1
|
Cao S, Ma D, Ji S, Zhou M, Zhu S. Self-Assembled Ferritin Nanoparticles for Delivery of Antigens and Development of Vaccines: From Structure and Property to Applications. Molecules 2024; 29:4221. [PMID: 39275069 PMCID: PMC11397193 DOI: 10.3390/molecules29174221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Ferritin, an iron storage protein, is ubiquitously distributed across diverse life forms, fulfilling crucial roles encompassing iron retention, conversion, orchestration of cellular iron metabolism, and safeguarding cells against oxidative harm. Noteworthy attributes of ferritin include its innate amenability to facile modification, scalable mass production, as well as exceptional stability and safety. In addition, ferritin boasts unique physicochemical properties, including pH responsiveness, resilience to elevated temperatures, and resistance to a myriad of denaturing agents. Therefore, ferritin serves as the substrate for creating nanomaterials typified by uniform particle dimensions and exceptional biocompatibility. Comprising 24 subunits, each ferritin nanocage demonstrates self-assembly capabilities, culminating in the formation of nanostructures akin to intricate cages. Recent years have witnessed the ascendance of ferritin-based self-assembled nanoparticles, owing to their distinctive physicochemical traits, which confer substantial advantages and wide-ranging applications within the biomedical domain. Ferritin is highly appealing as a carrier for delivering drug molecules and antigen proteins due to its distinctive structural and biochemical properties. This review aims to highlight recent advances in the use of self-assembled ferritin as a novel carrier for antigen delivery and vaccine development, discussing the molecular mechanisms underlying its action, and presenting it as a promising and effective strategy for the future of vaccine development.
Collapse
Affiliation(s)
- Shinuo Cao
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| | - Dongxue Ma
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China; (D.M.); (S.J.)
| | - Shengwei Ji
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China; (D.M.); (S.J.)
| | - Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| |
Collapse
|
2
|
Sarkar Lotfabadi A, Abadi B, Rezaei N. Biomimetic nanotechnology for cancer immunotherapy: State of the art and future perspective. Int J Pharm 2024; 654:123923. [PMID: 38403091 DOI: 10.1016/j.ijpharm.2024.123923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Cancer continues to be a significant worldwide cause of mortality. This underscores the urgent need for novel strategies to complement and overcome the limitations of conventional therapies, such as imprecise targeting and drug resistance. Cancer Immunotherapy utilizes the body's immune system to target malignant cells, reducing harm to healthy tissue. Nevertheless, the efficacy of immunotherapy exhibits variation across individuals and has the potential to induce autoimmune responses. Biomimetic nanoparticles (bNPs) have transformative potential in cancer immunotherapy, promising improved accurate targeting, immune system activation, and resistance mechanisms, while also reducing the occurrence of systemic autoimmune side effects. This integration offers opportunities for personalized medicine and better therapeutic outcomes. Despite considerable potential, bNPs face barriers like insufficient targeting, restricted biological stability, and interactions within the tumor microenvironment. The resolution of these concerns is crucial in order to expedite the integration of bNPs from the research setting into clinical therapeutic uses. In addition, optimizing manufacturing processes and reducing bNP-related costs are essential for practical implementation. The present research introduces comprehensive classifications of bNPs as well as recent achievements in their application in cancer immunotherapies, emphasizing the need to address barriers for swift clinical integration.
Collapse
Affiliation(s)
- Alireza Sarkar Lotfabadi
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Banafshe Abadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran; Brain Cancer Research Core (BCRC), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Freitas R, Ferreira E, Miranda A, Ferreira D, Relvas-Santos M, Castro F, Santos B, Gonçalves M, Quintas S, Peixoto A, Palmeira C, Silva AMN, Santos LL, Oliveira MJ, Sarmento B, Ferreira JA. Targeted and Self-Adjuvated Nanoglycovaccine Candidate for Cancer Immunotherapy. ACS NANO 2024; 18:10088-10103. [PMID: 38535625 DOI: 10.1021/acsnano.3c12487] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Advanced-stage solid primary tumors and metastases often express mucin 16 (MUC16), carrying immature glycans such as the Tn antigen, resulting in specific glycoproteoforms not found in healthy human tissues. This presents a valuable approach for designing targeted therapeutics, including cancer glycovaccines, which could potentially promote antigen recognition and foster the immune response to control disease spread and prevent relapse. In this study, we describe an adjuvant-free poly(lactic-co-glycolic acid) (PLGA)-based nanoglycoantigen delivery approach that outperforms conventional methods by eliminating the need for protein carriers while exhibiting targeted and adjuvant properties. To achieve this, we synthesized a library of MUC16-Tn glycoepitopes through single-pot enzymatic glycosylation, which were then stably engrafted onto the surface of PLGA nanoparticles, generating multivalent constructs that better represent cancer molecular heterogeneity. These glycoconstructs demonstrated affinity for Macrophage Galactose-type Lectin (MGL) receptor, known to be highly expressed by immature antigen-presenting cells, enabling precise targeting of immune cells. Moreover, the glycopeptide-grafted nanovaccine candidate displayed minimal cytotoxicity and induced the activation of dendritic cells in vitro, even in the absence of an adjuvant. In vivo, the formulated nanovaccine candidate was also nontoxic and elicited the production of IgG specifically targeting MUC16 and MUC16-Tn glycoproteoforms in cancer cells and tumors, offering potential for precise cancer targeting, including targeted immunotherapies.
Collapse
Affiliation(s)
- Rui Freitas
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
| | - Andreia Miranda
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Flávia Castro
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Beatriz Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Martina Gonçalves
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Sofia Quintas
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Carlos Palmeira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- Immunology Department, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Health School of University Fernando Pessoa, 4249-004 Porto, Portugal
| | - André M N Silva
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Maria José Oliveira
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- INEB - Institute for Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- IUCS-CESPU, 4585-116 Gandra, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO-Porto (CI-IPOP), 4200-072 Porto, Portugal
- RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
| |
Collapse
|
4
|
Xiong H, Han X, Cai L, Zheng H. Natural polysaccharides exert anti-tumor effects as dendritic cell immune enhancers. Front Oncol 2023; 13:1274048. [PMID: 37876967 PMCID: PMC10593453 DOI: 10.3389/fonc.2023.1274048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
With the development of immunotherapy, the process of tumor treatment is also moving forward. Polysaccharides are biological response modifiers widely found in plants, animals, fungi, and algae and are mainly composed of monosaccharides covalently linked by glycosidic bonds. For a long time, polysaccharides have been widely used clinically to enhance the body's immunity. However, their mechanisms of action in tumor immunotherapy have not been thoroughly explored. Dendritic cells (DCs) are a heterogeneous population of antigen presenting cells (APCs) that play a crucial role in the regulation and maintenance of the immune response. There is growing evidence that polysaccharides can enhance the essential functions of DCs to intervene the immune response. This paper describes the research progress on the anti-tumor immune effects of natural polysaccharides on DCs. These studies show that polysaccharides can act on pattern recognition receptors (PRRs) on the surface of DCs and activate phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), Dectin-1/Syk, and other signalling pathways, thereby promoting the main functions of DCs such as maturation, metabolism, antigen uptake and presentation, and activation of T cells, and then play an anti-tumor role. In addition, the application of polysaccharides as adjuvants for DC vaccines, in combination with adoptive immunotherapy and immune checkpoint inhibitors (ICIs), as well as their co-assembly with nanoparticles (NPs) into nano drug delivery systems is also introduced. These results reveal the biological effects of polysaccharides, provide a new perspective for the anti-tumor immunopharmacological research of natural polysaccharides, and provide helpful information for guiding polysaccharides as complementary medicines in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongtai Xiong
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinpu Han
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liu Cai
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Schunke J, Mailänder V, Landfester K, Fichter M. Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy. Int J Mol Sci 2023; 24:12174. [PMID: 37569548 PMCID: PMC10419017 DOI: 10.3390/ijms241512174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Finding a long-term cure for tumor patients still represents a major challenge. Immunotherapies offer promising therapy options, since they are designed to specifically prime the immune system against the tumor and modulate the immunosuppressive tumor microenvironment. Using nucleic-acid-based vaccines or cellular vaccines often does not achieve sufficient activation of the immune system in clinical trials. Additionally, the rapid degradation of drugs and their non-specific uptake into tissues and cells as well as their severe side effects pose a challenge. The encapsulation of immunomodulatory molecules into nanocarriers provides the opportunity of protected cargo transport and targeted uptake by antigen-presenting cells. In addition, different immunomodulatory cargos can be co-delivered, which enables versatile stimulation of the immune system, enhances anti-tumor immune responses and improves the toxicity profile of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Jenny Schunke
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Michael Fichter
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
6
|
Hu Y, Zhang W, Chu X, Wang A, He Z, Si CL, Hu W. Dendritic cell-targeting polymer nanoparticle-based immunotherapy for cancer: A review. Int J Pharm 2023; 635:122703. [PMID: 36758880 DOI: 10.1016/j.ijpharm.2023.122703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Cancer immunity is dependent on dynamic interactions between T cells and dendritic cells (DCs). Polymer-based nanoparticles target DC receptors to improve anticancer immune responses. In this paper, DC surface receptors and their specific coupling natural ligands and antibodies are reviewed and compared. Moreover, reaction mechanisms are described, and the synergistic effects of immune adjuvants are demonstrated. Also, extracellular-targeting antigen-delivery strategies and intracellular stimulus responses are reviewed to promote the rational design of polymer delivery systems.
Collapse
Affiliation(s)
- Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Xiaozhong Chu
- School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Aoran Wang
- School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Ziliang He
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Chuan-Ling Si
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Kumar M, Dogra R, Mandal UK. Nanomaterial-based delivery of vaccine through nasal route: Opportunities, challenges, advantages, and limitations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103533] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Nanomaterial-Based Drug Delivery System Targeting Lymph Nodes. Pharmaceutics 2022; 14:pharmaceutics14071372. [PMID: 35890268 PMCID: PMC9325242 DOI: 10.3390/pharmaceutics14071372] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays an indispensable role in humoral balance, lipid metabolism, and immune regulation. The lymph nodes (LNs) are known as the primary sites of tumor metastasis and the metastatic LNs largely affected the prognosis of the patiens. A well-designed lymphatic-targeted system favors disease treatment as well as vaccination efficacy. In recent years, development of nanotechnologies and emerging biomaterials have gained increasing attention in developing lymph-node-targeted drug-delivery systems. By mimicking the endogenous macromolecules or lipid conjugates, lymph-node-targeted nanocarries hold potential for disease diagnosis and tumor therapy. This review gives an introduction to the physiological functions of LNs and the roles of LNs in diseases, followed by a review of typical lymph-node-targeted nanomaterial-based drug-delivery systems (e.g., liposomes, micelles, inorganic nanomaterials, hydrogel, and nanocapsules). Future perspectives and conclusions concerned with lymph-node-targeted drug-delivery systems are also provided.
Collapse
|
9
|
Shah SM, Alsaab HO, Rawas-Qalaji MM, Uddin MN. A Review on Current COVID-19 Vaccines and Evaluation of Particulate Vaccine Delivery Systems. Vaccines (Basel) 2021; 9:vaccines9101086. [PMID: 34696194 PMCID: PMC8540464 DOI: 10.3390/vaccines9101086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
First detected in Wuhan, China, a highly contagious coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), also known as COVID-19, spread globally in December of 2019. As of 19 September 2021, approximately 4.5 million people have died globally, and 215 million active cases have been reported. To date, six vaccines have been developed and approved for human use. However, current production and supply capabilities are unable to meet global demands to immunize the entire world population. Only a few countries have been able to successfully vaccinate many of their residents. Therefore, an alternative vaccine that can be prepared in an easy and cost-effective manner is urgently needed. A vaccine that could be prepared in this manner, as well as can be preserved and transported at room temperature, would be of great benefit to public health. It is possible to develop such an alternative vaccine by using nano- or microparticle platforms. These platforms address most of the existing vaccine limitations as they are stable at room temperature, are inexpensive to produce and distribute, can be administered orally, and do not require cold chain storage for transportation or preservation. Particulate vaccines can be administered as either oral solutions or in sublingual or buccal film dosage forms. Besides improved patient compliance, the major advantage of oral, sublingual, and buccal routes of administration is that they can elicit mucosal immunity. Mucosal immunity, along with systemic immunity, can be a strong defense against SARS-CoV-2 as the virus enters the system through inhalation or saliva. This review discusses the possibility to produce a particulate COVID vaccine by using nano- or microparticles as platforms for oral administration or in sublingual or buccal film dosage forms in order to accelerate global vaccination.
Collapse
Affiliation(s)
- Sarthak M. Shah
- College of Pharmacy, Mercer University, Atlanta, GA 31207, USA;
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mutasem M. Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah 26666, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 26666, United Arab Emirates
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 27272, USA
| | - Mohammad N. Uddin
- College of Pharmacy, Mercer University, Atlanta, GA 31207, USA;
- Correspondence: ; Tel.: +1-678-547-6224
| |
Collapse
|
10
|
Kardani K, Sadat SM, Kardani M, Bolhassani A. The next generation of HCV vaccines: a focus on novel adjuvant development. Expert Rev Vaccines 2021; 20:839-855. [PMID: 34114513 DOI: 10.1080/14760584.2021.1941895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Considerable efforts have been made to treat and prevent acute and chronic infections caused by the hepatitis C virus (HCV). Current treatments are unable to protect people from reinfection. Hence, there is a need for development of both preventive and therapeutic HCV vaccines. Many vaccine candidates are in development to fight against HCV, but their efficacy has so far proven limited partly due to low immunogenicity. AREAS COVERED We explore development of novel and powerful adjuvants to achieve an effective HCV vaccine. The basis for developing strong adjuvants is to understand the innate immunity pathway, which subsequently stimulates humoral and cellular immune responses. We have also investigated immunogenicity of developed adjuvants that have been used in recent studies available in online databases such as PubMed, PMC, ScienceDirect, Google Scholar, etc. EXPERT OPINION Adjuvants are used as a part of vaccine formulation to boost vaccine immunogenicity and antigen delivery. Several FDA-approved adjuvants are used in licensed human vaccines. Unfortunately, no adjuvant has yet been proven to boost HCV immune responses to the extent needed for an effective vaccine. One of the promising approaches for developing an effective adjuvant is the combination of various adjuvants to trigger several innate immune responses, leading to activation of adaptive immunity.[Figure: see text].
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Kardani
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Sandor AM, Sturdivant MS, Ting JPY. Influenza Virus and SARS-CoV-2 Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2509-2520. [PMID: 34021048 PMCID: PMC8722349 DOI: 10.4049/jimmunol.2001287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Seasonal influenza and the current COVID-19 pandemic represent looming global health challenges. Efficacious and safe vaccines remain the frontline tools for mitigating both influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced diseases. This review will discuss the existing strategies for influenza vaccines and how these strategies have informed SARS-CoV-2 vaccines. It will also discuss new vaccine platforms and potential challenges for both viruses.
Collapse
Affiliation(s)
- Adam M Sandor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC; and
| | - Michael S Sturdivant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Biological and Biomedical Sciences Program, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC;
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
12
|
Nagy NA, de Haas AM, Geijtenbeek TBH, van Ree R, Tas SW, van Kooyk Y, de Jong EC. Therapeutic Liposomal Vaccines for Dendritic Cell Activation or Tolerance. Front Immunol 2021; 12:674048. [PMID: 34054859 PMCID: PMC8155586 DOI: 10.3389/fimmu.2021.674048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are paramount in initiating and guiding immunity towards a state of activation or tolerance. This bidirectional capacity of DCs sets them at the center stage for treatment of cancer and autoimmune or allergic conditions. Accordingly, many clinical studies use ex vivo DC vaccination as a strategy to boost anti-tumor immunity or to suppress immunity by including vitamin D3, NF-κB inhibitors or retinoic acid to create tolerogenic DCs. As harvesting DCs from patients and differentiating these cells in vitro is a costly and cumbersome process, in vivo targeting of DCs has huge potential as nanoparticulate platforms equipped with activating or tolerogenic adjuvants can modulate DCs in their natural environment. There is a rapid expansion of the choices of nanoparticles and activation- or tolerance-promoting adjuvants for a therapeutic vaccine platform. In this review we highlight the most recent nanomedical approaches aimed at inducing immune activation or tolerance via targeting DCs, together with novel fundamental insights into the mechanisms inherent to fostering anti-tumor or tolerogenic immunity.
Collapse
Affiliation(s)
- Noémi Anna Nagy
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Aram M. de Haas
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teunis B. H. Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W. Tas
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Center, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther C. de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Chin AL, Wang X, Tong R. Aliphatic Polyester-Based Materials for Enhanced Cancer Immunotherapy. Macromol Biosci 2021; 21:e2100087. [PMID: 33909344 DOI: 10.1002/mabi.202100087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Indexed: 12/19/2022]
Abstract
Poly(lactic acid) (PLA) and its copolymer, poly(lactic-co-glycolic acid) (PLGA), based aliphatic polyesters have been extensively used for biomedical applications, such as drug delivery system and tissue engineering, thanks to their biodegradability, benign toxicity, renewability, and adjustable mechanical properties. A rapidly growing field of cancer research, the development of therapeutic cancer vaccines or treatment modalities is aimed to deliver immunomodulatory signals that control the quality of immune responses against tumors. Herein, the progress and applications of PLA and PLGA are reviewed in delivering immunotherapeutics to treat cancers.
Collapse
Affiliation(s)
- Ai Lin Chin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| |
Collapse
|
14
|
Perciani CT, Liu LY, Wood L, MacParland SA. Enhancing Immunity with Nanomedicine: Employing Nanoparticles to Harness the Immune System. ACS NANO 2021; 15:7-20. [PMID: 33346646 DOI: 10.1021/acsnano.0c08913] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The failure of immune responses to vaccines and dysfunctional immune responses to viral infection, tumor development, or neoantigens lead to chronic viral infection, tumor progression, or incomplete immune protection after vaccination. Thus, strategies to boost host immunity are a topic of intense research and development. Engineered nanoparticles (NPs) possess immunological properties and can be modified to promote improved local immune responses. Nanoparticle-based approaches have been employed to enhance vaccine efficacy and host immune responses to viral and tumor antigens, with impressive results. In this Perspective, we present an overview of studies, such as the one reported by Alam et al. in this issue of ACS Nano, in which virus-like particles have been employed to enhance immunity. We review the cellular cornerstones of effective immunity and discuss how NPs can harness these interactions to overcome the current obstacles in vaccinology and oncology. We also discuss the barriers to effective NP-mediated immune priming including (1) NP delivery to the site of interest, (2) the quality of response elicited, and (3) the potential of the response to overcome immune escape. Through this Perspective, we aim to highlight the value of nanomedicine not only in delivering therapies but also in coordinating the enhancement of host immune responses. We provide a forward-looking outlook for future NP-based approaches and how they could be tailored to promote this outcome.
Collapse
Affiliation(s)
- Catia T Perciani
- Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Lewis Y Liu
- Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Room 6271, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Lawrence Wood
- Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Room 6271, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Sonya A MacParland
- Ajmera Family Transplant Centre, Toronto General Research Institute, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Immunology, University of Toronto, Medical Sciences Building, Room 6271, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6271, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
15
|
Nanoparticles as Vaccines to Prevent Arbovirus Infection: A Long Road Ahead. Pathogens 2021; 10:pathogens10010036. [PMID: 33466440 PMCID: PMC7824877 DOI: 10.3390/pathogens10010036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are a significant public health problem worldwide. Vaccination is considered one of the most effective ways to control arbovirus diseases in the human population. Nanoparticles have been widely explored as new vaccine platforms. Although nanoparticles' potential to act as new vaccines against infectious diseases has been identified, nanotechnology's impact on developing new vaccines to prevent arboviruses is unclear. Thus, we used a comprehensive bibliographic survey to integrate data concerning the use of diverse nanoparticles as vaccines against medically important arboviruses. Our analysis showed that considerable research had been conducted to develop and evaluate nanovaccines against Chikungunya virus, Dengue virus, Zika virus, Japanese encephalitis virus, and West Nile virus. The main findings indicate that nanoparticles have great potential for use as a new vaccine system against arboviruses. Most of the studies showed an increase in neutralizing antibody production after mouse immunization. Nevertheless, even with significant advances in this field, further efforts are necessary to address the nanoparticles' potential to act as a vaccine against these arboviruses. To promote advances in the field, we proposed a roadmap to help researchers better characterize and evaluate nanovaccines against medically important arboviruses.
Collapse
|
16
|
Gupta D, Gangwar A, Jyoti K, Sainaga Jyothi VG, Sodhi RK, Mehra NK, Singh SB, Madan J. Self healing hydrogels: A new paradigm immunoadjuvant for delivering peptide vaccine. Colloids Surf B Biointerfaces 2020; 194:111171. [DOI: 10.1016/j.colsurfb.2020.111171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
|
17
|
Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS NANO 2020; 14:7760-7782. [PMID: 32571007 PMCID: PMC7325519 DOI: 10.1021/acsnano.0c04006] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 05/04/2023]
Abstract
The current global health threat by the novel coronavirus disease 2019 (COVID-19) requires an urgent deployment of advanced therapeutic options available. The role of nanotechnology is highly relevant to counter this "virus" nano enemy. Nano intervention is discussed in terms of designing effective nanocarriers to counter the conventional limitations of antiviral and biological therapeutics. This strategy directs the safe and effective delivery of available therapeutic options using engineered nanocarriers, blocking the initial interactions of viral spike glycoprotein with host cell surface receptors, and disruption of virion construction. Controlling and eliminating the spread and reoccurrence of this pandemic demands a safe and effective vaccine strategy. Nanocarriers have potential to design risk-free and effective immunization strategies for severe acute respiratory syndrome coronavirus 2 vaccine candidates such as protein constructs and nucleic acids. We discuss recent as well as ongoing nanotechnology-based therapeutic and prophylactic strategies to fight against this pandemic, outlining the key areas for nanoscientists to step in.
Collapse
Affiliation(s)
- Gaurav Chauhan
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
| | - Marc J. Madou
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
- Department of Mechanical and Aerospace
Engineering, University of California
Irvine, Engineering Gateway 4200, Irvine,
California 92697, United States
| | - Sourav Kalra
- Department of Pharmaceutical Technology
(Process Chemistry), National Institute of Pharmaceutical
Education and Research, Sector 67, S.A.S. Nagar,
Punjab 160062, India
| | - Vianni Chopra
- Institute of Nano Science
and Technology, Habitat Centre, Phase 10 Mohali,
160062 Punjab, India
| | - Deepa Ghosh
- Institute of Nano Science
and Technology, Habitat Centre, Phase 10 Mohali,
160062 Punjab, India
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences,
Tecnologico de Monterrey, Av. Eugenio
Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León,
Mexico
| |
Collapse
|
18
|
Maiti B, Dubey S, Munang'andu HM, Karunasagar I, Karunasagar I, Evensen Ø. Application of Outer Membrane Protein-Based Vaccines Against Major Bacterial Fish Pathogens in India. Front Immunol 2020; 11:1362. [PMID: 32849496 PMCID: PMC7396620 DOI: 10.3389/fimmu.2020.01362] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
Aquaculture is one of the fastest-growing food-producing sectors in the world. However, its growth is hampered by various disease problems due to infectious microorganisms, including Gram-negative bacteria in finfish aquaculture. Disease control in aquaculture by use of antibiotics is not recommended as it leads to antibiotic residues in the final product, selection, and spread of antibiotic resistance in the environment. Therefore, focus is on disease prevention by vaccination. All Gram-negative bacteria possess surface-associated outer membrane proteins (OMPs), some of which have long been recognized as potential vaccine candidates. OMPs are essential for maintaining the integrity and selective permeability of the bacterial membrane and play a key role in adaptive responses of bacteria such as solute and ion uptake, iron acquisition, antimicrobial resistance, serum resistance, and bile salt resistance and some adhesins have virulence attributes. Antigenic diversity among bacterial strains even within the same bacterial species has constrained vaccine developments, but OMPs that are conserved across serotypes could be used as potential candidates in vaccine development, and several studies have demonstrated their efficacy and potential as vaccine candidates. In this review, we will look into the application of OMPs for the design of vaccines based on recombinant proteins, subunit vaccines, chimeric proteins, and DNA vaccines as new-generation vaccine candidates for major bacterial pathogens of fish for sustainable aquaculture.
Collapse
Affiliation(s)
- Biswajit Maiti
- Nitte University Centre for Science Education and Research, Mangaluru, India
| | - Saurabh Dubey
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Hetron Mweemba Munang'andu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Indrani Karunasagar
- Nitte University Centre for Science Education and Research, Mangaluru, India
- NITTE (Deemed to be University), Mangaluru, India
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
19
|
Kwiatkowski AJ, Stewart JM, Cho JJ, Avram D, Keselowsky BG. Nano and Microparticle Emerging Strategies for Treatment of Autoimmune Diseases: Multiple Sclerosis and Type 1 Diabetes. Adv Healthc Mater 2020; 9:e2000164. [PMID: 32519501 DOI: 10.1002/adhm.202000164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Autoimmune diseases affect 10% of the world's population, and 1 in 200 people worldwide suffer from either multiple sclerosis (MS) or type 1 diabetes (T1D). While the targeted organ systems are different, MS and T1D share similarities in terms of autoreactive immune cells playing a critical role in pathogenesis. Both diseases can be managed only symptomatically without curative remission, and treatment options are limited and non-specific. Most current therapies cause some degree of systemic immune suppression, leaving the patients susceptible to opportunistic infections and other complications. Thus, there is considerable interest in the development of immunotherapies not associated with generalized immune suppression for these diseases. This review presents current and preclinical strategies for MS and T1D treatment, emphasizing those aimed to modulate the immune response, including the most recent strategies for tolerance induction. A central focus is on the emerging approaches using nano- and microparticle platforms, their evolution as immunotherapeutic carriers, including those incorporating specific antigens to induce tolerance and reduce unwanted generalized immune suppression.
Collapse
Affiliation(s)
- Alexander J Kwiatkowski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Joshua M Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan J Cho
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
20
|
Sun X, Liu H. Nucleic Acid Nanostructure Assisted Immune Modulation. ACS APPLIED BIO MATERIALS 2020; 3:2765-2778. [DOI: 10.1021/acsabm.9b01195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoli Sun
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
21
|
Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles Targeting STATs in Cancer Therapy. Cells 2019; 8:E1158. [PMID: 31569687 PMCID: PMC6829305 DOI: 10.3390/cells8101158] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, an increase in the incidence rate of cancer has been witnessed. Although many efforts have been made to manage and treat this life threatening condition, it is still one of the leading causes of death worldwide. Therefore, scientists have attempted to target molecular signaling pathways involved in cancer initiation and metastasis. It has been shown that signal transducers and activator of transcription (STAT) contributes to the progression of cancer cells. This important signaling pathway is associated with a number of biological processes including cell cycle, differentiation, proliferation and apoptosis. It appears that dysregulation of the STAT signaling pathway promotes the migration, viability and malignancy of various tumor cells. Hence, there have been many attempts to target the STAT signaling pathway. However, it seems that currently applied therapeutics may not be able to effectively modulate the STAT signaling pathway and suffer from a variety of drawbacks such as low bioavailability and lack of specific tumor targeting. In the present review, we demonstrate how nanocarriers can be successfully applied for encapsulation of STAT modulators in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran.
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar 6451741117, Iran.
| | - Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway H91 W2TY, Ireland.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
22
|
Hajavi J, Hashemi M, Sankian M. Evaluation of size and dose effects of rChe a 3 allergen loaded PLGA nanoparticles on modulation of Th2 immune responses by sublingual immunotherapy in mouse model of rhinitis allergic. Int J Pharm 2019; 563:282-292. [DOI: 10.1016/j.ijpharm.2019.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
|
23
|
Koerner J, Horvath D, Groettrup M. Harnessing Dendritic Cells for Poly (D,L-lactide- co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front Immunol 2019; 10:707. [PMID: 31024545 PMCID: PMC6460768 DOI: 10.3389/fimmu.2019.00707] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
With emerging success in fighting off cancer, chronic infections, and autoimmune diseases, immunotherapy has become a promising therapeutic approach compared to conventional therapies such as surgery, chemotherapy, radiation therapy, or immunosuppressive medication. Despite the advancement of monoclonal antibody therapy against immune checkpoints, the development of safe and efficient cancer vaccine formulations still remains a pressing medical need. Anti-tumor immunotherapy requires the induction of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses which recognize and specifically destroy tumor cells. Due to the crucial role of dendritic cells (DCs) in initiating anti-tumor immunity, targeting tumor antigens to DCs has become auspicious in modern vaccine research. Over the last two decades, micron- or nanometer-sized particulate delivery systems encapsulating tumor antigens and immunostimulatory molecules into biodegradable polymers have shown great promise for the induction of potent, specific and long-lasting anti-tumor responses in vivo. Enhanced vaccine efficiency of the polymeric micro/nanoparticles has been attributed to controlled and continuous release of encapsulated antigens, efficient targeting of antigen presenting cells (APCs) such as DCs and subsequent induction of CTL immunity. Poly (D, L-lactide-co-glycolide) (PLGA), as one of these polymers, has been extensively studied for the design and development of particulate antigen delivery systems in cancer therapy. This review provides an overview of the current state of research on the application of PLGA microspheres (PLGA MS) as anti-tumor cancer vaccines in activating and potentiating immune responses attempting to highlight their potential in the development of cancer therapeutics.
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
24
|
Mehravaran A, Nasab MR, Mirahmadi H, Sharifi I, Alijani E, Nikpoor AR, Akhtari J. Protection induced by Leishmania Major antigens and the imiquimod adjuvant encapsulated on liposomes in experimental cutaneous leishmaniasis. INFECTION GENETICS AND EVOLUTION 2019; 70:27-35. [PMID: 30738195 DOI: 10.1016/j.meegid.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/22/2018] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
There is a need for new, effective, and less expensive and toxic treatment for Leishmaniasis. It seems that the use of a suitable adjuvant and a delivery system is effective in inducing immune reactions for protection. Liposomes can be applied as immunoadjuvants to trigger immune reactions to different antigens. The adjuvant effects of imiquimod using DSPC liposomes containing SLA (soluble Leishmania antigens) were studied on the type and intensity of the produced immune reaction to the challenge of Leishmania major in BALB/c mice. Liposomes were produced by the lipid film procedure. BALB/C mice were immunized subcutaneously, three times at 2-week intervals and with various formulations. Lesion development and the parasite burden in the spleens and feet after the challenge with Leishmania major, Th1 cytokine (IFN-γ), and the IgG isotype titration were assessed to evaluate the induced immune reaction and the protection level. The group of mice immunized with Liposome DSPC +Imiquimod +SLA revealed less severe footpad swelling, being significantly different (P < .05) from other groups. A higher level of IgG2a and IFN-γ secretion was observed in the mice immunized with Liposome DSPC +Imiquimod +SLA than the control group. These observations imply that the DSPC liposome containing imiquimod induces the Th1 immune response that is protective against the challenge of Leishmania major.
Collapse
Affiliation(s)
- Ahmad Mehravaran
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis institute, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Maryam Rezaei Nasab
- Department of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hadi Mirahmadi
- Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis institute, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ebrahim Alijani
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amin Reza Nikpoor
- Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Akhtari
- Immunogenetics Research Center, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
25
|
Exploiting PLGA-Based Biocompatible Nanoparticles for Next-Generation Tolerogenic Vaccines against Autoimmune Disease. Int J Mol Sci 2019; 20:ijms20010204. [PMID: 30626016 PMCID: PMC6337481 DOI: 10.3390/ijms20010204] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/01/2022] Open
Abstract
Tolerogenic vaccines are aimed at inhibiting antigen-specific immune responses. Antigen-loaded nanoparticles (NPs) have been recently emerged as ideal tools for tolerogenic vaccination because their composition, size, and capability of loading immunomodulatory molecules can be readily exploited to induce peripheral tolerance. Among polymeric NPs, poly(lactic-co-glycolic acid) (PLGA) NPs have the advantage of currently holding approval for several applications in drug delivery, diagnostics, and other clinical uses by the Food and Drug Administration (FDA). PLGA-NPs are non-toxic and display excellent biocompatibility and biodegradability properties. Moreover, surface functionalization may improve their interaction with biological materials, thereby optimizing targeting and performance. PLGA-NPs are the most extensively studied in pre-clinical model in the field of tolerogenic vaccination. Thus, this review describes their potential applications in the treatment of autoimmune diseases.
Collapse
|
26
|
Kroll AV, Jiang Y, Zhou J, Holay M, Fang RH, Zhang L. Biomimetic Nanoparticle Vaccines for Cancer Therapy. ADVANCED BIOSYSTEMS 2019; 3:e1800219. [PMID: 31728404 PMCID: PMC6855307 DOI: 10.1002/adbi.201800219] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Indexed: 12/25/2022]
Abstract
It is currently understood that, in order for a tumor to successfully grow, it must evolve means of evading immune surveillance. In the past several decades, researchers have leveraged increases in our knowledge of tumor immunology to develop therapies capable of augmenting endogenous immunity and eliciting strong antitumor responses. In particular, the goal of anticancer vaccination is to train the immune system to properly utilize its own resources in the fight against cancer. Although attractive in principle, there are currently only limited examples of anticancer vaccines that have been successfully translated to the clinic. Recently, there has been a significant push towards the use of nanotechnology for designing vaccine candidates that exhibit enhanced potency and specificity. In this progress report, we discuss recent developments in the field of anticancer nanovaccines. By taking advantage of the flexibility offered by nanomedicine to purposefully program immune responses, this new generation of vaccines has the potential to address many of the hurdles facing traditional platforms. A specific emphasis is placed on the emergence of cell membrane-coated nanoparticles, a novel biomimetic platform that can be used to generate personalized nanovaccines that elicit strong, multi-antigenic antitumor responses.
Collapse
Affiliation(s)
- Ashley V Kroll
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maya Holay
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
27
|
Ben-Akiva E, Est Witte S, Meyer RA, Rhodes KR, Green JJ. Polymeric micro- and nanoparticles for immune modulation. Biomater Sci 2018; 7:14-30. [PMID: 30418444 PMCID: PMC6664797 DOI: 10.1039/c8bm01285g] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New advances in biomaterial-based approaches to modulate the immune system are being applied to treat cancer, infectious diseases, and autoimmunity. Particulate systems are especially well-suited to deliver immunomodulatory factors to immune cells since their small size allows them to engage cell surface receptors or deliver cargo intracellularly after internalization. Biodegradable polymeric particles are a particularly versatile platform for the delivery of signals to the immune system because they can be easily surface-modified to target specific receptors and engineered to release encapsulated cargo in a precise, sustained manner. Micro- and nanoscale systems have been used to deliver a variety of therapeutic agents including monoclonal antibodies, peptides, and small molecule drugs that function to activate the immune system against cancer or infectious disease, or suppress the immune system to combat autoimmune diseases and transplant rejection. This review provides an overview of recent advances in the development of polymeric micro- and nanoparticulate systems for the presentation and delivery of immunomodulatory agents targeted to a variety of immune cell types including APCs, T cells, B cells, and NK cells.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Department of Biomedical Engineering and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | | | |
Collapse
|
28
|
Jahan ST, Sadat SMA, Yarahmadi M, Haddadi A. Potentiating Antigen Specific Immune Response by Targeted Delivery of the PLGA-Based Model Cancer Vaccine. Mol Pharm 2018; 16:498-509. [DOI: 10.1021/acs.molpharmaceut.8b00700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sheikh Tasnim Jahan
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Sams M. A. Sadat
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mehran Yarahmadi
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Azita Haddadi
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
29
|
Combinatory therapy adopting nanoparticle-based cancer vaccination with immune checkpoint blockade for treatment of post-surgical tumor recurrences. J Control Release 2018; 285:56-66. [DOI: 10.1016/j.jconrel.2018.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
|
30
|
Rodgers AM, Cordeiro AS, Kissenpfennig A, Donnelly RF. Microneedle arrays for vaccine delivery: the possibilities, challenges and use of nanoparticles as a combinatorial approach for enhanced vaccine immunogenicity. Expert Opin Drug Deliv 2018; 15:851-867. [PMID: 30051726 DOI: 10.1080/17425247.2018.1505860] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Vaccination is one of the greatest breakthroughs of modern preventative medicine. Despite this, there remain problems surrounding delivery, efficacy and compliance. Thus, there is a pressing need to develop cost-effective vaccine delivery systems that could expand the use of vaccines, particularly within developing countries. Microneedle (MN) arrays, given their ease of use, painlessness and ability to target skin antigen presenting cells, provide an attractive platform for improved vaccine delivery and efficacy. Studies have demonstrated enhanced immunogenicity with the use of MN in comparison to conventional needle. More recently, dissolving MN have been used for efficient delivery of nanoparticles (NP), as a means to enhance antigen immunogenicity. AREAS COVERED This review introduces the fields of MN technology and nanotechnology, highlighting the recent advances which have been made with these two technologies combined for enhanced vaccine delivery and efficacy. Some key questions that remain to be addressed for adoption of MN in a clinical setting are also evaluated. EXPERT OPINION MN-mediated vaccine delivery holds potential for expanding access to vaccines, with individuals in developing countries likely to be the principal beneficiaries. The combinatorial approach of utilizing MN coupled with NP, provides opportunities to enhance the immunogenicity of vaccine antigens.
Collapse
Affiliation(s)
- Aoife Maria Rodgers
- a School of Pharmacy, Medical Biology Centre , Queen's University Belfast , Belfast , United Kingdom
| | - Ana Sara Cordeiro
- a School of Pharmacy, Medical Biology Centre , Queen's University Belfast , Belfast , United Kingdom
| | - Adrien Kissenpfennig
- b Centre for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science , Queen's University Belfast , Belfast , United Kingdom
| | - Ryan F Donnelly
- a School of Pharmacy, Medical Biology Centre , Queen's University Belfast , Belfast , United Kingdom
| |
Collapse
|
31
|
Angsantikul P, Fang RH, Zhang L. Toxoid Vaccination against Bacterial Infection Using Cell Membrane-Coated Nanoparticles. Bioconjug Chem 2017; 29:604-612. [PMID: 29241006 DOI: 10.1021/acs.bioconjchem.7b00692] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As nanoparticles exhibit unique properties attractive for vaccine development, they have been progressively implemented as antigen delivery platforms and immune potentiators. Recently, cell membrane-coated nanoparticles have provided a novel approach for intercepting and neutralizing bacterial toxins by leveraging their natural affinity to cellular membranes. Such toxin-nanoparticle assemblies, termed nanotoxoids, allow rapid loading of different types of toxins and have been investigated for their ability to effectively confer protection against bacterial infection. This topical review will cover the current progress in antibacterial vaccine nanoformulations and highlight the nanotoxoid platform as a novel class of nanoparticulate vaccine. We aim to provide insights into the potential of nanotoxoids as a platform that is facile to implement and can be broadly applied to help address the rising threat of super pathogens.
Collapse
Affiliation(s)
- Pavimol Angsantikul
- Department of NanoEngineering and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
32
|
Riitho V, Walters AA, Somavarapu S, Lamp B, Rümenapf T, Krey T, Rey FA, Oviedo-Orta E, Stewart GR, Locker N, Steinbach F, Graham SP. Design and evaluation of the immunogenicity and efficacy of a biomimetic particulate formulation of viral antigens. Sci Rep 2017; 7:13743. [PMID: 29062078 PMCID: PMC5653838 DOI: 10.1038/s41598-017-13915-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022] Open
Abstract
Subunit viral vaccines are typically not as efficient as live attenuated or inactivated vaccines at inducing protective immune responses. This paper describes an alternative ‘biomimetic’ technology; whereby viral antigens were formulated around a polymeric shell in a rationally arranged fashion with a surface glycoprotein coated on to the surface and non-structural antigen and adjuvant encapsulated. We evaluated this model using BVDV E2 and NS3 proteins formulated in poly-(D, L-lactic-co-glycolic acid) (PLGA) nanoparticles adjuvanted with polyinosinic:polycytidylic acid (poly(I:C) as an adjuvant (Vaccine-NP). This Vaccine-NP was compared to ovalbumin and poly(I:C) formulated in a similar manner (Control-NP) and a commercial adjuvanted inactivated BVDV vaccine (IAV), all inoculated subcutaneously and boosted prior to BVDV-1 challenge. Significant virus-neutralizing activity, and E2 and NS3 specific antibodies were observed in both Vaccine-NP and IAV groups following the booster immunisation. IFN-γ responses were observed in ex vivo PBMC stimulated with E2 and NS3 proteins in both vaccinated groups. We observed that the protection afforded by the particulate vaccine was comparable to the licenced IAV formulation. In conclusion, the biomimetic particulates showed a promising immunogenicity and efficacy profile that may be improved by virtue of being a customisable mode of delivery.
Collapse
Affiliation(s)
- Victor Riitho
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3NB, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom.,International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Adam A Walters
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3NB, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom.,The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | | | - Benjamin Lamp
- Institute for Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Till Rümenapf
- Institute for Virology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Thomas Krey
- Institut Pasteur, Unité de Virologie Structurale, Department Virologie, Paris CNRS UMR, 3569, Paris, France.,Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,German Center for Infection Research (DZIF), 30625, Hannover, Germany
| | - Felix A Rey
- Institut Pasteur, Unité de Virologie Structurale, Department Virologie, Paris CNRS UMR, 3569, Paris, France
| | - Ernesto Oviedo-Orta
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom.,Sanofi Pasteur, 1541, Avenue Marcel Merieux - Campus Merieux, 69280, Marcy, L'Etoile, France
| | - Graham R Stewart
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3NB, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Simon P Graham
- Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, KT15 3NB, United Kingdom. .,Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom. .,The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, United Kingdom.
| |
Collapse
|
33
|
Silva AL, Peres C, Conniot J, Matos AI, Moura L, Carreira B, Sainz V, Scomparin A, Satchi-Fainaro R, Préat V, Florindo HF. Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin Immunol 2017; 34:3-24. [PMID: 28941640 DOI: 10.1016/j.smim.2017.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Abstract
Nanotechnology-based strategies can dramatically impact the treatment, prevention and diagnosis of a wide range of diseases. Despite the unprecedented success achieved with the use of nanomaterials to address unmet biomedical needs and their particular suitability for the effective application of a personalized medicine, the clinical translation of those nanoparticulate systems has still been impaired by the limited understanding on their interaction with complex biological systems. As a result, unexpected effects due to unpredicted interactions at biomaterial and biological interfaces have been underlying the biosafety concerns raised by the use of nanomaterials. This review explores the current knowledge on how nanoparticle (NP) physicochemical and surface properties determine their interactions with innate immune cells, with particular attention on the activation of pattern-recognition receptors and inflammasome. A critical perspective will additionally address the impact of biological systems on the effect of NP on immune cell activity at the molecular level. We will discuss how the understanding of the NP-innate immune cell interactions can significantly add into the clinical translation by guiding the design of nanomedicines with particular effect on targeted cells, thus improving their clinical efficacy while minimizing undesired but predictable toxicological effects.
Collapse
Affiliation(s)
- Ana Luísa Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - João Conniot
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana I Matos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Liane Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bárbara Carreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Vanessa Sainz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and dSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel and dSagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium.
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
34
|
Ebrahimian M, Hashemi M, Maleki M, Hashemitabar G, Abnous K, Ramezani M, Haghparast A. Co-delivery of Dual Toll-Like Receptor Agonists and Antigen in Poly(Lactic-Co-Glycolic) Acid/Polyethylenimine Cationic Hybrid Nanoparticles Promote Efficient In Vivo Immune Responses. Front Immunol 2017; 8:1077. [PMID: 28955328 PMCID: PMC5601407 DOI: 10.3389/fimmu.2017.01077] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/18/2017] [Indexed: 11/16/2022] Open
Abstract
Strategies to design delivery vehicles are critical in modern vaccine-adjuvant development. Nanoparticles (NPs) encapsulating antigen(s) and adjuvant(s) are promising vehicles to deliver antigen(s) and adjuvant(s) to antigen-presenting cells (APCs), allowing optimal immune responses against a specific pathogen. In this study, we developed a novel adjuvant delivery approach for induction of efficient in vivo immune responses. Polyethylenimine (PEI) was physically conjugated to poly(lactic-co-glycolic) acid (PLGA) to form PLGA/PEI NPs. This complex was encapsulated with resiquimod (R848) as toll-like receptor (TLR) 7/8 agonist, or monophosphoryl lipid A (MPLA) as TLR4 agonist and co-assembled with cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG ODN) as TLR9 agonist to form a tripartite formulation [two TLR agonists (inside and outside NPs) and PLGA/PEI NPs as delivery system]. The physicochemical characteristics, cytotoxicity and cellular uptake of these synthesized delivery vehicles were investigated. Cellular viability test revealed no pronounced cytotoxicity as well as increased cellular uptake compared to control groups in murine macrophage cells (J774 cell line). In the next step, PLGA (MPLA or R848)/PEI (CpG ODN) were co-delivered with ovalbumin (OVA) encapsulated into PLGA NPs to enhance the induction of immune responses. The immunogenicity properties of these co-delivery formulations were examined in vivo by evaluating the cytokine (IFN-γ, IL-4, and IL-1β) secretion and antibody (IgG1, IgG2a) production. Robust and efficient immune responses were achieved after in vivo administration of PLGA (MPLA or R848)/PEI (CpG ODN) co-delivered with OVA encapsulated in PLGA NPs in BALB/c mice. Our results demonstrate a rational design of using dual TLR agonists in a context-dependent manner for efficient nanoparticulate adjuvant-vaccine development.
Collapse
Affiliation(s)
- Mahboubeh Ebrahimian
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Immunology Section, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Maleki
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Hashemitabar
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Haghparast
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Immunology Section, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
35
|
Cho JJ, Stewart JM, Drashansky TT, Brusko MA, Zuniga AN, Lorentsen KJ, Keselowsky BG, Avram D. An antigen-specific semi-therapeutic treatment with local delivery of tolerogenic factors through a dual-sized microparticle system blocks experimental autoimmune encephalomyelitis. Biomaterials 2017; 143:79-92. [PMID: 28772190 DOI: 10.1016/j.biomaterials.2017.07.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/11/2017] [Accepted: 07/21/2017] [Indexed: 01/07/2023]
Abstract
Antigen-specific treatments are highly desirable for autoimmune diseases in contrast to treatments which induce systemic immunosuppression. A novel antigen-specific therapy has been developed which, when administered semi-therapeutically, is highly efficacious in the treatment of the mouse model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). The treatment uses dual-sized, polymeric microparticles (dMPs) loaded with specific antigen and tolerizing factors for intra- and extra-cellular delivery, designed to recruit and modulate dendritic cells toward a tolerogenic phenotype without systemic release. This approach demonstrated robust efficacy and provided complete protection against disease. Therapeutic efficacy required encapsulation of the factors in controlled-release microparticles and was antigen-specific. Disease blocking was associated with a reduction of infiltrating CD4+ T cells, inflammatory cytokine-producing pathogenic CD4+ T cells, and activated macrophages and microglia in the central nervous system. Furthermore, CD4+ T cells isolated from dMP-treated mice were anergic in response to disease-specific, antigen-loaded splenocytes. Additionally, the frequency of CD86hiMHCIIhi dendritic cells in draining lymph nodes of EAE mice treated with Ag-specific dMPs was reduced. Our findings highlight the efficacy of microparticle-based drug delivery platform to mediate antigen-specific tolerance, and suggest that such a multi-factor combinatorial approach can act to block autoimmunity.
Collapse
Affiliation(s)
- Jonathan J Cho
- Division of Pulmonary Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joshua M Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Theodore T Drashansky
- Division of Pulmonary Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Maigan A Brusko
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ashley N Zuniga
- Division of Pulmonary Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kyle J Lorentsen
- Division of Pulmonary Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Dorina Avram
- Division of Pulmonary Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
36
|
Athanasiou E, Agallou M, Tastsoglou S, Kammona O, Hatzigeorgiou A, Kiparissides C, Karagouni E. A Poly(Lactic- co-Glycolic) Acid Nanovaccine Based on Chimeric Peptides from Different Leishmania infantum Proteins Induces Dendritic Cells Maturation and Promotes Peptide-Specific IFNγ-Producing CD8 + T Cells Essential for the Protection against Experimental Visceral Leishmaniasis. Front Immunol 2017; 8:684. [PMID: 28659922 PMCID: PMC5468442 DOI: 10.3389/fimmu.2017.00684] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/26/2017] [Indexed: 01/19/2023] Open
Abstract
Visceral leishmaniasis, caused by Leishmania (L.) donovani and L. infantum protozoan parasites, can provoke overwhelming and protracted epidemics, with high case-fatality rates. An effective vaccine against the disease must rely on the generation of a strong and long-lasting T cell immunity, mediated by CD4+ TH1 and CD8+ T cells. Multi-epitope peptide-based vaccine development is manifesting as the new era of vaccination strategies against Leishmania infection. In this study, we designed chimeric peptides containing HLA-restricted epitopes from three immunogenic L. infantum proteins (cysteine peptidase A, histone H1, and kinetoplastid membrane protein 11), in order to be encapsulated in poly(lactic-co-glycolic) acid nanoparticles with or without the adjuvant monophosphoryl lipid A (MPLA) or surface modification with an octapeptide targeting the tumor necrosis factor receptor II. We aimed to construct differentially functionalized peptide-based nanovaccine candidates and investigate their capacity to stimulate the immunomodulatory properties of dendritic cells (DCs), which are critical regulators of adaptive immunity generated upon vaccination. According to our results, DCs stimulation with the peptide-based nanovaccine candidates with MPLA incorporation or surface modification induced an enhanced maturation profile with prominent IL-12 production, promoting allogeneic T cell proliferation and intracellular production of IFNγ by CD4+ and CD8+ T cell subsets. In addition, DCs stimulated with the peptide-based nanovaccine candidate with MPLA incorporation exhibited a robust transcriptional activation, characterized by upregulated genes indicative of vaccine-driven DCs differentiation toward type 1 phenotype. Immunization of HLA A2.1 transgenic mice with this peptide-based nanovaccine candidate induced peptide-specific IFNγ-producing CD8+ T cells and conferred significant protection against L. infantum infection. Concluding, our findings supported that encapsulation of more than one chimeric multi-epitope peptides from different immunogenic L. infantum proteins in a proper biocompatible delivery system with the right adjuvant is considered as an improved promising approach for the development of a vaccine against VL.
Collapse
Affiliation(s)
- Evita Athanasiou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Agallou
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | | - Olga Kammona
- Laboratory of Polymer Reaction Engineering, Chemical Process and Energy Resources Institute, Centre for Research and Technology-Hellas, Thessaloniki, Greece
| | | | - Costas Kiparissides
- Laboratory of Polymer Reaction Engineering, Chemical Process and Energy Resources Institute, Centre for Research and Technology-Hellas, Thessaloniki, Greece.,Laboratory of Chemical Engineering B, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdokia Karagouni
- Laboratory of Cellular Immunology, Department of Microbiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
37
|
Souza C, Bannantine J, Brown W, Norton M, Davis W, Hwang J, Ziaei P, Abdellrazeq G, Eren M, Deringer J, Laws E, Cardieri M. A nano particle vector comprised of poly lactic-co-glycolic acid and monophosphoryl lipid A and recombinant Mycobacterium avium
subsp paratuberculosis
peptides stimulate a pro-immune profile in bovine macrophages. J Appl Microbiol 2017; 123:54-65. [DOI: 10.1111/jam.13491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/19/2017] [Accepted: 05/09/2017] [Indexed: 11/29/2022]
Affiliation(s)
- C.D. Souza
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Washington State University; Pullman WA USA
| | - J.P. Bannantine
- National Animal Disease Center; USDA-Agricultural Research Service; Ames IA USA
| | - W.C. Brown
- School of Mechanical and Materials Engineering; Washington State University; Pullman WA USA
| | - M.G. Norton
- School of Mechanical and Materials Engineering; Washington State University; Pullman WA USA
| | - W.C. Davis
- Department of Veterinary Microbiology and Pathology; Washington State University; Pullman WA USA
| | - J.K. Hwang
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Washington State University; Pullman WA USA
| | - P. Ziaei
- School of Mechanical and Materials Engineering; Washington State University; Pullman WA USA
| | - G.S. Abdellrazeq
- Department of Veterinary Microbiology and Pathology; Washington State University; Pullman WA USA
- Department of Microbiology; Faculty of Veterinary Medicine; Alexandria University; Alexandria Egypt
| | - M.V. Eren
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Washington State University; Pullman WA USA
| | - J.R. Deringer
- School of Mechanical and Materials Engineering; Washington State University; Pullman WA USA
| | - E. Laws
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Washington State University; Pullman WA USA
| | - M.C.D. Cardieri
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine; Washington State University; Pullman WA USA
| |
Collapse
|
38
|
Abstract
Nanotechnology offers invaluable tools to tailor cancer vaccines in order to generate robust antitumor immune response. Among the types of vehicles for cancer vaccines, nanoparticles (NPs) are easier to produce with better scalability. Several nanostructures have been discussed in literature as potential delivery systems for cancer antigens. Here, we focus on polymeric NPs fabricated from poly(D,L-lactic-co-glycolic) acid (PLGA). We describe how to prepare and characterize such NPs loaded with ovalbumin (OVA) antigen and immune adjuvant monophosphoryl lipid A (MPLA). We further describe methods to test the immune efficacy of such NPs in vitro and in vivo.
Collapse
Affiliation(s)
- Aws Alshamsan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, 2457, Riyadh, 11451, Saudi Arabia.
- King Abdullah Institute for Nanotechnology, King Saud University, 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
39
|
Guldner D, Hwang JK, Cardieri MCD, Eren M, Ziaei P, Norton MG, Souza CD. In Vitro Evaluation of the Biological Responses of Canine Macrophages Challenged with PLGA Nanoparticles Containing Monophosphoryl Lipid A. PLoS One 2016; 11:e0165477. [PMID: 27835636 PMCID: PMC5105989 DOI: 10.1371/journal.pone.0165477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/12/2016] [Indexed: 12/24/2022] Open
Abstract
Poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) have been considerably studied as a promising biodegradable delivery system to induce effective immune responses and to improve stability, safety, and cost effectiveness of vaccines. The study aimed at evaluating early inflammatory effects and cellular safety of PLGA NPs, co-encapsulating ovalbumin (PLGA/OVA NPs), as a model antigen and the adjuvant monophosphoryl lipid A (PLGA/MPLA NPs) as an adjuvant, on primary canine macrophages. The PLGA NPs constructs were prepared following the emulsion-solvent evaporation technique and further physic-chemically characterized. Peripheral blood mononuclear cells were isolated from canine whole blood by magnetic sorting and further cultured to generate macrophages. The uptake of PLGA NP constructs by macrophages was demonstrated by flow cytometry, transmission electron microscopy and confocal microscopy. Macrophage viability and morphology were evaluated by trypan blue exclusion and light microscopy. Macrophages were immunophenotyped for the expression of MHC-I and MHC-II and gene expression of Interleukin-10 (IL-10), Interleukin-12 (IL-12p40), and tumor necrosis factor alpha (TNF-α) were measured. The results showed that incubation of PLGA NP constructs with macrophages revealed effective early uptake of the PLGA NPs without altering the viability of macrophages. PLGA/OVA/MPLA NPs strongly induced TNF-α and IL-12p40 expression by macrophages as well as increase relative expression of MHC-I but not MHC-II molecules. Taken together, these results indicated that PLGA NPs with addition of MPLA represent a good model, when used as antigen carrier, for further, in vivo, work aiming to evaluate their potential to induce strong, specific, immune responses in dogs.
Collapse
Affiliation(s)
- Delphine Guldner
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Julianne K. Hwang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Maria Clara D. Cardieri
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Meaghan Eren
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Parissa Ziaei
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, United States of America
| | - M. Grant Norton
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, United States of America
| | - Cleverson D. Souza
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
40
|
Choi B, Moon H, Hong SJ, Shin C, Do Y, Ryu S, Kang S. Effective Delivery of Antigen-Encapsulin Nanoparticle Fusions to Dendritic Cells Leads to Antigen-Specific Cytotoxic T Cell Activation and Tumor Rejection. ACS NANO 2016; 10:7339-50. [PMID: 27390910 DOI: 10.1021/acsnano.5b08084] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In cancer immunotherapy, robust and efficient activation of cytotoxic CD8(+) T cell immune responses is a promising, but challenging task. Dendritic cells (DCs) are well-known professional antigen presenting cells that initiate and regulate antigen-specific cytotoxic CD8(+) T cells that kill their target cells directly as well as secrete IFN-γ, a cytokine critical in tumor rejection. Here, we employed recently established protein cage nanoparticles, encapsulin (Encap), as antigenic peptide nanocarriers by genetically incorporating the OT-1 peptide of ovalbumin (OVA) protein to the three different positions of the Encap subunit. With them, we evaluated their efficacy in activating DC-mediated antigen-specific T cell cytotoxicity and consequent melanoma tumor rejection in vivo. DCs efficiently engulfed Encap and its variants (OT-1-Encaps), which carry antigenic peptides at different positions, and properly processed them within phagosomes. Delivered OT-1 peptides were effectively presented by DCs to naïve CD8(+) T cells successfully, resulting in the proliferation of antigen-specific cytotoxic CD8(+) T cells. OT-1-Encap vaccinations in B16-OVA melanoma tumor bearing mice effectively activated OT-1 peptide specific cytotoxic CD8(+) T cells before or even after tumor generation, resulting in significant suppression of tumor growth in prophylactic as well as therapeutic treatments. A large number of cytotoxic CD8(+) T cells that actively produce both intracellular and secretory IFN-γ were observed in tumor-infiltrating lymphocytes collected from B16-OVA tumor masses originally vaccinated with OT-1-Encap-C upon tumor challenges. The approaches we describe herein may provide opportunities to develop epitope-dependent vaccination systems that stimulate and/or modulate efficient and epitope-specific cytotoxic T cell immune responses in nonpathogenic diseases.
Collapse
Affiliation(s)
- Bongseo Choi
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, 689-798, Korea
| | - Hyojin Moon
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, 689-798, Korea
| | - Sung Joon Hong
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, 689-798, Korea
| | - Changsik Shin
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, 689-798, Korea
| | - Yoonkyung Do
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, 689-798, Korea
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University , Cheonan, 336-745, Korea
| | - Sebyung Kang
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, 689-798, Korea
| |
Collapse
|
41
|
Fontana F, Liu D, Hirvonen J, Santos HA. Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy? WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27470448 DOI: 10.1002/wnan.1421] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/25/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
The application of nanotechnology to the treatment of cancer or other diseases has been boosted during the last decades due to the possibility to precise deliver drugs where needed, enabling a decrease in the drug's side effects. Nanocarriers are particularly valuable for potentiating the simultaneous co-delivery of multiple drugs in the same particle for the treatment of heavily burdening diseases like cancer. Immunotherapy represents a new concept in the treatment of cancer and has shown outstanding results in patients treated with check-point inhibitors. Thereby, researchers are applying nanotechnology to cancer immunotherapy toward the development of nanocarriers for delivery of cancer vaccines and chemo-immunotherapies. Cancer nanovaccines can be envisioned as nanocarriers co-delivering antigens and adjuvants, molecules often presenting different physicochemical properties, in cancer therapy. A wide range of nanocarriers (e.g., polymeric, lipid-based and inorganic) allow the co-formulation of these molecules, or the delivery of chemo- and immune-therapeutics in the same system. Finally, there is a trend toward the use of biologically inspired and derived nanocarriers. In this review, we present the recent developments in the field of immunotherapy, describing the different systems proposed by categories: polymeric nanoparticles, lipid-based nanosystems, metallic and inorganic nanosystems and, finally, biologically inspired and derived nanovaccines. WIREs Nanomed Nanobiotechnol 2017, 9:e1421. doi: 10.1002/wnan.1421 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Flavia Fontana
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Ghalamfarsa G, Hojjat-Farsangi M, Mohammadnia-Afrouzi M, Anvari E, Farhadi S, Yousefi M, Jadidi-Niaragh F. Application of nanomedicine for crossing the blood–brain barrier: Theranostic opportunities in multiple sclerosis. J Immunotoxicol 2016; 13:603-19. [DOI: 10.3109/1547691x.2016.1159264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ghasem Ghalamfarsa
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mousa Mohammadnia-Afrouzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Shohreh Farhadi
- Department of Agricultural Engineering, Islamic Azad University, Tehran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Adjuvants: Classification, Modus Operandi, and Licensing. J Immunol Res 2016; 2016:1459394. [PMID: 27274998 PMCID: PMC4870346 DOI: 10.1155/2016/1459394] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/02/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023] Open
Abstract
Vaccination is one of the most efficient strategies for the prevention of infectious diseases. Although safer, subunit vaccines are poorly immunogenic and for this reason the use of adjuvants is strongly recommended. Since their discovery in the beginning of the 20th century, adjuvants have been used to improve immune responses that ultimately lead to protection against disease. The choice of the adjuvant is of utmost importance as it can stimulate protective immunity. Their mechanisms of action have now been revealed. Our increasing understanding of the immune system, and of correlates of protection, is helping in the development of new vaccine formulations for global infections. Nevertheless, few adjuvants are licensed for human vaccines and several formulations are now being evaluated in clinical trials. In this review, we briefly describe the most well known adjuvants used in experimental and clinical settings based on their main mechanisms of action and also highlight the requirements for licensing new vaccine formulations.
Collapse
|
44
|
Liu Q, Jia J, Yang T, Fan Q, Wang L, Ma G. Pathogen-Mimicking Polymeric Nanoparticles based on Dopamine Polymerization as Vaccines Adjuvants Induce Robust Humoral and Cellular Immune Responses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1744-1757. [PMID: 26849717 DOI: 10.1002/smll.201503662] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Aiming to enhance the immunogenicity of subunit vaccines, a novel antigen delivery and adjuvant system based on dopamine polymerization on the surface of poly(D,L-lactic-glycolic-acid) nanoparticles (NPs) with multiple mechanisms of immunity enhancement is developed. The mussel-inspired biomimetic polydopamine (pD) not only serves as a coating to NPs but also functionalizes NP surfaces. The method is facile and mild including simple incubation of the preformed NPs in the weak alkaline dopamine solution, and incorporation of hepatitis B surface antigen and TLR9 agonist unmethylated cytosine-guanine (CpG) motif with the pD surface. The as-constructed NPs possess pathogen-mimicking manners owing to their size, shape, and surface molecular immune-activating properties given by CpG. The biocompatibility and biosafety of these pathogen-mimicking NPs are confirmed using bone marrow-derived dendritic cells. Pathogen-mimicking NPs hold great potential as vaccine delivery and adjuvant system due to their ability to: 1) enhance cytokine secretion and immune cell recruitment at the injection site; 2) significantly activate and maturate dendritic cells; 3) induce stronger humoral and cellular immune responses in vivo. Furthermore, this simple and versatile dopamine polymerization method can be applicable to endow NPs with characteristics to mimic pathogen structure and function, and manipulate NPs for the generation of efficacious vaccine adjuvants.
Collapse
Affiliation(s)
- Qi Liu
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jilei Jia
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tingyuan Yang
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qingze Fan
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lianyan Wang
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production and Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
45
|
Acharya AP, Carstens MR, Lewis JS, Dolgova N, Xia CQ, Clare-Salzler MJ, Keselowsky BG. A cell-based microarray to investigate combinatorial effects of microparticle-encapsulated adjuvants on dendritic cell activation. J Mater Chem B 2016; 4:1672-1685. [PMID: 26985393 PMCID: PMC4790840 DOI: 10.1039/c5tb01754h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Experimental vaccine adjuvants are being designed to target specific toll-like receptors (TLRs) alone or in combination, expressed by antigen presenting cells, notably dendritic cells (DCs). There is a need for high-content screening (HCS) platforms to explore how DC activation is affected by adjuvant combinations. Presented is a cell-based microarray approach, "immunoarray", exposing DCs to a large number of adjuvant combinations. Microparticles encapsulating TLR ligands are printed onto arrays in a range of doses for each ligand, in all possible dose combinations. Dendritic cells are then co-localized with physisorbed microparticles on the immunoarray, adherent to isolated islands surrounded by a non-fouling background, and DC activation is quantified. Delivery of individual TLR ligands was capable of eliciting high levels of specific DC activation markers. For example, either TLR9 ligand, CpG, or TLR3 ligand, poly I:C, was capable of inducing among the highest 10% expression levels of CD86. In contrast, MHC-II expression in response to TLR4 agonist MPLA was among the highest, whereas either MPLA or poly I:C, was capable of producing among the highest levels of CCR7 expression, as well as inflammatory cytokine IL-12. However, in order to produce robust responses across all activation markers, adjuvant combinations were required, and combinations were more represented among the high responders. The immunoarray also enables investigation of interactions between adjuvants, and each TLR ligand suggested antagonism to other ligands, for various markers. Altogether, this work demonstrates feasibility of the immunoarray platform to screen microparticle-encapsulated adjuvant combinations for the development of improved and personalized vaccines.
Collapse
Affiliation(s)
- Abhinav P. Acharya
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 130 BME/PO Box 116131, Gainesville, Florida, 32611-6131, USA
- Department of Materials Science and Engineering, University of Florida, USA
| | - Matthew R. Carstens
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 130 BME/PO Box 116131, Gainesville, Florida, 32611-6131, USA
| | - Jamal S. Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 130 BME/PO Box 116131, Gainesville, Florida, 32611-6131, USA
- Department of Biomedical Engineering, University of California, Davis, US
| | - Natalia Dolgova
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 130 BME/PO Box 116131, Gainesville, Florida, 32611-6131, USA
| | - C. Q. Xia
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, USA
| | | | - Benjamin G. Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 130 BME/PO Box 116131, Gainesville, Florida, 32611-6131, USA
| |
Collapse
|
46
|
Varypataki EM, Silva AL, Barnier-Quer C, Collin N, Ossendorp F, Jiskoot W. Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles. J Control Release 2016; 226:98-106. [DOI: 10.1016/j.jconrel.2016.02.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 12/20/2022]
|
47
|
Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum Vaccin Immunother 2016; 12:1056-69. [PMID: 26752261 PMCID: PMC4962933 DOI: 10.1080/21645515.2015.1117714] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.
Collapse
Affiliation(s)
- A L Silva
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| | - P C Soema
- b Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands
| | - B Slütter
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands.,c Cluster BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| | - F Ossendorp
- d Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , Leiden , The Netherlands
| | - W Jiskoot
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| |
Collapse
|
48
|
Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release 2015; 220:141-148. [DOI: 10.1016/j.jconrel.2015.09.069] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022]
|
49
|
Fang RH, Kroll AV, Zhang L. Nanoparticle-Based Manipulation of Antigen-Presenting Cells for Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5483-96. [PMID: 26331993 PMCID: PMC4641138 DOI: 10.1002/smll.201501284] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/20/2015] [Indexed: 05/18/2023]
Abstract
Immunotherapeutic approaches for treating cancer overall have been receiving a considerable amount of interest due to the recent approval of several clinical formulations. Among the different modalities, anticancer vaccination acts by training the body to endogenously generate a response against tumor cells. However, despite the large amount of work that has gone into the development of such vaccines, the near absence of clinically approved formulations highlights the many challenges facing those working in the field. The generation of potent endogenous anticancer responses poses unique challenges due to the similarity between cancer cells and normal, healthy cells. As researchers continue to tackle the limited efficacy of vaccine formulations, fresh and novel approaches are being sought after to address many of the underlying problems. Here the application of nanoparticle technology towards the development of anticancer vaccines is discussed. Specifically, there is a focus on the benefits of using such strategies to manipulate antigen presenting cells (APCs), which are essential to the vaccination process, and how nanoparticle-based platforms can be rationally engineered to elicit appropriate downstream immune responses.
Collapse
Affiliation(s)
- Ronnie H. Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ashley V. Kroll
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
50
|
Powles L, Xiang SD, Selomulya C, Plebanski M. The Use of Synthetic Carriers in Malaria Vaccine Design. Vaccines (Basel) 2015; 3:894-929. [PMID: 26529028 PMCID: PMC4693224 DOI: 10.3390/vaccines3040894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/28/2015] [Accepted: 10/16/2015] [Indexed: 11/29/2022] Open
Abstract
Malaria vaccine research has been ongoing since the 1980s with limited success. However, recent improvements in our understanding of the immune responses required to combat each stage of infection will allow for intelligent design of both antigens and their associated delivery vaccine vehicles/vectors. Synthetic carriers (also known as vectors) are usually particulate and have multiple properties, which can be varied to control how an associated vaccine interacts with the host, and consequently how the immune response develops. This review comprehensively analyzes both historical and recent studies in which synthetic carriers are used to deliver malaria vaccines. Furthermore, the requirements for a synthetic carrier, such as size, charge, and surface chemistry are reviewed in order to understand the design of effective particle-based vaccines against malaria, as well as providing general insights. Synthetic carriers have the ability to alter and direct the immune response, and a better control of particle properties will facilitate improved vaccine design in the near future.
Collapse
Affiliation(s)
- Liam Powles
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Sue D Xiang
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia.
- Therapeutics and Regenerative Medicine Division, The Monash Institute of Medical Engineering (MIME), Monash University, Clayton, VIC 3800, Australia.
| | - Cordelia Selomulya
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia.
- Therapeutics and Regenerative Medicine Division, The Monash Institute of Medical Engineering (MIME), Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|