1
|
Zhu R, Huang J, Qian F. The role of tumor-associated macrophages in lung cancer. Front Immunol 2025; 16:1556209. [PMID: 40079009 PMCID: PMC11897577 DOI: 10.3389/fimmu.2025.1556209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Lung cancer remains a leading cause of cancer-related deaths worldwide, necessitating innovative treatments. Tumor-associated macrophages (TAMs) are primary immunosuppressive effectors that foster tumor proliferation, angiogenesis, metastasis, and resistance to therapy. They are broadly categorized into proinflammatory M1 and tumor-promoting M2 phenotypes, with elevated M2 infiltration correlating with poor prognosis. Strategies aimed at inhibiting TAM recruitment, depleting TAMs, or reprogramming M2 to M1 are therefore highly promising. Key signaling pathways, such as CSF-1/CSF-1R, IL-4/IL-13-STAT6, TLRs, and CD47-SIRPα, regulate TAM polarization. Additionally, macrophage-based drug delivery systems permit targeted agent transport to hypoxic regions, enhancing therapy. Preclinical studies combining TAM-targeted therapies with chemotherapy or immune checkpoint inhibitors have yielded improved responses and prolonged survival. Several clinical trials have also reported benefits in previously unresponsive patients. Future work should clarify the roles of macrophage-derived exosomes, cytokines, and additional mediators in shaping the immunosuppressive tumor microenvironment. These insights will inform the design of next-generation drug carriers and optimize combination immunotherapies within precision medicine frameworks. Elucidating TAM phenotypes and their regulatory molecules remains central to developing novel strategies that curb tumor progression and ultimately improve outcomes in lung cancer. Importantly, macrophage-based immunomodulation may offer expanded treatment avenues.
Collapse
Affiliation(s)
| | | | - Fenhong Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Dalpati N, Rai SK, Sharma P, Sarangi PP. Integrins and integrin-driven secretory pathways as multi-dimensional regulators of tumor-associated macrophage recruitment and reprogramming in tumor microenvironment. Matrix Biol 2025; 135:55-69. [PMID: 39645091 DOI: 10.1016/j.matbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Integrins, a group of transmembrane receptors, play a crucial role in mediating the interactions between cells and extracellular matrix (ECM) proteins. The intracellular signaling initiated by these cell-matrix interactions in leukocytes mediates many essential cellular processes such as survival, migration, metabolism, and other immunological functions. Macrophages, as phagocytes, participate in both proinflammatory and anti-inflammatory processes, including progression. Numerous reports have shown that the integrin-regulated secretome, comprising cytokines, chemokines, growth factors, proteases, and other bioactive molecules, is a crucial modulator of macrophage functions in tumors, significantly influencing macrophage programming and reprogramming within the tumor microenvironment (TME) in addition to driving their step-by-step entry process into tumor tissue spaces. Importantly, studies have demonstrated a pivotal role for integrin receptor-mediated secretome and associated signaling pathways in functional reprogramming from anti-tumorigenic to pro-tumorigenic phenotype in tumor-associated macrophages (TAMs). In this comprehensive review, we have provided an in-depth analysis of the latest findings of various key pathways, mediators, and signaling cascades associated with integrin-driven polarization of macrophages in tumors. This manuscript will provide an updated understanding of the modulation of inflammatory monocytes/ macrophages and TAMs by integrin-driven secretory pathways in various functions such as migration, differentiation, and their role in tumor progression, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Prerna Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Patni H, Chaudhary R, Kumar A. Unleashing nanotechnology to redefine tumor-associated macrophage dynamics and non-coding RNA crosstalk in breast cancer. NANOSCALE 2024; 16:18274-18294. [PMID: 39292162 DOI: 10.1039/d4nr02795g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Breast cancer is a significant global health issue. Tumor-associated macrophages (TAMs) are crucial in influencing the tumor microenvironment and the progression of the disease. TAMs exhibit remarkable plasticity in adopting distinct phenotypes ranging from pro-inflammatory and anti-tumorigenic (M1-like) to immunosuppressive and tumor-promoting (M2-like). This review elucidates the multifaceted roles of TAMs in driving breast tumor growth, angiogenesis, invasion, and metastatic dissemination. Significantly, it highlights the intricate crosstalk between TAMs and non-coding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, as a crucial regulatory mechanism modulating TAM polarization and functional dynamics that present potential therapeutic targets. Nanotechnology-based strategies are explored as a promising approach to reprogramming TAMs toward an anti-tumor phenotype. Various nanoparticle delivery systems have shown potential for modulating TAM polarization and inhibiting tumor-promoting effects. Notably, nanoparticles can deliver ncRNA therapeutics to TAMs, offering unique opportunities to modulate their polarization and activity.
Collapse
Affiliation(s)
- Hardik Patni
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ramesh Chaudhary
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
4
|
Biswas M. Understanding tissue-resident macrophages unlocks the potential for novel combinatorial strategies in breast cancer. Front Immunol 2024; 15:1375528. [PMID: 39104525 PMCID: PMC11298421 DOI: 10.3389/fimmu.2024.1375528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/14/2024] [Indexed: 08/07/2024] Open
Abstract
Tissue-resident macrophages (TRMs) are an integral part of the innate immune system, but their biology is not well understood in the context of cancer. Distinctive resident macrophage populations are identified in different organs in mice using fate mapping studies. They develop from the yolk sac and self-maintain themselves lifelong in specific tissular niches. Similarly, breast-resident macrophages are part of the mammary gland microenvironment. They reside in the breast adipose tissue stroma and close to the ductal epithelium and help in morphogenesis. In breast cancer, TRMs may promote disease progression and metastasis; however, precise mechanisms have not been elucidated. TRMs interact intimately with recruited macrophages, cytotoxic T cells, and other immune cells along with cancer cells, deciding further immunosuppressive or cytotoxic pathways. Moreover, triple-negative breast cancer (TNBC), which is generally associated with poor outcomes, can harbor specific TRM phenotypes. The influence of TRMs on adipose tissue stroma of the mammary gland also contributes to tumor progression. The complex crosstalk between TRMs with T cells, stroma, and breast cancer cells can establish a cascade of downstream events, understanding which can offer new insight for drug discovery and upcoming treatment choices. This review aims to acknowledge the previous research done in this regard while exploring existing research gaps and the future therapeutic potential of TRMs as a combination or single agent in breast cancer.
Collapse
Affiliation(s)
- Manjusha Biswas
- Department of Molecular Biomedicine, Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Chang K, Yue Q, Jin L, Fan P, Liu Y, Cao F, Zhang Y. Comprehensive Molecular Analyses of an M2-Like Tumor-Associated Macrophage for Predicting the Prognosis and Immunotherapy in Breast Cancer. J Immunother 2024; 47:205-215. [PMID: 38686904 DOI: 10.1097/cji.0000000000000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 05/02/2024]
Abstract
The involvement of M2-like tumor-associated macrophages (TAMs) in the advancement and treatment of cancer has been widely documented. This study aimed to develop a new signature associated with M2-like TAMs to predict the prognosis and treatment response in individuals diagnosed with breast cancer (BC). Weighted gene co-expression network analysis (WGCNA) was used to identity for M2-like TAM-related modular genes. The M2-like TAM-related modular subtype was identified using unsupervised clustering. WGCNA identified 722 M2-like TAM genes, 204 of which were associated with recurrence-free survival (RFS). Patients in cluster 1 exhibited upregulated cancer-related pathways, a higher proportion of triple-negative breast cancer (TNBC) subtypes, lower expression of immune checkpoints, and worse prognosis. Cluster 2 was characterized by upregulated immune-related pathways, a higher proportion of luminal A subtypes, and higher expression of immune checkpoints. A prognostic signature was created and confirmed using an independent dataset. A well-built nomogram can accurately forecast the survival outcomes for every individual. Furthermore, patients classified as low-risk exhibited a more favorable outlook, elevated tumor microenvironment (TME) score, and superior reaction to immunotherapy. In conclusion, we discovered 2 different types of M2-like TAMs and developed a prognostic signature revealing the diversity of M2-like TAMs in BC and their correlation with immune status and prognosis. This feature can predict the prognosis and immunotherapeutic effects of BC and offer novel concepts and approaches for tailoring BC treatment.
Collapse
Affiliation(s)
- Kexin Chang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - QingFang Yue
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Long Jin
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Pengyu Fan
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, China
| | - Yi Liu
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fei Cao
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuan Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
6
|
Almeida PP, Moraes JA, Barja-Fidalgo TC, Renovato-Martins M. Extracellular vesicles as modulators of monocyte and macrophage function in tumors. AN ACAD BRAS CIENC 2024; 96:e20231212. [PMID: 38922279 DOI: 10.1590/0001-3765202420231212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/17/2024] [Indexed: 06/27/2024] Open
Abstract
The tumor microenvironment (TME) harbors several cell types, such as tumor cells, immune cells, and non-immune cells. These cells communicate through several mechanisms, such as cell-cell contact, cytokines, chemokines, and extracellular vesicles (EVs). Tumor-derived vesicles are known to have the ability to modulate the immune response. Monocytes are a subset of circulating innate immune cells and play a crucial role in immune surveillance, being recruited to tissues where they differentiate into macrophages. In the context of tumors, it has been observed that tumor cells can attract monocytes to the TME and induce their differentiation into tumor-associated macrophages with a pro-tumor phenotype. Tumor-derived EVs have emerged as essential structures mediating this process. Through the transfer of specific molecules and signaling factors, tumor-derived EVs can shape the phenotype and function of monocytes, inducing the expression of cytokines and molecules by these cells, thus modulating the TME towards an immunosuppressive environment.
Collapse
Affiliation(s)
- Palloma P Almeida
- Universidade Federal Fluminense, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Laboratório de Inflamação e Metabolismo, Rua Professor Marcos Waldemar de Freitas Reis, s/n, 24020-140 Niterói, RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Biologia Redox, Av. Carlos Chagas Filho, 373, Prédio do ICB - Anexo B1F3, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes - IBRAG, Laboratório de Farmacologia Celular e Molecular, Av. 28 de setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - João Alfredo Moraes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Biologia Redox, Av. Carlos Chagas Filho, 373, Prédio do ICB - Anexo B1F3, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Thereza Christina Barja-Fidalgo
- Universidade do Estado do Rio de Janeiro, Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes - IBRAG, Laboratório de Farmacologia Celular e Molecular, Av. 28 de setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Mariana Renovato-Martins
- Universidade Federal Fluminense, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Laboratório de Inflamação e Metabolismo, Rua Professor Marcos Waldemar de Freitas Reis, s/n, 24020-140 Niterói, RJ, Brazil
| |
Collapse
|
7
|
Senaratne NLM, Yung on C, Shetty NY, Gopinath D. Effect of different forms of tobacco on the oral microbiome in healthy adults: a systematic review. FRONTIERS IN ORAL HEALTH 2024; 5:1310334. [PMID: 38445094 PMCID: PMC10912582 DOI: 10.3389/froh.2024.1310334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 03/07/2024] Open
Abstract
Objective The study aimed to evaluate the impact of tobacco use on the composition and functions of the oral microbiome in healthy adult humans. Methods We conducted a systematic search on PubMed, Web of Science, and Cinhal databases for literature published until 15 December 2023, to identify studies that have evaluated the oral microbiome with culture-independent next-generation techniques comparing the oral microbiome of tobacco users and non-users. The search followed the PECO format. The outcomes included changes in microbial diversity and abundance of microbial taxa. The quality assessment was performed using the Newcastle-Ottawa Scale (NOS) (PROSPERO ID CRD42022340151). Results Out of 2,435 articles screened, 36 articles satisfied the eligibility criteria and were selected for full-text review. Despite differences in design, quality, and population characteristics, most studies reported an increase in bacterial diversity and richness in tobacco users. The most notable bacterial taxa enriched in users were Fusobacteria and Actinobacteria at the phylum level and Streptococcus, Prevotella, and Veillonella at the genus level. At the functional level, more similarities could be noted; amino acid metabolism and xenobiotic biodegradation pathways were increased in tobacco users compared to non-users. Most of the studies were of good quality on the NOS scale. Conclusion Tobacco smoking influences oral microbial community harmony, and it shows a definitive shift towards a proinflammatory milieu. Heterogeneities were detected due to sampling and other methodological differences, emphasizing the need for greater quality research using standardized methods and reporting. Systematic Review Registration CRD42022340151.
Collapse
Affiliation(s)
- Nikitha Lalindri Mareena Senaratne
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
- Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - Cheng Yung on
- Sungai Rengit Dental Clinic, Johor Health Department, Ministry of Health Malaysia, Kota Tinggi, Malaysia
| | - Naresh Yedthare Shetty
- Clinical Sciences Department, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Divya Gopinath
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Basic Medical and Dental Sciences Department, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
8
|
Cornice J, Verzella D, Arboretto P, Vecchiotti D, Capece D, Zazzeroni F, Franzoso G. NF-κB: Governing Macrophages in Cancer. Genes (Basel) 2024; 15:197. [PMID: 38397187 PMCID: PMC10888451 DOI: 10.3390/genes15020197] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are the major component of the tumor microenvironment (TME), where they sustain tumor progression and or-tumor immunity. Due to their plasticity, macrophages can exhibit anti- or pro-tumor functions through the expression of different gene sets leading to distinct macrophage phenotypes: M1-like or pro-inflammatory and M2-like or anti-inflammatory. NF-κB transcription factors are central regulators of TAMs in cancers, where they often drive macrophage polarization toward an M2-like phenotype. Therefore, the NF-κB pathway is an attractive therapeutic target for cancer immunotherapy in a wide range of human tumors. Hence, targeting NF-κB pathway in the myeloid compartment is a potential clinical strategy to overcome microenvironment-induced immunosuppression and increase anti-tumor immunity. In this review, we discuss the role of NF-κB as a key driver of macrophage functions in tumors as well as the principal strategies to overcome tumor immunosuppression by targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (D.V.); (D.C.); (F.Z.)
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK; (J.C.); (P.A.)
| |
Collapse
|
9
|
Dong W, Zhao H, Xiao S, Zheng L, Fan T, Wang L, Zhang H, Hu Y, Yang J, Wang T, Xiao W. Single-cell RNA-seq analyses inform necroptosis-associated myeloid lineages influence the immune landscape of pancreas cancer. Front Immunol 2023; 14:1263633. [PMID: 38149248 PMCID: PMC10749962 DOI: 10.3389/fimmu.2023.1263633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties in pancreatic ductal adenocarcinoma (PDAC) remain elusive. Method In this study, we conducted scRNA-seq data analysis of cells from 12 primary tumor (PT) tissues, 4 metastatic (Met) tumor tissues, 3 adjacent normal pancreas tissues (Para), and PBMC samples across 16 PDAC patients, and revealed a heterogeneous TIMs environment in PDAC. Result Systematic comparisons between tumor and non-tumor samples of myeloid lineages identified 10 necroptosis-associated genes upregulated in PDAC tumors compared to 5 upregulated in paratumor or healthy peripheral blood. A novel RTM (resident tissue macrophages), GLUL-SQSTM1- RTM, was found to act as a positive regulator of immunity. Additionally, HSP90AA1+HSP90AB1+ mast cells exhibited pro-immune characteristics, and JAK3+TLR4+ CD16 monocytes were found to be anti-immune. The findings were validated through clinical outcomes and cytokines analyses. Lastly, intercellular network reconstruction supported the associations between the identified novel clusters, cancer cells, and immune cell populations. Conclusion Our analysis comprehensively characterized major myeloid cell lineages and identified three subsets of myeloid-derived cells associated with necroptosis. These findings not only provide a valuable resource for understanding the multi-dimensional characterization of the tumor microenvironment in PDAC but also offer valuable mechanistic insights that can guide the design of effective immuno-oncology treatment strategies.
Collapse
Affiliation(s)
- Weiwei Dong
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huixia Zhao
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Shanshan Xiao
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Liuqing Zheng
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Tongqiang Fan
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Li Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - He Zhang
- Dept of Oncology, The Forth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanyan Hu
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jingwen Yang
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Tao Wang
- Department of Research and Development (R&D), Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Wenhua Xiao
- Senior Dept of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
10
|
Thompson AL, Grenald SA, Ciccone HA, Mohty D, Smith AF, Coleman DL, Bahramnejad E, De Leon E, Kasper-Conella L, Uhrlab JL, Margolis DS, Salvemini D, Largent-Milnes TM, Vanderah TW. Morphine-induced osteolysis and hypersensitivity is mediated through toll-like receptor-4 in a murine model of metastatic breast cancer. Pain 2023; 164:2463-2476. [PMID: 37326644 PMCID: PMC10578422 DOI: 10.1097/j.pain.0000000000002953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
ABSTRACT The propensity for breast cancer to metastasize to bone is coupled to the most common complaint among breast cancer patients: bone pain. Classically, this type of pain is treated using escalating doses of opioids, which lack long-term efficacy due to analgesic tolerance, opioid-induced hypersensitivity, and have recently been linked to enhanced bone loss. To date, the molecular mechanisms underlying these adverse effects have not been fully explored. Using an immunocompetent murine model of metastatic breast cancer, we demonstrated that sustained morphine infusion induced a significant increase in osteolysis and hypersensitivity within the ipsilateral femur through the activation of toll-like receptor-4 (TLR4). Pharmacological blockade with TAK242 (resatorvid) as well as the use of a TLR4 genetic knockout ameliorated the chronic morphine-induced osteolysis and hypersensitivity. Genetic MOR knockout did not mitigate chronic morphine hypersensitivity or bone loss. In vitro studies using RAW264.7 murine macrophages precursor cells demonstrated morphine-enhanced osteoclastogenesis that was inhibited by the TLR4 antagonist. Together, these data indicate that morphine induces osteolysis and hypersensitivity that are mediated, in part, through a TLR4 receptor mechanism.
Collapse
Affiliation(s)
- Austen L. Thompson
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Shaness A. Grenald
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Haley A. Ciccone
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Dieter Mohty
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Angela F. Smith
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Deziree L. Coleman
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Erfan Bahramnejad
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Erick De Leon
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Logan Kasper-Conella
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | | | - David S. Margolis
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Orthopaedic Surgery, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Tally M. Largent-Milnes
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
- Comprehensive Pain and Addiction Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
Chakraborty S, Ye J, Wang H, Sun M, Zhang Y, Sang X, Zhuang Z. Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy. Front Immunol 2023; 14:1227833. [PMID: 37936697 PMCID: PMC10626551 DOI: 10.3389/fimmu.2023.1227833] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) expressed in various immune cell types and perform multiple purposes and duties involved in the induction of innate and adaptive immunity. Their capability to propagate immunity makes them attractive targets for the expansion of numerous immunotherapeutic approaches targeting cancer. These immunotherapeutic strategies include using TLR ligands/agonists as monotherapy or combined therapeutic strategies. Several TLR agonists have demonstrated significant efficacy in advanced clinical trials. In recent years, multiple reports established the applicability of TLR agonists as adjuvants to chemotherapeutic drugs, radiation, and immunotherapies, including cancer vaccines. Cancer vaccines are a relatively novel approach in the field of cancer immunotherapy and are currently under extensive evaluation for treating different cancers. In the present review, we tried to deliver an inclusive discussion of the significant TLR agonists and discussed their application and challenges to their incorporation into cancer immunotherapy approaches, particularly highlighting the usage of TLR agonists as functional adjuvants to cancer vaccines. Finally, we present the translational potential of rWTC-MBTA vaccination [irradiated whole tumor cells (rWTC) pulsed with phagocytic agonists Mannan-BAM, TLR ligands, and anti-CD40 agonisticAntibody], an autologous cancer vaccine leveraging membrane-bound Mannan-BAM, and the immune-inducing prowess of TLR agonists as a probable immunotherapy in multiple cancer types.
Collapse
Affiliation(s)
- Samik Chakraborty
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- NE1 Inc., New York, NY, United States
| | - Juan Ye
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mitchell Sun
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yaping Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xueyu Sang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Macrophages at the interface of the co-evolving cancer ecosystem. Cell 2023; 186:1627-1651. [PMID: 36924769 DOI: 10.1016/j.cell.2023.02.020] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Macrophages are versatile and heterogeneous innate immune cells undertaking central functions in balancing immune responses and tissue repair to maintain homeostasis. This plasticity, once co-opted by malignant outgrowth, orchestrates manifold reciprocal interactions within the tumor microenvironment, fueling the evolution of the cancer ecosystem. Here, we review the multilayered sources of influence that jointly underpin and longitudinally shape tumor-associated macrophage (TAM) phenotypic states in solid neoplasms. We discuss how, in response to these signals, TAMs steer tumor evolution in the context of natural selection, biological dispersion, and treatment resistance. A number of research frontiers to be tackled are laid down in this review to therapeutically exploit the complex roles of TAMs in cancer. Building upon knowledge obtained from currently applied TAM-targeting strategies and using next generation technologies, we propose conceptual advances and novel therapeutic avenues to rewire TAM multifaceted regulation of the co-evolving cancer ecosystem.
Collapse
|
13
|
Dubey S, Ghosh S, Goswami D, Ghatak D, De R. Immunometabolic attributes and mitochondria-associated signaling of Tumor-Associated Macrophages in tumor microenvironment modulate cancer progression. Biochem Pharmacol 2023; 208:115369. [PMID: 36481347 DOI: 10.1016/j.bcp.2022.115369] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Macrophages are specialized immune cells, which have the capacity to phagocytize and destroy the target cells, including tumor cells. Some macrophages, however on their way to devour the cancer cells undergo a change due to a complex set of signaling pathways. They are induced to change into a polarized state known as M2. The M2 macrophages help in metastasis, tumor suppression, and angiogenesis. The macrophage which gets associated with this TME, are referred to as tumor-associated macrophages (TAMs). TAMS undergo a metabolic reprogramming toward oxidative metabolism for bioenergetic purposes (OXPHOS), fatty acid oxidation (FAO), decreased glycolysis, decreased metabolism via the PPP, and upregulation of arginase 1 (ARG1) which triggers immunosuppressive pro-tumor signaling in the tumor microenvironment (TME) in which mitochondria plays an instrumental role. Reports have suggested that a complex series of interactions and exchange of materials, such as cytokines, metabolic intermediates and sometimes even transfer of mitochondria take place between TAMS and other TME components most importantly cancer cells that reprogram their metabolism to encourage cell growth, division, epithelial to mesenchymal transition, that ultimately play an important role in tumor progression. This review will try to focus on the crosstalk between the TAMs with several other components of TME, what instrumental role mitochondria play in that and also try to explore some of the therapeutic options available in cancer patients.
Collapse
Affiliation(s)
- Srijan Dubey
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Sayak Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Debosmita Goswami
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India.
| |
Collapse
|
14
|
Hoden B, DeRubeis D, Martinez-Moczygemba M, Ramos KS, Zhang D. Understanding the role of Toll-like receptors in lung cancer immunity and immunotherapy. Front Immunol 2022; 13:1033483. [PMID: 36389785 PMCID: PMC9659925 DOI: 10.3389/fimmu.2022.1033483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 07/25/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer-related deaths worldwide. Significant improvements in lung cancer therapeutics have relied on a better understanding of lung cancer immunity and the development of novel immunotherapies, as best exemplified by the introduction of PD-1/PD-L1-based therapies. However, this improvement is limited to lung cancer patients who respond to anti-PD-1 immunotherapy. Further improvements in immunotherapy may benefit from a better understanding of innate immune response mechanisms in the lung. Toll-like receptors (TLRs) are a key component of the innate immune response and mediate the early recognition of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLR signaling modulates the tumor microenvironment from "cold" to "hot" leading to immune sensitization of tumor cells to treatments and improved patient prognosis. In addition, TLR signaling activates the adaptive immune response to improve the response to cancer immunotherapy through the regulation of anti-tumor T cell activity. This review will highlight recent progress in our understanding of the role of TLRs in lung cancer immunity and immunotherapy.
Collapse
Affiliation(s)
- Bettina Hoden
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - David DeRubeis
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Margarita Martinez-Moczygemba
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Kenneth S. Ramos
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States
| |
Collapse
|
15
|
Intralesional TLR4 agonist treatment strengthens the organ defense against colonizing cancer cells in the brain. Oncogene 2022; 41:5008-5019. [PMID: 36224342 DOI: 10.1038/s41388-022-02496-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022]
Abstract
Brain metastasis in breast cancer remains difficult to treat and its incidence is increasing. Therefore, the development of new therapies is of utmost clinical relevance. Recently, toll-like receptor (TLR) 4 was correlated with IL6 expression and poor prognosis in 1 215 breast cancer primaries. In contrast, we demonstrated that TLR4 stimulation reduces microglia-assisted breast cancer cell invasion. However, the expression, prognostic value, or therapeutic potential of TLR signaling in breast cancer brain metastasis have not been investigated. We thus tested the prognostic value of various TLRs in two brain-metastasis gene sets. Furthermore, we investigated different TLR agonists, as well as MyD88 and TRIF-deficient microenvironments in organotypic brain-slice ex vivo co-cultures and in vivo colonization experiments. These experiments underline the ambiguous roles of TLR4, its adapter MyD88, and the target nitric oxide (NO) during brain colonization. Moreover, analysis of the gene expression datasets of breast cancer brain metastasis patients revealed associations of TLR1 and IL6 with poor overall survival. Finally, our finding that a single LPS application at the onset of colonization shapes the later microglia/macrophage reaction at the macro-metastasis brain-parenchyma interface (MMPI) and reduces metastatic infiltration into the brain parenchyma may prove useful in immunotherapeutic considerations.
Collapse
|
16
|
Lau TY, Kwan HY. Fucoxanthin Is a Potential Therapeutic Agent for the Treatment of Breast Cancer. Mar Drugs 2022; 20:md20060370. [PMID: 35736173 PMCID: PMC9229252 DOI: 10.3390/md20060370] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers diagnosed and the leading cause of cancer-related death in women. Although there are first-line treatments for BC, drug resistances and adverse events have been reported. Given the incidence of BC keeps increasing, seeking novel therapeutics is urgently needed. Fucoxanthin (Fx) is a dietary carotenoid commonly found in seaweeds and diatoms. Both in vitro and in vivo studies show that Fx and its deacetylated metabolite fucoxanthinol (Fxol) inhibit and prevent BC growth. The NF-κB signaling pathway is considered the major pathway contributing to the anti-proliferation, anti-angiogenesis and pro-apoptotic effects of Fx and Fxol. Other signaling molecules such as MAPK, MMP2/9, CYP and ROS are also involved in the anti-cancer effects by regulating the tumor microenvironment, cancer metastasis, carcinogen metabolism and oxidation. Besides, Fx also possesses anti-obesity effects by regulating UCP1 levels and lipid metabolism, which may help to reduce BC risk. More importantly, mounting evidence demonstrates that Fx overcomes drug resistance. This review aims to give an updated summary of the anti-cancer effects of Fx and summarize the underlying mechanisms of action, which will provide novel strategies for the development of Fx as an anti-cancer therapeutic agent.
Collapse
|
17
|
TLR4 and pSTAT3 Expression on Circulating Tumor Cells (CTCs) and Immune Cells in the Peripheral Blood of Breast Cancer Patients: Prognostic Implications. Cancers (Basel) 2022; 14:cancers14041053. [PMID: 35205801 PMCID: PMC8869985 DOI: 10.3390/cancers14041053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
TLR4 and pSTAT3 are key players in cancer inflammation and immune evasion; however, their role in the peripheral blood (PB) is largely unexplored. Herein we evaluated their expression in the circulating tumor cells (CTCs) and peripheral-blood mononuclear cells (PBMCs) of patients with early (n = 99) and metastatic (n = 100) breast cancer (BC). PB samples obtained prior to adjuvant and first-line therapy, were immunofluorescently stained for Cytokeratins/TLR4/pSTAT3/DAPI and analyzed via Ariol microscopy. TLR4+ CTCs were detected in 50% and 68% of early and metastatic CTC-positive patients, respectively, and pSTAT3+ CTCs in 83% and 68%, respectively. In metastatic patients, CTC detection was associated with a high risk of death (HR: 1.764, p = 0.038), while TLR4+ CTCs correlated with a high risk of disease progression (HR: 1.964, p = 0.030). Regarding PBMCs, TLR4 expression prevailed in metastatic disease (p = 0.029), while pSTAT3 expression was more frequent in early disease (p = 0.014). In early BC, TLR4 expression on PBMCs independently predicted for high risk of relapse (HR: 3.549; p = 0.009), whereas in metastatic BC, TLR4+/pSTAT3- PBMCs independently predicted for high risk of death (HR: 2.925; p = 0.012). These results suggest that TLR4/pSTAT3 signaling on tumor- and immune-cell compartments in the PB could play a role in BC progression, and may hold independent prognostic implications for BC patients.
Collapse
|
18
|
Pahlavanneshan S, Sayadmanesh A, Ebrahimiyan H, Basiri M. Toll-Like Receptor-Based Strategies for Cancer Immunotherapy. J Immunol Res 2021; 2021:9912188. [PMID: 34124272 PMCID: PMC8166496 DOI: 10.1155/2021/9912188] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are expressed and play multiple functional roles in a variety of immune cell types involved in tumor immunity. There are plenty of data on the pharmacological targeting of TLR signaling using agonist molecules that boost the antitumor immune response. A recent body of research has also demonstrated promising strategies for improving the cell-based immunotherapy methods by inducing TLR signaling. These strategies include systemic administration of TLR antagonist along with immune cell transfer and also genetic engineering of the immune cells using TLR signaling components to improve the function of genetically engineered immune cells such as chimeric antigen receptor-modified T cells. Here, we explore the current status of the cancer immunotherapy approaches based on manipulation of TLR signaling to provide a perspective of the underlying rationales and potential clinical applications. Altogether, reviewed publications suggest that TLRs make a potential target for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Saghar Pahlavanneshan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Sayadmanesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamidreza Ebrahimiyan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
19
|
Mehta AK, Kadel S, Townsend MG, Oliwa M, Guerriero JL. Macrophage Biology and Mechanisms of Immune Suppression in Breast Cancer. Front Immunol 2021; 12:643771. [PMID: 33968034 PMCID: PMC8102870 DOI: 10.3389/fimmu.2021.643771] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages are crucial innate immune cells that maintain tissue homeostasis and defend against pathogens; however, their infiltration into tumors has been associated with adverse outcomes. Tumor-associated macrophages (TAMs) represent a significant component of the inflammatory infiltrate in breast tumors, and extensive infiltration of TAMs has been linked to poor prognosis in breast cancer. Here, we detail how TAMs impede a productive tumor immunity cycle by limiting antigen presentation and reducing activation of cytotoxic T lymphocytes (CTLs) while simultaneously supporting tumor cell survival, angiogenesis, and metastasis. There is an urgent need to overcome TAM-mediated immune suppression for durable anti-tumor immunity in breast cancer. To date, failure to fully characterize TAM biology and classify multiple subsets has hindered advancement in therapeutic targeting. In this regard, the complexity of TAMs has recently taken center stage owing to their subset diversity and tightly regulated molecular and metabolic phenotypes. In this review, we reveal major gaps in our knowledge of the functional and phenotypic characterization of TAM subsets associated with breast cancer, before and after treatment. Future work to characterize TAM subsets, location, and crosstalk with neighboring cells will be critical to counteract TAM pro-tumor functions and to identify novel TAM-modulating strategies and combinations that are likely to enhance current therapies and overcome chemo- and immuno-therapy resistance.
Collapse
Affiliation(s)
- Anita K Mehta
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Sapana Kadel
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Madeline G Townsend
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Madisson Oliwa
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Dana-Farber Cancer Institute, Boston, MA, United States.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
20
|
Sedighzadeh SS, Khoshbin AP, Razi S, Keshavarz-Fathi M, Rezaei N. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res 2021; 10:1889-1916. [PMID: 34012800 PMCID: PMC8107755 DOI: 10.21037/tlcr-20-1241] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung cancer is the deadliest malignancy worldwide. An inflammatory microenvironment is a key factor contributing to lung tumor progression. Tumor-Associated Macrophages (TAMs) are prominent components of the cancer immune microenvironment with diverse supportive and inhibitory effects on growth, progression, and metastasis of lung tumors. Two main macrophage phenotypes with different functions have been identified. They include inflammatory or classically activated (M1) and anti-inflammatory or alternatively activated (M2) macrophages. The contrasting functions of TAMs in relation to lung neoplasm progression stem from the presence of TAMs with varying tumor-promoting or anti-tumor activities. This wide spectrum of functions is governed by a network of cytokines and chemokines, cell-cell interactions, and signaling pathways. TAMs are promising therapeutic targets for non-small cell lung cancer (NSCLC) treatment. There are several strategies for TAM targeting and utilizing them for therapeutic purposes including limiting monocyte recruitment and localization through various pathways such as CCL2-CCR2, CSF1-CSF1R, and CXCL12-CXCR4, targeting the activation of TAMs, genetic and epigenetic reprogramming of TAMs to antitumor phenotype, and utilizing TAMs as the carrier for anti-cancer drugs. In this review, we will outline the role of macrophages in the lung cancer initiation and progression, pathways regulating their function in lung cancer microenvironment as well as the role of these immune cells in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Sahar Sadat Sedighzadeh
- Department of Biological Sciences, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amin Pastaki Khoshbin
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
21
|
A Compressive Review about Taxol ®: History and Future Challenges. Molecules 2020; 25:molecules25245986. [PMID: 33348838 PMCID: PMC7767101 DOI: 10.3390/molecules25245986] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Taxol®, which is also known as paclitaxel, is a chemotherapeutic agent widely used to treat different cancers. Since the discovery of its antitumoral activity, Taxol® has been used to treat over one million patients, making it one of the most widely employed antitumoral drugs. Taxol® was the first microtubule targeting agent described in the literature, with its main mechanism of action consisting of the disruption of microtubule dynamics, thus inducing mitotic arrest and cell death. However, secondary mechanisms for achieving apoptosis have also been demonstrated. Despite its wide use, Taxol® has certain disadvantages. The main challenges facing Taxol® are the need to find an environmentally sustainable production method based on the use of microorganisms, increase its bioavailability without exerting adverse effects on the health of patients and minimize the resistance presented by a high percentage of cells treated with paclitaxel. This review details, in a succinct manner, the main aspects of this important drug, from its discovery to the present day. We highlight the main challenges that must be faced in the coming years, in order to increase the effectiveness of Taxol® as an anticancer agent.
Collapse
|
22
|
Ge Z, Ding S. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Front Oncol 2020; 10:590941. [PMID: 33224886 PMCID: PMC7670061 DOI: 10.3389/fonc.2020.590941] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor microenvironment (TME) is composed of tumor cells and surrounding non-tumor stromal cells, mainly including tumor associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts (CAFs). The TAMs are the major components of non-tumor stromal cells, and play an important role in promoting the occurrence and development of tumors. Macrophages originate from bone marrow hematopoietic stem cells and embryonic yolk sacs. There is close crosstalk between TAMs and tumor cells. With the occurrence of tumors, tumor cells secrete various chemokines to recruit monocytes to infiltrate tumor tissues and further promote their M2-type polarization. Importantly, M2-like TAMs can in turn accelerate tumor growth, promote tumor cell invasion and metastasis, and inhibit immune killing to promote tumor progression. Therefore, targeting TAMs in tumor tissues has become one of the principal strategies in current tumor immunotherapy. Current treatment strategies focus on reducing macrophage infiltration in tumor tissues and reprogramming TAMs to M1-like to kill tumors. Although these treatments have had some success, their effects are still limited. This paper mainly summarized the recruitment and polarization of macrophages by tumors, the support of TAMs for the growth of tumors, and the research progress of TAMs targeting tumors, to provide new treatment strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhe Ge
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
23
|
Beilmann-Lehtonen I, Böckelman C, Mustonen H, Koskensalo S, Hagström J, Haglund C. The prognostic role of tissue TLR2 and TLR4 in colorectal cancer. Virchows Arch 2020; 477:705-715. [PMID: 32424768 PMCID: PMC7581516 DOI: 10.1007/s00428-020-02833-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC), the second most common cancer globally, resulted in 881,000 deaths in 2018. Toll-like receptors (TLRs) are crucial to detecting pathogen invasion and inducing the host’s immune response. This study aimed to explore the prognostic value of TLR2 and TLR4 tumor expressions in colorectal cancer patients. We studied the immunohistochemical expressions of TLR2 and TLR4 using tissue microarray specimens from 825 patients undergoing surgery in the Department of Surgery, Helsinki University Hospital, between 1982 and 2002. We assessed the relationships between TLR2 and TLR4 expressions and clinicopathological variables and patient survival. We generated survival curves using the Kaplan-Meier method, determining significance with the log-rank test. Among patients with lymph node–positive disease and no distant metastases (Dukes C), a strong TLR2 immunoactivity associated with a better prognosis (p < 0.001). Among patients with local Dukes B disease, a strong TLR4 immunoactivity associated with a worse disease-specific survival (DSS; p = 0.017). In the multivariate survival analysis, moderate TLR4 immunoactivity compared with strong TLR4 immunoactivity (hazard ratio (HR) 0.66, 95% confidence interval (CI) 0.49–0.89, p = 0.007) served as an independent prognostic factor. In the multivariate analysis for the Dukes subgroups, moderate TLR2 immunoactivity (HR 2.63, 95% CI 1.56–4.44, p < 0.001) compared with strong TLR2 immunoactivity served as an independent negative prognostic factor in the Dukes C subgroup. TLR2 and TLR4 might be new prognostic factors to indicate which CRC patients require adjuvant therapy and which could spare from an unnecessary follow-up, but further investigations are needed.
Collapse
Affiliation(s)
- Ines Beilmann-Lehtonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital HUS, Haartmaninkatu 4, PO Box 440, FIN-00029, Helsinki, Finland.
| | - Camilla Böckelman
- Department of Surgery, University of Helsinki and Helsinki University Hospital HUS, Haartmaninkatu 4, PO Box 440, FIN-00029, Helsinki, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital HUS, Haartmaninkatu 4, PO Box 440, FIN-00029, Helsinki, Finland
| | - Selja Koskensalo
- Department of Surgery, University of Helsinki and Helsinki University Hospital HUS, Haartmaninkatu 4, PO Box 440, FIN-00029, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital HUS, Haartmaninkatu 4, PO Box 440, FIN-00029, Helsinki, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
24
|
Zhou B, Yan J, Guo L, Zhang B, Liu S, Yu M, Chen Z, Zhang K, Zhang W, Li X, Xu Y, Xiao Y, Zhou J, Fan J, Hung MC, Li H, Ye Q. Hepatoma cell-intrinsic TLR9 activation induces immune escape through PD-L1 upregulation in hepatocellular carcinoma. Theranostics 2020; 10:6530-6543. [PMID: 32483468 PMCID: PMC7255037 DOI: 10.7150/thno.44417] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
A TLR9 agonist in combination with a PD-1 inhibitor produced powerful antitumor responses in a clinical trial despite TLR9 agonists as monotherapies failing to generate systemic antitumor immune responses due to immunosuppressive effects. However, the mechanism involved in the improved response induced by their combination remains unknown. Methods: Subcutaneous and orthotopic Hepa1-6 tumor model was used for single-drug and combined-drug treatment. We used TLR9 agonist stimulation or lentiviral vectors to overexpress TLR9 and activate TLR9 signaling. We next investigated the crosstalk between PARP1 autoPARylation and ubiquitination and between STAT3 PARylation and phosphorylation mediated by TLR9. Tissue chips were used to analyze the relationships among TLR9, PARP1, p-STAT3 and PD-L1 expression. Results: In this study, we found that the TLR9 agonist in combination with anti-PD-1 therapy or anti-PD-L1 therapy yielded an additive effect that inhibited HCC growth in mice. Mechanistically, we found that TLR9 promoted PD-L1 transcription by enhancing STAT3 Tyr705 phosphorylation. Then, we observed that TLR9 negatively regulated PARP1 expression, which mediated a decrease in STAT3 PARylation and an increase in STAT3 Tyr705 phosphorylation. Moreover, we found that TLR9 enhanced PARP1 autoPARylation by inhibiting PARG expression, which then promoted the RNF146-mediated ubiquitination and subsequent degradation of PARP1. Finally, we observed positive associations between TLR9 and p-STAT3 (Tyr705) or PD-L1 expression and negative associations between TLR9 and PARP1 in HCC patient samples. Conclusions: We showed that hepatoma cell-intrinsic TLR9 activation regulated the crosstalk between PARP1 autoPARylation and ubiquitination and between STAT3 PARylation and phosphorylation, which together upregulated PD-L1 expression and finally induces immune escape. Therefore, combination therapy with a TLR9 agonist and an anti-PD-1 antibody or anti-PD-L1 had much better antitumor efficacy than either monotherapy in HCC.
Collapse
|
25
|
Sharma Y, Bala K. Role of Toll like receptor in progression and suppression of oral squamous cell carcinoma. Oncol Rev 2020; 14:456. [PMID: 32477468 PMCID: PMC7246341 DOI: 10.4081/oncol.2020.456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common type of head and neck squamous cell carcinoma and one of the multifactorial process that consists of most contributing factors such as tobacco smoking, chewing and alcohol consumption that altered the intracellular environment. Recent studies have shown relevance of Toll like receptor (TLR) associated with carcinogenesis. This review aim’s to explore that how TLR associates with progression and suppression of OSCC. This review is a classical review that has confined to articles published in the past 19 years (i.e. 2000-2019) and has summarized the perspective of the authors. 62 articles were reviewed and it was found that progression and suppression of OSCC is associated with different TLRs promoting tumor development and also inhibiting the progression of oral neoplasm. It was found that TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9 are associated with tumor development i.e. in progression of OSCC, where as suppression of OSCC through TLR3 and TLR7. We authors would like to conclude that literature survey has indicated effective TLR’s against OSCC development and can be explored to investigate other TLRs that can be used for therapeutic purposes in near future.
Collapse
Affiliation(s)
- Yash Sharma
- Therapeutics and Molecular Diagnostic Lab, Centre For Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kumud Bala
- Therapeutics and Molecular Diagnostic Lab, Centre For Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
26
|
Sivanantham A, Pattarayan D, Rajasekar N, Kannan A, Loganathan L, Bethunaickan R, Mahapatra SK, Palanichamy R, Muthusamy K, Rajasekaran S. Tannic acid prevents macrophage-induced pro-fibrotic response in lung epithelial cells via suppressing TLR4-mediated macrophage polarization. Inflamm Res 2019; 68:1011-1024. [DOI: 10.1007/s00011-019-01282-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
|
27
|
Jazeela K, Chakraborty A, Karunasagar I, Deekshit VK. Nontyphoidal Salmonella: a potential anticancer agent. J Appl Microbiol 2019; 128:2-14. [PMID: 31038778 DOI: 10.1111/jam.14297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Use of bacteria in cancer therapy, despite being considered as a potent strategy, has not really picked up the way other methods of cancer therapies have evolved. However, in recent years, the interest on use of bacteria to kill cancer cells has renewed considerably. The standard and widely followed strategies of cancer treatment often fail either due to the complexity of tumour biology or because of the accompanying side effects. In contrast, these limitations can be easily overcome in a bacteria-mediated approach. Salmonella is a bacterium, which is known for its ability to colonize solid or semisolid tumours more efficiently than any other bacteria. Among more than 2500 serovars of Salmonella, S. Typhimurium has been widely studied for its antagonistic effects on cancer cells. Here in, we review the current status of the preclinical and the clinical studies with a focus on the mechanisms that attribute the anticancer properties to nontyphoidal Salmonella.
Collapse
Affiliation(s)
- K Jazeela
- Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - A Chakraborty
- Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - I Karunasagar
- Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - V K Deekshit
- Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| |
Collapse
|
28
|
Casili G, Caffo M, Campolo M, Barresi V, Caruso G, Cardali SM, Lanza M, Mallamace R, Filippone A, Conti A, Germanò A, Cuzzocrea S, Esposito E. TLR-4/Wnt modulation as new therapeutic strategy in the treatment of glioblastomas. Oncotarget 2018; 9:37564-37580. [PMID: 30680070 PMCID: PMC6331030 DOI: 10.18632/oncotarget.26500] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
Purpose Glioblastomas are highly aggressive brain tumors. Various pathways are involved in gliomagenesis, among which the Wingless (Wnt) signaling. Dickkopf protein-related protein 3 (Dkk-3) interacts with proteins of Wnt pathwayas inhibitor. The Wnt signaling contributes to activity of the claudins, that are critical components of tight junctions, whose expression was altered selectively in cerebral microvessels of glioblastoma. The aim of this study was to determine the role of Wnt pathways in the regulation of tumor growth, apoptosis process by targeting Dkk-3, tight junctions alteration involving claudin-5, suggesting possible therapeutic interactions involving Wnt/Toll-like receptors (TLRs) pathways. Results We showed a significant decreasing of Dkk-3 and claudin-5 in human glioblastoma cell lines, as well as in U-87 MG xenograft tumors and in glioblastoma human patient’s tissues, with an involvement of the apoptosis process. Also, an interesting TLR-4/Wnt modulation highlighted that the absence of TLR-4 determined resistance to the tumor onset. Conclusions We concluded that combined modulation of Wnt/Dkk-3/claudin-5 and TLR-4 pathways, simultaneously targeting apoptosis and survival signaling defects, might shift the balance from tumor growth stasis to cytotoxic therapeutic responses, flowing in greater therapeutic benefits. Methods In the present study we investigated the expression of Dkk-3, claudin-5, apoptosis markers and TLR-4 receptor protein levels in in vitro studies on U-138MG, A-172, LN-18 and LN-229 human glioblastoma cell lines, and in vivo study using TLR-4 KO mice and in glioblastoma human patient’s tissues.
Collapse
Affiliation(s)
- Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Valeria Barresi
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Gerardo Caruso
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, Messina, Italy
| | - Salvatore M Cardali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alfredo Conti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, Messina, Italy
| | - Antonino Germanò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
29
|
Compound A attenuates toll-like receptor 4-mediated paclitaxel resistance in breast cancer and melanoma through suppression of IL-8. BMC Cancer 2018; 18:231. [PMID: 29486738 PMCID: PMC5830047 DOI: 10.1186/s12885-018-4155-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Background Paclitaxel (PTX) is a potent anti-cancer drug commonly used for the treatment of advanced breast cancer (BCA) and melanoma. Toll-like receptor 4 (TLR4) promotes the production of pro-inflammatory cytokines associated with cancer chemoresistance. This study aims to explore the effect of TLR4 in PTX resistance in triple-negative BCA and advanced melanoma and the effect of compound A (CpdA) to attenuate this resistance. Methods BCA and melanoma cell lines were checked for the response to PTX by cytotoxic assay. The response to PTX of TLR4-transient knockdown cells by siRNA transfection was evaluated compared to the control cells. Levels of pro-inflammatory cytokines, IL-6 and IL-8, and anti-apoptotic protein, XIAP were measured by real-time PCR whereas the secreted IL-8 was quantitated by ELISA in TLR4-transient knockdown cancer cells with or without CpdA treatment. The apoptotic cells after adding PTX alone or in combination with CpdA were detected by caspase-3/7 assay. Results PTX could markedly induce TLR4 expression in both MDA-MB-231 BCA and MDA-MB-435 melanoma cell lines having a basal level of TLR4 whereas no significant induction in TLR4-transient knockdown cells occurred. The siTLR4-treated BCA cells revealed more dead cells after PTX treatment than that of mock control cells. IL-6, IL-8 and XIAP showed increased expressions in PTX-treated cells and this over-production effect was inhibited in TLR4-transient knockdown cells. Apoptotic cells were detected higher when PTX and CpdA were combined than PTX treatment alone. Isobologram exhibited the synergistic effect of CpdA and PTX. CpdA could significantly decrease expressions of IL-6, XIAP and IL-8, as well as excreted IL-8 levels together with reduced cancer viability after PTX treatment. Conclusions The acquired TLR4-mediated PTX resistance in BCA and melanoma is explained partly by the paracrine effect of IL-6 and IL-8 released into the tumor microenvironment and over-production of anti-apoptotic protein, XIAP, in BCA cells and importantly CpdA could reduce this effect and sensitize PTX-induced apoptosis in a synergistic manner. In conclusion, the possible impact of TLR4-dependent signaling pathway in PTX resistance in BCA and melanoma is proposed and using PTX in combination with CpdA may attenuate TLR4-mediated PTX resistance in the treatment of the patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4155-6) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Chiarella P, Vermeulen M, Montagna DR, Vallecorsa P, Strazza AR, Meiss RP, Bustuoabad OD, Ruggiero RA, Prehn RT. Improvement of Antitumor Therapies Based on Vaccines and Immune-Checkpoint Inhibitors by Counteracting Tumor-Immunostimulation. Front Oncol 2018; 8:6. [PMID: 29435437 PMCID: PMC5790794 DOI: 10.3389/fonc.2018.00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
Immune-checkpoint inhibitors and antitumor vaccines may produce both tumor-inhibitory and tumor-stimulatory effects on growing tumors depending on the stage of tumor growth at which treatment is initiated. These paradoxical results are not necessarily incompatible with current tumor immunology but they might better be explained assuming the involvement of the phenomenon of tumor immunostimulation. This phenomenon was originally postulated on the basis that the immune response (IR) evoked in Winn tests by strong chemical murine tumors was not linear but biphasic, with strong IR producing inhibition and weak IR inducing stimulation of tumor growth. Herein, we extended those former observations to weak spontaneous murine tumors growing in pre-immunized, immune-competent and immune-depressed mice. Furthermore, we demonstrated that the interaction of specifical T cells and target tumor cells at low stimulatory ratios enhanced the production of chemokines aimed to recruit macrophages at the tumor site, which, upon activation of toll-like receptor 4 and p38 signaling pathways, would recruit and activate more macrophages and other inflammatory cells which would produce growth-stimulating signals leading to an accelerated tumor growth. On this basis, the paradoxical effects achieved by immunological therapies on growing tumors could be explained depending upon where the therapy-induced IR stands on the biphasic IR curve at each stage of tumor growth. At stages where tumor growth was enhanced (medium and large-sized tumors), counteraction of the tumor-immunostimulatory effect with anti-inflammatory strategies or, more efficiently, with selective inhibitors of p38 signaling pathways enabled the otherwise tumor-promoting immunological strategies to produce significant inhibition of tumor growth.
Collapse
Affiliation(s)
- Paula Chiarella
- Department of Experimental Oncology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Mónica Vermeulen
- Department of Immunology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Daniela R. Montagna
- Department of Experimental Oncology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Pablo Vallecorsa
- Department of Pathology, Instituto de Estudios Oncológicos, Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Ariel Ramiro Strazza
- Department of Experimental Oncology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Roberto P. Meiss
- Department of Pathology, Instituto de Estudios Oncológicos, Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | | | - Raúl A. Ruggiero
- Department of Experimental Oncology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Richmond T. Prehn
- Department of Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
31
|
Zamanian-Daryoush M, Lindner DJ, DiDonato JA, Wagner M, Buffa J, Rayman P, Parks JS, Westerterp M, Tall AR, Hazen SL. Myeloid-specific genetic ablation of ATP-binding cassette transporter ABCA1 is protective against cancer. Oncotarget 2017; 8:71965-71980. [PMID: 29069761 PMCID: PMC5641104 DOI: 10.18632/oncotarget.18666] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
Increased circulating levels of apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), by genetic manipulation or infusion, protects against melanoma growth and metastasis. Herein, we explored potential roles in melanoma tumorigenesis for host scavenger receptor class B, type 1 (SR-B1), and ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1), all mediators of apoA-I and HDL sterol and lipid transport function. In a syngeneic murine melanoma tumor model, B16F10, mice with global deletion of SR-B1 expression exhibited increased plasma HDL cholesterol (HDLc) levels and decreased tumor volume, indicating host SR-B1 does not directly contribute to HDL-associated anti-tumor activity. In mice with myeloid-specific loss of ABCA1 (Abca1-M/-M ; A1-M/-M), tumor growth was inhibited by ∼4.8-fold relative to wild type (WT) animals. Abcg1-M/-M (G1-M/-M) animals were also protected by 2.5-fold relative to WT, with no further inhibition of tumor growth in Abca1/Abcg1 myeloid-specific double knockout animals (DKO). Analyses of tumor-infiltrating immune cells revealed a correlation between tumor protection and decreased presence of the immune suppressive myeloid-derived suppressor cell (MDSC) subsets, Ly-6G+Ly-6CLo and Ly-6GnegLy-6CHi cells. The growth of the syngeneic MB49 murine bladder cancer cells was also inhibited in A1-M/-M mice. Collectively, our studies provide further evidence for an immune modulatory role for cholesterol homeostasis pathways in cancer.
Collapse
Affiliation(s)
| | - Daniel J. Lindner
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph A. DiDonato
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Matthew Wagner
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jennifer Buffa
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Patricia Rayman
- Department of Immunology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - John S. Parks
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Marit Westerterp
- Department of Medicine, Columbia University, College of Physicians and Surgeons 8-401, New York, NY 10032, USA
| | - Alan R. Tall
- Department of Medicine, Columbia University, College of Physicians and Surgeons 8-401, New York, NY 10032, USA
| | - Stanley L. Hazen
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
32
|
Li J, Yang F, Wei F, Ren X. The role of toll-like receptor 4 in tumor microenvironment. Oncotarget 2017; 8:66656-66667. [PMID: 29029545 PMCID: PMC5630445 DOI: 10.18632/oncotarget.19105] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Tumors are closely related to chronic inflammation, during which there are various changes in inflammatory sites, such as immune cells infiltration, pro-inflammation cytokines production, and interaction between immune cells and tissue cells. Besides, substances, released from both tissue cells attacked by exogenous etiologies, also act on local cells. These changes induce a dynamic and complex microenvironment favorable for tumor growth, invasion, and metastasis. The toll-like receptor 4 (TLR4) is the first identified member of the toll-like receptor family that can recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pattern (DAMPs). TLR4 expresses not only on immune cells but also on tumor cells. Accumulating evidences demonstrated that the activation of TLR4 in tumor microenvironment can not only boost the anti-tumor immunity but also give rise to immune surveillance and tumor progression. This review will summarize the expression and function of TLR4 on dendritic cells (DCs), tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), tumor cells as well as stromal cells in tumor microenvironment. Validation of the multiple role of TLR4 in tumors could primarily pave the road for the development of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fan Yang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
33
|
Li YC, Zou JM, Luo C, Shu Y, Luo J, Qin J, Wang Y, Li D, Wang SS, Chi G, Guo F, Zhang GM, Feng ZH. Circulating tumor cells promote the metastatic colonization of disseminated carcinoma cells by inducing systemic inflammation. Oncotarget 2017; 8:28418-28430. [PMID: 28415700 PMCID: PMC5438660 DOI: 10.18632/oncotarget.16084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/28/2017] [Indexed: 01/18/2023] Open
Abstract
Circulating tumor cells (CTCs) have been studied well in the prognosis for malignant diseases as liquid biopsy, but their contribution to tumor metastasis is not clearly defined. Here we report that CTCs could promote the metastatic colonization of disseminated carcinoma cells by inducing systemic inflammation and neutrophil recruitment to pre-metastatic organs. Depletion of neutrophils in vivo could effectively abrogate the promoting effect of CTCs on tumor cell metastasis. In the presence of CTCs, the pro-tumor function of neutrophils was augmented, whereas the antitumor function of neutrophils was suppressed. Mechanically, CTC-derived ligands for TLR2 and TLR4 (TLR2/4) induced the systemic inflammation, thus increasing the production of proinflammatory cytokines such as G-CSF and IL-6 that could induce the conversion of neutrophil function from tumor-suppressing to tumor-promoting. Moreover, CTCs induced the production of endogenous TLR2/4 ligands such as S100A8, S100A9, and SAA3, which may amplify the stimulating effect that induces the expression of proinflammatory cytokines. The promoting effect of CTCs on tumor cell metastasis could be abrogated by suppressing inflammatory response with IL-37, an anti-inflammatory cytokine, or blocking CTC-derived ligands for TLR2/4. Identification of the metastatic axis of CTCs/systemic inflammation/neutrophils may provide potential targets for preventing tumor cell metastasis.
Collapse
Affiliation(s)
- Yong-Chao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| | - Jiu-Ming Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| | - Chao Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| | - Yu Shu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| | - Jian Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| | - Dong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| | - Shan-Shan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| | - Gang Chi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| | - Fang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| | - Gui-Mei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| | - Zuo-Hua Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, The People's Republic of China
| |
Collapse
|
34
|
Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun 2017; 8:14600. [PMID: 28300057 PMCID: PMC5356072 DOI: 10.1038/ncomms14600] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) are located either on the cell surface or intracellularly in endosomes and their activation normally contributes to the induction of protective immune responses. However, in cancer their activation by endogenous ligands can modulate tumour progression. It is currently unknown how endosomal TLRs regulate endogenous anti-tumour immunity. Here we show that TLR3, 7 and 9 deficiencies on host cells, after initial tumour growth, result in complete tumour regression and induction of anti-tumour immunity. Tumour regression requires the combined absence of all three receptors, is dependent on both CD4 and CD8 T cells and protects the mice from subsequent tumour challenge. While tumours in control mice are infiltrated by higher numbers of regulatory T cells, tumour regression in TLR-deficient mice is paralleled by altered vascular structure and strongly induced influx of cytotoxic and cytokine-producing effector T cells. Thus, endosomal TLRs may represent a molecular link between the inflamed tumour cell phenotype, anti-tumour immunity and the regulation of T-cell activation. Activation of Toll-like receptor (TLR) is generally associated with increased immune activity. Here, the authors show, using syngeneic mouse models, that combined deficiency of TLR 3/7/9 in the host induces an inflamed tumour phenotype and results in T cell dependent tumour regression after an initial growth.
Collapse
|
35
|
Liang XY, Li Y, Ma YQ, Zhang ZM, He YL. Clinical significance of expression of high mobility group protein B1 and Toll-like receptor 4 in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:3495-3501. [DOI: 10.11569/wcjd.v24.i23.3495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of high mobility group protein B1 (HMGB1) and Toll-like receptor 4 (TLR4) in human esophageal squamous cell carcinoma and analyze their clinical significance.
METHODS: The expression of HMGB1 and TLR4 was detected by EnVision immunohisto-
chemical staining method in 72 esophageal squamous carcinoma specimens and 15 matched normal tissue specimens. Statistical methods were used to analyze the relationship between the expression of HMGB1 and TLR4 and clinical and pathological parameters.
RESULTS: The expression of HMGB1 and TLR4 in esophageal squamous carcinoma tissues was significantly higher than that in matched normal tissues (P < 0.05). HMGB1 and TLR4 expression was positively associated with lymphatic metastasis and TNM stage (P < 0.05), but negatively correlated with tumor size and degree of differentiation. The expression of HMGB1 and TLR4 had a significant positive correlation (r = 0.377, P < 0.01).
CONCLUSION: The expression of HMGB1 and TLR4 in esophageal squamous carcinoma tissues is associated with lymphatic metastasis and TNM stage, and the joint detection of HMGB1 and TLR4 expression may help evaluate the degree of malignancy of esophageal squamous carcinoma. HMGB1/TLR may be used as important biological indicators reflecting the prognosis of esophageal cancer and important targets for therapy of esophageal cancer.
Collapse
|
36
|
Zhe Y, Li Y, Liu D, Su DM, Liu JG, Li HY. Extracellular HSP70-peptide complexes promote the proliferation of hepatocellular carcinoma cells via TLR2/4/JNK1/2MAPK pathway. Tumour Biol 2016; 37:13951-13959. [DOI: 10.1007/s13277-016-5189-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/13/2016] [Indexed: 01/28/2023] Open
|
37
|
Liu Y, Li T, Xu Y, Xu E, Zhou M, Wang B, Shen J. Effects of TLR4 gene silencing on the proliferation and apotosis of hepatocarcinoma HEPG2 cells. Oncol Lett 2016; 11:3054-3060. [PMID: 27123062 PMCID: PMC4841034 DOI: 10.3892/ol.2016.4338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are key factors in the innate immune system and initiate an inflammatory response to foreign pathogens, such as bacteria, fungi and viruses. TLR4-mediated signaling has been implicated in tumor cell proliferation and apoptosis in numerous cancers. The present study aimed to investigate the biological effect of TLR4 on the proliferation and apoptosis of human liver cancer cells and the mechanisms responsible for the regulation of cellular responses following TLR4 gene knockdown. Three TLR4 small interfering (si)RNA constructs, consisting of TLR4-siRNA-1, TLR4-siRNA-2 and TLR4-siRNA-3, were transiently transfected into HepG2 cells using Lipofectamine 2000. TLR4 knockdown was confirmed using reverse transcription-polymerase chain reaction and western blotting. The effect of the TLR4 siRNA on tumor cell proliferation was monitored by methyl thiazolyl tetrazolium assay and cell apoptosis was observed by flow cytometry. The expression of TLR4-associated proteins, consisting of myeloid differentiation primary response 88 (MyD88), Toll-interleukin-1R-domain-containing adapter-inducing interferon-β (TRIF), interferon regulatory factor-3 (IRF3), nuclear factor (NF)-κB, NF-κB inhibitor α (IκBα), phosphorylated IκBα (p-IκBα), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), was detected by western blot analysis. TLR4-siRNA-1 had the strongest knockdown effect and inhibited TLR4 messenger RNA and protein expression. TLR4 knockdown with TLR4-siRNA-1 reduced cell proliferation and promoted cell apoptosis. MyD88, TRIF, IRF3, IκBα, JNK and ERK were markedly suppressed in the cells transfected with TLR4 siRNA. However, nuclear expression of NF-κB and p-IκBα increased in HepG2 cells with TLR4 gene knockdown. The present study revealed that TLR4-mediated signaling plays a key role in the proliferation and apoptosis of cultured hepatocarcinoma cells. Therefore, RNA interference-directed targeting of TLR4 may raise the potential of the application of TLR4 knockdown for liver cancer therapy.
Collapse
Affiliation(s)
- Yating Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Enjun Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Min Zhou
- ICU, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Baolong Wang
- Department of Clinical Laboratory, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jilong Shen
- Anhui Provincial Laboratory of Pathogen and Biology Zoonoses, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
38
|
Kim TW, Lee SJ, Oh BM, Lee H, Uhm TG, Min JK, Park YJ, Yoon SR, Kim BY, Kim JW, Choe YK, Lee HG. Epigenetic modification of TLR4 promotes activation of NF-κB by regulating methyl-CpG-binding domain protein 2 and Sp1 in gastric cancer. Oncotarget 2016; 7:4195-209. [PMID: 26675260 PMCID: PMC4826199 DOI: 10.18632/oncotarget.6549] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is important in promoting the immune response in various cancers. Recently, TLR4 is highly expressed in a stage-dependent manner in gastric cancer, but the regulatory mechanism of TLR4 expression has been not elucidated it. Here, we investigated the mechanism underlying regulation of TLR4 expression through promoter methylation and histone modification between transcriptional regulation and silencing of the TLR4 gene in gastric cancer cells. Chromatin immunoprecipitation was carried out to screen for factors related to TLR4 methylation such as MeCP2, HDAC1, and Sp1 on the TLR4 promoter. Moreover, DNA methyltransferase inhibitor 5-aza-deoxycytidine (5-aza-dC) induced demethylation of the TLR4 promoter and increased H3K4 trimethylation and Sp1 binding to reactivate silenced TLR4. In contrast, although the silence of TLR4 activated H3K9 trimethylation and MeCP2 complex, combined treatment with TLR4 agonist and 5-aza-dC upregulated H3K4 trimethylation and activated with transcription factors as Sp1 and NF-κB. This study demonstrates that recruitment of the MeCP2/HDAC1 repressor complex increases the low levels of TLR4 expression through epigenetic modification of DNA and histones on the TLR4 promoter, but Sp1 activates TLR4 high expression by hypomethylation and NF-κB signaling in gastric cancer cells.
Collapse
Affiliation(s)
- Tae Woo Kim
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Byung Moo Oh
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Heesoo Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Tae Gi Uhm
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeong-Ki Min
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Jun Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Bo-Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Jong Wan Kim
- Department of Laboratory Medicine, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Yong-Kyung Choe
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hee Gu Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
39
|
Cheng YJ, Chang MY, Chang WW, Wang WK, Liu CF, Lin ST, Lee CH. Resveratrol Enhances Chemosensitivity in Mouse Melanoma Model Through Connexin 43 Upregulation. ENVIRONMENTAL TOXICOLOGY 2015; 30:877-886. [PMID: 24449132 DOI: 10.1002/tox.21952] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
Although current studies indicate that resveratrol exhibits potential antitumor activities, the precise mechanisms of its beneficial effects combined with chemotherapy are not fully understood. This work is warranted to elucidate the underlying mechanism of antitumor effects by the combination therapy of resveratrol and cisplatin. The presence of functional gap junctions is highly relevant for the success of chemotherapy. Gap junctions mediate cell communication by allowing the passage of molecules from one cell to another. Connexin (Cx) 43 is ubiquitous and reduced in a variety of tumor cells. Cx43 may influence the response of tumor cells to treatments by facilitating the passage of antitumor drugs or death signals between neighboring tumor cells. Following resveratrol treatment, dose-dependent upregulation of Cx43 expressions was observed. In addition, gap junction intercellular communication was increased. To study the mechanism underlying these resveratrol-induced Cx43 expressions, we found that resveratrol induced a significant increase in mitogen-activated protein kinases (MAPK) signaling pathways. The MAPK inhibitors significantly reduced the expression of Cx43 protein after resveratrol treatment. Specific knockdown of Cx43 resulted in a reduction of cell death after resveratrol and cisplatin treatment. Our results suggest that treatment of resveratrol in tumor leads to increase Cx43 gap junction communication and enhances the combination of resveratrol and cisplatin therapeutic effects. © 2014 Wiley Periodicals, Inc. Environ Toxicol 30: 877-886, 2015.
Collapse
Affiliation(s)
- Yu-Jung Cheng
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Meng-Ya Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Medical Research, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Kuang Wang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Chi-Fan Liu
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
| | - Song-Tao Lin
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
| | - Che-Hsin Lee
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
40
|
Rich AM, Hussaini HM, Parachuru VPB, Seymour GJ. Toll-like receptors and cancer, particularly oral squamous cell carcinoma. Front Immunol 2014; 5:464. [PMID: 25309546 PMCID: PMC4174116 DOI: 10.3389/fimmu.2014.00464] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/10/2014] [Indexed: 01/07/2023] Open
Abstract
It is becoming increasingly apparent that the tumor microenvironment plays an important role in the progression of cancer. The microenvironment may promote tumor cell survival and proliferation or, alternatively may induce tumor cell apoptosis. Toll-like receptors (TLRs) are transmembrane proteins, expressed on immune cells and epithelial cells, that recognize exogenous and endogenous macromolecules. Once activated, they initiate signaling pathways leading to the release of cytokines and chemokines, which recruit immune cells inducing further cytokine production, the production of angiogenic mediators and growth factors, all of which may influence tumor progression. This paper examines the actions of TLRs in carcinogenesis with particular emphasis on their role in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Alison Mary Rich
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago , Dunedin , New Zealand
| | - Haizal Mohd Hussaini
- Faculty of Dentistry, Department of Oral Pathology and Oral Medicine, National University of Malaysia , Kuala Lumpur , Malaysia
| | - Venkata P B Parachuru
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago , Dunedin , New Zealand
| | - Gregory J Seymour
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago , Dunedin , New Zealand
| |
Collapse
|
41
|
Chen SY, Chen CH, Huang YC, Chan CJ, Chen DC, Tsai FJ. Genetic susceptibility to idiopathic membranous nephropathy in high-prevalence Area, Taiwan. Biomedicine (Taipei) 2014; 4:9. [PMID: 25520922 PMCID: PMC4265015 DOI: 10.7603/s40681-014-0009-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/04/2014] [Indexed: 12/24/2022] Open
Abstract
Idiopathic membranous nephropathy (MN) is one common cause of idiopathic nephrotic syndrome in adults; 25% of MN patients proceed to end-stage renal disease. In adults, membranous nephropathy is a lead cause of nephrotic syndrome, with about 75% of the cases idiopathic. Secondary causes include autoimmune disease, infection, drugs and malignancy. Three hypotheses about pathogenesis have surfaced: preformed immune complex, in situ immune complex formation, and auto-antibody against podocyte membrane antigen. Pathogenesis does involve immune complex formation with later deposition in sub-epithelial sites, but definite mechanism is still unknown. Several genes were recently proven associated with primary membranous nephropathy in Taiwan: IL-6, NPHS1, TLR-4, TLR-9, STAT4, and MYH9 . These may provide a useful tool for diagnosis and prognosis. This article reviews epidemiology and lends new information on KIRREL2 (rs443186 and rs447707) polymorphisms as underlying causes of MN; polymorphisms revealed by this study warrant further investigation.
Collapse
Affiliation(s)
- Shih-Yin Chen
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan ; Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan ; Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Chuen Huang
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan ; Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Jung Chan
- Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Da-Chung Chen
- Taiwan LandSeed Hospital, Pingjen City, Taoyuan, Taiwan ; Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Fuu-Jen Tsai
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan ; Department of Medical Genetics, China Medical University Hospital, No. 2, Yuh Der Road, 404, Taichung, Taiwan ; Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| |
Collapse
|
42
|
Wu CY, Yang LH, Yang HY, Knoff J, Peng S, Lin YH, Wang C, Alvarez RD, Pai SI, Roden RBS, Hung CF, Wu TC. Enhanced cancer radiotherapy through immunosuppressive stromal cell destruction in tumors. Clin Cancer Res 2013; 20:644-57. [PMID: 24300786 DOI: 10.1158/1078-0432.ccr-13-1334] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE Radiotherapy kills cancer cells by causing DNA damage, and stimulates a systemic antitumor immune response by releasing tumor antigen and endogenous adjuvant within the tumor microenvironment. However, radiotherapy also induces the recruitment of immunosuppressive myeloid cells, which can interfere with the antitumor immune responses elicited by apoptotic tumor cells. We hypothesized that local delivery of vaccine following radiotherapy will lead to the priming of antigen-specific CTL immune responses and render immunosuppressive myeloid cells susceptible to killing by the activated CTLs. EXPERIMENTAL DESIGN Using several antigenic systems, we tested whether intratumoral injection of antigenic peptide/protein in irradiated tumors would be able to prime CTLs as well as load myeloid cells with antigen, rendering them susceptible to antigen-specific CTL killing. RESULTS We show that by combining radiotherapy and targeted antigenic peptide delivery to the tumor, the adjuvant effect generated by radiotherapy itself was sufficient to elicit the priming and expansion of antigen-specific CTLs, through the type I IFN-dependent pathway, leading to synergistic therapeutic antitumor effects compared with either treatment alone. In addition, using two different types of transgenic mice, we demonstrated that CTL-mediated killing of stromal cells in tumors by our approach is important for tumor control. Finally, we confirmed the efficacy of this approach in our preclinical model using two clinically tested therapeutic human papilloma virus (HPV) vaccines. CONCLUSIONS These data serve as an important foundation for the future clinical translation of radiotherapy combined with a clinically tested therapeutic HPV vaccine for the control of HPV-associated cancers.
Collapse
Affiliation(s)
- Chao-Yi Wu
- Authors' Affiliations: Departments of Pathology, Obstetrics and Gynecology, Molecular Microbiology and Immunology, Oncology, and Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions; Department of Biostatistics and Bioinformatics, Sidney Kimmel Cancer Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland; Departments of Obstetrics and Gynecology, Kunming Medical University, Yunnan, China; Nephrology, Chang-Gung Memorial Hospital, Gueishan; Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan; and Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yu P, Cheng X, Du Y, Huang L, Dong R. TAK-242 can be the potential agents for preventing invasion and metastasis of hepatocellular carcinoma. Med Hypotheses 2013; 81:653-655. [PMID: 23910073 DOI: 10.1016/j.mehy.2013.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/29/2013] [Accepted: 06/15/2013] [Indexed: 01/07/2023]
Abstract
The long-term prognosis of hepatocellular carcinoma (HCC) remains unsatisfactory even after surgical resection and chemoembolization because of a high recurrence rate. However, fewer agents are currently available to block or postpone HCC progression. Recent studies show that the activation of toll-like receptor 4 (TLR4)-NF-kappaB(NF-κB) signaling pathway can lead to the expression of interleukin (IL)-1, IL-6, IL-10, nitric oxide (NO) and tumor necrosis factor (TNF)-α, and promote chronic liver inflammation and malignant tumor development. A new small molecule TAK-242 (Resatorevid) can selectively inhibit TLR4-mediated signaling pathway and suppress the expression of inflammatory mediators. But the researches have not been reported whether TAK-242 can inhibit liver tumor growth and invasion. So it suggested a new hypothesis that TAK-242 selectively blocks the TLR4-NF-κB pathway and is hoped to be a potential and creative drug for preventing invasion and metastasis of HCC.
Collapse
Affiliation(s)
- Pengfei Yu
- Department of Abdominal Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| | | | | | | | | |
Collapse
|
44
|
Liu CY, Xu JY, Shi XY, Huang W, Ruan TY, Xie P, Ding JL. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. J Transl Med 2013; 93:844-54. [PMID: 23752129 DOI: 10.1038/labinvest.2013.69] [Citation(s) in RCA: 356] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
M2-polarized tumor-associated macrophages (TAMs) are key regulators of the link between inflammation and cancer. A negative correlation between infiltration intensity of M2-polarized TAMs and prognosis of pancreatic cancer has been reported. Epithelial-mesenchymal transition (EMT) is an important biological process in the progression of primary tumors toward metastasis. Inflammation-induced EMT has been previously shown, therefore, we hypothesized M2-polarized TAMs could induce EMT in pancreatic cancer. Toll-like receptor 4 (TLR4) signaling has an active role in tumor progression during chronic inflammation and the receptor is primarily expressed on macrophages. Activation of TLR4 on M2-polarized TAMs stimulates an increase in the cytokine interleukin-10 (IL-10); consequently, another aim was to investigate the potential role of TLR4/IL-10 signaling in the EMT of pancreatic cancer. Treatment with IL-4 (20 ng/ml) for 24 h successfully induced the polarization of macrophage cell line RAW 264.7 to M2 phenotype, IL-10(high), IL-12(low), and IL-23(low), and high expression of CD204 and CD206. A coculture system allowed investigation of the roles of M2-polarized TAMs and TLR4/IL-10 signaling in the EMT of Panc-1 and BxPC-3 pancreatic cancer cell lines. Our results showed that coculture with M2-polarized TAMs increased fibroblastic morphology, upregulated mesenchymal markers vimentin and snail at the mRNA and protein levels, and increased proliferation, migration, and metalloproteinase (MMP)2 and MMP9 proteolytic activity in pancreatic cancer cells. Simultaneously, coculture with M2-polarized TAMs decreased the expression of the epithelial marker E-cadherin. Coculture with pancreatic cancer cells increased TLR4 mRNA and protein expression in M2-polarized TAMs. Application of TLR4 siRNA and neutralizing antibodies against TLR4 and IL-10 markedly inhibited E-cadherin reduction and the upregulation of snail and vimentin. Furthermore, activation of TLR4 signaling by lipopolysaccharide profoundly increased the EMT of pancreatic cancer cells. In conclusion, M2-polarized TAMs promoted EMT in pancreatic cancer cells partially through TLR4/IL-10 signaling, suggesting novel therapeutic strategies and enhancing our understanding of M2-polarized TAMs.
Collapse
Affiliation(s)
- Chao-Ying Liu
- Department of Medical Oncology, Wuxi People's Hospital, Affiliated to Nanjing Medical University, Wuxi, PRC
| | | | | | | | | | | | | |
Collapse
|
45
|
Rajput S, Volk-Draper LD, Ran S. TLR4 is a novel determinant of the response to paclitaxel in breast cancer. Mol Cancer Ther 2013; 12:1676-87. [PMID: 23720768 DOI: 10.1158/1535-7163.mct-12-1019] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Overexpression of Toll-like receptor-4 (TLR4) in human tumors often correlates with chemoresistance and metastasis. We found that TLR4 is overexpressed in the majority of clinical breast cancer samples and in 68% of the examined breast cancer lines. TLR4 is activated by lipopolysaccharide (LPS) and other ligands including the widely used drug paclitaxel. LPS is frequently used to show a tumor-promoting role of TLR4 although this bacterial component is unlikely to be found in the breast cancer environment. We reasoned that paclitaxel-dependent activation of TLR4 is more relevant to breast cancer chemoresistance that could be mediated by activation of the NF-κB pathway leading to upregulation of prosurvival genes. To test this hypothesis, we correlated TLR4 expression with resistance to paclitaxel in two modified breast cancer lines with either depleted or overexpressed TLR4 protein. Depletion of TLR4 in naturally overexpressing MDA-MB-231 cells downregulated prosurvival genes concomitant with 2- to 3-fold reduced IC(50) to paclitaxel in vitro and a 6-fold decrease in recurrence rate in vivo. Conversely, TLR4 overexpression in a negative cell line HCC1806 significantly increased expression of inflammatory and prosurvival genes along with a 3-fold increase of IC(50) to paclitaxel in vitro and enhanced tumor resistance to paclitaxel therapy in vivo. Importantly, both tumor models showed that many paclitaxel-upregulated inflammatory cytokines were coinduced with their receptors suggesting that this therapy induces autocrine tumor-promoting loops. Collectively, these results show that paclitaxel not only kills tumor cells but also enhances their survival by activating TLR4 pathway. These findings suggest that blocking TLR4 could significantly improve response to paclitaxel therapy.
Collapse
Affiliation(s)
- Sandeep Rajput
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | | | | |
Collapse
|
46
|
Chang WW, Lai CH, Chen MC, Liu CF, Kuan YD, Lin ST, Lee CH. Salmonella enhance chemosensitivity in tumor through connexin 43 upregulation. Int J Cancer 2013; 133:1926-35. [PMID: 23558669 DOI: 10.1002/ijc.28155] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/21/2013] [Indexed: 01/30/2023]
Abstract
The use of preferentially replicating bacteria as oncolytic agents is one of the innovative approaches for the treatment of cancer. The capability of Salmonella to disperse within tumors and hence to delay tumor growth was augmented when combined with chemotherapy. This work is warranted to elucidate the underlying mechanism of antitumor effects by the combination therapy of Salmonella and cisplatin. The presence of functional gap junctions is highly relevant for the success of chemotherapy. Following Salmonella treatment, dose- and time-dependent upregulation of connexin 43 (Cx43) expressions were observed. Moreover, Salmonella significantly enhanced gap intercellular communication (GJIC), as revealed by the fluorescent dye scrape loading assay. To study the pathway underlying these Salmonella-induced effects, we found that Salmonella induced a significant increase in mitogen-activated protein kinases (MAPK) signaling pathways. The Salmonella-induced upregulation of Cx43 was prevented by treatment of cells with the phosphorylated p38 inhibitor, but not phosphorylated extracellular signal-regulated kinase (pERK) inhibitor or phosphorylated c-jun N terminal kinase (pJNK) inhibitor. Specific knockdown of Cx43 had an inhibitory effect on GJIC and resulted in a reduction of cell death after Salmonella and cisplatin treatment. Our results suggest that accumulation of Salmonella in tumor sites leads to increase Cx43 gap junction communication and enhances the combination of Salmonella and cisplatin therapeutic effects.
Collapse
Affiliation(s)
- Wen-Wei Chang
- Department of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
47
|
Maffei R, Bulgarelli J, Fiorcari S, Bertoncelli L, Martinelli S, Guarnotta C, Castelli I, Deaglio S, Debbia G, De Biasi S, Bonacorsi G, Zucchini P, Narni F, Tripodo C, Luppi M, Cossarizza A, Marasca R. The monocytic population in chronic lymphocytic leukemia shows altered composition and deregulation of genes involved in phagocytosis and inflammation. Haematologica 2013; 98:1115-23. [PMID: 23349302 DOI: 10.3324/haematol.2012.073080] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Macrophages reside in tissues infiltrated by chronic lymphocytic leukemia B cells and the extent of infiltration is associated with adverse prognostic factors. We studied blood monocyte population by flow cytometry and whole-genome microarrays. A mixed lymphocyte reaction was performed to evaluate proliferation of T cells in contact with monocytes from patients and normal donors. Migration and gene modulation in normal monocytes cultured with CLL cells were also evaluated. The absolute number of monocytes increased in chronic lymphocytic leukemia patients compared to the number in normal controls (792 ± 86 cells/μL versus 485 ± 46 cells/μL, P=0.003). Higher numbers of non-classical CD14(+)CD16(++) and Tie-2-expressing monocytes were also detected in patients. Furthermore, we performed a gene expression analysis of monocytes in chronic lymphocytic leukemia patients, showing up-regulation of RAP1GAP and down-regulation of tubulins and CDC42EP3, which would be expected to result in impairment of phagocytosis. We also detected gene alterations such as down-regulation of PTGR2, a reductase able to inactivate prostaglandin E2, indicating immunosuppressive activity. Accordingly, the proliferation of T cells in contact with monocytes from patients was inhibited compared to that of cells in contact with monocytes from normal controls. Finally, normal monocytes in vitro increased migration and up-regulated CD16, RAP1GAP, IL-10, IL-8, MMP9 and down-regulated PTGR2 in response to leukemic cells or conditioned media. In conclusion, altered composition and deregulation of genes involved in phagocytosis and inflammation were found in blood monocytes obtained from chronic lymphocytic leukemia patients, suggesting that leukemia-mediated "education" of immune elements may also include the establishment of a skewed phenotype in the monocyte/macrophage population.
Collapse
Affiliation(s)
- Rossana Maffei
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yu L, Wang L, Chen S. Dual character of Toll-like receptor signaling: pro-tumorigenic effects and anti-tumor functions. Biochim Biophys Acta Rev Cancer 2012; 1835:144-54. [PMID: 23232186 DOI: 10.1016/j.bbcan.2012.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 01/01/2023]
Abstract
As a major class of pattern-recognition receptors, Toll-like receptors (TLRs) play a critical role in defense against invading pathogens. Increasing evidence demonstrates that, in addition to infection, TLRs are involved in other important pathological processes, such as tumorigenesis. Activation of TLRs results in opposing outcomes, pro-tumorigenic effects and anti-tumor functions. TLR signaling can inhibit apoptosis and promote chronic inflammation-induced tumorigenesis. TLR activation in tumor cells and immune cells can induce production of cytokines, increase tumor cell proliferation and apoptosis resistance, promote invasion and metastasis, and inhibit immune cell activity resulting in tumor immune escape. In contrast, the engagement of other TLRs directly induces growth inhibition and apoptosis of tumor cells and triggers activation of immune cells enhancing anti-tumor immune responses. Thus, the interpretation of the precise function of each TLR in tumors is very important for targeting TLRs and using TLR agonists in tumor therapy. We review the role of TLR signaling in tumors and discuss the factors that affect outcomes of TLR activation.
Collapse
Affiliation(s)
- Li Yu
- Department of Pathology, Sun Yat-sen University, Guangzhou, Republic of China.
| | | | | |
Collapse
|
49
|
Rakhesh M, Cate M, Vijay R, Shrikant A, Shanjana A. A TLR4-interacting peptide inhibits lipopolysaccharide-stimulated inflammatory responses, migration and invasion of colon cancer SW480 cells. Oncoimmunology 2012; 1:1495-1506. [PMID: 23264896 PMCID: PMC3525605 DOI: 10.4161/onci.22089] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Inflammation is a major risk factor for carcinogenesis in patients affected by chronic colitis, yet the molecular mechanisms underlying the progression from chronic inflammation to cancer are not completely understood. Activation of the Toll-like receptor 4 (TLR4)-NFκB signaling axis is associated with inflammation. Thus, we hypothesized that inhibition of TLR4-NFκB signaling might help in limiting inflammatory responses and inflammation-induced oncogenesis. In this work, we studied the effects of a TLR4-interacting surfactant protein A-derived (SPA4) peptide on lipopolysaccharide (LPS)-induced TLR4-NFκB signaling and cancer progression. We first characterized this peptide for its ability to bind the TLR4 ligand-LPS and for physico-chemical characteristics. Inflammation was induced by challenging the colon cancer SW480 cells with Escherichia coli LPS. Cells were then treated with varying amounts of the SPA4 peptide. Changes in the expression of TLR4, interleukin (IL)-1β and IL-6, in intracellular NFκB-related signal transducers (IKBα, p65, phosphorylated IKBα, phosphorylated p65, RelB, COX-2) as well as in the transcriptional activity of NFκB were studied by immunocytochemistry, immunoblotting and NFκB reporter assay, respectively. Simultaneously, the effects on LPS-induced cell migration and invasion were determined. We found that the SPA4 peptide does not bind to LPS. Rather, its binding to TLR4 inhibits the LPS-induced phosphorylation of p65, production of IL-1β and IL-6, activity of NFκB, migration and invasion of SW480 cells. In conclusion, our results suggest that the inhibition of TLR4-NFκB signaling by a TLR4-binding peptide may help for the treatment of chronic inflammation and prevention of inflammation-induced cancer in patients with colitis.
Collapse
Affiliation(s)
- Madhusoodhanan Rakhesh
- Department of Pharmaceutical Sciences; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA
| | - Moriasi Cate
- Department of Molecular and Integrative Physiology; University of Kansas Medical Center; Kansas City, KS USA
| | - Ramani Vijay
- Department of Pharmaceutical Sciences; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA
| | - Anant Shrikant
- Department of Molecular and Integrative Physiology; University of Kansas Medical Center; Kansas City, KS USA
| | - Awasthi Shanjana
- Department of Pharmaceutical Sciences; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA
| |
Collapse
|
50
|
Abstract
Passive immunotherapy, including adoptive T-cell therapy and antibody therapy, has shown encouraging results in cancer treatment lately. However, active immunotherapy of solid cancers remains an elusive goal. It is now known that the human innate immune system recognizes pathogen-associated molecular patterns conserved among microbes or damage-associated molecular patterns released from tissue injuries to initiate adaptive immune responses during infection and tissue inflammation, respectively. In contrast, how the innate immune system recognizes endogenously arising cancer remains poorly understood at the molecular level, which poses a significant roadblock to the development of active cancer immunotherapy. We hereby review the current knowledge of how solid cancers directly and indirectly interact with cells of the human innate immune system, with a focus on the potential effect of such interactions to the resultant adaptive immune responses against cancer. We believe that understanding cancer and innate immune system interactions may allow us to better manipulate the adaptive immune system at the molecular level to develop effective active immunotherapy against cancer. Current and future perspectives in clinical development that exploits these molecular interactions are discussed.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1738
| | - Gang Zeng
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1738
| |
Collapse
|