respirology 2014; 18:744-56. [PMID: 23578018 DOI: 10.1111/resp.12093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/02/2013] [Indexed: 12/22/2022]
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome remains a major cause of morbidity and mortality in hospitalized patients. The pathophysiology of ALI involves complex interactions between the inciting event, such as pneumonia, sepsis or aspiration, and the host immune response resulting in lung protein permeability, impaired resolution of pulmonary oedema, an intense inflammatory response in the injured alveolus and hypoxemia. In multiple preclinical studies, adult stem cells have been shown to be therapeutic due to both the ability to mitigate injury and inflammation through paracrine mechanisms and perhaps to regenerate tissue by virtue of their multi-potency. These characteristics have stimulated intensive research efforts to explore the possibility of using stem or progenitor cells for the treatment of lung injury. A variety of stem or progenitor cells have been isolated, characterized and tested experimentally in preclinical animal models of ALI. However, questions remain concerning the optimal dose, route and the adult stem or progenitor cell to use. Here, the current mechanisms underlying the therapeutic effect of stem cells in ALI as well as the questions that will arise as clinical trials for ALI are planned are reviewed.
Collapse
Affiliation(s)
- Ying-Gang Zhu
- Department of Pulmonary Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
48
|
Zhao YF, Xiong W, Wu XL. Mesenchymal stem cell-based developmental endothelial locus-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. Mol Med Rep 2014; 9:1583-9. [PMID: 24573341 DOI: 10.3892/mmr.2014.1988] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/11/2014] [Indexed: 11/06/2022] Open
Abstract
Studies have suggested that bone marrow-derived mesenchymal stem cells (MSCs) may be used as a tool for gene therapy. Developmental endothelial locus-1 (Del-1) is a critical factor for cell migration and infiltration via the inhibition of the function of a major leukocyte adhesion receptor LFA-1 which prevents leukocyte adhesion to the endothelium. In the present study, we hypothesized that MSC-based Del-1 gene therapy may have potential therapeutic applications for lipopolysaccharide (LPS)-induced lung injury. The MSCs in the present assay were isolated from 6 week-old male mice. In order to investigate the therapeutic effect of the Del-1 gene on LPS-induced ALI mice, a lentivirus vector containing the Del-1 gene was constructed and transduced into the MSCs. In the in vivo assay, we induced lung injury with LPS injection and treated mice with different groups of MSCs, and compared with groups treated with MSCs alone, we observed that the administration with MSCs carrying Del-1 (MSCs-Del1) markedly alleviated the LPS-induced lung injury. There were significant decreases in the number of neutrophils in bronchoalveolar lavage (BAL) and the serum levels of TNF-α and IL-6 in the Del-1-expressed MSC-treated mice. Furthermore, compared with MSCs treated alone, Del1-MSC-treated mice also exhibited low lung injury scores, high protein concentrations and myeloperoxidase activity. In conclusion, treatment with Del-1-expressed MSCs significantly decreases the severity of endotoxin-induced acute lung injury and the level of inflammatory cytokines in mice.
Collapse
Affiliation(s)
- Yun-Feng Zhao
- Department of Respiratory Medicine, Pudong New Area, Gongli Hospital, Shanghai 200135, P.R. China
| | - Wei Xiong
- Department of Respiratory Medicine, Pudong New Area, Gongli Hospital, Shanghai 200135, P.R. China
| | - Xue-Ling Wu
- Institute of Respiratory Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
49
|
Abstract
Stevioside, a diterpene glycoside component of Stevia rebaudiana, has been known to exhibit anti-inflammatory properties. To evaluate the effect and the possible mechanism of stevioside in lipopolysaccharide (LPS)-induced acute lung injury, male BALB/c mice were pretreated with stevioside or dexamethasone 1 h before intranasal instillation of LPS. Seven hours later, tumor necrosis factor-α, interleukin-1β, and interleukin-6 in bronchoalveolar lavage fluid (BALF) were measured by using enzyme-linked immunosorbent assay. The number of total cells, neutrophils, and macrophages in the BALF were also determined. The right lung was excised for histological examination and analysis of myeloperoxidase activity and nitrate/nitrite content. Cyclooxygenase 2 (COX-2), inducible NO synthase (iNOS), nuclear factor-kappa B (NF-κB), inhibitory kappa B protein were detected by western blot. The results showed that stevioside markedly attenuated the LPS-induced histological alterations in the lung. Stevioside inhibited the production of pro-inflammatory cytokines and the expression of COX-2 and iNOS induced by LPS. In addition, not only was the wet-to-dry weight ratio of lung tissue significantly decreased, the number of total cells, neutrophils, and macrophages in the BALF were also significantly reduced after treatment with stevioside. Moreover, western blotting showed that stevioside inhibited the phosphorylation of IκB-α and NF-κB caused by LPS. Taken together, our results suggest that anti-inflammatory effect of stevioside against the LPS-induced acute lung injury may be due to its ability of inhibition of the NF-κB signaling pathway. Stevioside may be a promising potential therapeutic reagent for acute lung injury treatment.
Collapse
|
50
|
Prime-O-glucosylcimifugin attenuates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2013; 16:139-47. [PMID: 23623941 PMCID: PMC7106058 DOI: 10.1016/j.intimp.2013.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 12/14/2022]
Abstract
Prime-O-glucosylcimifugin is an active chromone isolated from Saposhnikovia root which has been reported to have various activities, such as anti-convulsant, anticancer, anti-inflammatory properties. The purpose of this study was to evaluate the effect of prime-O-glucosylcimifugin on acute lung injury (ALI) induced by lipopolysaccharide in mice. BALB/c mice received intraperitoneal injection of Prime-O-glucosylcimifugin 1h before intranasal instillation (i.n.) of lipopolysaccharide (LPS). Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and interleukin (IL)-6 in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). Pulmonary histological changes were evaluated by hematoxylin-eosin, myeloperoxidase (MPO) activity in the lung tissue and lung wet/dry weight ratios were observed. Furthermore, the mitogen-activated protein kinases (MAPK) signaling pathway activation and the phosphorylation of IκBα protein were determined by Western blot analysis. Prime-O-glucosylcimifugin showed promising anti-inflammatory effect by inhibiting the activation of MAPK and NF-κB signaling pathway.
Collapse
|